JP2016194138A - HIGH STRENGTH COLD ROLLED STEEL SHEET EXCELLENT IN PROCESSABILITY AND COLLISION CHARACTERISTICS AND HAVING TENSILE STRENGTH OF 980 MPa OR MORE, AND MANUFACTURING METHOD THEREFOR - Google Patents

HIGH STRENGTH COLD ROLLED STEEL SHEET EXCELLENT IN PROCESSABILITY AND COLLISION CHARACTERISTICS AND HAVING TENSILE STRENGTH OF 980 MPa OR MORE, AND MANUFACTURING METHOD THEREFOR Download PDF

Info

Publication number
JP2016194138A
JP2016194138A JP2015225506A JP2015225506A JP2016194138A JP 2016194138 A JP2016194138 A JP 2016194138A JP 2015225506 A JP2015225506 A JP 2015225506A JP 2015225506 A JP2015225506 A JP 2015225506A JP 2016194138 A JP2016194138 A JP 2016194138A
Authority
JP
Japan
Prior art keywords
less
steel sheet
temperature
strength
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015225506A
Other languages
Japanese (ja)
Other versions
JP6554396B2 (en
Inventor
忠夫 村田
Tadao Murata
忠夫 村田
二村 裕一
Yuichi Futamura
裕一 二村
康二 粕谷
Koji Kasuya
康二 粕谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57322808&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2016194138(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to PCT/JP2016/056168 priority Critical patent/WO2016158159A1/en
Priority to US15/554,843 priority patent/US20180037964A1/en
Priority to MX2017012442A priority patent/MX2017012442A/en
Priority to EP16772043.2A priority patent/EP3279362B1/en
Priority to CN201680017718.9A priority patent/CN107429370B/en
Priority to KR1020177030765A priority patent/KR102174558B1/en
Publication of JP2016194138A publication Critical patent/JP2016194138A/en
Publication of JP6554396B2 publication Critical patent/JP6554396B2/en
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Abstract

PROBLEM TO BE SOLVED: To provide a high strength cold rolled steel sheet having tensile strength of 980 MPa or more, good in processability evaluated with ductility and extension flange and further excellent in collision characteristics, and a manufacturing method therefor.SOLUTION: A metallographic structure at 1/4 position of sheet thickness satisfies the followings (1) to (4). (1) When the metallographic structure is observed by a scanning electron microscopy, area percentage of ferrite is 0% to 10% based on whole metallographic structure and the balance is a hard phase containing hardened martensite and retained austenite and consisting of at least one kind selected from a group consisting of bainitic ferrite, bainite and tempered martensite. (2) When the metallographic structure is observed by an X ray diffraction method, volume percentage of the retained austenite Vis 5% to 30%. (3) When the metallographic structure is observed by an optical microscopy, area percentage of an MA structure where hardened martensite and retained austenite are combined Vis 3% to 25% and average circle equivalent diameter of the MA structure is 2.0 μm or less. (4) A ratio of the area percentage of the MA structure Vto the volume percentage of the retained austenite V, V/V, satisfies the following formula (i): 0.50≤V/V≤1.50 (i).SELECTED DRAWING: None

Description

本発明は、加工性および衝突特性に優れた引張強度が980MPa以上の高強度冷延鋼板、およびその製造方法に関する。詳細には、上記高強度冷延鋼板、上記高強度冷延鋼板の表面に電気亜鉛めっき層を形成した高強度電気亜鉛めっき鋼板、上記高強度冷延鋼板の表面に溶融亜鉛めっき層を形成した高強度溶融亜鉛めっき鋼板、上記高強度冷延鋼板の表面に合金化溶融亜鉛めっき層を形成した高強度合金化溶融亜鉛めっき鋼板、およびこれらの製造方法に関する。   The present invention relates to a high-strength cold-rolled steel sheet having a tensile strength of 980 MPa or more excellent in workability and impact characteristics, and a method for producing the same. Specifically, the high-strength cold-rolled steel sheet, the high-strength cold-rolled steel sheet, the high-strength electro-galvanized steel sheet formed with the electrogalvanized layer on the surface, and the hot-rolled galvanized layer formed on the surface of the high-strength cold-rolled steel sheet The present invention relates to a high-strength hot-dip galvanized steel sheet, a high-strength galvannealed steel sheet in which an alloyed hot-dip galvanized layer is formed on the surface of the high-strength cold-rolled steel sheet, and methods for producing these.

自動車や輸送機等の低燃費化を実現するために、自動車や輸送機等を軽量化することが望まれている。軽量化するには、例えば、高強度鋼板を用い、板厚を薄くすることが有効である。しかし、鋼板を高強度化すると延性および伸びフランジ性が劣化するため、製品形状への加工性が悪くなる。   In order to realize low fuel consumption of automobiles and transportation equipment, it is desired to reduce the weight of automobiles and transportation equipment. In order to reduce the weight, for example, it is effective to use a high-strength steel plate and reduce the plate thickness. However, when the strength of the steel plate is increased, ductility and stretch flangeability are deteriorated, so that workability into a product shape is deteriorated.

また、自動車用鋼部品には、耐食性の観点から、表面に電気亜鉛めっき(以下、EGと表記することがある。)、溶融亜鉛めっき(以下、GIと表記することがある。)、合金化溶融亜鉛めっき(以下、GAと表記することがある。)などの亜鉛めっきを施した鋼板(以下、亜鉛めっき鋼板と総称することがある。)が用いられることが多い。これらの亜鉛めっき鋼板においても上記高強度鋼板と同様、強度化および加工性が求められる。   Further, from the viewpoint of corrosion resistance, the surface of automobile steel parts is electrogalvanized (hereinafter sometimes referred to as EG), hot dip galvanized (hereinafter sometimes referred to as GI), and alloyed. Steel plates (hereinafter, sometimes collectively referred to as galvanized steel plates) subjected to galvanizing such as hot dip galvanizing (hereinafter sometimes referred to as GA) are often used. These galvanized steel sheets are also required to be strengthened and workable in the same manner as the high-strength steel sheets.

例えば、特許文献1には、フェライト中にマルテンサイトや残留オーステナイトが混在した金属組織を有し、その複合組織強化により引張強さTSが490〜880MPaとなるプレス加工性の良い合金化溶融亜鉛めっきを施した鋼板が開示されている。   For example, Patent Document 1 discloses an alloyed hot-dip galvanized alloy having a metal structure in which martensite and retained austenite are mixed in ferrite and having a good press workability with a tensile strength TS of 490 to 880 MPa by strengthening the composite structure. The steel plate which gave is disclosed.

また、特許文献2には、鋼板組織を、体積分率で10〜50%のフェライト相と、10〜50%の焼戻しマルテンサイト相と、残部硬質相とからなり、該鋼板組織における平均結晶粒径が10μm以下である伸びフランジ性に優れた高強度鋼板が開示されている。   Patent Document 2 discloses that a steel sheet structure is composed of a ferrite phase having a volume fraction of 10 to 50%, a tempered martensite phase of 10 to 50%, and the remaining hard phase, and an average crystal grain in the steel sheet structure. A high-strength steel sheet excellent in stretch flangeability having a diameter of 10 μm or less is disclosed.

ところで、自動車用鋼部品には、自動車が衝突した際の衝撃を効率良く吸収する衝突特性に優れることも求められている。衝突特性を改善する技術としては、例えば、特許文献3が知られている。特許文献3には、590MPa級の鋼板並みの静動比と、900MPa以上の引張最大強度の両立が可能な、衝突吸収エネルギーに優れた引張最大強度900MPa以上の高強度亜鉛めっき鋼板およびその製造方法が開示されている。この製造方法は、亜鉛めっきを施した後、冷却し、粗度(Ra)3.0以下のロールを用いて圧延を行うところに特徴がある。   By the way, the steel parts for automobiles are also required to have excellent collision characteristics for efficiently absorbing the impact when the automobile collides. As a technique for improving the collision characteristics, for example, Patent Document 3 is known. Patent Document 3 discloses a high-strength galvanized steel sheet having a tensile maximum strength of 900 MPa or more, excellent in impact absorption energy, and capable of achieving both a static ratio comparable to that of a 590 MPa class steel plate and a tensile maximum strength of 900 MPa or more, and a method for producing the same. Is disclosed. This manufacturing method is characterized in that after galvanization, cooling is performed, and rolling is performed using a roll having a roughness (Ra) of 3.0 or less.

特許第3527092号公報Japanese Patent No. 3527092 特許第5021108号公報Japanese Patent No. 5021108 特許第5487916号公報Japanese Patent No. 5487916

上記特許文献1、2に記載の技術によれば、鋼板の加工性を改善できる。しかし、衝突特性については何も考慮されていない。これに対し、上記特許文献3に記載の技術によれば、鋼板の衝突特性を改善できる。しかし、延性および伸びフランジ性で評価される加工性については何も考慮されていない。   According to the techniques described in Patent Documents 1 and 2, the workability of the steel sheet can be improved. However, no consideration is given to the collision characteristics. On the other hand, according to the technique described in Patent Document 3, the collision characteristics of the steel sheet can be improved. However, nothing is considered about the workability evaluated by ductility and stretch flangeability.

本発明は上記の様な事情に着目してなされたものであって、その目的は、引張強度が980MPa以上の高強度冷延鋼板であって、延性および伸びフランジ性で評価される加工性が良好で、しかも衝突特性に優れた高強度冷延鋼板を提供することにある。また、本発明の他の目的は、上記高強度冷延鋼板の表面に電気亜鉛めっき層を有する高強度電気亜鉛めっき鋼板、上記高強度冷延鋼板の表面に溶融亜鉛めっき層を有する高強度溶融亜鉛めっき鋼板、および上記高強度冷延鋼板の表面に合金化溶融亜鉛めっき層を有する高強度合金化溶融亜鉛めっき鋼板を提供することにある。また、本発明の他の目的は、上記特性を兼ね備えた高強度冷延鋼板、高強度溶融亜鉛めっき鋼板、および高強度合金化溶融亜鉛めっき鋼板の製造方法を提供することにある。   The present invention has been made paying attention to the above circumstances, and its purpose is a high-strength cold-rolled steel sheet having a tensile strength of 980 MPa or more, and has workability evaluated by ductility and stretch flangeability. An object of the present invention is to provide a high-strength cold-rolled steel sheet that is good and has excellent impact characteristics. Another object of the present invention is to provide a high-strength electrogalvanized steel sheet having an electrogalvanized layer on the surface of the high-strength cold-rolled steel sheet, a high-strength molten metal having a hot-dip galvanized layer on the surface of the high-strength cold-rolled steel sheet. An object of the present invention is to provide a galvanized steel sheet and a high-strength galvannealed steel sheet having an alloyed galvanized layer on the surface of the high-strength cold-rolled steel sheet. Another object of the present invention is to provide a method for producing a high-strength cold-rolled steel sheet, a high-strength hot-dip galvanized steel sheet, and a high-strength galvannealed steel sheet having the above characteristics.

上記課題を解決することのできた本発明に係る引張強度が980MPa以上の高強度冷延鋼板とは、質量%で、C:0.10%以上0.5%以下、Si:1.0%以上3%以下、Mn:1.5%以上7%以下、P:0%超0.1%以下、S:0%超0.05%以下、Al:0.005%以上1%以下、N:0%超0.01%以下、およびO:0%超0.01%以下を含有し、残部が鉄および不可避不純物からなる鋼板である。そして、板厚の1/4位置における金属組織が、下記(1)〜(4)を満足する点に要旨を有する。
(1)金属組織を走査型電子顕微鏡で観察したときに、金属組織全体に対して、フェライトの面積率が0%以上10%以下であり、残部は、焼入マルテンサイトおよび残留オーステナイトを含み、ベイニティックフェライト、ベイナイト、および焼戻しマルテンサイトよりなる群から選択される少なくとも1種からなる硬質相である。
(2)金属組織をX線回折法で測定したときに、金属組織全体に対して、残留オーステナイトの体積率Vγが5%以上30%以下である。
(3)金属組織を光学顕微鏡で観察したときに、金属組織全体に対して、焼入マルテンサイトおよび残留オーステナイトが複合したMA組織の面積率VMAが3%以上25%以下であり、前記MA組織の平均円相当直径が2.0μm以下である。
(4)前記残留オーステナイトの体積率Vγに対する前記MA組織の面積率VMAの比VMA/Vγが、下記式(i)を満足する。
0.50≦VMA/Vγ≦1.50 ・・・(i)
The high-strength cold-rolled steel sheet having a tensile strength of 980 MPa or more according to the present invention that has been able to solve the above-mentioned problems is mass%, C: 0.10% to 0.5%, Si: 1.0% or more. 3% or less, Mn: 1.5% to 7%, P: more than 0% to 0.1%, S: more than 0% to 0.05%, Al: 0.005% to 1%, N: A steel sheet containing more than 0% and 0.01% or less, and O: more than 0% and 0.01% or less, with the balance being iron and inevitable impurities. And the metal structure in 1/4 position of board thickness has a summary in the point which satisfies following (1)-(4).
(1) When the metal structure is observed with a scanning electron microscope, the area ratio of ferrite is 0% or more and 10% or less with respect to the entire metal structure, and the balance includes hardened martensite and residual austenite, It is a hard phase composed of at least one selected from the group consisting of bainitic ferrite, bainite, and tempered martensite.
(2) When the metal structure is measured by the X-ray diffraction method, the volume fraction V γ of retained austenite is 5% or more and 30% or less with respect to the entire metal structure.
(3) When the metal structure is observed with an optical microscope, the area ratio V MA of the MA structure in which quenched martensite and retained austenite are combined with respect to the entire metal structure is 3% or more and 25% or less. The average equivalent circle diameter of the tissue is 2.0 μm or less.
(4) The ratio V MA / V γ of the area ratio V MA of the MA structure to the volume ratio V γ of the retained austenite satisfies the following formula (i).
0.50 ≦ V MA / V γ ≦ 1.50 (i)

前記鋼板は、更に他の元素として、質量%で、
(a)Cr:0%超1%以下、およびMo:0%超1%以下よりなる群から選択される少なくとも1種、
(b)Ti:0%超0.15%以下、Nb:0%超0.15%以下、およびV:0%超0.15%以下よりなる群から選択される少なくとも1種、
(c)Cu:0%超1%以下、およびNi:0%超1%以下よりなる群から選択される少なくとも1種、
(d)B:0%超0.005%以下、
(e)Ca:0%超0.01%以下、Mg:0%超0.01%以下、およびREM:0%超0.01%以下よりなる群から選択される少なくとも1種、
等を含有してもよい。
The steel sheet, as another element, in mass%,
(A) at least one selected from the group consisting of Cr: more than 0% and 1% or less and Mo: more than 0% and 1% or less,
(B) at least one selected from the group consisting of Ti: more than 0% and 0.15% or less, Nb: more than 0% and 0.15% or less, and V: more than 0% and 0.15% or less,
(C) at least one selected from the group consisting of Cu: more than 0% and 1% or less and Ni: more than 0% and 1% or less,
(D) B: more than 0% and 0.005% or less,
(E) at least one selected from the group consisting of Ca: more than 0% and 0.01% or less, Mg: more than 0% and 0.01% or less, and REM: more than 0% and 0.01% or less,
Etc. may be contained.

本発明には、上記高強度冷延鋼板の表面に電気亜鉛めっき層を有する高強度電気亜鉛めっき鋼板、上記高強度冷延鋼板の表面に溶融亜鉛めっき層を有する高強度溶融亜鉛めっき鋼板、上記高強度冷延鋼板の表面に合金化溶融亜鉛めっき層を有する高強度合金化溶融亜鉛めっき鋼板も包含される。   In the present invention, a high-strength electrogalvanized steel sheet having an electrogalvanized layer on the surface of the high-strength cold-rolled steel sheet, a high-strength hot-dip galvanized steel sheet having a hot-dip galvanized layer on the surface of the high-strength cold-rolled steel sheet, A high-strength galvannealed steel sheet having an alloyed galvanized layer on the surface of a high-strength cold-rolled steel sheet is also included.

本発明に係る加工性および衝突特性に優れた引張強度が980MPa以上の高強度冷延鋼板は、上述した成分組成を満足する鋼を、仕上げ圧延の最終スタンドにおける圧延率を5〜25%、仕上げ圧延終了温度をAr3点以上900℃以下として熱間圧延し、巻取り温度を600℃以下として巻取り、室温まで冷却し、冷間圧延し、平均昇温速度10℃/秒以上でAc3点以上の温度域に加熱し、該温度域で50秒間以上保持して均熱し、100℃以上Ms点以下の温度範囲における任意の冷却停止温度T℃まで平均冷却速度10℃/秒以上で冷却し、加熱して前記冷却停止温度T℃超550℃以下の温度域で50秒間以上保持してから室温まで冷却することにより製造できる。 A high-strength cold-rolled steel sheet having a tensile strength of 980 MPa or more, excellent in workability and impact characteristics according to the present invention, is a steel satisfying the above-described component composition, with a rolling rate of 5 to 25% in the final stand of finish rolling and finishing. Hot rolling is performed at a rolling end temperature of Ar 3 or higher and 900 ° C. or lower, coiled at a winding temperature of 600 ° C. or lower, cooled to room temperature, cold rolled, and Ac 3 at an average temperature increase rate of 10 ° C./second or higher. Heat to a temperature range above the point, hold for 50 seconds or more in the temperature range, soak, and cool at an average cooling rate of 10 ° C / second or higher to any cooling stop temperature T ° C in the temperature range of 100 ° C or higher and Ms point or lower And it can manufacture by heating and hold | maintaining for 50 seconds or more in the temperature range above the cooling stop temperature T degree C and below 550 degree C, and then cooling to room temperature.

本発明に係る加工性および衝突特性に優れた引張強度が980MPa以上の高強度溶融亜鉛めっき鋼板は、上述した成分組成を満足する鋼を、仕上げ圧延の最終スタンドにおける圧延率を5〜25%、仕上げ圧延終了温度をAr3点以上900℃以下として熱間圧延し、巻取り温度を600℃以下として巻取り、室温まで冷却し、冷間圧延し、平均昇温速度10℃/秒以上でAc3点以上の温度域に加熱し、該温度域で50秒間以上保持して均熱し、100℃以上Ms点以下の温度範囲における任意の冷却停止温度T℃まで平均冷却速度10℃/秒以上で冷却し、加熱して前記冷却停止温度T℃超550℃以下の温度域で50秒間以上保持すると共に、保持時間内で溶融亜鉛めっきを行った後、室温まで冷却することにより製造できる。 The high-strength hot-dip galvanized steel sheet having a tensile strength of 980 MPa or more excellent in workability and impact characteristics according to the present invention is a steel satisfying the above-described component composition, with a rolling rate of 5 to 25% in the final stand of finish rolling, Hot rolling is performed at a finish rolling end temperature of Ar 3 or higher and 900 ° C. or lower, winding is performed at a winding temperature of 600 ° C. or lower, cooled to room temperature, cold rolled, and Ac is heated at an average temperature increase rate of 10 ° C./second or higher. Heat to a temperature range of 3 points or more, hold for 50 seconds or more in the temperature range, soak, and at an average cooling rate of 10 ° C / second or more to an arbitrary cooling stop temperature T ° C in a temperature range of 100 ° C or more and Ms point or less It can be manufactured by cooling, heating and holding for 50 seconds or more in the temperature range above the cooling stop temperature T ° C. and below 550 ° C., performing hot dip galvanization within the holding time, and then cooling to room temperature.

本発明に係る加工性および衝突特性に優れた引張強度が980MPa以上の高強度合金化溶融亜鉛めっき鋼板は、上述した成分組成を満足する鋼を、仕上げ圧延の最終スタンドにおける圧延率を5〜25%、仕上げ圧延終了温度をAr3点以上900℃以下として熱間圧延し、巻取り温度を600℃以下として巻取り、室温まで冷却し、冷間圧延し、平均昇温速度10℃/秒以上でAc3点以上の温度域に加熱し、該温度域で50秒間以上保持して均熱し、100℃以上Ms点以下の温度範囲における任意の冷却停止温度T℃まで平均冷却速度10℃/秒以上で冷却し、加熱して前記冷却停止温度T℃超550℃以下の温度域で50秒間以上保持すると共に、保持時間内で溶融亜鉛めっきを行った後、更に合金化処理してから室温まで冷却することにより製造できる。 A high-strength galvannealed steel sheet having a tensile strength of 980 MPa or more and excellent in workability and impact characteristics according to the present invention is a steel satisfying the above-described component composition, with a rolling rate of 5 to 25 in the final stand of finish rolling. %, Hot rolling at a finish rolling finish temperature of Ar 3 point to 900 ° C., winding at a winding temperature of 600 ° C. or less, cooling to room temperature, cold rolling, average heating rate of 10 ° C./second or more Heat to a temperature range of Ac 3 points or higher, hold for 50 seconds or more in the temperature range and soak, and average cooling rate 10 ° C./second to any cooling stop temperature T ° C. in a temperature range of 100 ° C. or higher and Ms point or lower. After cooling and heating as described above and holding for 50 seconds or more in the temperature range above the cooling stop temperature T ° C. and 550 ° C. and after performing hot dip galvanization within the holding time, further alloying treatment is performed until room temperature. Cooling Can be manufactured.

