EP4011561B1 - Machine-outil mobile et procédé - Google Patents

Machine-outil mobile et procédé Download PDF

Info

Publication number
EP4011561B1
EP4011561B1 EP20213304.7A EP20213304A EP4011561B1 EP 4011561 B1 EP4011561 B1 EP 4011561B1 EP 20213304 A EP20213304 A EP 20213304A EP 4011561 B1 EP4011561 B1 EP 4011561B1
Authority
EP
European Patent Office
Prior art keywords
power tool
mobile power
drive unit
lubricant
running
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20213304.7A
Other languages
German (de)
English (en)
Other versions
EP4011561A1 (fr
Inventor
Jens Kondratiuk
Phillip Lorenz
Balasubramaniam Vengudusamy
Stefan Seemeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hilti AG
Original Assignee
Hilti AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hilti AG filed Critical Hilti AG
Priority to EP20213304.7A priority Critical patent/EP4011561B1/fr
Priority to EP21820536.7A priority patent/EP4259383A1/fr
Priority to US18/038,790 priority patent/US20230405785A1/en
Priority to CN202180076925.2A priority patent/CN116507705A/zh
Priority to PCT/EP2021/083139 priority patent/WO2022122413A1/fr
Priority to CA3200706A priority patent/CA3200706A1/fr
Publication of EP4011561A1 publication Critical patent/EP4011561A1/fr
Application granted granted Critical
Publication of EP4011561B1 publication Critical patent/EP4011561B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/30Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/32Condensation polymers of aldehydes or ketones; Polyesters; Polyethers
    • C10M107/34Polyoxyalkylenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D17/00Details of, or accessories for, portable power-driven percussive tools
    • B25D17/26Lubricating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/365Use of seals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/02Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/105Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
    • C10M2209/1055Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/08Solids

