EP4013950B1 - Rotor comprenant un composant de rotor disposé entre deux disques de rotor - Google Patents

Rotor comprenant un composant de rotor disposé entre deux disques de rotor Download PDF

Info

Publication number
EP4013950B1
EP4013950B1 EP20735094.3A EP20735094A EP4013950B1 EP 4013950 B1 EP4013950 B1 EP 4013950B1 EP 20735094 A EP20735094 A EP 20735094A EP 4013950 B1 EP4013950 B1 EP 4013950B1
Authority
EP
European Patent Office
Prior art keywords
rotor
projection
groove
flank
inner flank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20735094.3A
Other languages
German (de)
English (en)
Other versions
EP4013950A1 (fr
Inventor
Peter Kury
Mirko Milazar
Christopher W ROSS
Yulia Bagaeva
Karsten Kolk
Ivan Lbov
Alexander Romanov
Harald Hoell
Kevin KAMPKA
Rene Mahnke
Andreas Föhrigen
Daniel Hofsommer
Ekkehard Maldfeld
Jörg Richter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens Energy Global GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Energy Global GmbH and Co KG filed Critical Siemens Energy Global GmbH and Co KG
Publication of EP4013950A1 publication Critical patent/EP4013950A1/fr
Application granted granted Critical
Publication of EP4013950B1 publication Critical patent/EP4013950B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/06Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/06Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
    • F01D5/066Connecting means for joining rotor-discs or rotor-elements together, e.g. by a central bolt, by clamps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • F05D2260/36Retaining components in desired mutual position by a form fit connection, e.g. by interlocking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • F05D2260/37Retaining components in desired mutual position by a press fit connection