本発明によれば、成分組成および金属組織を適切に制御しているため、延性および伸びフランジ性で評価される加工性と、衝突特性の両方に優れた引張強度が980MPa以上の高強度冷延鋼板、高強度電気亜鉛めっき鋼板、高強度溶融亜鉛めっき鋼板、および高強度合金化溶融亜鉛めっき鋼板を提供できる。本発明に係る高強度冷延鋼板、高強度電気亜鉛めっき鋼板、高強度溶融亜鉛めっき鋼板、および高強度合金化溶融亜鉛めっき鋼板は、加工性のなかでも伸びフランジ性が特に優れている。また、本発明によれば、上記高強度冷延鋼板、高強度電気亜鉛めっき鋼板、高強度溶融亜鉛めっき鋼板、および高強度合金化溶融亜鉛めっき鋼板を製造する方法を提供できる。本発明に係る高強度冷延鋼板、高強度電気亜鉛めっき鋼板、高強度溶融亜鉛めっき鋼板、および高強度合金化溶融亜鉛めっき鋼板は、特に自動車等の産業分野において極めて有用である。   According to the present invention, since the component composition and the metal structure are appropriately controlled, high strength cold rolling with a tensile strength of 980 MPa or more excellent in both workability evaluated by ductility and stretch flangeability and impact properties is achieved. Steel sheets, high-strength electrogalvanized steel sheets, high-strength hot-dip galvanized steel sheets, and high-strength galvannealed steel sheets can be provided. The high-strength cold-rolled steel sheet, high-strength electrogalvanized steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength galvannealed steel sheet according to the present invention are particularly excellent in stretch flangeability among workability. Moreover, according to this invention, the method of manufacturing the said high-strength cold-rolled steel plate, a high-strength electrogalvanized steel plate, a high-strength hot-dip galvanized steel plate, and a high-strength galvannealed steel plate can be provided. The high-strength cold-rolled steel sheet, high-strength electrogalvanized steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength galvannealed steel sheet according to the present invention are extremely useful particularly in industrial fields such as automobiles.

図1は、実施例で行った熱処理パターンの一例を示す概略説明図である。FIG. 1 is a schematic explanatory diagram illustrating an example of a heat treatment pattern performed in the example.

本発明者らは、引張強度が980MPa以上の高強度冷延鋼板について、延性、伸びフランジ性、および衝突特性の全てを改善するために、鋭意検討を重ねてきた。その結果、引張強度を確保するために、金属組織に占めるフェライト分率を所定量以下とし、残部組織を硬質相としたうえで、延性を改善するには、金属組織全体に対する、焼入マルテンサイトおよび残留オーステナイトが複合したMA組織の面積率VMAと、残留オーステナイトの体積率Vγとの比VMA/Vγを適切に制御すれば良いこと、伸びフランジ性を改善するには、金属組織に占めるフェライト分率を所定量以下とすると共に、上記MA組織を微細化すれば良いこと、衝突特性を改善するには、上記MA組織を微細化すると共に、上記比VMA/Vγを適切に制御すれば良いこと、を見出し、本発明を完成した。 In order to improve all of ductility, stretch flangeability, and impact characteristics, the present inventors have made extensive studies on a high-strength cold-rolled steel sheet having a tensile strength of 980 MPa or more. As a result, in order to ensure the tensile strength, the ferrite fraction in the metal structure is set to a predetermined amount or less, the remaining structure is made a hard phase, and the ductility is improved in order to improve the ductility. In order to improve stretch flangeability, the ratio V MA / V γ of the area ratio V MA of the MA structure combined with residual austenite and the volume ratio V γ of retained austenite may be appropriately controlled. In order to improve the collision characteristics, the ratio V MA / V γ should be set appropriately in order to improve the collision characteristics. Thus, the present invention has been completed.

まず、本発明を特徴づける金属組織について説明する。   First, the metal structure that characterizes the present invention will be described.

本発明に係る高強度冷延鋼板は、板厚の1/4位置における金属組織が、下記(1)〜(4)を満足するところに特徴を有する。
(1)金属組織を走査型電子顕微鏡で観察したときに、金属組織全体に対して、フェライトの面積率が0%以上10%以下であり、残部は、焼入マルテンサイトおよび残留オーステナイトを含み、ベイニティックフェライト、ベイナイト、および焼戻しマルテンサイトよりなる群から選択される少なくとも1種からなる硬質相である。
(2)金属組織をX線回折法で測定したときに、金属組織全体に対して、残留オーステナイトの体積率Vγが5%以上30%以下である。
(3)金属組織を光学顕微鏡で観察したときに、金属組織全体に対して、焼入マルテンサイトおよび残留オーステナイトが複合したMA組織の面積率VMAが3%以上25%以下であり、前記MA組織の平均円相当直径が2.0μm以下である。
(4)前記残留オーステナイトの体積率Vγと前記MA組織の面積率VMAが下記式(i)を満足する。
0.50≦VMA/Vγ≦1.50 ・・・(i)
The high-strength cold-rolled steel sheet according to the present invention is characterized in that the metal structure at the 1/4 position of the sheet thickness satisfies the following (1) to (4).
(1) When the metal structure is observed with a scanning electron microscope, the area ratio of ferrite is 0% or more and 10% or less with respect to the entire metal structure, and the balance includes hardened martensite and residual austenite, It is a hard phase composed of at least one selected from the group consisting of bainitic ferrite, bainite, and tempered martensite.
(2) When the metal structure is measured by the X-ray diffraction method, the volume fraction V γ of retained austenite is 5% or more and 30% or less with respect to the entire metal structure.
(3) When the metal structure is observed with an optical microscope, the area ratio V MA of the MA structure in which quenched martensite and retained austenite are combined with respect to the entire metal structure is 3% or more and 25% or less. The average equivalent circle diameter of the tissue is 2.0 μm or less.
(4) The volume ratio V γ of the retained austenite and the area ratio V MA of the MA structure satisfy the following formula (i).
0.50 ≦ V MA / V γ ≦ 1.50 (i)

上記金属組織の観察は、鋼板を代表して全て板厚の1/4位置とする。   The observations of the metal structure are all 1/4 positions of the plate thickness on behalf of the steel plate.

なお、上記(1)〜(3)で規定する金属組織の分率は、測定方法が相違するため、各分率を合計すると100%を超えることがある。即ち、上記(1)では、金属組織を走査型電子顕微鏡で観察しており、測定される面積率は、金属組織全体を100%としたときの割合となる。走査型電子顕微鏡を用いて測定された面積率には、焼入マルテンサイトおよび残留オーステナイトが硬質相の面積率として含まれる。一方、上記(2)では、金属組織のうち、残留オーステナイト分率をX線回折法により算出し、上記(3)では、焼入マルテンサイトおよび残留オーステナイトが複合したMA組織の面積率を光学顕微鏡で観察している。そのため、残留オーステナイトと焼入マルテンサイトの分率は複数の方法によって重複して測定される。従って上記(1)〜(3)で規定する金属組織の各分率を合計すると100%を超えることがある。また、以下、残留オーステナイトを残留γと表記することがある。また、焼入マルテンサイトと残留γが複合した組織をMA組織と表記することがある。MAとは、Martensite−Austenite Constituentの略である。   In addition, since the fraction of the metal structure prescribed | regulated by said (1)-(3) differs in a measuring method, when each fraction is totaled, it may exceed 100%. That is, in (1) above, the metal structure is observed with a scanning electron microscope, and the measured area ratio is a ratio when the entire metal structure is 100%. The area ratio measured using a scanning electron microscope includes hardened martensite and retained austenite as the area ratio of the hard phase. On the other hand, in (2) above, the residual austenite fraction of the metal structure is calculated by the X-ray diffraction method, and in (3) above, the area ratio of the MA structure in which quenched martensite and residual austenite are combined is measured with an optical microscope. Observe at. Therefore, the fractions of retained austenite and quenched martensite are measured by a plurality of methods. Therefore, the sum of the fractions of the metal structure defined in the above (1) to (3) may exceed 100%. Hereinafter, retained austenite may be referred to as retained γ. In addition, a structure in which quenched martensite and residual γ are combined may be referred to as an MA structure. MA is an abbreviation for Martensite-Authentite Constituent.

(1)本発明では、金属組織を走査型電子顕微鏡で観察したときに、金属組織全体に対して、フェライトの面積率を0%以上10%以下とする。フェライト量を10面積%以下に抑えることによって、伸びフランジ性を改善できる。即ち、本発明に係る高強度冷延鋼板は、硬質相を主体としているため、強度を高めることができる。一方、フェライトは軟質な組織であるため、硬質相との強度差が大きい。従ってフェライト量が増加すると、伸びフランジ性が低下する。また、フェライトが過剰になると鋼板の強度が低下し、980MPa以上の引張強度を確保できない。従って、本発明では、フェライトの面積率は10%以下とする。フェライトの面積率は、好ましくは7%以下、より好ましくは5%以下である。フェライト量はできるだけ少ない方が好ましく、最も好ましくは0面積%である。   (1) In the present invention, when the metal structure is observed with a scanning electron microscope, the area ratio of ferrite is set to 0% or more and 10% or less with respect to the entire metal structure. Stretch flangeability can be improved by limiting the ferrite content to 10 area% or less. That is, since the high-strength cold-rolled steel sheet according to the present invention is mainly composed of a hard phase, the strength can be increased. On the other hand, since ferrite is a soft structure, the strength difference from the hard phase is large. Therefore, when the amount of ferrite increases, stretch flangeability decreases. In addition, when the ferrite is excessive, the strength of the steel sheet is lowered, and a tensile strength of 980 MPa or more cannot be ensured. Therefore, in the present invention, the area ratio of ferrite is 10% or less. The area ratio of ferrite is preferably 7% or less, more preferably 5% or less. The amount of ferrite is preferably as small as possible, and most preferably 0 area%.

上記金属組織の残部は、焼入マルテンサイトおよび残留γを必須組織として含み、ベイニティックフェライト、ベイナイト、および焼戻しマルテンサイトよりなる群から選択される少なくとも1種からなる硬質相である。これらの硬質相は、フェライトより硬い組織であり、フェライト量を所定値以下に抑えたうえで、残部組織を硬質相とすることにより、鋼板の強度を980MPa以上に高めることができる。必須組織として焼入マルテンサイトおよび残留γを含むのは、後述するように、焼入マルテンサイトおよび残留γが複合したMA組織を所定量生成させるためである。   The balance of the metal structure includes hardened martensite and residual γ as essential structures, and is a hard phase composed of at least one selected from the group consisting of bainitic ferrite, bainite, and tempered martensite. These hard phases are harder than ferrite, and the strength of the steel sheet can be increased to 980 MPa or more by suppressing the amount of ferrite to a predetermined value or less and using the remaining structure as a hard phase. The reason why hardened martensite and residual γ are included as the essential structure is to generate a predetermined amount of MA structure in which hardened martensite and residual γ are combined, as will be described later.

上記金属組織は、硬質相に加えて、パーライトおよびセメンタイトよりなる群から選択される少なくとも1種を含んでもよい。パーライトおよびセメンタイトの合計面積率は、本発明の効果を損なわない範囲であれば特に限定されないが、例えば、20%以下が好ましい。合計面積率は、より好ましくは15%以下であり、更に好ましくは10%以下である。   The metal structure may contain at least one selected from the group consisting of pearlite and cementite in addition to the hard phase. The total area ratio of pearlite and cementite is not particularly limited as long as the effects of the present invention are not impaired. For example, 20% or less is preferable. The total area ratio is more preferably 15% or less, still more preferably 10% or less.

上記金属組織の面積率は、板厚の1/4位置をナイタール腐食した後に、走査型電子顕微鏡で観察して算出すればよく、観察倍率は、例えば、1000倍とすればよい。   The area ratio of the metal structure may be calculated by observing a 1/4 position of the plate thickness with nital corrosion and then observing with a scanning electron microscope, and the observation magnification may be 1000 times, for example.

(2)本発明では、金属組織をX線回折法で測定したときに、金属組織全体に対して、残留γの体積率Vγを5%以上30%以下とする。残留γは、鋼板を加工する際に歪を受けて変形し、マルテンサイトに変態することにより、加工時に変形部の硬化を促進して歪の集中を抑制する効果を有している。そのため、鋼板の強度−伸びバランスが向上し、延性を改善できる。こうした効果を発揮させるには、残留γの体積率は5%以上とする必要がある。残留γの体積率は、好ましくは6%以上、より好ましくは7%以上である。しかし、残留γの体積率が過度に増加すると、伸びフランジ性が劣化する。従って、本発明では、残留γの体積率は30%以下とする。残留γの体積率は、好ましくは25%以下、より好ましくは20%以下である。 (2) In the present invention, when the metal structure is measured by the X-ray diffraction method, the volume ratio V γ of the residual γ is set to 5% or more and 30% or less with respect to the entire metal structure. Residual γ has an effect of suppressing the concentration of strain by accelerating hardening of the deformed portion during processing by being deformed by deformation when transformed into martensite when the steel plate is processed. Therefore, the strength-elongation balance of the steel sheet is improved and ductility can be improved. In order to exert such an effect, the volume ratio of the residual γ needs to be 5% or more. The volume ratio of the residual γ is preferably 6% or more, more preferably 7% or more. However, if the volume ratio of residual γ increases excessively, stretch flangeability deteriorates. Therefore, in the present invention, the volume ratio of residual γ is set to 30% or less. The volume ratio of the residual γ is preferably 25% or less, more preferably 20% or less.

上記残留γの体積率は、板厚の1/4位置をX線回折法で測定して求めればよい。なお、残留γは、ベイニティックフェライトのラス間に存在するか、MA組織に含まれて存在する。上記残留γによる効果は、存在形態によらず発揮されるため、本発明では、存在形態に関わらず、X線回折法により測定された全ての残留γの量を合計して体積率を求めた。   The volume ratio of the residual γ may be obtained by measuring a quarter position of the plate thickness by the X-ray diffraction method. Residual γ is present between the laths of bainitic ferrite or included in the MA structure. Since the effect of the residual γ is exhibited regardless of the presence form, in the present invention, the amount of all residual γ measured by the X-ray diffraction method is summed regardless of the presence form to obtain the volume ratio. .

(3)本発明では、金属組織を光学顕微鏡で観察したときに、金属組織全体に対して、MA組織の面積率VMAを3%以上25%以下とする。上記MA組織は、鋼板の強度−伸びバランスを向上させる組織であり、延性を改善できる。こうした効果を発揮させるには、MA組織の面積率を3%以上とする必要がある。MA組織の面積率は、好ましくは4%以上、より好ましくは5%以上である。しかし、MA組織の面積率が過度に増加すると、衝突特性が劣化する。従って、本発明では、MA組織の面積率は25%以下とする。MA組織の面積率は、好ましくは23%以下、より好ましくは20%以下である。 (3) In the present invention, when the metal structure is observed with an optical microscope, the area ratio V MA of the MA structure is 3% or more and 25% or less with respect to the entire metal structure. The MA structure is a structure that improves the strength-elongation balance of the steel sheet and can improve ductility. In order to exert such an effect, the area ratio of the MA structure needs to be 3% or more. The area ratio of the MA structure is preferably 4% or more, more preferably 5% or more. However, when the area ratio of the MA structure increases excessively, the collision characteristics deteriorate. Therefore, in the present invention, the area ratio of the MA structure is 25% or less. The area ratio of the MA structure is preferably 23% or less, more preferably 20% or less.

また、本発明では、上記MA組織の平均円相当直径を2.0μm以下とする。MA組織を微細化することにより、伸びフランジ性および衝突特性を向上できる。こうした効果を発揮させるには、MA組織の平均円相当直径を2.0μm以下とする必要がある。MA組織の平均円相当直径は、好ましくは1.8μm以下、より好ましくは1.5μm以下である。なお、MA組織が微細化するほど、伸びフランジ性および衝突特性は良好となるため、MA組織の平均円相当直径の下限は特に限定されないが、工業的には、0.1μm程度が限界である。   In the present invention, the average equivalent circle diameter of the MA structure is 2.0 μm or less. By reducing the MA structure, stretch flangeability and impact characteristics can be improved. In order to exert such an effect, it is necessary that the average equivalent circle diameter of the MA structure is 2.0 μm or less. The average equivalent circle diameter of the MA structure is preferably 1.8 μm or less, more preferably 1.5 μm or less. Note that, as the MA structure becomes finer, the stretch flangeability and the impact characteristics become better, so the lower limit of the average equivalent circle diameter of the MA structure is not particularly limited, but about 0.1 μm is the limit industrially. .

上記MA組織とは、焼入マルテンサイトおよび残留γが複合した組織であり、焼入マルテンサイトとは、鋼板を加熱温度から室温まで冷却する過程で未変態オーステナイトがマルテンサイト変態した状態の組織を意味する。焼入マルテンサイトは、光学顕微鏡で観察することにより、加熱処理により焼き戻された焼戻しマルテンサイトと区別できる。即ち、焼入マルテンサイトは、金属組織をレペラー腐食した後に光学顕微鏡で観察すると白色で観察されるのに対し、焼戻しマルテンサイトは灰色で観察される。   The MA structure is a structure in which hardened martensite and residual γ are combined. The hardened martensite is a structure in which untransformed austenite is martensitic transformed in the process of cooling the steel sheet from the heating temperature to room temperature. means. Quenched martensite can be distinguished from tempered martensite tempered by heat treatment by observing with an optical microscope. That is, hardened martensite is observed in white when observed with an optical microscope after repeller corrosion of the metal structure, whereas tempered martensite is observed in gray.

なお、焼入マルテンサイトと残留γは、光学顕微鏡観察による観察では区別しにくいため、本発明では、焼入マルテンサイトおよび残留γが複合した組織をMA組織として測定している。   Since hardened martensite and residual γ are difficult to distinguish by observation with an optical microscope, in the present invention, a structure in which hardened martensite and residual γ are combined is measured as an MA structure.

上記MA組織の面積率は、鋼板の板厚1/4位置において測定した値である。   The area ratio of the MA structure is a value measured at a ¼ position of the steel sheet thickness.

上記MA組織の平均円相当直径は、観察視野内に認められる全てのMA組織について各MA組織の面積に基づいて円相当粒径を算出し、これを平均した値である。   The average equivalent circle diameter of the MA tissue is a value obtained by calculating the equivalent circle particle diameter based on the area of each MA tissue for all the MA tissues recognized in the observation field, and averaging these.