Definitions

  • the invention relates to a mobile machine tool with a drive unit.
  • EP 2 180 214 A1 discloses the preamble of claims 1 and 15.
  • the object of the present invention is therefore to offer a mobile machine tool and a method that allow a particularly energy-efficient and yet cost-effective use of a generic mobile machine tool.
  • the object is achieved by a mobile machine tool, in particular a hand-held power tool or a construction robot, for example for carrying out work in building and/or civil engineering, with a drive unit, wherein the drive unit has a water-based lubricant and/or wherein the drive unit is set up for operation with the water-based lubricant, wherein before the start of a running-in phase of the drive unit, a composite roughness sigma of two interacting contact surfaces of the drive unit is greater than 0.01 ⁇ m.
  • the invention is therefore based on the surprising finding that friction and subsequent fatigue damage can be remedied precisely by the fact that, with an initially comparatively rough surface roughness, a particularly high-quality smoothing of the contact surfaces can be achieved by using a water-based lubricant, in particular in the running-in phase of the drive unit.
  • a water-based lubricant in particular in the running-in phase of the drive unit.
  • This takes advantage of the fact that the lubricating film resulting from the water-based lubricant can be comparatively thin.
  • the thickness of the resulting lubricating film can be in the order of magnitude of the composite roughness.
  • boundary friction and/or mixed friction can occur as friction conditions in the drive unit, particularly when the drive unit is operating at nominal speed. The wear caused by the operation of the drive unit can then lead to automatic smoothing of the contact surfaces.
  • the composite roughness sigma can be understood as the root mean square of the surface roughnesses of the interacting contact surfaces.
  • a relative lubricating film thickness can be understood as the relationship between a lubricating film thickness and a surface roughness, in particular the composite roughness sigma.
  • the lubricating film thickness can refer to a central lubricating film thickness.
  • the relative lubricating film thickness can be less than one before the start of the running-in phase.
  • the lubricating film thickness before the start of the running-in phase can be thinner than the surface roughness, in particular the composite roughness sigma.
  • the relative lubricating film thickness can increase to values greater than one, for example to values of at least three.
  • the lubricating film can be thicker, in particular considerably thicker, than the surface roughness, for example than the composite roughness sigma.
  • the surface roughness can be significantly reduced.
  • the composite roughness sigma can be at least halved, for example reduced to a tenth.
  • the surface roughness can be measured using the stylus method.
  • the measurement can be carried out according to DIN EN ISO 4288.
  • the surface characteristics can be calculated according to DIN EN ISO 4287.
  • Various surface characteristics can be used to calculate the composite roughness sigma.
  • the preferred method for determining the composite roughness sigma is the root mean square of profile ordinates Rq. Use.
  • the composite roughness sigma can be understood in particular as the square root of the sum of the squared root mean square values of the profile ordinates Rq of the interacting contact surfaces.
  • the water-based lubricant can also provide sufficient scuffing load capacity, for example as measured on an FZG gear tension test bench.
  • the lubricant film thickness can be measured using an elastohydrodynamics (EHD) test bench, for example available from PCS Instruments, Great Britain.
  • EHD elastohydrodynamics
  • the lubricant can be tested by measuring the lubricant film thickness in a contact area, in particular a point contact.
  • a steel ball can be loaded against a glass pane, preferably coated with a chromium and a SiO2 layer.
  • the measurement can be based on optical interferometry.
  • the contact area can be illuminated with white light that is directed onto the contact through a microscope and a glass pane. Part of the light can be reflected by the chromium layer.
  • Part of the light can penetrate the SiO2 layer and the lubricant film and be reflected by the steel ball.
  • the light paths of the two parts of the light can be brought together so that an interference image can be generated.
  • the interference image can be fed into a spectrometer and/or an image recording device, for example a high-resolution black-and-white CCD camera, to record an interference image.
  • the interference image can be analyzed using evaluation software.
  • the lubricating film thickness can be determined and/or can be determined by image analysis of the interference image.
  • a load can be selected between 30 N and 50 N.
  • the temperature of the lubricant and/or the remaining material can be between 35 °C and 45 °C, in particular 40 °C.
  • the speed of the glass pane can be set in such a way be such that a relative speed of between 0.1 m/s and 3.5 m/s results.
  • a surface roughness Ra of the steel ball can be 10 1 nm, in particular 10 nm.
  • a surface roughness Ra of the glass pane can also be 10 1 nm, in particular 5 nm.
  • the surface roughnesses Ra can preferably be mean roughness values.
  • the composite roughness sigma is more than 0.01 ⁇ m.
  • it can be in the range of 0.1 ⁇ m to 1 ⁇ m.
  • the composite roughness sigma can, for example, be less than or equal to 0.01 ⁇ m after the running-in phase.
  • the drive unit has the water-based lubricant and/or is designed to operate with the water-based lubricant.
  • water- and/or water vapor-resistant materials can be used in the drive unit for this purpose.
  • at least one seal of the drive unit can be made of a water- and/or water vapor-resistant material.
  • the drive unit can also have at least one dynamic seal, for example a labyrinth seal and/or a centrifugal seal.