Definitions

  • the invention relates to a rotor of a gas turbine, which has at least two interconnected rotor disks, between which an annular rotor component is arranged.
  • the invention also relates to a method for assembling a rotor.
  • Such rotor arrangements are, for example, from DE102014115197A1 or from the EP2639409A2 known.
  • the rotor component basically only has the task of preventing the ingress of hot gas. There is usually no other function available. Accordingly, the storage of the rotor component is kept simple in the usual way, with only an annular, axially extending shoulder engaging in a corresponding annular groove.
  • the rotor component is mounted on both sides of the respective rotor disk with a press fit.
  • the rotor component is usually arranged at the point of press fit on the side facing the rotor axis relative to the rotor disk. This is due in particular to the fact that the rotor component is subject to greater deformation when centrifugal forces occur than the solid rotor disks.
  • the object of the present invention is therefore to ensure the position of the rotor component even during heating and cooling of the gas turbine without exceeding the permissible stresses on the rotor component or on the rotor disks.
  • the generic rotor is initially used in a gas turbine. Regardless of this, however, it is also possible to use a different embodiment of the rotor Turbomachine, for example in a steam turbine, to be used.
  • At least the rotor has a first rotor disk and a second rotor disk that is directly and firmly connected to the first rotor disk.
  • the rotor disks each have a plurality of blade holding grooves distributed on the outer circumference and axially penetrating the respective rotor disk. The blade holding grooves are used to hold rotor blades.
  • first rotor disk has a circumferential first fastening projection radially below the blade holding grooves and extending axially towards the second rotor disk.
  • second rotor disk has a circumferential second fastening projection radially below the blade holding grooves and extending axially towards the first rotor disk.
  • An annular rotor component is arranged between the two rotor disks in the area of the blade holding grooves and/or radially below the blade holding grooves. This encloses the rotor, which is located in sections within the rotor component, or sections of the two rotor disks.
  • the rotor component has a circumferential, axially opening first annular groove at one axial end and, axially opposite, a circumferential, axially opening second annular groove. The first fastening projection of the first rotor disk engages in the first annular groove and the second fastening projection of the second rotor disk engages in the second annular groove.
  • a defined position of the rotor component is now ensured without impermissibly high voltages occurring, in that when the rotor is at a standstill, in which the rotor is essentially at room temperature, Pressing is provided on the outer circumference of the first fastening projection.
  • a first groove outer flank of the first annular groove rests under pressure on a first projection outer flank of the first fastening projection.
  • connection of the rotor component to the second rotor disk is essentially stress-free when the rotor is at a standstill at room temperature.
  • An advantageous coordination with regard to the fastening of the rotor component between the rotor disks and the compressive stresses that occur, taking into account a rotation of the rotor when starting up the gas turbine with the associated expansions of the rotor component and the rotor disks, is particularly advantageous if in a first transition state at a first speed of the rotor , a change in the fastening state from the first rotor disk to the second rotor disk takes place.
  • the first speed is lower than the nominal speed at which the rotor is operated as intended.
  • this first one Transition state continues to ensure that the first groove outer flank rests on the first projection outer flank, with the second groove inner flank also resting on the second projection inner flank. In contrast, there remains undiminished play between the first groove inner flank and the first projection inner flank as well as play between the second groove outer flank (35) and the second projection outer flank.
  • the first speed is advantageously greater than 0.2 times the nominal speed.
  • the design should provide that the first speed is less than 0.6 times the nominal speed.
  • the position of the rotor component relative to the rotor disks when starting up the gas turbine can advantageously be ensured.
  • the pressure between the first projection outer flank and the first groove outer flank decreases, with contact being created between the second groove inner flank and the second projection inner flank.
  • the fixation of the rotor component is taken over by the second rotor disk.
  • the second speed is higher than the first speed, but lower than the nominal speed Fluid machine. Accordingly, there is a pressure between the second groove inner flank and the second projection inner flank.
  • a second speed can advantageously be assumed, which corresponds to at least 0.8 times the nominal speed.
  • the components In the second transition state, the components have a second transition temperature.
  • the rotor component When the gas turbine is started up and all components start to heat up, the rotor component usually heats up significantly faster than the more massive rotor disks due to its lower mass. Accordingly, the second transition temperature is characterized in that the rotor component has approximately reached the operating temperature, while the rotor disks, on the other hand, have a significantly lower temperature than the operating temperature, for example by approximately 30%.