(4)本発明では、上記残留γの体積率Vγに対する上記MA組織の面積率VMAの比VMA/Vγが、下記式(i)を満足することが重要である。
0.50≦VMA/Vγ≦1.50 ・・・(i)
(4) In the present invention, it is important that the ratio V MA / V γ of the area ratio V MA of the MA structure to the volume ratio V γ of the residual γ satisfies the following formula (i).
0.50 ≦ V MA / V γ ≦ 1.50 (i)

上記比VMA/Vγの値が、上記式(i)を満足するように制御することによって、延性および衝突特性を両立できる。即ち、上述したとおり、本発明では、延性の指標となる強度−伸びバランスを向上させるために、残留γを積極的に生成させている。その結果、MA組織が不可避的に鋼鈑中に形成される。そして、強度−伸びバランスについて更に検討したところ、所定量の残留γを生成させた場合には、上記比VMA/Vγの値が、0.50以上となるように上記MA組織の面積率VMAを制御すれば良いことが分かった。上記比VMA/Vγの値は、好ましくは0.55以上、より好ましくは0.60以上である。しかし、上記比VMA/Vγの値が大きくなり過ぎると、MA組織が過剰に生成する。MA組織中に存在する焼入マルテンサイトは、非常に硬質な組織であるため、MA組織が過剰に生成すると、衝突時に他の組織との界面で亀裂が生じやすくなり、衝突特性が却って劣化する。そこで、本発明では、MA組織中の焼入マルテンサイトの面積率を少なくし、衝突特性を確保するために、上記比VMA/Vγの値を1.50以下とする。上記比VMA/Vγの値は、好ましくは1.40以下、より好ましくは1.30以下である。 By controlling the value of the ratio V MA / V γ so as to satisfy the above formula (i), both ductility and collision characteristics can be achieved. That is, as described above, in the present invention, the residual γ is positively generated in order to improve the strength-elongation balance that is an index of ductility. As a result, an MA structure is inevitably formed in the steel sheet. Further, when the strength-elongation balance was further examined, when a predetermined amount of residual γ was generated, the area ratio of the MA structure was such that the value of the ratio V MA / V γ was 0.50 or more. it has been found that it is sufficient to control the V MA. The value of the ratio V MA / V γ is preferably 0.55 or more, more preferably 0.60 or more. However, if the value of the ratio V MA / V γ becomes too large, an excessive amount of MA structure is generated. The hardened martensite present in the MA structure is a very hard structure. Therefore, if the MA structure is excessively formed, cracks are likely to occur at the interface with other structures at the time of collision, and the collision characteristics deteriorate instead. . Therefore, in the present invention, the ratio V MA / V γ is set to 1.50 or less in order to reduce the area ratio of the quenched martensite in the MA structure and ensure the collision characteristics. The value of the ratio V MA / V γ is preferably 1.40 or less, more preferably 1.30 or less.

以上、本発明を特徴付ける高強度冷延鋼板の金属組織について説明した。   The metal structure of the high-strength cold-rolled steel sheet that characterizes the present invention has been described above.

次に、本発明に係る高強度冷延鋼板の成分組成について説明する。なお、以下、鋼板の成分組成について「%」は「質量%」を意味する。   Next, the component composition of the high-strength cold-rolled steel sheet according to the present invention will be described. Hereinafter, “%” means “mass%” for the component composition of the steel sheet.

[C:0.10%以上0.5%以下]
Cは、980MPa以上の引張強度を確保し、且つ、残留γの安定性を高め、所定量の残留γを確保するために必要な元素である。本発明では、C量は、0.10%以上とする。C量は、好ましくは0.12%以上、より好ましくは0.15%以上である。しかし、C量が過剰になると、熱間圧延後の強度が上昇し、冷間圧延時に割れが生じたり、最終製品の溶接性が低下する。従って、C量は、0.5%以下とする。C量は、好ましくは0.40%以下、より好ましくは0.30%以下、さらに好ましくは0.25%以下である。
[C: 0.10% to 0.5%]
C is an element necessary for ensuring a tensile strength of 980 MPa or more, increasing the stability of residual γ, and ensuring a predetermined amount of residual γ. In the present invention, the C amount is 0.10% or more. The amount of C is preferably 0.12% or more, more preferably 0.15% or more. However, when the amount of C becomes excessive, the strength after hot rolling increases, cracking occurs during cold rolling, and the weldability of the final product decreases. Therefore, the C amount is 0.5% or less. The amount of C is preferably 0.40% or less, more preferably 0.30% or less, and still more preferably 0.25% or less.

[Si:1.0%以上3%以下]
Siは、固溶強化元素として作用し、鋼の高強度化に寄与する元素である。また、Siは、炭化物の生成を抑え、残留γの生成に有効に作用し、優れた強度−伸びバランスを確保するために必要な元素である。本発明では、Si量は、1.0%以上とする。Si量は、好ましくは1.2%以上、より好ましくは1.35%以上、さらに好ましくは1.5%以上である。しかし、Si量が過剰になると、熱間圧延時に著しいスケールが形成されて鋼板表面にスケール跡疵が付き、表面性状が悪くなる。また、酸洗性も悪くなる。従って、Si量は、3%以下とする。Si量は、好ましくは2.8%以下、より好ましくは2.6%以下である。
[Si: 1.0% to 3%]
Si is an element that acts as a solid solution strengthening element and contributes to increasing the strength of steel. Si is an element necessary for suppressing the formation of carbides, effectively acting on the generation of residual γ, and ensuring an excellent strength-elongation balance. In the present invention, the Si amount is 1.0% or more. The amount of Si is preferably 1.2% or more, more preferably 1.35% or more, and further preferably 1.5% or more. However, when the amount of Si becomes excessive, a remarkable scale is formed during hot rolling, and scale marks are formed on the surface of the steel sheet, resulting in poor surface properties. Moreover, pickling property also worsens. Therefore, the Si amount is 3% or less. The amount of Si is preferably 2.8% or less, more preferably 2.6% or less.

[Mn:1.5%以上7%以下]
Mnは、焼入れ性を向上させてフェライトの生成を抑制し、鋼板の高強度化に寄与する元素である。また、Mnは、γを安定化させて、残留γを生成させるために必要な元素である。本発明では、Mn量は1.5%以上とする。Mn量は、好ましくは1.6%以上、より好ましくは1.7%以上、さらに好ましくは1.8%以上、より更に好ましくは2.0%以上である。しかし、Mn量が過剰になると、熱間圧延後の強度が上昇し、冷間圧延時に割れが生じたり、最終製品の溶接性が劣化する。また、Mnを過剰に添加すると、Mnが偏析して延性および伸びフランジ性を劣化させる原因となる。従って、本発明では、Mn量は、7%以下とする。Mn量は、好ましくは5.0%以下、より好ましくは4.0%以下、さらに好ましくは3.0%以下である。
[Mn: 1.5% to 7%]
Mn is an element that improves hardenability, suppresses the formation of ferrite, and contributes to increasing the strength of the steel sheet. Mn is an element necessary for stabilizing γ and generating residual γ. In the present invention, the amount of Mn is 1.5% or more. The amount of Mn is preferably 1.6% or more, more preferably 1.7% or more, further preferably 1.8% or more, and still more preferably 2.0% or more. However, when the amount of Mn becomes excessive, the strength after hot rolling increases, cracking occurs during cold rolling, and the weldability of the final product deteriorates. Moreover, when Mn is added excessively, Mn will segregate and cause ductility and stretch flangeability to deteriorate. Therefore, in the present invention, the amount of Mn is 7% or less. The amount of Mn is preferably 5.0% or less, more preferably 4.0% or less, and still more preferably 3.0% or less.

[P:0%超0.1%以下]
Pは、不可避的に含まれる不純物元素であり、過剰に含有すると最終製品の溶接性が劣化する。従って、本発明では、P量は、0.1%以下とする。P量は、好ましくは0.08%以下、より好ましくは0.05%以下である。P量はできるだけ少ない方が良いが、0%にすることは工業的に困難である。P量の下限は、工業的には0.0005%である。
[P: more than 0% and 0.1% or less]
P is an impurity element inevitably included, and if it is excessively contained, the weldability of the final product deteriorates. Therefore, in the present invention, the P amount is 0.1% or less. The amount of P is preferably 0.08% or less, more preferably 0.05% or less. The amount of P is preferably as small as possible, but it is industrially difficult to reduce it to 0%. Industrially, the lower limit of the amount of P is 0.0005%.

[S:0%超0.05%以下]
Sは、Pと同様、不可避的に含まれる不純物元素であり、過剰に含有すると最終製品の溶接性が劣化する。また、Sは、鋼板中に硫化物系介在物を形成し、鋼板の延性および伸びフランジ性を低下させる原因となる。従って、本発明では、S量は、0.05%以下とする。S量は、好ましくは0.01%以下、より好ましくは0.005%以下である。S量はできるだけ少ない方が良いが、0%にすることは工業的に困難である。S量の下限は、工業的には0.0001%である。
[S: more than 0% and 0.05% or less]
S, like P, is an inevitably contained impurity element, and if contained excessively, the weldability of the final product deteriorates. Further, S forms sulfide inclusions in the steel sheet and causes the ductility and stretch flangeability of the steel sheet to deteriorate. Therefore, in the present invention, the S amount is 0.05% or less. The amount of S is preferably 0.01% or less, more preferably 0.005% or less. The amount of S should be as small as possible, but it is industrially difficult to make it 0%. The lower limit of the amount of S is industrially 0.0001%.

[Al:0.005%以上1%以下]
Alは、脱酸剤として作用する元素であり、こうした作用を発揮させるために、本発明では、Al量を0.005%以上とする。Al量は、より好ましくは0.01%以上である。しかし、Al量が過剰になると、最終製品の溶接性が著しく劣化する。従って、本発明では、Al量は、1%以下とする。Al量は、好ましくは0.8%以下、より好ましくは0.6%以下である。
[Al: 0.005% to 1%]
Al is an element that acts as a deoxidizing agent. In order to exert such an effect, the Al content is set to 0.005% or more in the present invention. The amount of Al is more preferably 0.01% or more. However, when the amount of Al becomes excessive, the weldability of the final product is significantly deteriorated. Therefore, in the present invention, the Al amount is 1% or less. The amount of Al is preferably 0.8% or less, more preferably 0.6% or less.

[N:0%超0.01%以下]
Nは、不可避的に含まれる不純物元素であり、過剰に含有すると、窒化物が多量に析出して延性、伸びフランジ性、および衝突特性を劣化させる。従って、本発明では、N量は、0.01%以下とする。N量は、好ましくは0.008%以下、より好ましくは0.005%以下である。なお、窒化物は、少量であれば鋼板の高強度化に寄与するため、N量は、0.001%以上であってもよい。
[N: more than 0% and 0.01% or less]
N is an impure element contained inevitably, and when it is contained excessively, a large amount of nitride precipitates and deteriorates ductility, stretch flangeability, and impact characteristics. Therefore, in the present invention, the N content is 0.01% or less. The N amount is preferably 0.008% or less, more preferably 0.005% or less. Note that the amount of N may be 0.001% or more because a small amount of nitride contributes to increasing the strength of the steel sheet.

[O:0%超0.01%以下]
Oは、不可避的に含まれる不純物元素であり、過剰に含有すると、延性および衝突特性を低下させる元素である。従って、本発明では、O量は、0.01%以下とする。O量は、好ましくは0.005%以下、より好ましくは0.003%以下である。O量はできるだけ少ない方が良いが、0%にすることは工業的に困難である。O量の下限は、工業的には0.0001%である。
[O: more than 0% and 0.01% or less]
O is an impure element contained inevitably, and when excessively contained, it is an element that deteriorates ductility and collision characteristics. Therefore, in the present invention, the O amount is 0.01% or less. The amount of O is preferably 0.005% or less, more preferably 0.003% or less. The amount of O is preferably as small as possible, but it is industrially difficult to make it 0%. The lower limit of the amount of O is industrially 0.0001%.

本発明に係る冷延鋼板は、上記成分組成を満足し、残部は、鉄および不可避不純物である。該不可避的不純物としては、例えば鋼中に原料、資材、製造設備等の状況によって持ち込まれることがある上記P、S、N、およびOの他、Pb、Bi、Sb、Snなどのトランプ元素が含まれることがある。   The cold-rolled steel sheet according to the present invention satisfies the above component composition, and the balance is iron and inevitable impurities. The inevitable impurities include, for example, the above-mentioned P, S, N, and O that may be brought into steel depending on the situation of raw materials, materials, manufacturing equipment, and the like, and other trump elements such as Pb, Bi, Sb, Sn. May be included.

本発明の冷延鋼板は、更に他の元素として、
(a)Cr:0%超1%以下、およびMo:0%超1%以下よりなる群から選択される少なくとも1種、
(b)Ti:0%超0.15%以下、Nb:0%超0.15%以下、およびV:0%超0.15%以下よりなる群から選択される少なくとも1種、
(c)Cu:0%超1%以下、およびNi:0%超1%以下よりなる群から選択される少なくとも1種、
(d)B:0%超0.005%以下、
(e)Ca:0%超0.01%以下、Mg:0%超0.01%以下、およびREM:0%超0.01%以下よりなる群から選択される少なくとも1種、
などを含有してもよい。
The cold-rolled steel sheet according to the present invention further includes other elements,
(A) at least one selected from the group consisting of Cr: more than 0% and 1% or less and Mo: more than 0% and 1% or less,
(B) at least one selected from the group consisting of Ti: more than 0% and 0.15% or less, Nb: more than 0% and 0.15% or less, and V: more than 0% and 0.15% or less,
(C) at least one selected from the group consisting of Cu: more than 0% and 1% or less and Ni: more than 0% and 1% or less,
(D) B: more than 0% and 0.005% or less,
(E) at least one selected from the group consisting of Ca: more than 0% and 0.01% or less, Mg: more than 0% and 0.01% or less, and REM: more than 0% and 0.01% or less,
Etc. may be contained.

これら(a)〜(e)の元素は、単独で、或いは任意に組み合わせて含有させることもできる。こうした範囲を定めた理由は次の通りである。   These elements (a) to (e) can be contained alone or in any combination. The reason for setting this range is as follows.

[(a)Cr:0%超1%以下、およびMo:0%超1%以下よりなる群から選択される少なくとも1種]
CrとMoは、いずれも焼入れ性を高めて鋼板の強度を向上させるために有効に作用する元素である。こうした作用を有効に発揮させるには、CrとMoは、夫々、0.1%以上とすることが好ましく、より好ましくは0.3%以上である。しかし、過剰に含有すると延性および伸びフランジ性が低下する。また、過剰な添加は、高コストとなる。従って、CrとMoを単独で添加する場合は、1%以下とすることが好ましく、より好ましくは0.8%以下、更に好ましくは0.5%以下である。CrとMoは、単独で、或いは併用できる。CrとMoを併用する場合は、単独で含有するときの上記範囲内であって、且つCrとMoの合計量が1.5%以下であることが好ましい。
[(A) Cr: at least one selected from the group consisting of more than 0% and 1% or less and Mo: more than 0% and 1% or less]
Cr and Mo are both elements that effectively act to improve the hardenability and improve the strength of the steel sheet. In order to effectively exhibit such an action, Cr and Mo are each preferably 0.1% or more, and more preferably 0.3% or more. However, when it contains excessively, ductility and stretch flangeability will fall. Moreover, excessive addition becomes high cost. Therefore, when adding Cr and Mo independently, it is preferable to set it as 1% or less, More preferably, it is 0.8% or less, More preferably, it is 0.5% or less. Cr and Mo can be used alone or in combination. When Cr and Mo are used in combination, it is preferably within the above range when contained alone, and the total amount of Cr and Mo is preferably 1.5% or less.

[(b)Ti:0%超0.15%以下、Nb:0%超0.15%以下、およびV:0%超0.15%以下よりなる群から選択される少なくとも1種]
Ti、Nb、およびVは、いずれも鋼板中に炭化物および窒化物を形成し、鋼板の強度を向上させると共に、旧γ粒を微細化させる作用を有する元素である。こうした作用を有効に発揮させるには、Ti、Nb、およびVは、夫々、0.005%以上とすることが好ましく、より好ましくは0.010%以上である。しかし、過剰に含有すると炭化物が粒界に析出し、鋼板の伸びフランジ性および衝突特性が劣化する。従って、本発明では、Ti、Nb、およびVは、夫々、0.15%以下とすることが好ましく、より好ましくは0.12%以下、更に好ましくは0.10%以下である。これらの元素は、単独で、或いは任意に選ばれる2種以上を用いることができる。
[(B) At least one selected from the group consisting of Ti: more than 0% and not more than 0.15%, Nb: more than 0% and not more than 0.15%, and V: more than 0% and not more than 0.15%]
Ti, Nb, and V are all elements that have the action of forming carbides and nitrides in the steel sheet, improving the strength of the steel sheet, and refining the old γ grains. In order to exhibit such an action effectively, Ti, Nb, and V are each preferably 0.005% or more, and more preferably 0.010% or more. However, if contained excessively, carbide precipitates at the grain boundaries, and the stretch flangeability and impact characteristics of the steel sheet deteriorate. Therefore, in the present invention, Ti, Nb, and V are each preferably 0.15% or less, more preferably 0.12% or less, and still more preferably 0.10% or less. These elements can be used alone or in combination of two or more selected arbitrarily.

[(c)Cu:0%超1%以下、およびNi:0%超1%以下よりなる群から選択される少なくとも1種]
CuおよびNiは、残留γの生成、安定化に有効に作用する元素である。また、CuとNiは、鋼板の耐食性を向上させる作用も有している。こうした作用を有効に発揮させるには、CuおよびNiは、夫々、0.05%以上とすることが好ましく、より好ましくは0.10%以上である。しかし、Cuを過剰に含有すると熱間加工性が劣化するため、Cuを単独で添加する場合は、1%以下とすることが好ましく、より好ましくは0.8%以下、更に好ましくは0.5%以下である。一方、Niを過剰に含有すると高コストとなるため、Ni量は1%以下とすることが好ましく、より好ましくは0.8%以下、更に好ましくは0.5%以下である。CuとNiは、単独で、或いは併用できる。CuおよびNiを併用すると上記作用が発現し易くなり、またNiを含有させることによってCu添加による熱間加工性の劣化が抑制されやすくなる。CuとNiを併用する場合は、合計量を1.5%以下とすることが好ましく、より好ましくは1.0%以下である。
[(C) At least one selected from the group consisting of Cu: more than 0% and 1% or less, and Ni: more than 0% and 1% or less]
Cu and Ni are elements that effectively act to generate and stabilize residual γ. Moreover, Cu and Ni also have the effect | action which improves the corrosion resistance of a steel plate. In order to effectively exhibit such an action, Cu and Ni are each preferably 0.05% or more, and more preferably 0.10% or more. However, since hot workability deteriorates when Cu is contained excessively, when Cu is added alone, it is preferably 1% or less, more preferably 0.8% or less, and still more preferably 0.5%. % Or less. On the other hand, if Ni is excessively contained, the cost increases, so the Ni content is preferably 1% or less, more preferably 0.8% or less, and still more preferably 0.5% or less. Cu and Ni can be used alone or in combination. When Cu and Ni are used in combination, the above-described action is easily exhibited, and by adding Ni, deterioration of hot workability due to addition of Cu is easily suppressed. When Cu and Ni are used in combination, the total amount is preferably 1.5% or less, and more preferably 1.0% or less.

[(d)B:0%超0.005%以下]
Bは、焼入れ性を向上させる元素であり、オーステナイトを安定に室温まで存在させるのに作用する元素である。こうした作用を有効に発揮させるには、B量は、好ましくは0.0005%以上、より好ましくは0.0010%以上、更に好ましくは0.0015%以上とする。しかし、過剰に含有すると、ホウ化物を生成して延性を劣化させることがある。従って、B量は、0.005%以下とすることが好ましい。B量は、より好ましくは0.004%以下、更に好ましくは0.0035%以下である。
[(D) B: more than 0% and 0.005% or less]
B is an element that improves hardenability, and is an element that acts to make austenite stably exist up to room temperature. In order to effectively exert such effects, the B content is preferably 0.0005% or more, more preferably 0.0010% or more, and further preferably 0.0015% or more. However, when it contains excessively, a boride may be produced | generated and ductility may be deteriorated. Therefore, the B content is preferably 0.005% or less. The amount of B is more preferably 0.004% or less, and still more preferably 0.0035% or less.

[(e)Ca:0%超0.01%以下、Mg:0%超0.01%以下、およびREM:0%超0.01%以下よりなる群から選択される少なくとも1種]
Ca、Mg、およびREMは、鋼板中の介在物を微細分散させる作用を有する元素である。こうした作用を有効に発揮させるには、Ca、Mg、REM量は、それぞれ、0.0005%以上とすることが好ましく、より好ましくは0.0010%以上である。しかし、過剰に添加すると、鋳造性や熱間加工性などを劣化させる原因となる。従って、Ca、Mg、REM量は、それぞれ、0.01%以下とすることが好ましく、より好ましくは0.008%以下、更に好ましくは0.007%以下である。これらの元素は、単独で、或いは任意に選ばれる2種以上を用いることができる。なお、本発明においてREMとは希土類元素の略であり、ランタノイド元素、即ち、LaからLuまでの15元素、およびScとYを含む意味である。
[(E) Ca: at least one selected from the group consisting of more than 0% and less than 0.01%, Mg: more than 0% and less than 0.01%, and REM: more than 0% and less than 0.01%]
Ca, Mg, and REM are elements having an action of finely dispersing inclusions in the steel sheet. In order to exhibit such an action effectively, the Ca, Mg, and REM amounts are each preferably 0.0005% or more, and more preferably 0.0010% or more. However, excessive addition may cause deterioration of castability, hot workability, and the like. Accordingly, the Ca, Mg, and REM amounts are each preferably 0.01% or less, more preferably 0.008% or less, and still more preferably 0.007% or less. These elements can be used alone or in combination of two or more selected arbitrarily. In the present invention, REM is an abbreviation for rare earth elements, and includes lanthanoid elements, that is, 15 elements from La to Lu, and Sc and Y.