  • An advantageous assembly of the rotor component in the rotor is made possible if the diameter of the first annular groove is set in a suitable ratio to the diameter of the first fastening projection. It is particularly advantageous if the rotor component is heated for assembly to an assembly temperature of at least 100 ° C and a maximum of 200 ° C, while the rotor disks are at room temperature. Taking into account the corresponding expansion of the rotor component due to the temperature increase, the required dimension of the first annular groove can be determined in relation to the first fastening projection. It is advantageous here if, at the assembly temperature, the pressure between the first groove outer flank and the first projection outer flank corresponds to a maximum of 10% of the pressure between the two components at room temperature. It is particularly advantageous here if the overlap that exists at room temperature is essentially eliminated by means of the assembly temperature with appropriate design of the diameter of the fastening projection and annular groove.
  • the pressure between the first groove inner flank and the first projection inner flank in this case may be a maximum of 10% of the pressure that exists at room temperature between the first groove outer flank and the first projection outer flank. In any case, it is advantageous if there remains a play between the first groove inner flank and the first projection inner flank, even at the assembly temperature.
  • the rotor component has a cover section by means of which the blade holding grooves or the blade feet of rotor blades fastened in the blade holding grooves can be covered at least in sections.
  • the cover section extends in the circumferential direction and radially.
  • the cover section is arranged radially outside the first ring segment groove. It is further provided that the cover section with a support surface rests axially on an end face of the first rotor disk in the area between the blade holding grooves.
  • the rotor component has a cover section on both sides, axially opposite.
  • the support surface rests against the end face under pressure when the cover section is elastically deformed. It can thus be ensured that during operation of the turbomachine from standstill to the nominal speed at operating temperature, the support surface is always in contact with the end face.
  • the rotor component is heated to an assembly temperature between 100 ° C and 200 ° C, which is accompanied by a deformation of the rotor component and in particular of the cover section, so that when in the intended position of the rotor component in the area of the annular groove relative to the fastening projection, the pressure between the support surface and the end face corresponds to a maximum of 10% of the pressure at room temperature.
  • This condition with the deformation in particular of the cover section in the axial direction in the area of the support surface is favored on the one hand by the design of the rotor component, with the cover section arranged at the axial end.
  • a design with a lower material thickness in the middle area has an effect between the two annular groove is advantageous in terms of the desired deformation.
  • the desired effect can be promoted by the targeted increase in temperature, preferably in the area of the first annular groove.
  • the appropriate design of the rotor component in particular the determination of the diameter of the first annular groove and the second annular groove as well as the overlap between the support surface and the end face, taking into account the possible assembly temperature of the rotor component, on the one hand enables assembly without too much effort as well as a secure position of the rotor component between the rotor disks during operation.
  • a free first expansion distance is maintained between a first projection end face of the first fastening projection and the first groove base of the first annular groove.
  • the first expansion distance is at least 0.5 mm.
  • the first expansion distance is more than 5 mm.
  • a first expansion distance of at least 1 mm and a maximum of 2.5 mm is particularly advantageous.
  • a second expansion distance is present between a second projection end face of the second fastening projection and the second groove base of the second annular groove.
  • the second expansion distance should correspond to a maximum of 0.2 times the first expansion distance.
  • the first rotor disk must be provided once. It is advantageous here if the first rotor disk is stored horizontally with the rotor axis aligned vertically.
  • the rotor component must be heated to an assembly temperature of at least 100 °C. A temperature of 200 °C should not be exceeded.
  • the rotor component must be placed on the first rotor disk in such a way that the first annular groove is located above the first fastening projection.
  • the rotor component can thus be pressed onto the first rotor disk until a support surface comes into contact with an end face of the rotor disk.
  • the desired position of the rotor component relative to the rotor disk is achieved, the desired position being determined by a predefined first expansion distance between a first projection end face of the first fastening projection and the first groove base of the first annular groove is defined.
  • the rotor component can now cool down, during which time the rotor component must be kept in position relative to the first rotor disk.
  • the second rotor disk can be placed or pressed onto the first rotor disk and the rotor component at the same time.
  • the second fastening projection engages in the second annular groove.
  • FIG. 1 the installation of the rotor component 21 between the rotor disks 01 and 11 is sketched schematically in a sectional view.
  • the rotor disks 01, 11 each have axially penetrating blade holding grooves 02, 12 distributed on the outer circumference of the respective rotor disk 01, 11.
  • the blade holding grooves 02, 12 are intended to hold rotor blades.
  • the respective rotor disks 01, 11 in turn each have a fastening projection 04, 14 running around the rotor axis 10. As can be seen, the fastening projections 04, 14 each extend axially to the opposite rotor disk.
  • the rotor component 21 located between the two rotor disks 01, 11 covers the space between the rotor disks 01, 11.
  • the rotor component 21 has an annular groove 24, 34 on the axially opposite sides, into which the respective fastening projection 04, 24 engages. Furthermore, the cover section 22 can be seen at an axial end of the rotor component 21, which 22 extends in the circumferential direction and radially. This 22 covers the blade holding grooves 02 in the first rotor disk.
  • the press fit between the first fastening projection 04 and the first annular groove 24 will now be outlined in detail.
  • the rotor component 21 is shown axially offset.
  • the first rotor disk has a first projection outer flank 05 on the first fastening projection 04 on the radially outer side.
  • the first projection inner flank 06 is located on the radially opposite side.
  • the first projection end face 07 is located at the free end of the first fastening projection 04.
  • the rotor component 21 has a first groove on the first annular groove 24 on the radially outer side. Outer flank 25 and on the radially inner side a first groove inner flank 26.
  • the first groove base 27 is located on the annular groove 24.
  • the first projection outer flank 05 and the first groove outer flank 25 available. This results from a geometric overlap 08 between the two corresponding components 01, 21.
  • FIG. 3 The assembly between the second rotor disk 11 and the rotor component 21 is outlined in detail, analogous to Fig. 2 the rotor component 21 is shown offset.
  • the second rotor disk 11 can again be seen with the blade holding groove 12 and the second fastening projection 14.
  • This 14 has the second projection outer flank 15 on the radially outer side and the second projection inner flank 16 on the radially opposite side and the second projection end face 17 on the front side .
  • the second groove outer flank 35 is located on the rotor component 21 on the second annular groove 34 on the radially outer side, as well as the second groove inner flank 36 opposite and the second groove base 27 opposite the second projection end face 17. Zu It can be seen that in the resting state or after assembly between the second fastening projection 14 and the second annular groove 34 there is a play 09, 29 both on the radially outer side and on the radially inner side.
  • the Fig. 5 now shows the first transition state when starting up the gas turbine. If the rotor is now set in motion, a first speed ⁇ 1 is reached, which ⁇ 1 is still significantly below the nominal speed ⁇ N, whereby the component temperatures T01, 11, 21 of the rotor disks 01, 14 and of the rotor component can be slightly increased, but still far from the operating temperature TN. It is important that in the first transition state the second groove inner flank 36 now comes into contact with the second projection inner flank 16. Depending on the temperature T01, 11, 21 of the components 01, 11, 21 and the existing play 29 in the idle state, the system takes place at different speeds, with the game 29 preferably being set to a value that results in a system at approximately 0.3 - times the nominal speed ⁇ N.
  • the second fastening projection 14 and the rotor component 21 on the radially inner side increases, whereas the pressure between the first fastening projection 04 and the rotor component 21 on the radially outer side decreases.
  • the second transition state which is in Fig. 6 is outlined, there is now a play on the radially outer side between the first fastening projection 04 and the rotor component 21. This means that there is a free space between the first projection outer flank 05 and the first groove outer flank 25.
  • the second speed ⁇ 2 is between the first speed ⁇ 1 in the first transition state and the nominal speed ⁇ N, whereby the second speed ⁇ 2 can correspond to approximately 0.6 times the nominal speed ⁇ N.
  • the component temperature T01, 11 of the rotor disks 01, 11 is significantly lower than the component temperature T21 of the rotor component, which T21 gradually approaches the operating temperature TN.
  • Fig. 7 shows the state when the nominal speed ⁇ N and the operating temperature TN have been reached. Starting from the second transition state with an increase in the speed, the first inner projection flank 06 of the first fastening projection 04 comes into contact with the first groove inner flank 26 of the first annular groove 24.
  • this ensures that the diameter of the first groove outer flank 25 increases at least approximately to the diameter of the first projection outer flank 05, which enables the rotor component 21 to be pushed onto the first fastening projection 04 without excessive forces.
  • the special shape of the rotor component 21 achieves a further effect when heated. This is the deformation of the rotor component 21 in such a way that the cover section 22 is deformed in a direction away from the first rotor disk 01. The distance between the end face 03 and the support surface 23 increases accordingly in contrast to the condition at room temperature.
  • the rotor component 21 is pressed further onto the first fastening projection 04 of the first rotor disk 01 until the previously defined expansion distance 33 is reached - see Fig. 10 . It continues to deform the cover section 22, whereby an initial pressure is created between the support surface 23 and the end face 03.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (12)