以上、本発明に係る高強度冷延鋼板について説明した。   The high strength cold-rolled steel sheet according to the present invention has been described above.

上記高強度冷延鋼板は、表面に、電気亜鉛めっき層、溶融亜鉛めっき層、または合金化溶融亜鉛めっき層を形成してもよい。即ち、本発明には、上記高強度冷延鋼板の表面に電気亜鉛めっき層を有する高強度電気亜鉛めっき鋼板(以下、EG鋼板と表記することがある。)、上記高強度冷延鋼板の表面に溶融亜鉛めっき層を有する高強度溶融亜鉛めっき鋼板(以下、GI鋼板と表記することがある。)、上記高強度冷延鋼板の表面に合金化溶融亜鉛めっき層を有する高強度合金化溶融亜鉛めっき鋼板(以下、GA鋼板と表記することがある。)も包含される。   The high-strength cold-rolled steel sheet may have an electrogalvanized layer, a hot-dip galvanized layer, or an alloyed hot-dip galvanized layer on the surface. That is, the present invention includes a high-strength electrogalvanized steel sheet (hereinafter sometimes referred to as EG steel sheet) having an electrogalvanized layer on the surface of the high-strength cold-rolled steel sheet, and the surface of the high-strength cold-rolled steel sheet. High-strength hot-dip galvanized steel sheet (hereinafter sometimes referred to as GI steel sheet), high-strength galvanized steel sheet having an alloyed hot-dip galvanized layer on the surface of the high-strength cold-rolled steel sheet A plated steel plate (hereinafter sometimes referred to as a GA steel plate) is also included.

次に、本発明に係る高強度冷延鋼板の製造方法について説明する。   Next, a method for producing a high-strength cold-rolled steel sheet according to the present invention will be described.

上記高強度冷延鋼板は、上述した成分組成を満足する鋼を、仕上げ圧延の最終スタンドにおける圧延率を5〜25%、仕上げ圧延終了温度をAr3点以上900℃以下として熱間圧延し、巻取り温度を600℃以下として巻取り、室温まで冷却し、冷間圧延し、平均昇温速度10℃/秒以上でAc3点以上の温度域に加熱し、該温度域で50秒間以上保持して均熱し、100℃以上Ms点以下の温度範囲における任意の冷却停止温度T℃まで平均冷却速度10℃/秒以上で冷却し、加熱して前記冷却停止温度T℃超550℃以下の温度域で50秒間以上保持してから室温まで冷却することにより製造できる。 The high-strength cold-rolled steel sheet is steel that satisfies the above-described component composition, hot-rolled at a rolling rate of 5 to 25% in the final stand of finish rolling, and finished at a finish rolling temperature of Ar 3 point to 900 ° C., The coiling temperature is set to 600 ° C. or lower, the sheet is cooled to room temperature, cold-rolled, heated to a temperature range of Ac 3 points or higher at an average temperature increase rate of 10 ° C./second or more, and held in the temperature range for 50 seconds or more. Soaking, cooling to an arbitrary cooling stop temperature T ° C. in the temperature range of 100 ° C. or higher and Ms point or lower at an average cooling rate of 10 ° C./second or higher, and heating to a temperature of the above cooling stop temperature T ° C. or higher and 550 ° C. or lower. It can be manufactured by holding in the region for 50 seconds or more and then cooling to room temperature.

以下、順を追って説明する。   In the following, description will be given in order.

[仕上げ圧延の最終スタンドにおける圧延率:5〜25%]
まず、上記成分組成を満足する鋼は、常法に従って加熱する。加熱温度は特に限定されないが、例えば、1000〜1300℃とすることが好ましい。加熱温度が1000℃未満では、炭化物の固溶が不充分となり、充分な強度が得られにくい。一方、加熱温度が1300℃を超えると、熱延鋼板の組織が粗大化し、冷延鋼板のMA組織も粗大化しやすい。その結果、衝突特性が低下する傾向がある。
[Rolling ratio in final stand of finish rolling: 5 to 25%]
First, steel satisfying the above component composition is heated according to a conventional method. Although heating temperature is not specifically limited, For example, it is preferable to set it as 1000-1300 degreeC. If the heating temperature is less than 1000 ° C., the solid solution of the carbide becomes insufficient, and it is difficult to obtain sufficient strength. On the other hand, when the heating temperature exceeds 1300 ° C., the structure of the hot-rolled steel sheet is coarsened, and the MA structure of the cold-rolled steel sheet is easily coarsened. As a result, the collision characteristics tend to deteriorate.

加熱後は、熱間圧延を行う。本発明では、仕上げ圧延の最終スタンドにおける圧下率を5〜25%とすることが重要である。圧延率が5%未満では、熱延後のオーステナイト粒径が粗大化し、焼鈍後の冷延鋼板におけるMA組織の平均円相当直径が大きくなる。その結果、伸びフランジ性が低下する。従って、本発明では、上記圧延率を5%以上とする必要がある。上記圧下率は、好ましくは6%以上、より好ましくは7%以上、さらに好ましくは8%以上である。しかし、上記圧延率が25%を超えてもMA組織の平均円相当直径が大きくなり、伸びフランジ性および衝突特性が劣化する。このメカニズムは不明であるが、熱延後の組織が不均質化しているためと考えられる。本発明では、上記圧延率は25%以下とする必要がある。上記圧下率は、好ましくは23%以下、より好ましくは20%以下である。   After the heating, hot rolling is performed. In the present invention, it is important that the rolling reduction in the final stand of finish rolling is 5 to 25%. When the rolling rate is less than 5%, the austenite grain size after hot rolling becomes coarse, and the average equivalent circle diameter of the MA structure in the cold-rolled steel sheet after annealing becomes large. As a result, stretch flangeability deteriorates. Therefore, in the present invention, the rolling ratio needs to be 5% or more. The rolling reduction is preferably 6% or more, more preferably 7% or more, and further preferably 8% or more. However, even if the rolling rate exceeds 25%, the average equivalent circle diameter of the MA structure increases, and the stretch flangeability and the impact characteristics deteriorate. Although this mechanism is unknown, it is thought that the structure after hot rolling is heterogeneous. In the present invention, the rolling ratio needs to be 25% or less. The rolling reduction is preferably 23% or less, more preferably 20% or less.

[仕上げ圧延終了温度:Ar3点以上900℃以下]
仕上げ圧延終了温度が、Ar3点の温度を下回ると、熱延後の鋼鈑組織が不均質となり、伸びフランジ性が低下する。一方、仕上げ圧延終了温度が900℃を超えると、オーステナイトの再結晶が生じて結晶粒が粗大化し、冷延鋼板中のMA組織の平均円相当直径が大きくなる。その結果、伸びフランジ性が低下する。従って、本発明では、仕上げ圧延終了温度は、900℃以下とする必要がある。仕上げ圧延終了温度は、好ましくは890℃以下、より好ましくは880℃以下である。
[Finish rolling finish temperature: Ar 3 points to 900 ° C]
If the finish rolling finish temperature is lower than the temperature at the Ar 3 point, the steel sheet structure after hot rolling becomes inhomogeneous, and the stretch flangeability decreases. On the other hand, when the finish rolling finish temperature exceeds 900 ° C., recrystallization of austenite occurs, the crystal grains become coarse, and the average equivalent circle diameter of the MA structure in the cold-rolled steel sheet increases. As a result, stretch flangeability deteriorates. Therefore, in the present invention, the finish rolling end temperature needs to be 900 ° C. or less. The finish rolling end temperature is preferably 890 ° C. or lower, more preferably 880 ° C. or lower.

なお、Ar3点の温度は、下記式(ii)に基づいて算出した。式中[ ]は各元素の含有量(質量%)を示しており、鋼板に含まれない元素の含有量は0質量%として計算すればよい。
Ar3点(℃)=910−310×[C]−80×[Mn]−20×[Cu]−15×[Cr]−55×[Ni]−80×[Mo] ・・・(ii)
The temperature at the Ar 3 point was calculated based on the following formula (ii). In the formula, [] indicates the content (% by mass) of each element, and the content of elements not included in the steel sheet may be calculated as 0% by mass.
Ar 3 point (° C.) = 910−310 × [C] −80 × [Mn] −20 × [Cu] −15 × [Cr] −55 × [Ni] −80 × [Mo] (ii)

[巻取り温度:600℃以下]
巻き取り温度が600℃を超えると結晶粒が粗大化し、冷延鋼板中のMA組織の平均円相当直径が大きくなる。その結果、伸びフランジ性が低下する。従って、本発明では、巻き取り温度は600℃以下とする。巻取り温度は、好ましくは580℃以下、より好ましくは570℃以下、さらに好ましくは550℃以下である。
[Winding temperature: 600 ° C or less]
When the coiling temperature exceeds 600 ° C., the crystal grains become coarse, and the average equivalent circle diameter of the MA structure in the cold-rolled steel sheet increases. As a result, stretch flangeability deteriorates. Therefore, in the present invention, the winding temperature is 600 ° C. or less. The winding temperature is preferably 580 ° C. or lower, more preferably 570 ° C. or lower, and further preferably 550 ° C. or lower.

[冷間圧延]
熱間圧延後は巻取り、室温まで冷却し、必要に応じて常法に従って酸洗し、次いで、常法に従って冷間圧延を行えばよい。冷間圧延における冷延率は、例えば、30〜80%とすればよい。
[Cold rolling]
After hot rolling, it may be wound, cooled to room temperature, pickled according to a conventional method if necessary, and then cold rolled according to a conventional method. The cold rolling rate in the cold rolling may be 30 to 80%, for example.

[焼鈍]
冷間圧延後は、平均昇温速度10℃/秒以上でAc3点以上の温度域に加熱し、該温度域で50秒間以上保持して均熱することにより焼鈍を行う。冷間圧延後、上記温度域までの平均昇温速度が10℃/秒を下回ると、加熱中にオーステナイト粒が成長して粗大化するため、冷延鋼板中のMA組織の平均円相当直径が大きくなり、伸びフランジ性が低下する。従って、本発明では、上記平均昇温速度は10℃/秒以上とする。上記平均昇温速度は、好ましくは12℃/秒以上、より好ましくは15℃/秒以上である。上記平均昇温速度の上限は特に限定されないが、通常、最大で100℃/秒程度である。
[Annealing]
After the cold rolling, annealing is performed by heating to a temperature range of Ac 3 point or higher at an average temperature increase rate of 10 ° C./second or more, and holding the temperature range for 50 seconds or more and soaking. After the cold rolling, if the average rate of temperature rise to the above temperature range is less than 10 ° C./second, austenite grains grow and become coarse during heating, so the average equivalent circle diameter of the MA structure in the cold-rolled steel sheet is Increases and stretch flangeability decreases. Therefore, in this invention, the said average temperature increase rate shall be 10 degrees C / sec or more. The average temperature rising rate is preferably 12 ° C./second or more, more preferably 15 ° C./second or more. The upper limit of the average heating rate is not particularly limited, but is usually about 100 ° C./second at the maximum.

均熱温度をAc3点以上とすることによりフェライトの生成を抑制できる。均熱温度がAc3点の温度を下回ると、フェライトが過剰に生成し、伸びフランジ性を改善できない。従って、本発明では、均熱温度をAc3点以上とする。均熱温度は、好ましくはAc3点+10℃以上、より好ましくはAc3点+20℃以上である。均熱温度の上限は特に限定されないが、均熱温度が高すぎるとオーステナイトが粗大化することがあるため、Ac3点+100℃以下が好ましく、より好ましくはAc3点+50℃以下である。 By setting the soaking temperature to Ac 3 point or higher, the formation of ferrite can be suppressed. If the soaking temperature is lower than the temperature at the Ac 3 point, ferrite is excessively generated and the stretch flangeability cannot be improved. Therefore, in the present invention, the soaking temperature is set to Ac 3 point or higher. The soaking temperature is preferably Ac 3 point + 10 ° C. or higher, more preferably Ac 3 point + 20 ° C. or higher. The upper limit of the soaking temperature is not particularly limited, but if the soaking temperature is too high, austenite may be coarsened, and therefore, Ac 3 point + 100 ° C. or lower is preferable, and Ac 3 point + 50 ° C. or lower is more preferable.

均熱時間が50秒を下回ると、加工組織が冷延鋼板に残存し、延性が劣化する。従って、本発明では、均熱時間を50秒以上とする。均熱時間は、より好ましくは60秒以上である。均熱時間の上限は特に限定されないが、均熱時間が長すぎるとオーステナイト相へのMnの濃縮が進み、Ms点が低下してMA組織が増加、粗大化することがある。従って、均熱時間は、3600秒以下とすることが好ましく、より好ましくは3000秒以下である。   When the soaking time is less than 50 seconds, the processed structure remains in the cold-rolled steel sheet and the ductility deteriorates. Therefore, in the present invention, the soaking time is set to 50 seconds or more. The soaking time is more preferably 60 seconds or longer. The upper limit of the soaking time is not particularly limited, but if the soaking time is too long, the concentration of Mn into the austenite phase proceeds, the Ms point may decrease, and the MA structure may increase and become coarse. Therefore, the soaking time is preferably 3600 seconds or less, more preferably 3000 seconds or less.

上記温度域での均熱保持は、同一の温度で恒温保持する必要はなく、上記温度域内で加熱、冷却し、変動させてもよい。   The soaking in the temperature range does not need to be held at the same temperature, and may be varied by heating, cooling, and changing in the temperature range.

上記Ac3点の温度は、「レスリー鉄鋼材料化学」(丸善株式会社、1985年5月31日発行、273頁)に記載されている下記式(iii)に基づいて算出できる。式中[ ]は各元素の含有量(質量%)を示しており、鋼板に含まれない元素の含有量は0質量%として計算すればよい。
Ac3(℃)=910−203×[C]1/2−15.2×[Ni]+44.7×[Si]+104×[V]+31.5×[Mo]+13.1×[W]−(30×[Mn]+11×[Cr]+20×[Cu]−700×[P]−400×[Al]−120×[As]−400×[Ti]) ・・・(iii)
The temperature of the Ac 3 point can be calculated based on the following formula (iii) described in “Leslie Steel Material Chemistry” (Maruzen Co., Ltd., issued May 31, 1985, page 273). In the formula, [] indicates the content (% by mass) of each element, and the content of elements not included in the steel sheet may be calculated as 0% by mass.
Ac 3 (° C.) = 910−203 × [C] 1/2 −15.2 × [Ni] + 44.7 × [Si] + 104 × [V] + 31.5 × [Mo] + 13.1 × [W] − (30 × [Mn] + 11 × [Cr] + 20 × [Cu] −700 × [P] −400 × [Al] −120 × [As] −400 × [Ti]) (iii)

[冷却]
上記均熱保持した後、100℃以上Ms点以下の温度範囲における任意の冷却停止温度T℃まで冷却する。この温度範囲まで冷却することによって、未変態オーステナイトをマルテンサイトおよび硬質ベイナイト相に変態させることができ、MA組織も微細化できる。このとき、マルテンサイトは、変態直後は焼入マルテンサイトとして存在するが、後工程で再加熱、保持している間に焼戻され、焼戻しマルテンサイトとして残留する。この焼戻しマルテンサイトは、鋼板の延性、伸びフランジ性、および衝突特性のいずれにも悪影響を及ぼさない。しかし、上記冷却停止温度Tが、Ms点を超えると、マルテンサイトが生成せず、高温での再加熱保持工程で生成するMA組織が粗大化し、局所変形能が低下して伸びフランジ性を改善できない。また、MA組織が粗大化することにより、衝突特性を改善できない。従って、本発明では、冷却停止温度TをMs点の温度以下とする。冷却停止温度Tは、好ましくはMs点−20℃以下、より好ましくはMs点−50℃以下である。一方、上記冷却停止温度Tが100℃を下回ると、残留γおよびMA組織が生成しにくくなるため、延性を改善できない。従って、本発明では、冷却停止温度Tの下限を100℃以上とする。冷却停止温度Tは、好ましくは110℃以上、より好ましくは120℃以上である。
[cooling]
After maintaining the soaking, the temperature is cooled to an arbitrary cooling stop temperature T ° C. in a temperature range of 100 ° C. or higher and Ms point or lower. By cooling to this temperature range, untransformed austenite can be transformed into martensite and hard bainite phase, and the MA structure can also be refined. At this time, martensite exists as quenched martensite immediately after the transformation, but is tempered while being reheated and held in a subsequent process, and remains as tempered martensite. This tempered martensite does not adversely affect any of the ductility, stretch flangeability, and impact characteristics of the steel sheet. However, when the cooling stop temperature T exceeds the Ms point, martensite is not generated, the MA structure generated in the reheating and holding process at a high temperature is coarsened, the local deformability is lowered, and the stretch flangeability is improved. Can not. Further, the collision characteristics cannot be improved due to the coarsening of the MA structure. Therefore, in the present invention, the cooling stop temperature T is set to be equal to or lower than the temperature at the Ms point. The cooling stop temperature T is preferably Ms point −20 ° C. or lower, more preferably Ms point −50 ° C. or lower. On the other hand, when the cooling stop temperature T is lower than 100 ° C., it is difficult to generate residual γ and MA structure, and therefore ductility cannot be improved. Therefore, in this invention, the minimum of the cooling stop temperature T shall be 100 degreeC or more. The cooling stop temperature T is preferably 110 ° C. or higher, more preferably 120 ° C. or higher.

上記Ms点の温度は、下記式(iv)に基づいて算出できる。式中[ ]は各元素の含有量(質量%)を示しており、鋼板に含まれない元素の含有量は0質量%として計算すればよい。
Ms点(℃)=561−474×[C]−33×[Mn]−17×[Ni]−17×[Cr]−21×[Mo] ・・・(iv)
The temperature of the Ms point can be calculated based on the following formula (iv). In the formula, [] indicates the content (% by mass) of each element, and the content of elements not included in the steel sheet may be calculated as 0% by mass.
Ms point (° C.) = 561−474 × [C] −33 × [Mn] −17 × [Ni] −17 × [Cr] −21 × [Mo] (iv)

上記均熱保持した後、上記温度範囲における冷却停止温度Tまでの平均冷却速度を10℃/秒以上とすることも重要である。均熱保持後、上記冷却停止温度Tまでの冷却速度を適切に制御することによって、フェライトの過剰生成を抑制できる。即ち、上記平均冷却速度が10℃/秒を下回ると、冷却中にフェライトが過剰に生成し、伸びフランジ性が低下する。従って、本発明では、上記平均冷却速度を10℃/秒以上とする。上記平均冷却速度は、好ましくは15℃/秒以上、より好ましくは20℃/秒以上である。なお、上記平均冷却速度の上限は特に限定されず、水冷や油冷により冷却してもよい。   It is also important that the average cooling rate up to the cooling stop temperature T in the above temperature range is 10 ° C./second or more after the soaking is maintained. By appropriately controlling the cooling rate up to the cooling stop temperature T after the soaking is maintained, excessive generation of ferrite can be suppressed. That is, when the average cooling rate is less than 10 ° C./second, ferrite is excessively generated during cooling and stretch flangeability is deteriorated. Therefore, in this invention, the said average cooling rate shall be 10 degrees C / sec or more. The average cooling rate is preferably 15 ° C./second or more, more preferably 20 ° C./second or more. In addition, the upper limit of the said average cooling rate is not specifically limited, You may cool by water cooling or oil cooling.