  1. Rotor d'une turbine à gaz,
    comprenant un premier disque (01) de rotor, qui (01) a, réparties sur le pourtour extérieur, une pluralité de premières encoches (02) de maintien d'aube traversant axialement le disque (01) du rotor et une première saillie (04) de fixation s'étendant axialement en faisant le tour, disposée du côté tourné vers l'axe du rotor en-dessous des premières encoches (02) de maintien d'aube, et comprenant un deuxième disque (11) de rotor, qui (11) est relié fixement au premier disque (01) du rotor et qui a, réparties sur le pourtour extérieur, une pluralité de deuxièmes encoches (12) de maintien d'aube traversant axialement le disque (11) du rotor et une deuxième saille (14) de fixation s'étendant axialement en faisant le tour, disposée du côté tourné vers l'axe du rotor en-dessous des deuxièmes encoches (12) de maintien d'aube, et
    comprenant une pièce (21) de rotor faisant le tour annulairement, qui (21) a d'un côté une première encoche (24) annulaire faisant le tour s'ouvrant axialement et, du côté opposé, une deuxième encoche (34) annulaire faisant le tour s'ouvrant axialement, dans lequel la première saillie (04) de fixation pénètre dans la première encoche (24) annulaire et la deuxième saillie (14) de fixation pénètre dans la deuxième encoche (34) annulaire, caractérisé
    en ce qu'à l'arrêt,
    - un premier flanc (25) extérieur d'encoche de la première encoche (24) annulaire s'applique avec pression à un premier flanc (05) extérieur de saillie de la première saillie (04) de fixation, et
    - il y a un jeu entre un premier flanc (26) intérieur d'encoche de la première encoche (24) annulaire et un premier flanc (06) intérieur de saillie de la première saillie (04) de fixation.
  2. Rotor suivant la revendication 1,
    caractérisé
    en ce qu'à l'arrêt en outre
    - il y a un jeu entre un deuxième flanc (35) extérieur d'encoche de la deuxième encoche (34) annulaire et un deuxième flanc (15) extérieur de saillie de la deuxième saillie (14) de fixation, et
    - il y a un jeu entre un deuxième flanc (36) intérieur d'encoche de la deuxième encoche (34) annulaire et un deuxième flanc (16) intérieur de saillie de la deuxième saillie (14) de fixation.
  3. Rotor suivant la revendication 2,
    caractérisé
    en ce que, dans un premier état transitoire, à une première vitesse de rotation plus petite que la vitesse de rotation nominale conforme aux prescriptions, en particulier à une première vitesse de rotation comprise entre 0,2 fois et 0,6 fois la vitesse de rotation nominale,
    - le premier flanc (25) extérieur d'encoche s'applique au premier flanc (05) extérieur de saillie, et
    - il y a un jeu entre le premier flanc (26) intérieur d'encoche et le premier flanc (06) intérieur de saillie, et
    - il y au jeu entre le deuxième flanc (35) extérieur d'encoche et le deuxième flanc (15) extérieur de saillie, et
    - le deuxième flanc (36) intérieur d'encoche s'applique au deuxième flanc (16) intérieur de saillie.
  4. Rotor suivant la revendication 3,
    caractérisé
    en ce que, dans un deuxième état transitoire, à une deuxième vitesse de rotation plus grande que la première vitesse de rotation est plus petite que la vitesse de rotation nominale conforme aux prescriptions, en particulier à une deuxième vitesse de rotation de moins de 0,8 fois la vitesse de rotation nominale,
    - il y a un jeu entre le premier flanc (25) extérieur d'extérieur d'encoche et le premier flanc (05) extérieur de saillie, et
    - il y a un jeu entre le premier flanc (26) intérieur d'encoche et le premier flanc (06) intérieur de saillie, et
    - il y a un jeu entre le deuxième flanc (35) extérieur d'encoche et le deuxième flanc (15) extérieur de saillie, et
    - le deuxième flanc (36) intérieur s'applique avec pression au deuxième flanc (16) intérieur de saillie.
  5. Rotor suivant l'une des revendications 1 ou 4,
    caractérisé
    en ce qu'à la vitesse nominale conforme aux prescriptions,
    - il y a un jeu entre le premier flanc (25) extérieur d'encoche et le premier flanc (05) extérieur de saillie, et
    - le premier flanc (26) intérieur d'encoche s'applique avec pression au premier flanc (06) intérieur de saillie, et
    - il y a un jeu entre le deuxième flanc (35) extérieur d'encoche et le deuxième flanc (15) extérieur de saillie, et
    - le deuxième flanc (36) intérieur d'encoche s'applique avec pression au deuxième flanc (16) intérieur de saillie.
  6. Rotor suivant l'une des revendications 1 ou 5,
    caractérisé
    en ce qu'à une température de montage de la pièce (21) de rotor d'au moins 100°C et de 200°C au maximum,
    - la pression entre le premier flanc (25) extérieur d'encoche et le premier flanc (05) extérieur de saillie représente au maximum 10 % de la pression à la température ambiante, et
    - la pression entre le premier flanc (26) intérieur d'encoche et le premier flanc (06) intérieur de saillie représente au maximum 10 % de la pression entre le premier flanc (25) extérieur d'encoche et le premier flanc (05) extérieur de saillie à la température ambiante en ayant, en particulier un jeu entre le premier flanc (26) intérieur d'encoche et le premier flanc (06) intérieur de saillie.
  7. Rotor suivant l'une des revendications 1 à 6,
    caractérisé
    en ce que la pièce (21) de rotor a une partie (22) de recouvrement dans la direction du pourtour et radialement, qui (22) recouvre au moins par endroits les premières encoches (02) de maintien d'aube et qui s'applique, par une surface (23) d'appui, à une surface (03) frontale du premier disque de rotor, dans la partie comprise entre les encoches (02) de maintien d'aube.
  8. Rotor suivant la revendication 7,
    caractérisé
    en ce que la surface (23) d'appui s'applique avec pression à la surface (03) frontale, alors que la partie (22) de recouvrement se déforme élastiquement.
  9. Rotor suivant la revendication 8,
    caractérisé
    en ce qu'à une température de montage de la pièce (21) du rotor d'au moins 100°C et de 200°C au maximum, la pression de la surface (23) d'appui sur la surface (03) frontale représente au maximum 10 % de la pression à la température ambiante.
  10. Rotor suivant l'une des revendications 1 à 9,
    caractérisé
    en ce qu'après le montage du rotor, au moins avant un chauffage du rotor, il y a entre une première surface (07) frontale de la première saillie (04) de fixation et le premier fond (27) de la première encoche (24) annulaire, une première distance libre de dilatation, dans lequel la première distance de dilatation est d'au moins 0,5 mm et de 5 mm au maximum en étant, en particulier, d'au moins 1 mm et de 2,5 mm au maximum.
  11. Rotor suivant la revendication 10,
    caractérisé
    en ce qu'il y a une deuxième distance de dilatation ou un contact entre une deuxième surface (17) frontale de saillie de la deuxième saillie (14) de fixation et le deuxième fond (37) de la deuxième encoche (34) annulaire, la deuxième distance de dilatation représentant au maximum 0,2 fois la première distance de dilatation.
  12. Procédé de montage d'un rotor suivant l'une des revendications précédentes, dans lequel
    - on se procure le premier disque (01) de rotor ;
    - on porte la pièce (21) de rotor à une température de montage d'au moins 100°C et de 200°C au maximum ;
    - on applique et/ou on presse la pièce (21) de rotor sur le premier disque (01) de rotor avec un contact de la surface (23) d'appui et de la surface (03) frontale ;
    - on continue à déplacer la pièce (21) de rotor sur le premier disque (01), jusqu'à que soit atteinte une première distance de dilatation définie à l'avance entre une première surface (07) frontale de la première saillie (04) de fixation et le premier fond (27) de la première encoche (24) annulaire ;
    - on refroidit la pièce (21) de rotor et l'on maintient ainsi ensemble le premier disque (01) du rotor et la pièce (21) du rotor ;
    - on pose et/ou on presse le deuxième disque (11) du rotor en même temps sur le premier disque (01) du rotor et la pièce (21) du rotor.
EP20735094.3A 2019-10-18 2020-06-18 Rotor comprenant un composant de rotor disposé entre deux disques de rotor Active EP4013950B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962916811P 2019-10-18 2019-10-18
PCT/EP2020/066858 WO2021073786A1 (fr) 2019-10-18 2020-06-18 Rotor comprenant un composant de rotor disposé entre deux disques de rotor