[再加熱工程]
上記100℃以上Ms点以下の温度範囲における任意の冷却停止温度T℃まで冷却した後は、前記冷却停止温度T℃超550℃以下の温度域に再加熱し、この温度域で50秒間以上保持することが重要である。上記冷却停止温度T℃超550℃以下の温度域に再加熱することで、マルテンサイトなどの硬質相を焼戻しし、未変態オーステナイトをベイニティックフェライトやベイナイトに変態させることができる。再加熱を行わない場合は、残留γとMA組織の生成量のバランスが悪くなり、残留γの体積率Vγに対するMA組織の面積率VMAの比VMA/Vγを適正な範囲に制御できない。その結果、衝突特性を改善できない。また、硬質相を焼き戻すことができず、高密度の転位も生じる。従って、本発明では、上記冷却停止温度Tまで冷却した後、該冷却停止温度Tを超える温度に再加熱する。再加熱温度は、好ましくはT+20℃以上、より好ましくはT+30℃以上、更に好ましくはT+50℃以上である。しかし、再加熱温度が550℃を超えると、残留γとMA組織が殆ど生成しなくなるため、引張強度が低下する。従って、本発明では、再加熱温度は550℃以下とする。再加熱温度は、好ましくは520℃以下、より好ましくは500℃以下、更に好ましくは450℃以下である。
[Reheating process]
After cooling to an arbitrary cooling stop temperature T ° C. in the temperature range of 100 ° C. or more and the Ms point or less, it is reheated to a temperature range above the cooling stop temperature T ° C. and 550 ° C. or less, and kept in this temperature range for 50 seconds or more. It is important to. By reheating to a temperature range of above the cooling stop temperature T ° C. to 550 ° C., the hard phase such as martensite can be tempered, and the untransformed austenite can be transformed into bainitic ferrite or bainite. If reheating is not performed, the balance between the residual γ and the amount of MA tissue produced becomes poor, and the ratio V MA / V γ of the MA tissue area ratio V MA to the volume ratio V γ of the residual γ is controlled within an appropriate range. Can not. As a result, the collision characteristics cannot be improved. In addition, the hard phase cannot be tempered, and high-density dislocation occurs. Therefore, in this invention, after cooling to the said cooling stop temperature T, it reheats to the temperature exceeding this cooling stop temperature T. The reheating temperature is preferably T + 20 ° C. or higher, more preferably T + 30 ° C. or higher, and further preferably T + 50 ° C. or higher. However, when the reheating temperature exceeds 550 ° C., the residual γ and the MA structure are hardly generated, so that the tensile strength is lowered. Therefore, in the present invention, the reheating temperature is set to 550 ° C. or lower. The reheating temperature is preferably 520 ° C. or lower, more preferably 500 ° C. or lower, and further preferably 450 ° C. or lower.

なお、本発明において、「再加熱」とは、文言通り、上記冷却停止温度Tから加熱、即ち、昇温することを意味する。従って、再加熱温度は上記冷却停止温度Tよりも高い温度であり、再加熱温度が、例えば、100℃以上550℃以下の温度域であっても、上記冷却停止温度Tと再加熱温度が同じであるか、上記冷却停止温度Tよりも再加熱温度の方が低い場合は、本発明の再加熱には該当しない。   In the present invention, “reheating” means heating from the cooling stop temperature T, that is, raising the temperature, as the wording indicates. Therefore, the reheating temperature is higher than the cooling stop temperature T, and the reheating temperature is the same as the cooling stop temperature T even if the reheating temperature is, for example, a temperature range of 100 ° C. or more and 550 ° C. or less. If the reheating temperature is lower than the cooling stop temperature T, it does not correspond to the reheating of the present invention.

上記冷却停止温度T℃超550℃以下の温度域に再加熱した後は、該温度域で50秒間以上保持する。再加熱保持時間が50秒を下回ると、MA組織が過剰に生成し、延性を改善できない。また、MA組織が粗大化し、平均円相当直径を適切に制御できないため、伸びフランジ性も改善できない。また、残留γの体積率Vγに対するMA組織の面積率VMAの比VMA/Vγも適切に制御できないため、衝突特性も改善できない。更に、硬質相を充分に焼き戻すことができず、また未変態オーステナイトのベイニティックフェライトまたはベイナイトへの変態も充分に進まない。従って、本発明では、再加熱保持時間は50秒以上とする。再加熱保持時間は、好ましくは80秒以上、より好ましくは100秒以上、更に好ましくは200秒以上である。再加熱保持時間の上限は特に限定されないが、保持時間が長くなると生産性が低下するほか、引張強度が低下する傾向がある。こうした観点から、再加熱保持時間は、1500秒以下とすることが好ましく、より好ましくは1000秒以下である。 After reheating to the above-mentioned cooling stop temperature T ° C. or more and 550 ° C. or less, the temperature is maintained for 50 seconds or more in the temperature range. When the reheat holding time is less than 50 seconds, the MA structure is excessively generated and ductility cannot be improved. Further, since the MA structure becomes coarse and the average equivalent circle diameter cannot be controlled appropriately, the stretch flangeability cannot be improved. Further, since the ratio V MA / V γ of the area ratio V MA of the MA structure to the volume ratio V γ of the residual γ cannot be appropriately controlled, the collision characteristics cannot be improved. Furthermore, the hard phase cannot be tempered sufficiently, and the transformation of untransformed austenite to bainitic ferrite or bainite does not proceed sufficiently. Therefore, in the present invention, the reheating holding time is 50 seconds or more. The reheating holding time is preferably 80 seconds or longer, more preferably 100 seconds or longer, and further preferably 200 seconds or longer. The upper limit of the reheating holding time is not particularly limited, but when the holding time is increased, productivity is lowered and tensile strength tends to be lowered. From such a viewpoint, the reheating holding time is preferably 1500 seconds or less, and more preferably 1000 seconds or less.

再加熱保持した後は、室温まで冷却する。冷却時の平均冷却速度は特に限定されないが、例えば、0.1℃/秒以上であることが好ましく、より好ましくは0.4℃/秒以上である。また、平均冷却速度は、例えば、200℃/秒以下であることが好ましく、より好ましくは150℃/秒以下である。   After reheating and holding, cool to room temperature. Although the average cooling rate at the time of cooling is not specifically limited, For example, it is preferable that it is 0.1 degree-C / second or more, More preferably, it is 0.4 degree-C / second or more. Moreover, it is preferable that an average cooling rate is 200 degrees C / second or less, for example, More preferably, it is 150 degrees C / second or less.

[めっき処理]
再加熱保持後、室温まで冷却して得られた本発明に係る高強度冷延鋼板に、常法に従って、電気亜鉛めっき、溶融亜鉛めっき、または合金化溶融亜鉛めっきを施してもよい。
[Plating treatment]
After the reheating and holding, the high-strength cold-rolled steel sheet according to the present invention obtained by cooling to room temperature may be subjected to electrogalvanizing, hot-dip galvanizing, or alloyed hot-dip galvanizing according to a conventional method.

電気亜鉛めっきは、例えば、上記高強度冷延鋼板を、50〜60℃(特に、55℃)の亜鉛溶液に浸漬しつつ通電し、電気亜鉛めっき処理を行えばよい。めっき付着量は特に限定されず、例えば、片面あたり10〜100g/m2程度であればよい。 The electrogalvanization may be performed by, for example, conducting the electrogalvanization process by immersing the high-strength cold-rolled steel sheet in a zinc solution at 50 to 60 ° C. (particularly 55 ° C.). The plating adhesion amount is not particularly limited, and may be, for example, about 10 to 100 g / m 2 per side.

溶融亜鉛めっきは、例えば、上記高強度冷延鋼板を、300℃以上550℃以下の溶融亜鉛めっき浴に浸漬させて溶融亜鉛めっき処理を行えばよい。めっき時間は、所望のめっき付着量を確保できるように適宜調整すればよく、例えば、1〜10秒とすることが好ましい。   For hot dip galvanization, for example, the high-strength cold-rolled steel sheet may be immersed in a hot dip galvanizing bath at 300 ° C. or higher and 550 ° C. or lower to perform hot dip galvanizing treatment. What is necessary is just to adjust plating time suitably so that the desired plating adhesion amount can be ensured, for example, it is preferable to set it as 1 to 10 seconds.

合金化溶融亜鉛めっきは、上記溶融亜鉛めっき後に、合金化処理を行えばよい。合金化処理温度は特に限定されないが、合金化処理温度が低すぎると合金化が充分に進まないため、450℃以上が好ましく、より好ましくは460℃以上、更に好ましくは480℃以上である。しかし、合金化処理温度が高すぎると、合金化が進行し過ぎてめっき層中のFe濃度が高くなり、めっき密着性が劣化する。こうした観点から、合金化処理温度は、550℃以下が好ましく、より好ましくは540℃以下、更に好ましくは530℃以下である。合金化処理時間は特に限定されず、溶融亜鉛めっきが合金化するように調整すればよい。合金化処理時間は、例えば、10〜60秒である。   The alloying hot dip galvanizing may be performed after the hot dip galvanizing. Although the alloying treatment temperature is not particularly limited, it is preferably 450 ° C. or more, more preferably 460 ° C. or more, and further preferably 480 ° C. or more because alloying does not proceed sufficiently if the alloying treatment temperature is too low. However, if the alloying treatment temperature is too high, alloying proceeds too much, the Fe concentration in the plating layer becomes high, and the plating adhesion deteriorates. From such a viewpoint, the alloying treatment temperature is preferably 550 ° C. or less, more preferably 540 ° C. or less, and further preferably 530 ° C. or less. The alloying treatment time is not particularly limited, and may be adjusted so that hot dip galvanizing is alloyed. The alloying treatment time is, for example, 10 to 60 seconds.

本発明に係る加工性および衝突特性に優れた引張強度が980MPa以上の高強度溶融亜鉛めっき鋼板は、上述した成分組成を満足する鋼を、仕上げ圧延の最終スタンドにおける圧延率を5〜25%、仕上げ圧延終了温度をAr3点以上900℃以下として熱間圧延し、巻取り温度を600℃以下として巻取り、室温まで冷却し、冷間圧延し、平均昇温速度10℃/秒以上でAc3点以上の温度域に加熱し、該温度域で50秒間以上保持して均熱し、100℃以上Ms点以下の温度範囲における任意の冷却停止温度T℃まで平均冷却速度10℃/秒以上で冷却し、加熱して前記冷却停止温度T℃超550℃以下の温度域で50秒間以上保持すると共に、保持時間内で溶融亜鉛めっきを行った後、室温まで冷却することによっても製造できる。即ち、冷却停止温度T℃超550℃以下の温度域に加熱するまでの工程は、上述した本発明に係る高強度冷延鋼板の製造方法と同じであり、上記冷却停止温度T℃超550℃以下の温度域で行う50秒間以上の保持と、溶融亜鉛めっきを兼ねて行えばよい。 The high-strength hot-dip galvanized steel sheet having a tensile strength of 980 MPa or more excellent in workability and impact characteristics according to the present invention is a steel satisfying the above-described component composition, with a rolling rate of 5 to 25% in the final stand of finish rolling, Hot rolling is performed at a finish rolling end temperature of Ar 3 or higher and 900 ° C. or lower, winding is performed at a winding temperature of 600 ° C. or lower, cooled to room temperature, cold rolled, and Ac is heated at an average temperature increase rate of 10 ° C./second or higher. Heat to a temperature range of 3 points or more, hold for 50 seconds or more in the temperature range, soak, and at an average cooling rate of 10 ° C / second or more to an arbitrary cooling stop temperature T ° C in a temperature range of 100 ° C or more and Ms point or less It can also be produced by cooling and heating and holding for 50 seconds or more in the temperature range above the cooling stop temperature T ° C. and below 550 ° C., and after performing hot dip galvanization within the holding time, cooling to room temperature. That is, the process until heating to a temperature range above the cooling stop temperature T ° C. and below 550 ° C. is the same as the manufacturing method of the high-strength cold-rolled steel sheet according to the present invention described above, and the cooling stop temperature T ° C. above 550 ° C. What is necessary is just to carry out holding | maintenance for 50 seconds or more performed in the following temperature ranges, and hot dip galvanization.

溶融亜鉛めっきは、再加熱温度域、即ち、冷却停止温度T℃超550℃以下の温度域における保持時間内において行えばよく、具体的なめっき方法は、常法を採用できる。例えば、上記冷却停止温度T℃超550℃以下の温度域に加熱した鋼板を、冷却停止温度T℃超550℃以下の範囲の温度に調整しためっき浴に浸漬し、溶融亜鉛めっき処理を行えばよい。めっき時間は、再加熱保持の時間内で、所望のめっき量を確保できるように適宜調整すればよい。めっき時間は、例えば、1〜10秒とすることが好ましい。   The hot dip galvanization may be performed within the holding time in the reheating temperature range, that is, the cooling stop temperature T ° C. or higher and 550 ° C. or lower, and a specific plating method may be employed. For example, if a steel sheet heated to a temperature range above the cooling stop temperature T ° C. and below 550 ° C. is immersed in a plating bath adjusted to a temperature in the range above the cooling stop temperature T ° C. and below 550 ° C., hot dip galvanizing treatment is performed. Good. The plating time may be appropriately adjusted so that a desired plating amount can be secured within the reheating and holding time. The plating time is preferably 1 to 10 seconds, for example.

再加熱における、溶融亜鉛めっき処理と;加熱のみでめっき処理なし;との組み合わせとして、下記(i)〜(iii)のパターンがある。
(i)加熱のみを行った後、溶融亜鉛めっき処理を行う。
(ii)溶融亜鉛めっき処理を行った後、加熱のみを行う。
(iii)加熱のみを行った後、溶融亜鉛めっき処理を行い、更に加熱のみをこの順で行う。
There are the following patterns (i) to (iii) as combinations of hot dip galvanizing treatment and reheating without plating treatment.
(I) After only heating, a hot dip galvanizing process is performed.
(Ii) After the hot dip galvanizing treatment, only heating is performed.
(Iii) After only heating, hot dip galvanizing treatment is performed, and only heating is performed in this order.

前記加熱のみを行う場合の再加熱温度と、溶融亜鉛めっきを行うときのめっき浴の温度は異なっていてもよく、本発明には、一方の温度から他方の温度へ加熱または冷却してもよい。前記加熱の方法としては、炉加熱や誘導加熱等が挙げられる。   The reheating temperature when only the heating is performed may be different from the temperature of the plating bath when the hot dip galvanizing is performed. In the present invention, heating or cooling from one temperature to the other may be performed. . Examples of the heating method include furnace heating and induction heating.

本発明に係る加工性および衝突特性に優れた引張強度が980MPa以上の高強度合金化溶融亜鉛めっき鋼板は、上述した成分組成を満足する鋼を、仕上げ圧延の最終スタンドにおける圧延率を5〜25%、仕上げ圧延終了温度をAr3点以上900℃以下として熱間圧延し、巻取り温度を600℃以下として巻取り、室温まで冷却し、冷間圧延し、平均昇温速度10℃/秒以上でAc3点以上の温度域に加熱し、該温度域で50秒間以上保持して均熱し、100℃以上Ms点以下の温度範囲における任意の冷却停止温度T℃まで平均冷却速度10℃/秒以上で冷却し、加熱して前記冷却停止温度T℃超550℃以下の温度域で50秒間以上保持すると共に、保持時間内で溶融亜鉛めっきを行った後、更に合金化処理してから室温まで冷却することによっても製造できる。即ち、冷却停止温度T℃超550℃以下の温度域に加熱するまでの工程は、上述した本発明に係る高強度冷延鋼板の製造方法と同じであり、上記冷却停止温度T℃超550℃以下の温度域で行う50秒間以上の保持と、溶融亜鉛めっきを兼ねて行い、その後、溶融亜鉛めっき層を合金化してから室温まで冷却すればよい。 A high-strength galvannealed steel sheet having a tensile strength of 980 MPa or more and excellent in workability and impact characteristics according to the present invention is a steel satisfying the above-described component composition, with a rolling rate of 5 to 25 in the final stand of finish rolling. %, Hot rolling at a finish rolling finish temperature of Ar 3 point to 900 ° C., winding at a winding temperature of 600 ° C. or less, cooling to room temperature, cold rolling, average heating rate of 10 ° C./second or more Heat to a temperature range of Ac 3 points or higher, hold for 50 seconds or more in the temperature range and soak, and average cooling rate 10 ° C./second to any cooling stop temperature T ° C. in a temperature range of 100 ° C. or higher and Ms point or lower. After cooling and heating as described above and holding for 50 seconds or more in the temperature range above the cooling stop temperature T ° C. and 550 ° C. and after performing hot dip galvanization within the holding time, further alloying treatment is performed until room temperature. Cooling Can also be manufactured. That is, the process until heating to a temperature range above the cooling stop temperature T ° C. and below 550 ° C. is the same as the manufacturing method of the high-strength cold-rolled steel sheet according to the present invention described above, and the cooling stop temperature T ° C. above 550 ° C. What is necessary is just to carry out holding | maintenance for 50 seconds or more performed in the following temperature ranges, and hot-dip galvanization, and cooling to room temperature after alloying a hot-dip galvanization layer after that.

合金化処理温度は特に限定されないが、合金化温度が低すぎると合金化が充分に進まないため、450℃以上が好ましく、より好ましくは460℃以上、更に好ましくは480℃以上である。しかし、合金化処理温度が高すぎると、合金化が進行し過ぎてめっき層中のFe濃度が高くなり、めっき密着性が劣化する。こうした観点から、合金化処理温度は、550℃以下が好ましく、より好ましくは540℃以下、更に好ましくは530℃以下である。   Although the alloying treatment temperature is not particularly limited, it is preferably 450 ° C. or higher, more preferably 460 ° C. or higher, and further preferably 480 ° C. or higher because alloying does not proceed sufficiently if the alloying temperature is too low. However, if the alloying treatment temperature is too high, alloying proceeds too much, the Fe concentration in the plating layer becomes high, and the plating adhesion deteriorates. From such a viewpoint, the alloying treatment temperature is preferably 550 ° C. or less, more preferably 540 ° C. or less, and further preferably 530 ° C. or less.

合金化処理時間は特に限定されず、溶融亜鉛めっきが合金化するように調整すればよい。合金化処理時間は、例えば、10〜60秒である。なお、合金化処理は、上記冷却停止温度T℃超550℃以下の温度域内で所定時間かけて溶融亜鉛めっき処理を行った後に行うため、合金化処理に要する時間は上記冷却停止温度T℃超550℃以下の温度域内での保持時間に含めない。   The alloying treatment time is not particularly limited, and may be adjusted so that hot dip galvanizing is alloyed. The alloying treatment time is, for example, 10 to 60 seconds. Since the alloying process is performed after the hot dip galvanizing process is performed for a predetermined time in the temperature range of the above cooling stop temperature T ° C. to 550 ° C., the time required for the alloying process exceeds the above cooling stop temperature T ° C. It is not included in the holding time in the temperature range of 550 ° C. or lower.

上記冷却停止温度T℃超550℃以下の温度域での保持時間内で溶融亜鉛めっきし、必要に応じて合金化処理を施した後は、室温まで冷却すればよい。冷却時の平均冷却速度は特に限定されないが、例えば、0.1℃/秒以上であることが好ましく、より好ましくは0.4℃/秒以上である。また、平均冷却速度は、例えば、200℃/秒以下であることが好ましく、より好ましくは150℃/秒以下である。   What is necessary is just to cool to room temperature, after carrying out hot dip galvanization within the holding time in the temperature range above the said cooling stop temperature T degree C and below 550 degree C, and performing an alloying process as needed. Although the average cooling rate at the time of cooling is not specifically limited, For example, it is preferable that it is 0.1 degree-C / second or more, More preferably, it is 0.4 degree-C / second or more. Moreover, it is preferable that an average cooling rate is 200 degrees C / second or less, for example, More preferably, it is 150 degrees C / second or less.

本発明に係る高強度冷延鋼板は、引張強度が980MPa以上である。引張強度は、1000MPa以上が好ましく、より好ましくは1010MPa以上である。そして、上記高強度冷延鋼板は、延性および伸びフランジ性で評価される加工性に優れ、しかも衝突特性にも優れている。   The high-strength cold-rolled steel sheet according to the present invention has a tensile strength of 980 MPa or more. The tensile strength is preferably 1000 MPa or more, more preferably 1010 MPa or more. And the said high intensity | strength cold-rolled steel plate is excellent in workability evaluated by ductility and stretch flangeability, and also is excellent in a collision characteristic.

延性は、強度−伸びバランスで評価でき、本発明では、引張強度TS(MPa)と伸びEL(%)との積が、13000MPa・%以上を合格とする。TS×ELの値は、13100MPa・%以上が好ましく、より好ましくは13200MPa・%以上である。   The ductility can be evaluated by a strength-elongation balance. In the present invention, the product of the tensile strength TS (MPa) and the elongation EL (%) is 13000 MPa ·% or more. The value of TS × EL is preferably 13100 MPa ·% or more, and more preferably 13200 MPa ·% or more.

伸びフランジ性は、強度−穴拡げ率バランスで評価でき、本発明では、引張強度TS(MPa)と穴拡げ率λ(%)との積が、40000MPa・%以上を合格とする。TS×λの値は、41000MPa・%以上が好ましく、より好ましくは42000MPa・%以上である。   Stretch flangeability can be evaluated by a balance between strength and hole expansion rate. In the present invention, the product of the tensile strength TS (MPa) and the hole expansion rate λ (%) passes 40000 MPa ·% or more. The value of TS × λ is preferably 41000 MPa ·% or more, more preferably 42000 MPa ·% or more.

衝突特性は、強度−VDA曲げ角度バランスで評価でき、本発明では、引張強度TS(MPa)とVDA曲げ角度(°)との積が、90000MPa・°以上を合格とする。TS×VDA曲げ角度の値は、90500MPa・°以上が好ましく、より好ましくは91000MPa・°以上である。   The impact characteristics can be evaluated by the strength-VDA bending angle balance. In the present invention, the product of the tensile strength TS (MPa) and the VDA bending angle (°) is 90000 MPa · ° or more. The value of the TS × VDA bending angle is preferably 90500 MPa · ° or more, and more preferably 91000 MPa · ° or more.

本発明に係る高強度冷延鋼板の板厚は特に限定されないが、例えば、6mm以下の薄鋼板であることが好ましい。   The plate thickness of the high-strength cold-rolled steel plate according to the present invention is not particularly limited, but is preferably a thin steel plate of 6 mm or less, for example.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限を受けるものではなく、前記および後記の趣旨に適合し得る範囲で変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and may be implemented with modifications within a range that can meet the above and the gist described below. Of course, these are all possible and are included in the technical scope of the present invention.

下記表1に示す成分を含有し、残部は鉄および不可避不純物からなる鋼を溶製し、熱間圧延、冷間圧延、および連続焼鈍を行なって冷延鋼板を製造した。下記表1において、「−」は、元素を含有していないことを意味する。下記表1には、上記式(ii)に基づいて算出したAr3点の温度、および上記式(iii)に基づいて算出したAc3点の温度を示す。また、連続焼鈍で行った熱処理パターンの一例を図1に示す。図1において、1は加熱工程、2は均熱工程、3は冷却工程、4は再加熱保持工程、5は冷却停止温度を示している。 The components shown in Table 1 below were contained, and the balance was produced by melting steel composed of iron and inevitable impurities, and subjected to hot rolling, cold rolling, and continuous annealing to produce cold rolled steel sheets. In Table 1 below, “-” means that no element is contained. Table 1 below shows the temperature at the Ar 3 point calculated based on the above formula (ii) and the temperature at the Ac 3 point calculated based on the above formula (iii). Moreover, an example of the heat processing pattern performed by continuous annealing is shown in FIG. In FIG. 1, 1 is a heating step, 2 is a soaking step, 3 is a cooling step, 4 is a reheating and holding step, and 5 is a cooling stop temperature.

[熱間圧延]
溶製して得られたスラブを1250℃に加熱し、仕上げ圧延の最終スタンドにおける圧下率を下記表2−1または表2−2に示す圧下率とし、仕上げ圧延終了温度を下記表2−1または表2−2に示す温度として板厚2.3mmに熱間圧延を行った。熱間圧延後、平均冷却速度30℃/秒で下記表2−1または表2−2に示す巻取り温度まで冷却し、巻き取った。巻取り後、室温まで空冷して熱延鋼板を製造した。
[Hot rolling]
The slab obtained by melting is heated to 1250 ° C., the reduction rate in the final stand of finish rolling is set to the reduction rate shown in Table 2-1 or Table 2-2 below, and the finish rolling finish temperature is shown in Table 2-1 below. Alternatively, hot rolling was performed to a plate thickness of 2.3 mm as the temperature shown in Table 2-2. After the hot rolling, it was cooled to the winding temperature shown in the following Table 2-1 or Table 2-2 at an average cooling rate of 30 ° C./second and wound up. After winding, the steel sheet was air-cooled to room temperature to produce a hot-rolled steel sheet.

[冷間圧延]
得られた熱延鋼板を酸洗して表面のスケールを除去した後、冷間圧延を行い、板厚1.2mmの冷延鋼板を製造した。
[Cold rolling]
The obtained hot-rolled steel sheet was pickled to remove the scale on the surface, and then cold-rolled to produce a cold-rolled steel sheet having a thickness of 1.2 mm.

[連続焼鈍]
得られた冷延鋼板を、図1に示す熱処理パターンに基づいて連続焼鈍した。即ち、得られた冷延鋼板を、加熱工程として、下記表2−1または表2−2に示す平均昇温速度で、下記表2−1または表2−2に示す均熱温度まで加熱し、均熱工程として、該均熱温度で保持した。下記表2−1および表2−2に均熱時間を示す。また、下記表2−1および表2−2には、均熱温度からAc3点の温度を引いて算出した値を示す。
[Continuous annealing]
The obtained cold-rolled steel sheet was continuously annealed based on the heat treatment pattern shown in FIG. That is, the obtained cold-rolled steel sheet was heated to the soaking temperature shown in the following Table 2-1 or Table 2-2 at the average heating rate shown in the following Table 2-1 or Table 2-2 as a heating step. The soaking temperature was maintained as the soaking step. Table 2-1 and Table 2-2 below show soaking times. Tables 2-1 and 2-2 below show values calculated by subtracting the Ac 3 point temperature from the soaking temperature.

均熱後、冷却工程として、下記表2−1または表2−2に示す平均冷却速度で、下記表2−1または表2−2に示す冷却停止温度T℃まで冷却した。   After soaking, as a cooling step, cooling was performed at an average cooling rate shown in the following Table 2-1 or Table 2-2 to a cooling stop temperature T ° C shown in the following Table 2-1 or Table 2-2.

冷却後、下記表2−1または表2−2に示す再加熱温度まで加熱し、再加熱保持工程として、該再加熱温度で保持してから室温まで冷却し、供試材を製造した。下記表2−1および表2−2に再加熱保持時間を示す。また、下記表2−1および表2−2には、再加熱温度から冷却停止温度Tを引いて算出した値を示す。   After cooling, the sample was heated to the reheating temperature shown in Table 2-1 or Table 2-2 below, and as a reheating and holding step, the sample was held at the reheating temperature and then cooled to room temperature to produce a test material. Table 2-1 and Table 2-2 below show the reheating holding time. Tables 2-1 and 2-2 below show values calculated by subtracting the cooling stop temperature T from the reheating temperature.

また、下記表1に示した成分組成に基づいて、上記式(iv)からMs点を算出し、結果を下記表2−1および表2−2に示す。下記表2−1および表2−2には、冷却停止温度TからMs点の温度を引いた値も示した。   Moreover, based on the component composition shown in the following Table 1, Ms point is computed from the said Formula (iv), and a result is shown in following Table 2-1 and Table 2-2. Tables 2-1 and 2-2 below also show values obtained by subtracting the Ms point temperature from the cooling stop temperature T.

なお、下記表2−1に示したNo.11、下記表2−2に示したNo.29は、下記表2−1または表2−2に示した冷却停止温度Tで冷却を停止した後、再加熱保持工程を行っていない例である。即ち、No.11は、冷却停止温度Tを440℃として冷却した後、この温度よりも低い350℃に冷却し、350℃で600秒間保持した。下記表2−1には、便宜上、再加熱温度の欄に350℃、再加熱保持時間の欄に600秒と記載した。No.29は、冷却停止温度Tを350℃として冷却した後、この温度よりも低い330℃に冷却し、330℃で300秒間保持した。下記表2−2には、便宜上、再加熱温度の欄に330℃、再加熱保持時間の欄に300秒と記載した。   In addition, No. shown in the following Table 2-1. 11, No. shown in Table 2-2 below. No. 29 is an example in which the reheating and holding step is not performed after the cooling is stopped at the cooling stop temperature T shown in Table 2-1 or Table 2-2 below. That is, no. No. 11 was cooled at a cooling stop temperature T of 440 ° C., cooled to 350 ° C. lower than this temperature, and held at 350 ° C. for 600 seconds. In the following Table 2-1, for convenience, 350 ° C. is described in the reheating temperature column and 600 seconds are described in the reheating holding time column. No. No. 29 was cooled at a cooling stop temperature T of 350 ° C., cooled to 330 ° C. lower than this temperature, and held at 330 ° C. for 300 seconds. In the following Table 2-2, for convenience, 330 ° C. is described in the reheating temperature column, and 300 seconds is described in the reheating holding time column.

[電気亜鉛めっき]
下記表2−1に示したNo.15は、上記供試材を55℃の亜鉛めっき浴に浸漬し、電気亜鉛めっき処理を施した後、水洗、乾燥して電気亜鉛めっき鋼板を製造した例である。電気亜鉛めっき処理は、電流密度を40A/dm2として行った。亜鉛めっき付着量は、片面あたり40g/m2であった。なお、上記電気亜鉛めっき処理では、適宜アルカリ水溶液浸漬脱脂、水洗、酸洗等の洗浄処理を行い、冷延鋼板の表面に電気亜鉛めっき層を有する供試材を製造した。下記表2−1において、No.15の区分の欄には、「EG」と記載した。
[Electrogalvanizing]
No. shown in Table 2-1 below. No. 15 is an example in which an electrogalvanized steel sheet was manufactured by immersing the above specimen in a galvanizing bath at 55 ° C. and subjecting it to electrogalvanizing treatment, followed by washing with water and drying. Galvanized treatment was performed with a current density between 40A / dm 2. The amount of galvanized adhesion was 40 g / m 2 per side. In the electrogalvanizing treatment, washing materials such as alkaline aqueous solution degreasing, water washing, and pickling were appropriately performed to produce test materials having an electrogalvanized layer on the surface of the cold rolled steel sheet. In Table 2-1 below, no. In the column of 15 categories, “EG” is described.

[溶融亜鉛めっき]
下記表2−2に示したNo.36は、上記供試材を460℃の溶融亜鉛めっき浴に浸漬し、溶融亜鉛めっき処理を施し、溶融亜鉛めっき鋼板を製造した例である。溶融亜鉛めっき付着量は、片面あたり30g/m2であった。下記表2−2において、No.36の区分の欄には、「GI」と記載した。
[Hot galvanizing]
No. shown in Table 2-2 below. 36 is an example in which a hot dip galvanized steel sheet was manufactured by immersing the test material in a hot dip galvanizing bath at 460 ° C. and subjecting it to hot dip galvanizing treatment. The amount of hot dip galvanizing was 30 g / m 2 per side. In Table 2-2 below, no. In the column of 36 categories, “GI” is described.

[合金化溶融亜鉛めっき]
下記表2−1に示したNo.6は、上記供試材を460℃の溶融亜鉛めっき浴に浸漬し、溶融亜鉛めっき処理を施した後、500℃に加熱して合金化処理し、合金化溶融亜鉛めっき鋼板を製造した例である。合金化溶融亜鉛めっき付着量は、片面あたり30g/m2であった。下記表2−1において、No.6の区分の欄には、「GA」と記載した。
[Alloyed hot dip galvanizing]
No. shown in Table 2-1 below. No. 6 is an example in which the above specimen was immersed in a hot dip galvanizing bath at 460 ° C., subjected to hot dip galvanizing treatment, then heated to 500 ° C. and alloyed to produce an alloyed hot dip galvanized steel sheet. is there. The amount of galvannealed coating was 30 g / m 2 per side. In Table 2-1 below, no. In the column “6”, “GA” is described.

なお、電気亜鉛めっき処理、溶融亜鉛めっき処理、または合金化溶融亜鉛めっき処理を行わなかった供試材については、下記表2−1および表2−2の区分の欄に「冷延」と記載した。   In addition, about the test material which did not perform the electrogalvanization process, the hot dip galvanization process, or the alloying hot dip galvanization process, it describes as "cold rolling" in the column of the following Table 2-1 and Table 2-2. did.

得られた供試材について、下記の手順で金属組織を観察した。   About the obtained test material, the metal structure was observed in the following procedure.

[金属組織の観察]
(フェライトおよび硬質相の面積率)
得られた供試材の断面を研磨した後、ナイタール腐食し、板厚の1/4位置を走査型電子顕微鏡で、倍率1000倍で、3視野観察し、写真撮影した。観察視野サイズは、1視野が100μm×100μmである。格子間隔を5μmとし、格子点数20×20の点算法にてフェライトの面積率を測定し、3視野の平均値を算出した。算出結果を下記表3−1および表3−2に示す。なお、フェライトの面積率は、フェライト相中に存在する硬質相の面積率を除いて算出した。
[Observation of metal structure]
(Area ratio of ferrite and hard phase)
After the cross section of the obtained test material was polished, it was subjected to Nital corrosion, and a 1/4 position of the plate thickness was observed with a scanning electron microscope at a magnification of 1000 times for 3 fields of view and photographed. As for the visual field size, one visual field is 100 μm × 100 μm. The area ratio of ferrite was measured by a point calculation method with a lattice spacing of 5 μm and a lattice point number of 20 × 20, and an average value of three fields of view was calculated. The calculation results are shown in Tables 3-1 and 3-2 below. The area ratio of the ferrite was calculated by excluding the area ratio of the hard phase present in the ferrite phase.

同様に、点算法にてパーライトおよびセメンタイトの合計面積率を測定し、3視野の平均値を算出した。算出結果を下記表3−1および表3−2に示す。なお、パーライトおよびセメンタイトの合計面積率は、下記表3−1および表3−2では「その他組織」として表記した。   Similarly, the total area ratio of pearlite and cementite was measured by a point calculation method, and the average value of three fields of view was calculated. The calculation results are shown in Tables 3-1 and 3-2 below. In addition, the total area ratio of pearlite and cementite was described as “other structures” in Tables 3-1 and 3-2 below.

本実施例では、上記点算法で算出したフェライト、パーライト、およびセメンタイト以外の組織を硬質相とした。即ち、100%からフェライトの面積率と、パーライトおよびセメンタイトの合計面積率を引いた値を硬質相の面積率として算出し、結果を下記表3−1および表3−2に示した。   In this example, the structure other than ferrite, pearlite, and cementite calculated by the above point calculation method was used as the hard phase. That is, a value obtained by subtracting the area ratio of ferrite and the total area ratio of pearlite and cementite from 100% was calculated as the area ratio of the hard phase, and the results are shown in Tables 3-1 and 3-2 below.

なお、硬質相を構成する具体的な組織について観察した結果、該硬質相は、焼入マルテンサイトおよび残留γを含み、ベイニティックフェライト、ベイナイト、および焼戻しマルテンサイトよりなる群から選択される少なくとも1種であった。   As a result of observing a specific structure constituting the hard phase, the hard phase contains hardened martensite and residual γ, and is at least selected from the group consisting of bainitic ferrite, bainite, and tempered martensite. There was one.

(残留γの体積率Vγ
得られた供試材を、#1000〜#1500のサンドペーパーを用いて板厚の1/4位置まで研磨し、更に表面を深さ10〜20μmまで電解研磨してから、X線回折装置を用いて残留γの体積率Vγを測定した。具体的には、X線回折装置としてリガク社製の「RINT1500」を用い、Coターゲットを用い、40kV−200mAを出力して2θで40°〜130°の範囲を測定した。得られたbcc(α)の回折ピーク(110)、(200)、(211)、およびfcc(γ)の回折ピーク(111)、(200)、(220)、(311)から残留γの体積率Vγを定量した。結果を下記表3−1および表3−2に示す。
(Volume ratio V γ of residual γ)
The obtained specimen is polished to 1/4 position of the plate thickness using # 1000 to # 1500 sandpaper, and the surface is further electropolished to a depth of 10 to 20 μm. The volume fraction V γ of residual γ was measured. Specifically, “RINT 1500” manufactured by Rigaku Corporation was used as the X-ray diffraction apparatus, a Co target was used, 40 kV-200 mA was output, and a range of 40 ° to 130 ° was measured at 2θ. From the obtained diffraction peaks (110), (200), (211) of bcc (α) and diffraction peaks (111), (200), (220), (311) of fcc (γ), the volume of residual γ The rate was quantified. The results are shown in Tables 3-1 and 3-2 below.

(MA組織の面積率VMAおよび平均円相当直径)
得られた供試材の断面を研磨した後、レペラー腐食し、板厚の1/4位置を光学顕微鏡で、倍率1000倍で、3視野観察し、写真撮影した。観察視野サイズは、1視野が100μm×100μmである。レペラー腐食により白色化した部分をMA組織とし、格子間隔を5μmとし、格子点数20×20の点算法にてMA組織の面積率を測定し、3視野の平均値を算出した。算出結果を下記表3−1および表3−2に示す。
(MA area ratio V MA and average equivalent circle diameter)
After polishing the cross section of the obtained test material, it was repeller-corroded, and the 1/4 position of the plate thickness was observed with a light microscope at a magnification of 1000 times for 3 views and photographed. As for the visual field size, one visual field is 100 μm × 100 μm. The area whitened by the repeller corrosion was made into MA structure, the lattice spacing was 5 μm, the area ratio of the MA structure was measured by a point calculation method with 20 × 20 lattice points, and the average value of the three fields of view was calculated. The calculation results are shown in Tables 3-1 and 3-2 below.

上記光学顕微鏡にて撮影した写真を画像解析し、各MA組織の円相当直径dを算出し、平均値を求めた。結果を下記表3−1および表3−2に示す。   The photograph taken with the optical microscope was subjected to image analysis, the equivalent circle diameter d of each MA tissue was calculated, and the average value was obtained. The results are shown in Tables 3-1 and 3-2 below.

(残留γの体積率VγとMA組織の面積率VMAの比)
上述した手順で測定した残留γの体積率VγとMA組織の面積率VMAに基づき、残留γの体積率Vγに対する前記MA組織の面積率VMAの比VMA/Vγを算出した。算出結果を下記表3−1および表3−2に示す。
(Ratio of the volume ratio V gamma and MA tissue area ratio V MA of residual gamma)
Based on the area ratio V MA of the volume ratio V gamma and MA tissues of residual gamma measured by the procedure described above was calculated the ratio V MA / V gamma area ratio V MA of the MA tissue to volume ratio V gamma of residual gamma . The calculation results are shown in Tables 3-1 and 3-2 below.

次に、得られた供試材について、下記の手順で機械的特性、延性、伸びフランジ性、衝突特性を評価した。   Next, the mechanical properties, ductility, stretch flangeability, and impact properties of the obtained test materials were evaluated according to the following procedures.

[機械的特性および延性の評価]
得られた供試材の圧延方向に対して垂直な方向が長手方向となるようにJIS Z2201で規定される5号試験片を切り出し、この試験片を用いて引張試験を行い、引張強度TSおよび伸びELを測定した。測定結果を下記表3−1および表3−2に示す。
[Evaluation of mechanical properties and ductility]
A No. 5 test piece defined in JIS Z2201 was cut out so that the direction perpendicular to the rolling direction of the obtained specimen was the longitudinal direction, and a tensile test was performed using this test piece to obtain a tensile strength TS and Elongation EL was measured. The measurement results are shown in Tables 3-1 and 3-2 below.

本実施例では、引張強度が980MPa以上の場合を高強度で合格と評価し、980MPa未満の場合を強度不足で不合格と評価した。   In this example, the case where the tensile strength was 980 MPa or higher was evaluated as acceptable with high strength, and the case where the tensile strength was less than 980 MPa was evaluated as unacceptable due to insufficient strength.

また、測定した引張強度TSおよび伸びELの値に基づいて、引張強度TS×伸びELの値を算出した。算出結果を下記表3−1および表3−2に示す。TS×ELの値は、強度−伸びバランスを示しており、延性を評価する指標となる。   Moreover, the value of tensile strength TS × elongation EL was calculated based on the measured values of tensile strength TS and elongation EL. The calculation results are shown in Tables 3-1 and 3-2 below. The value of TS × EL indicates a strength-elongation balance and is an index for evaluating ductility.