Publications (2)

Publication Number Publication Date
EP4013950A1 EP4013950A1 (fr) 2022-06-22
EP4013950B1 true EP4013950B1 (fr) 2023-11-08

Family

ID=71266618

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20735094.3A Active EP4013950B1 (fr) 2019-10-18 2020-06-18 Rotor comprenant un composant de rotor disposé entre deux disques de rotor

Country Status (5)

Country Link
EP (1) EP4013950B1 (fr)
JP (1) JP7394979B2 (fr)
KR (1) KR20220078706A (fr)
CN (1) CN114599859B (fr)
WO (1) WO2021073786A1 (fr)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0169800B1 (fr) * 1984-07-23 1988-11-23 United Technologies Corporation Assemblage d'étanchéification d'une turbine

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4743164A (en) * 1986-12-29 1988-05-10 United Technologies Corporation Interblade seal for turbomachine rotor
US4820119A (en) * 1988-05-23 1989-04-11 United Technologies Corporation Inner turbine seal
US5622475A (en) * 1994-08-30 1997-04-22 General Electric Company Double rabbet rotor blade retention assembly
RU2151883C1 (ru) * 1998-10-19 2000-06-27 Открытое акционерное общество "Авиадвигатель" Ротор двухступенчатой турбины
DE19940556B4 (de) * 1999-08-26 2012-02-02 Alstom Vorrichtung zum Kühlen von Leit- oder Laufschaufeln in einer Gasturbine
US6464453B2 (en) * 2000-12-04 2002-10-15 General Electric Company Turbine interstage sealing ring
EP1515003A1 (fr) * 2003-09-11 2005-03-16 Siemens Aktiengesellschaft Turbine à gaz et dispositif d'étanchéité pour une turbine à gaz
DE102004016467A1 (de) * 2004-03-31 2005-10-20 Alstom Technology Ltd Baden Spaltdichtung zum Abdichten eines Spalts zwischen zwei benachbarten Bauteilen
FR2899636B1 (fr) * 2006-04-10 2008-07-04 Snecma Sa Dispositif de retention axiale d'un flasque de disque de rotor de turbomachine
US7604455B2 (en) * 2006-08-15 2009-10-20 Siemens Energy, Inc. Rotor disc assembly with abrasive insert
EP2025867A1 (fr) * 2007-08-10 2009-02-18 Siemens Aktiengesellschaft Rotor pour une turbomachine
EP2239419A1 (fr) * 2009-03-31 2010-10-13 Siemens Aktiengesellschaft Rotor de turbomachine axiale doté d'un disque d'étanchéité
FR2954400B1 (fr) * 2009-12-18 2012-03-09 Snecma Etage de turbine dans une turbomachine
JP2012067878A (ja) * 2010-09-24 2012-04-05 Mitsubishi Heavy Ind Ltd ターボ回転機械用の自動調整シール
US9540940B2 (en) * 2012-03-12 2017-01-10 General Electric Company Turbine interstage seal system
EP2823152A1 (fr) * 2012-05-08 2015-01-14 Siemens Aktiengesellschaft Aube mobile de turbine et section axiale de rotor pour une turbine à gaz
US9291065B2 (en) * 2013-03-08 2016-03-22 Siemens Aktiengesellschaft Gas turbine including bellyband seal anti-rotation device
DE102013205028A1 (de) * 2013-03-21 2014-09-25 Siemens Aktiengesellschaft Dichtelement zur Dichtung eines Spaltes
DE102013213115A1 (de) * 2013-07-04 2015-01-22 Siemens Aktiengesellschaft Rotor für eine Turbine
US9404376B2 (en) * 2013-10-28 2016-08-02 General Electric Company Sealing component for reducing secondary airflow in a turbine system
CN204627758U (zh) * 2015-03-26 2015-09-09 三菱日立电力系统株式会社 密封构件以及燃气轮机
EP3287595A1 (fr) * 2016-08-25 2018-02-28 Siemens Aktiengesellschaft Rotor dote d'un anneau d'etancheite segmente
EP3348786A1 (fr) * 2017-01-17 2018-07-18 Siemens Aktiengesellschaft Rotor comprenant une couverture de conduite et plaques d'étanchéité