本実施例では、TS×ELの値が13000MPa・%以上の場合を延性に優れ、合格と評価し、13000MPa・%未満の場合を延性が悪く、不合格と評価した。   In this example, when the value of TS × EL was 13000 MPa ·% or more, the ductility was evaluated as excellent and evaluated as acceptable, and when it was less than 13000 MPa ·%, the ductility was poor and evaluated as rejected.

[伸びフランジ性の評価]
供試材の伸びフランジ性を評価するために、鉄鋼連盟規格JFST 1001に基づいて穴拡げ試験を行い、穴拡げ率λを測定した。測定結果を下記表3−1および表3−2に示す。
[Evaluation of stretch flangeability]
In order to evaluate the stretch flangeability of the test material, a hole expansion test was performed based on the Steel Federation Standard JFST 1001, and the hole expansion ratio λ was measured. The measurement results are shown in Tables 3-1 and 3-2 below.

また、測定した引張強度TSおよび穴拡げ率λの値に基づいて、引張強度TS×穴拡げ率λの値を算出した。算出結果を下記表3−1および表3−2に示す。TS×λの値は、強度−穴拡げ率バランスを示しており、伸びフランジ性を評価する指標となる。   Further, based on the measured tensile strength TS and hole expansion rate λ, the value of tensile strength TS × hole expansion rate λ was calculated. The calculation results are shown in Tables 3-1 and 3-2 below. The value of TS × λ indicates a balance between the strength and the hole expansion rate, and is an index for evaluating stretch flangeability.

本実施例では、TS×λの値が40000MPa・%以上の場合を伸びフランジ性に優れ、合格と評価し、40000MPa・%未満の場合を伸びフランジ性が悪く、不合格と評価した。   In this example, when the value of TS × λ was 40000 MPa ·% or more, it was evaluated as excellent in stretch flangeability and passed, and when it was less than 40000 MPa ·%, the stretch flangeability was poor and evaluated as rejected.

[衝突特性の評価]
衝突特性は、曲げ角度と相関することが下記文献に記載されている。
文献:P.Larour, H.Pauli, T.Kurz, T.Hebesberger:“Influence of post uniform tensile and bending properties on the crash behaviour of AHSS and press−hardening steel grades”、IDDRG2010
[Evaluation of collision characteristics]
It is described in the following literature that the impact characteristics correlate with the bending angle.
Literature: P. Larour, H. Pauli, T. Kurz, T. Hebesberger: “Influence of post uniforms and bending properties on the crush of HH”

そこで、ドイツ自動車工業会で規定されたVDA基準(VDA238−100)に基づいて、以下の条件で曲げ試験を行い、曲げ試験で測定される最大荷重時の変位をVDA基準で角度に変換し、曲げ角度を求めた。換算結果を下記表3−1および表3−2に示す。   Therefore, based on the VDA standard (VDA238-100) defined by the German Automobile Manufacturers Association, a bending test is performed under the following conditions, and the displacement at the maximum load measured in the bending test is converted into an angle based on the VDA standard. The bending angle was determined. The conversion results are shown in Tables 3-1 and 3-2 below.

(測定条件)
試験方法:ロール支持、ポンチ押し込み
ロール径:φ30mm
ポンチ形状:先端R=0.4mm
ロール間距離:2.9mm
ポンチ押し込み速度:20mm/分
試験片寸法:60mm×60mm
曲げ方向:圧延方向に対して直角方向
試験機:SIMAZU AUTOGRAPH 20kN
(Measurement condition)
Test method: roll support, punch push-in roll diameter: φ30mm
Punch shape: Tip R = 0.4mm
Distance between rolls: 2.9 mm
Punch pushing speed: 20 mm / min Test piece size: 60 mm × 60 mm
Bending direction: perpendicular to the rolling direction Testing machine: SIMAZU AUTOGRAPH 20kN

また、引張試験で測定した引張強度TSとVDA曲げ角度の値に基づいて、引張強度TS×VDA曲げ角度°の値を算出した。算出結果を下記表3−1および表3−2に示す。   Moreover, the value of tensile strength TS × VDA bending angle was calculated based on the values of tensile strength TS and VDA bending angle measured in the tensile test. The calculation results are shown in Tables 3-1 and 3-2 below.

本実施例では、TS×VDAの値が90000MPa・°以上の場合を衝突特性に優れ、合格と評価し、90000MPa・°未満の場合を衝突特性が悪く、不合格と評価した。   In this example, when the value of TS × VDA was 90000 MPa · ° or more, the impact property was evaluated as excellent and evaluated as acceptable, and when it was less than 90000 MPa · °, the impact property was poor and evaluated as rejected.

以上の結果に基づいて、TSの値が980MPa以上、TS×ELの値が13000MPa・%以上、TS×λの値が40000MPa・%以上、TS×VDAの値が、90000MPa・°以上の全てを満足する場合を本発明例とし、下記表3−1および表3−2の総合評価の欄に合格を記載した。一方、TSの値、TS×ELの値、TS×λの値、またはTS×VDAの値のうち、いずれか一つでも上記合格基準を満足しない場合を比較例とし、下記表3−1および表3−2の総合評価の欄に不合格を記載した。   Based on the above results, TS value is 980 MPa or more, TS × EL value is 13000 MPa ·% or more, TS × λ value is 40000 MPa ·% or more, and TS × VDA value is 90000 MPa · ° or more. The case where it was satisfied was regarded as an example of the present invention, and the pass was described in the column of comprehensive evaluation in Tables 3-1 and 3-2 below. On the other hand, a case where any one of the TS value, the TS × EL value, the TS × λ value, or the TS × VDA value does not satisfy the above pass criteria is used as a comparative example. The failure was described in the column of comprehensive evaluation of Table 3-2.

表1、表2−1、表2−2、表3−1、表3−2から次のように考察できる。   It can be considered as follows from Table 1, Table 2-1, Table 2-2, Table 3-1, and Table 3-2.

表3−1および表3−2において、総合評価の欄に「合格」と記載されている例は、いずれも本発明で規定する要件を満足している鋼板であり、引張強度TSに応じて定めたTS×ELの値、TS×λの値、TS×VDAの値の全てが合格基準値を満足している。これらの鋼板は、延性および伸びフランジ性で評価される加工性が良好で、特に伸びフランジ性が優れており、衝突特性にも優れていることが分かる。   In Table 3-1 and Table 3-2, the examples described as “pass” in the column of comprehensive evaluation are both steel plates satisfying the requirements defined in the present invention, and according to the tensile strength TS. All of the defined TS × EL value, TS × λ value, and TS × VDA value satisfy the acceptance standard value. It can be seen that these steel sheets have good workability evaluated by ductility and stretch flangeability, particularly excellent stretch flangeability, and excellent impact characteristics.

これに対し、総合評価の欄に「不合格」と記載されている例は、本発明で規定するいずれかの要件を満足しない鋼板であり、延性、伸びフランジ性、または衝突特性のうち少なくとも一つが改善できなかった。詳細には次の通りである。   On the other hand, the example described as “Fail” in the column of comprehensive evaluation is a steel sheet that does not satisfy any of the requirements defined in the present invention, and is at least one of ductility, stretch flangeability, and impact characteristics. One could not improve. Details are as follows.

No.2は、均熱後の冷却停止温度Tが100℃を下回る非常に低い25℃まで冷却したため、所定量の残留γ、およびMA組織を確保できず、VMA/Vγの値が規定の範囲を下回った例である。その結果、TS×ELの値が小さくなり、延性を改善できなかった。 No. No. 2 was cooled to a very low temperature of 25 ° C., where the cooling stop temperature T after soaking was below 100 ° C., so that a predetermined amount of residual γ and MA texture could not be secured, and the value of V MA / V γ was within the specified range It is an example below. As a result, the value of TS × EL became small and ductility could not be improved.

No.3、38は、巻取り後の平均昇温速度が小さすぎたため、MA組織が粗大化した例である。その結果、TS×λの値が小さくなり、伸びフランジ性を改善できなかった。   No. Nos. 3 and 38 are examples in which the MA structure is coarsened because the average temperature increase rate after winding is too small. As a result, the value of TS × λ became small and the stretch flangeability could not be improved.

No.4は、均熱後の冷却停止温度Tが100℃以上Ms点以下の温度域を超えて高すぎたため、MA組織が粗大化した例である。その結果、TS×λの値が小さくなり、伸びフランジ性を改善できなかった。また、TS×VDAの値が小さくなり、衝突特性を改善できなかった。   No. No. 4 is an example in which the MA structure is coarsened because the cooling stop temperature T after soaking is too high exceeding the temperature range of 100 ° C. or more and the Ms point or less. As a result, the value of TS × λ became small and the stretch flangeability could not be improved. Moreover, the value of TS × VDA was reduced, and the collision characteristics could not be improved.

No.7は、仕上げ圧延終了温度が高すぎたため、MA組織が粗大化した例である。その結果、TS×λの値が小さくなり、伸びフランジ性を改善できなかった。   No. No. 7 is an example in which the MA structure is coarsened because the finish rolling finish temperature is too high. As a result, the value of TS × λ became small and the stretch flangeability could not be improved.

No.8は、巻取り温度が高すぎたため、MA組織が粗大化した例である。その結果、TS×λの値が小さくなり、伸びフランジ性を改善できなかった。   No. No. 8 is an example in which the MA structure is coarsened because the winding temperature is too high. As a result, the value of TS × λ became small and the stretch flangeability could not be improved.

No.9、39は、均熱後の平均冷却速度が小さすぎたため、フェライトが過剰に生成した例である。その結果、TS×λの値が小さくなり、伸びフランジ性を改善できなかった。   No. Nos. 9 and 39 are examples in which ferrite was excessively generated because the average cooling rate after soaking was too small. As a result, the value of TS × λ became small and the stretch flangeability could not be improved.

No.11は、均熱後の冷却停止温度Tが100℃以上Ms点以下の温度域を超えて高すぎると共に、冷却後に再加熱保持を行わなかったため、VMA/Vγの値が大きくなり過ぎた例である。その結果、TS×VDAの値が小さくなり、衝突特性を改善できなかった。 No. No. 11, the cooling stop temperature T after soaking was too high exceeding the temperature range of 100 ° C. or more and the Ms point or less, and the value of V MA / V γ was too large because the reheating was not held after cooling. It is an example. As a result, the value of TS × VDA was reduced, and the collision characteristics could not be improved.

No.13は、仕上げ圧延時における最終スタンドでの圧下率が、本発明で規定する範囲を超えて高すぎたため、MA組織が粗大化した例である。その結果、TS×λの値が小さくなり、伸びフランジ性を改善できなかった。また、TS×VDAの値が小さくなり、衝突特性を改善できなかった。   No. No. 13 is an example in which the MA structure is coarsened because the rolling reduction at the final stand at the time of finish rolling is too high beyond the range defined in the present invention. As a result, the value of TS × λ became small and the stretch flangeability could not be improved. Moreover, the value of TS × VDA was reduced, and the collision characteristics could not be improved.

No.14は、仕上げ圧延時における最終スタンドでの圧下率が、本発明で規定する範囲を下回り低すぎたため、MA組織が粗大化した例である。その結果、TS×λの値が小さくなり、伸びフランジ性を改善できなかった。   No. No. 14 is an example in which the MA structure becomes coarse because the rolling reduction at the final stand at the time of finish rolling is too low below the range defined in the present invention. As a result, the value of TS × λ became small and the stretch flangeability could not be improved.

No.16は、Ac3点を下回る温度で均熱したため、フェライトが過剰に生成した例である。その結果、TS×λの値が小さくなり、伸びフランジ性を改善できなかった。 No. No. 16 is an example in which the ferrite is excessively generated because the soaking is performed at a temperature lower than the Ac 3 point. As a result, the value of TS × λ became small and the stretch flangeability could not be improved.

No.23は、再加熱保持時間が短すぎたため、MA組織が粗大化した例である。その結果、TS×λの値が小さくなり、伸びフランジ性を改善できなかった。また、MA組織が過剰に生成した。その結果、TS×ELの値が小さくなり、延性を改善できなかった。また、VMA/Vγの値が大きくなり過ぎた。その結果、TS×VDAの値が小さくなり、衝突特性が劣化した。 No. No. 23 is an example in which the MA structure is coarsened because the reheating holding time is too short. As a result, the value of TS × λ became small and the stretch flangeability could not be improved. Moreover, MA structure | tissue produced | generated excessively. As a result, the value of TS × EL became small and ductility could not be improved. Further, the value of V MA / V γ became too large. As a result, the value of TS × VDA was reduced and the collision characteristics were deteriorated.

No.24は、冷却後に行った再加熱温度が高すぎたため、オーステナイトの分解が起こり、残留γおよびMA組織を所定量確保できなかった例である。その結果、TSが低くなった。   No. No. 24 is an example in which since the reheating temperature performed after cooling was too high, decomposition of austenite occurred and a predetermined amount of residual γ and MA structure could not be secured. As a result, TS became low.

No.29は、仕上げ圧延時における最終スタンドでの圧下率が、本発明で規定する範囲を超えて高すぎると共に、冷却後に再加熱保持を行わなかったため、MA組織が粗大化すると共に、VMA/Vγの値が大きくなり過ぎた例である。その結果、TS×λの値が小さくなり、伸びフランジ性を改善できなかった。また、TS×VDAの値が小さくなり、衝突特性を改善できなかった。 No. No. 29, the rolling reduction at the final stand at the time of finish rolling was too high exceeding the range specified in the present invention, and since reheating holding was not performed after cooling, the MA structure was coarsened and V MA / V This is an example in which the value of γ has become too large. As a result, the value of TS × λ became small and the stretch flangeability could not be improved. Moreover, the value of TS × VDA was reduced, and the collision characteristics could not be improved.

No.33は、C量が少なすぎる例であり、本発明で規定する範囲の残留γ量を確保できなかった例である。その結果、TS×ELの値が小さくなり、延性が劣化した。   No. 33 is an example in which the amount of C is too small, and is an example in which the amount of residual γ within the range specified in the present invention cannot be secured. As a result, the value of TS × EL was decreased and ductility was deteriorated.

No.34は、Si量が少なすぎる例であり、本発明で規定する範囲の残留γ量を確保できなかった。その結果、TS×ELの値が小さくなり、延性が劣化した。   No. 34 is an example in which the amount of Si is too small, and the amount of residual γ within the range specified in the present invention could not be secured. As a result, the value of TS × EL was decreased and ductility was deteriorated.

No.35は、Mn量が少なすぎる例であり、焼入れ性が不充分となり、フェライトが過剰に生成した例である。その結果、TS×λの値が小さくなり、伸びフランジ性が劣化した。   No. No. 35 is an example in which the amount of Mn is too small, the hardenability is insufficient, and ferrite is generated excessively. As a result, the value of TS × λ was decreased, and the stretch flangeability deteriorated.

No.41は、均熱後の冷却停止温度Tが100℃を下回ったため、所定量の残留γを確保できなかった例である。その結果、TS×ELの値が小さくなり、延性を改善できなかった。   No. No. 41 is an example in which a predetermined amount of residual γ could not be secured because the cooling stop temperature T after soaking was below 100 ° C. As a result, the value of TS × EL became small and ductility could not be improved.

1 加熱工程
2 均熱工程
3 冷却工程
4 再加熱保持工程
5 冷却停止温度
1 Heating process 2 Soaking process 3 Cooling process 4 Reheating and holding process 5 Cooling stop temperature

Claims (12)

質量%で、
C :0.10%以上0.5%以下、
Si:1.0%以上3%以下、
Mn:1.5%以上7%以下、
P :0%超0.1%以下、
S :0%超0.05%以下、
Al:0.005%以上1%以下、
N :0%超0.01%以下、および
O :0%超0.01%以下を含有し、
残部が鉄および不可避不純物からなる鋼板であり、
板厚の1/4位置における金属組織が、下記(1)〜(4)を満足することを特徴とする加工性および衝突特性に優れた引張強度が980MPa以上の高強度冷延鋼板。
(1)金属組織を走査型電子顕微鏡で観察したときに、
金属組織全体に対して、フェライトの面積率が0%以上10%以下であり、
残部は、焼入マルテンサイトおよび残留オーステナイトを含み、ベイニティックフェライト、ベイナイト、および焼戻しマルテンサイトよりなる群から選択される少なくとも1種からなる硬質相である。
(2)金属組織をX線回折法で測定したときに、金属組織全体に対して、残留オーステナイトの体積率Vγが5%以上30%以下である。
(3)金属組織を光学顕微鏡で観察したときに、金属組織全体に対して、焼入マルテンサイトおよび残留オーステナイトが複合したMA組織の面積率VMAが3%以上25%以下であり、前記MA組織の平均円相当直径が2.0μm以下である。
(4)前記残留オーステナイトの体積率Vγに対する前記MA組織の面積率VMAの比VMA/Vγが、下記式(i)を満足する。
0.50≦VMA/Vγ≦1.50 ・・・(i)
% By mass
C: 0.10% to 0.5%,
Si: 1.0% or more and 3% or less,
Mn: 1.5% to 7%,
P: more than 0% and 0.1% or less,
S: more than 0% and 0.05% or less,
Al: 0.005% or more and 1% or less,
N: more than 0% and 0.01% or less, and O: more than 0% and 0.01% or less,
The balance is a steel plate made of iron and inevitable impurities,
A high-strength cold-rolled steel sheet having a tensile strength of 980 MPa or more excellent in workability and impact characteristics, wherein the metal structure at a 1/4 position of the plate thickness satisfies the following (1) to (4).
(1) When the metal structure is observed with a scanning electron microscope,
For the entire metal structure, the area ratio of ferrite is 0% or more and 10% or less,
The balance includes hardened martensite and retained austenite, and is a hard phase composed of at least one selected from the group consisting of bainitic ferrite, bainite, and tempered martensite.
(2) When the metal structure is measured by the X-ray diffraction method, the volume fraction V γ of retained austenite is 5% or more and 30% or less with respect to the entire metal structure.
(3) When the metal structure is observed with an optical microscope, the area ratio V MA of the MA structure in which quenched martensite and retained austenite are combined with respect to the entire metal structure is 3% or more and 25% or less. The average equivalent circle diameter of the tissue is 2.0 μm or less.
(4) The ratio V MA / V γ of the area ratio V MA of the MA structure to the volume ratio V γ of the retained austenite satisfies the following formula (i).
0.50 ≦ V MA / V γ ≦ 1.50 (i)
前記鋼板は、更に他の元素として、質量%で、
Cr:0%超1%以下、および
Mo:0%超1%以下よりなる群から選択される少なくとも1種を含有する請求項1に記載の高強度冷延鋼板。
The steel sheet, as another element, in mass%,
The high-strength cold-rolled steel sheet according to claim 1, comprising at least one selected from the group consisting of Cr: more than 0% and not more than 1%, and Mo: more than 0% and not more than 1%.
前記鋼板は、更に他の元素として、質量%で、
Ti:0%超0.15%以下、
Nb:0%超0.15%以下、および
V :0%超0.15%以下よりなる群から選択される少なくとも1種を含有する請求項1または2に記載の高強度冷延鋼板。
The steel sheet, as another element, in mass%,
Ti: more than 0% and 0.15% or less,
The high-strength cold-rolled steel sheet according to claim 1 or 2, comprising at least one selected from the group consisting of Nb: more than 0% and 0.15% or less, and V: more than 0% and 0.15% or less.
前記鋼板は、更に他の元素として、質量%で、
Cu:0%超1%以下、および
Ni:0%超1%以下よりなる群から選択される少なくとも1種を含有する請求項1〜3のいずれかに記載の高強度冷延鋼板。
The steel sheet, as another element, in mass%,
The high-strength cold-rolled steel sheet according to any one of claims 1 to 3, comprising at least one selected from the group consisting of Cu: more than 0% and 1% or less and Ni: more than 0% and 1% or less.
前記鋼板は、更に他の元素として、質量%で、
B :0%超0.005%以下を含有する請求項1〜4のいずれかに記載の高強度冷延鋼板。
The steel sheet, as another element, in mass%,
The high-strength cold-rolled steel sheet according to any one of claims 1 to 4, containing B: more than 0% and 0.005% or less.
前記鋼板は、更に他の元素として、質量%で、
Ca:0%超0.01%以下、
Mg:0%超0.01%以下、および
REM:0%超0.01%以下よりなる群から選択される少なくとも1種を含有する請求項1〜5のいずれかに記載の高強度冷延鋼板。
The steel sheet, as another element, in mass%,
Ca: more than 0% and 0.01% or less,
The high-strength cold rolling according to any one of claims 1 to 5, comprising at least one selected from the group consisting of Mg: more than 0% and not more than 0.01%, and REM: more than 0% and not more than 0.01%. steel sheet.
請求項1〜6のいずれかに記載の高強度冷延鋼板の表面に電気亜鉛めっき層を有することを特徴とする高強度電気亜鉛めっき鋼板。   A high-strength electrogalvanized steel sheet comprising an electrogalvanized layer on the surface of the high-strength cold-rolled steel sheet according to any one of claims 1 to 6. 請求項1〜6のいずれかに記載の高強度冷延鋼板の表面に溶融亜鉛めっき層を有することを特徴とする高強度溶融亜鉛めっき鋼板。   A high-strength hot-dip galvanized steel sheet comprising a hot-dip galvanized layer on the surface of the high-strength cold-rolled steel sheet according to claim 1. 請求項1〜6のいずれかに記載の高強度冷延鋼板の表面に合金化溶融亜鉛めっき層を有することを特徴とする高強度合金化溶融亜鉛めっき鋼板。   A high-strength galvannealed steel sheet having an alloyed galvanized layer on the surface of the high-strength cold-rolled steel sheet according to any one of claims 1 to 6. 請求項1〜6のいずれかに記載の成分組成を満足する鋼を、
仕上げ圧延の最終スタンドにおける圧延率を5〜25%、仕上げ圧延終了温度をAr3点以上900℃以下として熱間圧延し、巻取り温度を600℃以下として巻取り、室温まで冷却し、
冷間圧延し、
平均昇温速度10℃/秒以上でAc3点以上の温度域に加熱し、該温度域で50秒間以上保持して均熱し、
100℃以上Ms点以下の温度範囲における任意の冷却停止温度T℃まで平均冷却速度10℃/秒以上で冷却し、
加熱して前記冷却停止温度T℃超550℃以下の温度域で50秒間以上保持してから室温まで冷却することを特徴とする加工性および衝突特性に優れた引張強度が980MPa以上の高強度冷延鋼板の製造方法。
Steel satisfying the component composition according to any one of claims 1 to 6,
The rolling rate in the final stand of finish rolling is 5 to 25%, the finish rolling finish temperature is Ar 3 point or higher and 900 ° C. or lower, hot rolled, the winding temperature is 600 ° C. or lower, and cooled to room temperature.
Cold rolled,
Heat to a temperature range of Ac 3 point or higher at an average temperature increase rate of 10 ° C./second or higher, hold it in the temperature range for 50 seconds or more, and soak it.
Cooling at an average cooling rate of 10 ° C./second or higher to an arbitrary cooling stop temperature T ° C. in a temperature range of 100 ° C. or higher and Ms point or lower,
A high strength cooling with a tensile strength of 980 MPa or more excellent in workability and impact characteristics, characterized by heating and holding for 50 seconds or more in the temperature range above the cooling stop temperature T ° C. to 550 ° C. and then cooling to room temperature A method for producing rolled steel sheets.
請求項1〜6のいずれかに記載の成分組成を満足する鋼を、
仕上げ圧延の最終スタンドにおける圧延率を5〜25%、仕上げ圧延終了温度をAr3点以上900℃以下として熱間圧延し、巻取り温度を600℃以下として巻取り、室温まで冷却し、
冷間圧延し、
平均昇温速度10℃/秒以上でAc3点以上の温度域に加熱し、該温度域で50秒間以上保持して均熱し、
100℃以上Ms点以下の温度範囲における任意の冷却停止温度T℃まで平均冷却速度10℃/秒以上で冷却し、
加熱して前記冷却停止温度T℃超550℃以下の温度域で50秒間以上保持すると共に、保持時間内で溶融亜鉛めっきを行った後、室温まで冷却することを特徴とする加工性および衝突特性に優れた引張強度が980MPa以上の高強度溶融亜鉛めっき鋼板の製造方法。
Steel satisfying the component composition according to any one of claims 1 to 6,
The rolling rate in the final stand of finish rolling is 5 to 25%, the finish rolling finish temperature is Ar 3 point or higher and 900 ° C. or lower, hot rolled, the winding temperature is 600 ° C. or lower, and cooled to room temperature.
Cold rolled,
Heat to a temperature range of Ac 3 point or higher at an average temperature increase rate of 10 ° C./second or higher, hold it in the temperature range for 50 seconds or more, and soak it.
Cooling at an average cooling rate of 10 ° C./second or higher to an arbitrary cooling stop temperature T ° C. in a temperature range of 100 ° C. or higher and Ms point or lower,
Workability and impact characteristics characterized by heating and holding for 50 seconds or more in the temperature range above the cooling stop temperature T ° C. and below 550 ° C., performing hot dip galvanization within the holding time, and then cooling to room temperature For producing a high-strength hot-dip galvanized steel sheet having an excellent tensile strength of 980 MPa or more.
請求項1〜6のいずれかに記載の成分組成を満足する鋼を、
仕上げ圧延の最終スタンドにおける圧延率を5〜25%、仕上げ圧延終了温度をAr3点以上900℃以下として熱間圧延し、巻取り温度を600℃以下として巻取り、室温まで冷却し、
冷間圧延し、
平均昇温速度10℃/秒以上でAc3点以上の温度域に加熱し、該温度域で50秒間以上保持して均熱し、
100℃以上Ms点以下の温度範囲における任意の冷却停止温度T℃まで平均冷却速度10℃/秒以上で冷却し、
加熱して前記冷却停止温度T℃超550℃以下の温度域で50秒間以上保持すると共に、保持時間内で溶融亜鉛めっきを行った後、更に合金化処理してから室温まで冷却することを特徴とする加工性および衝突特性に優れた引張強度が980MPa以上の高強度合金化溶融亜鉛めっき鋼板の製造方法。
Steel satisfying the component composition according to any one of claims 1 to 6,
The rolling rate in the final stand of finish rolling is 5 to 25%, the finish rolling finish temperature is Ar 3 point or higher and 900 ° C. or lower, hot rolled, the winding temperature is 600 ° C. or lower, and cooled to room temperature.
Cold rolled,
Heat to a temperature range of Ac 3 point or higher at an average temperature increase rate of 10 ° C./second or higher, hold it in the temperature range for 50 seconds or more, and soak it.
Cooling at an average cooling rate of 10 ° C./second or higher to an arbitrary cooling stop temperature T ° C. in a temperature range of 100 ° C. or higher and Ms point or lower,
Heating and holding for 50 seconds or more in the temperature range above the cooling stop temperature T ° C. and 550 ° C., and after performing hot dip galvanization within the holding time, cooling to room temperature after further alloying treatment A method for producing a high-strength galvannealed steel sheet having a tensile strength of 980 MPa or more and excellent in workability and impact characteristics.
JP2015225506A 2015-03-31 2015-11-18 High strength cold rolled steel sheet having a tensile strength of 980 MPa or more excellent in workability and impact property, and a method of manufacturing the same Active JP6554396B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201680017718.9A CN107429370B (en) 2015-03-31 2016-03-01 High-strength cold-rolled steel sheet having excellent workability and impact properties and having tensile strength of 980MPa or more, and method for producing same
US15/554,843 US20180037964A1 (en) 2015-03-31 2016-03-01 HIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING EXCELLENT FORMABILITY AND COLLISION CHARACTERISTICS AND HAVING TENSILE STRENGTH OF 980 MPa OR MORE, AND METHOD FOR PRODUCING SAME
MX2017012442A MX2017012442A (en) 2015-03-31 2016-03-01 HIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING EXCELLENT WORKABILITY AND COLLISION CHARACTERISTICS AND HAVING TENSILE STRENGTH OF 980 MPa OR MORE, AND METHOD FOR PRODUCING SAME.
EP16772043.2A EP3279362B1 (en) 2015-03-31 2016-03-01 HIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING EXCELLENT WORKABILITY AND COLLISION CHARACTERISTICS AND HAVING TENSILE STRENGTH OF 980 MPa OR MORE, AND METHOD FOR PRODUCING SAME
PCT/JP2016/056168 WO2016158159A1 (en) 2015-03-31 2016-03-01 HIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING EXCELLENT WORKABILITY AND COLLISION CHARACTERISTICS AND HAVING TENSILE STRENGTH OF 980 MPa OR MORE, AND METHOD FOR PRODUCING SAME
KR1020177030765A KR102174558B1 (en) 2015-03-31 2016-03-01 High-strength cold-rolled steel sheet having a tensile strength of 980 MPa or more with excellent workability and impact properties, and a method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015071437 2015-03-31
JP2015071437 2015-03-31

Publications (2)

Publication Number Publication Date
JP2016194138A true JP2016194138A (en) 2016-11-17
JP6554396B2 JP6554396B2 (en) 2019-07-31

Family

ID=57322808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015225506A Active JP6554396B2 (en) 2015-03-31 2015-11-18 High strength cold rolled steel sheet having a tensile strength of 980 MPa or more excellent in workability and impact property, and a method of manufacturing the same

Country Status (6)

Country Link
US (1) US20180037964A1 (en)
EP (1) EP3279362B1 (en)
JP (1) JP6554396B2 (en)
KR (1) KR102174558B1 (en)
CN (1) CN107429370B (en)
MX (1) MX2017012442A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221307A1 (en) * 2017-05-31 2018-12-06 株式会社神戸製鋼所 High-strength steel sheet and method for producing same
KR20200075958A (en) * 2018-12-18 2020-06-29 주식회사 포스코 High strength steel sheet having excellent workability property, and method for manufacturing the same
WO2021125602A3 (en) * 2019-12-18 2021-08-05 주식회사 포스코 High strength steel sheet having excellent workability and method for manufacturing same
US20210387679A1 (en) * 2018-09-28 2021-12-16 Nippon Steel Corporation Adhesively joined structure and component for vehicle
WO2022131625A1 (en) * 2020-12-17 2022-06-23 주식회사 포스코 High strength steel sheet having excellent workability and method for manufacturing same
JP2022531249A (en) * 2019-12-09 2022-07-06 ヒュンダイ スチール カンパニー Alloyed hot-dip galvanized steel sheet with ultra-high strength and high formability and its manufacturing method
EP4043603A1 (en) * 2017-09-28 2022-08-17 ThyssenKrupp Steel Europe AG Flat steel product and method for its production

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018220430A1 (en) * 2017-06-02 2018-12-06 Arcelormittal Steel sheet for manufacturing press hardened parts, press hardened part having a combination of high strength and crash ductility, and manufacturing methods thereof
CN108130481A (en) * 2017-12-07 2018-06-08 安徽科汇钢结构工程有限公司 A kind of excellent cold-rolled steel sheet of stretch flange
JP6638870B1 (en) * 2018-04-23 2020-01-29 日本製鉄株式会社 Steel member and method of manufacturing the same
CN108866435B (en) * 2018-07-03 2019-08-06 鞍钢股份有限公司 A kind of automobile combined microalloying medium managese steel and its manufacturing method
MX2021005866A (en) * 2018-11-30 2021-07-16 Arcelormittal Cold rolled annealed steel sheet with high hole expansion ratio and manufacturing process thereof.
KR102527545B1 (en) * 2019-03-28 2023-05-03 닛폰세이테츠 가부시키가이샤 high strength steel plate
JP7243817B2 (en) * 2019-04-11 2023-03-22 日本製鉄株式会社 Steel plate and its manufacturing method
JP6901050B1 (en) * 2019-07-30 2021-07-14 Jfeスチール株式会社 High-strength steel plate and its manufacturing method
JP7191796B2 (en) * 2019-09-17 2022-12-19 株式会社神戸製鋼所 High-strength steel plate and its manufacturing method
MX2022008472A (en) * 2020-01-16 2022-08-02 Nippon Steel Corp Hot stamp molded body.
CN111187985A (en) * 2020-02-17 2020-05-22 本钢板材股份有限公司 Hot-rolled extending flange steel with high hole expansion performance and fatigue life and preparation process thereof
EP4141132A4 (en) * 2020-06-30 2023-10-11 JFE Steel Corporation Zinc-plated steel sheet, member, and methods for producing these
JP2022061461A (en) 2020-10-06 2022-04-18 株式会社神戸製鋼所 High strength cold-rolled steel sheet, galvanized steel sheet and alloyed galvanized steel sheet, and method for manufacturing the same
KR20220062962A (en) * 2020-11-09 2022-05-17 주식회사 포스코 Plated steel sheets for hot press forming having excellent hydrogen brittleness resistance and impact resistance, hot press formed parts, and manufacturing methods thereof
WO2023233036A1 (en) * 2022-06-03 2023-12-07 Thyssenkrupp Steel Europe Ag High strength, cold rolled steel with reduced sensitivity to hydrogen embrittlement and method for the manufacture thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099079A1 (en) * 2008-02-08 2009-08-13 Jfe Steel Corporation High-strength hot-dip galvanized steel sheet with excellent processability and process for producing the same
WO2010029983A1 (en) * 2008-09-10 2010-03-18 Jfeスチール株式会社 High-strength steel plate and manufacturing method thereof
WO2014092025A1 (en) * 2012-12-12 2014-06-19 株式会社神戸製鋼所 High-strength steel plate and manufacturing method thereof
WO2015151427A1 (en) * 2014-03-31 2015-10-08 Jfeスチール株式会社 High-yield-ratio high-strength cold rolled steel sheet and production method therefor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3612992A (en) 1969-09-30 1971-10-12 Westinghouse Electric Corp Corona testing apparatus including energy storage means for indicating time difference between corona signals
DE2519190C3 (en) 1975-04-30 1979-07-19 Siemens Ag, 1000 Berlin Und 8000 Muenchen Copy grinder for true-to-size grinding of blades for turbines and compressors
JP5487916B2 (en) 2009-11-30 2014-05-14 新日鐵住金株式会社 High-strength galvanized steel sheet having a tensile maximum strength of 900 MPa or more excellent in impact absorption energy and a method for producing the same
JP5466552B2 (en) * 2010-03-24 2014-04-09 株式会社神戸製鋼所 High-strength cold-rolled steel sheet that combines elongation, stretch flangeability and weldability
JP5136609B2 (en) * 2010-07-29 2013-02-06 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in formability and impact resistance and method for producing the same
EP2716783B1 (en) * 2011-05-25 2018-08-15 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and process for producing same
US9745639B2 (en) * 2011-06-13 2017-08-29 Kobe Steel, Ltd. High-strength steel sheet excellent in workability and cold brittleness resistance, and manufacturing method thereof
WO2013154071A1 (en) * 2012-04-10 2013-10-17 新日鐵住金株式会社 Steel sheet suitable as impact absorbing member, and method for manufacturing same
JP5860343B2 (en) * 2012-05-29 2016-02-16 株式会社神戸製鋼所 High strength cold-rolled steel sheet with small variations in strength and ductility and method for producing the same
JP6554397B2 (en) * 2015-03-31 2019-07-31 株式会社神戸製鋼所 High strength cold rolled steel sheet having a tensile strength of 980 MPa or more excellent in workability and impact property, and a method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099079A1 (en) * 2008-02-08 2009-08-13 Jfe Steel Corporation High-strength hot-dip galvanized steel sheet with excellent processability and process for producing the same
WO2010029983A1 (en) * 2008-09-10 2010-03-18 Jfeスチール株式会社 High-strength steel plate and manufacturing method thereof
WO2014092025A1 (en) * 2012-12-12 2014-06-19 株式会社神戸製鋼所 High-strength steel plate and manufacturing method thereof
WO2015151427A1 (en) * 2014-03-31 2015-10-08 Jfeスチール株式会社 High-yield-ratio high-strength cold rolled steel sheet and production method therefor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018204058A (en) * 2017-05-31 2018-12-27 株式会社神戸製鋼所 High strength steel sheet and manufacturing method therefor
KR20200003010A (en) * 2017-05-31 2020-01-08 가부시키가이샤 고베 세이코쇼 High strength steel sheet and its manufacturing method
WO2018221307A1 (en) * 2017-05-31 2018-12-06 株式会社神戸製鋼所 High-strength steel sheet and method for producing same
KR102312466B1 (en) 2017-05-31 2021-10-13 가부시키가이샤 고베 세이코쇼 High-strength steel sheet and manufacturing method thereof
EP4043603A1 (en) * 2017-09-28 2022-08-17 ThyssenKrupp Steel Europe AG Flat steel product and method for its production
US20210387679A1 (en) * 2018-09-28 2021-12-16 Nippon Steel Corporation Adhesively joined structure and component for vehicle
US11904948B2 (en) * 2018-09-28 2024-02-20 Nippon Steel Corporation Adhesively joined structure and component for vehicle
KR20200075958A (en) * 2018-12-18 2020-06-29 주식회사 포스코 High strength steel sheet having excellent workability property, and method for manufacturing the same
KR102178731B1 (en) 2018-12-18 2020-11-16 주식회사 포스코 High strength steel sheet having excellent workability property, and method for manufacturing the same
JP2022531249A (en) * 2019-12-09 2022-07-06 ヒュンダイ スチール カンパニー Alloyed hot-dip galvanized steel sheet with ultra-high strength and high formability and its manufacturing method
JP7258183B2 (en) 2019-12-09 2023-04-14 ヒュンダイ スチール カンパニー Alloyed hot-dip galvanized steel sheet with ultra-high strength and high formability and method for producing the same
WO2021125602A3 (en) * 2019-12-18 2021-08-05 주식회사 포스코 High strength steel sheet having excellent workability and method for manufacturing same
WO2022131625A1 (en) * 2020-12-17 2022-06-23 주식회사 포스코 High strength steel sheet having excellent workability and method for manufacturing same

Also Published As

Publication number Publication date
MX2017012442A (en) 2018-01-26
EP3279362A4 (en) 2018-08-22
KR102174558B1 (en) 2020-11-05
EP3279362A1 (en) 2018-02-07
EP3279362B1 (en) 2021-04-21
JP6554396B2 (en) 2019-07-31
CN107429370B (en) 2020-01-24
KR20170131606A (en) 2017-11-29
US20180037964A1 (en) 2018-02-08
CN107429370A (en) 2017-12-01

Similar Documents

Publication Publication Date Title
JP6554396B2 (en) High strength cold rolled steel sheet having a tensile strength of 980 MPa or more excellent in workability and impact property, and a method of manufacturing the same
JP6554397B2 (en) High strength cold rolled steel sheet having a tensile strength of 980 MPa or more excellent in workability and impact property, and a method of manufacturing the same
JP6306481B2 (en) High-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet excellent in ductility and bendability, and methods for producing them
JP5943156B1 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
JP5943157B1 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
JP5983895B2 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
JP6458834B2 (en) Manufacturing method of hot-rolled steel sheet, manufacturing method of cold-rolled full hard steel sheet, and manufacturing method of heat-treated plate
KR101470719B1 (en) Ultra high strength steel plate having excellent workability, and production method for same
KR20190040018A (en) Plated steel sheet, method of manufacturing hot-dip galvanized steel sheet, and method of producing galvannealed galvanized steel sheet
CN111511945A (en) High-strength cold-rolled steel sheet and method for producing same
JP6249140B1 (en) High yield ratio type high strength galvanized steel sheet and method for producing the same
JP5332981B2 (en) Alloyed hot-dip galvanized steel sheet excellent in ductility and corrosion resistance and method for producing the same
WO2016158159A1 (en) HIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING EXCELLENT WORKABILITY AND COLLISION CHARACTERISTICS AND HAVING TENSILE STRENGTH OF 980 MPa OR MORE, AND METHOD FOR PRODUCING SAME
JP6409916B2 (en) Manufacturing method of hot-rolled steel sheet and manufacturing method of cold-rolled full hard steel sheet
WO2016158160A1 (en) HIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING EXCELLENT WORKABILITY AND COLLISION CHARACTERISTICS AND HAVING TENSILE STRENGTH OF 980 MPa OR MORE, AND METHOD FOR PRODUCING SAME
JP2018003114A (en) High strength steel sheet and manufacturing method therefor
KR20220110828A (en) Steel plate and its manufacturing method
JP2018003115A (en) High strength steel sheet and manufacturing method therefor
JP7006848B1 (en) Steel sheets, members and their manufacturing methods
JP5988000B1 (en) High strength steel plate and manufacturing method thereof
KR20230098625A (en) Hot-dip galvanized steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170210

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170321

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190708

R151 Written notification of patent or utility model registration

Ref document number: 6554396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151