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0169800B1 (fr) * 1984-07-23 1988-11-23 United Technologies Corporation Assemblage d'étanchéification d'une turbine

Also Published As

Publication number Publication date
WO2021073786A1 (fr) 2021-04-22
CN114599859B (zh) 2023-11-17
KR20220078706A (ko) 2022-06-10
EP4013950A1 (fr) 2022-06-22
CN114599859A (zh) 2022-06-07
JP2022552170A (ja) 2022-12-15
JP7394979B2 (ja) 2023-12-08

Similar Documents

Publication Publication Date Title
EP2426315B1 (fr) Section de rotor pour un rotor d'une turbomachine
EP1131537B1 (fr) Procede de fonctionnement d'une turbomachine
EP2435665B1 (fr) Système de contrôle de jeu, turbomachine et procédé de réglage d'un jeu fonctionnel entre un rotor et une enveloppe d'une turbomachine
EP3153667B1 (fr) Dispositif de sécurisation axiale d'une aube mobile et dispositif de rotor équipé d'une telle sécurisation
EP2435664B1 (fr) Système de contrôle de jeu pour une turbomachine
EP2239423A1 (fr) Turbomachine axiale dotée d'un contrôle passif d'étanchéité en bout d'aube
DE112016004554T5 (de) Betätigungsvorrichtung für variable Statorschaufeln
DE2532538C2 (de) Kombinierte Dicht- und Führungsanordnung
DE102012100013A1 (de) Axiale Haltevorrichtung für ein Turbinensystem
EP2342425B1 (fr) Turbine à gaz avec plaque de fixation entre la base d'aube et le disque
EP2173972B1 (fr) Rotor pour turbomachine à flux axial
EP1507106B1 (fr) Garniture d'étanchéité rotative
EP4013950B1 (fr) Rotor comprenant un composant de rotor disposé entre deux disques de rotor
EP3091188A1 (fr) Turbomachine dotée d'un dispositif d'étanchéité
EP2347101B1 (fr) Turbine à gaz et moteur à turbine à gaz associé
WO2005052321A1 (fr) Dispositif de liaison refroidie pour disques de rotor de turbine
EP2440789A1 (fr) Pompe à vide
DE202015105626U1 (de) Turbinenrotorschaufel mit beweglicher Spitze
EP3273077A1 (fr) Palier à roulement doté d'une bride de montage
EP3350416B1 (fr) Turbine à gaz munie d'un support amélioré du carter intérieur
DE102017205668A1 (de) Lagerung für einen Turbolader oder eine Abgasnutzturbine, Turbolader oder Abgasnutzturbine mit einer solchen Lagerung und Verfahren zum Montieren einer Turbinenwelle in einem Turbolader oder einer Abgasnutzturbine
EP3788236B1 (fr) Rotor pourvu d'une pièce disposée entre deux disques de rotor
EP3170987B1 (fr) Système de bague intérieure pour turbomachine
EP2696036A1 (fr) Collier de serrage pour turbomachine
EP3348786A1 (fr) Rotor comprenant une couverture de conduite et plaques d'étanchéité

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220314

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230612

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020005951

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240308

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240209

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240208

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240208

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108