  • the mobile machine tool can be a hand-held power tool, for example a A drilling machine, a chiseling machine, a grinding machine, a sawing machine or the like. It is also conceivable that the mobile machine tool is a construction robot or comprises a construction robot.
  • the mobile machine tool can have a manipulator, in particular a multi-axis manipulator.
  • the mobile machine tool can have a drive device for driving a tool, for example a drill, a chisel, a vacuum cleaner or the like.
  • the mobile machine tool can be set up for processing concrete and/or metal. It can be designed for drilling, chiseling, sawing and/or grinding.
  • the mobile machine tool can be set up to carry out work in building and/or civil engineering. It is conceivable that it is not set up for use in mining.
  • the mobile machine tool may be portable; for example, it may have a weight of less than 50 kg, in particular less than 25 kg.
  • the mobile machine tool can also have a chassis and/or a flight platform, particularly if it is designed as a construction robot or includes one.
  • the increase in energy efficiency that can be achieved according to the invention has a particularly favorable effect, particularly in the case of flight-capable mobile machine tools, for example in the form of unmanned flying objects such as autonomously or semi-autonomously moving drones.
  • the composite roughness is also limited before the start of the running-in phase in order to facilitate operation of the mobile machine tool at the start and during the running-in phase.
  • the composite roughness sigma before the start of the running-in phase of the drive unit can be at most 3 ⁇ m, preferably at most 1 ⁇ m.
  • the water-containing lubricant can be designed such that the lubricating film thickness is between 10% and 80%, in particular between 30% and 60%, particularly preferably between 50% and 60%, of a water-free or at least substantially water-free polyglycol-based lubricant (as reference lubricant), preferably having a kinematic viscosity of 80 mm 2 /s at 40°C.
  • a "substantially water-free lubricant” can be understood to mean a lubricant which, preferably at least immediately after production, contains at most 1%, particularly preferably at most 0.2%, of water.
  • Such a range of lubricant film thickness means that boundary friction and/or mixed friction can be expected to occur, at least temporarily and/or in certain areas within the drive unit.
  • the lubricant film thickness of the water-based lubricant is thicker than the lubricant film thickness that results when pure water is used as the lubricant.
  • the reference lubricant can be biodegradable, i.e. it can be an EAL lubricant (environmentally acceptable lubricant).
  • the water-based lubricant can also be biodegradable.
  • the reference lubricant is not biodegradable. This can be the case in particular if the reference lubricant is polyglycol-based.
  • the water-based lubricant can contain at least 5%, preferably at least 15%, particularly preferably between 30% and 35%, in particular 33%, water.
  • the water-based lubricant can contain a significant proportion of water. This is particularly noteworthy because otherwise, with the oil-based lubricants commonly used in mobile machine tools, replacement is usually recommended after even small amounts of water have entered.
  • the water-based lubricant may contain a maximum of 90%, preferably a maximum of 70%, water.
  • the lubricant can also contain at least one glycol, for example a polyglycol.
  • the lubricant can contain one or more polyglycols in a proportion of at least 30%, preferably at least 40%. The proportion can be at most 60%.
  • the polyglycol can be a polyalkylene glycol. The glycol or glycols can form a second largest proportion of the lubricant, especially after water.
  • the water-based lubricant can also contain at least one additive, in particular a wear protection additive, a corrosion protection additive and/or an antimicrobial, in particular growth-inhibiting, additive.
  • the water-based lubricant can be designed to suppress the formation of bacteria, fungi and/or algae.
  • the water-based lubricant can thus be designed to prevent the formation of biofilms.
  • the corrosion protection additive can in particular be and/or comprise a non-ferrous metal-deactivating additive. It is also conceivable that the water-based lubricant contains at least one friction-reducing additive, a solid lubricant, a viscosity index-improving additive and/or a freezing point-reducing additive.
  • the water-based lubricant can also comprise an additive that increases scuffing load-bearing capacity.
  • the aqueous lubricant can be a fully formulated lubricant.
  • a general reduction in friction can be achieved if the water-containing lubricant has a kinematic viscosity in the range of at most 320 mm 2 /s at 40 °C.
  • the water-containing lubricant can also have a kinematic viscosity of at least 30 mm 2 /s. In particular, it can have a, preferably considerably, higher kinematic viscosity than water.
  • the machine tool in particular the drive unit, is designed so that the The internal temperature of the drive unit when the mobile machine tool is in operation at an ambient temperature of 20 °C is at most 80 °C, preferably at most 60 °C. This can be achieved, for example, by regulating the input power of the machine tool, in particular the drive unit, when the maximum temperatures mentioned are reached. It is also conceivable to reduce the speeds of parts moving relative to one another and thus of interacting contact surfaces moving relative to one another through structural and geometric optimization in order to limit the frictional heat that arises in this way.
  • Another possibility to comply with the maximum internal temperatures mentioned above is to dimension and/or regulate a cooling system of the mobile machine tool with appropriate performance.
  • the maximum internal temperatures mentioned cannot be reached even during continuous operation and under full load.
  • the machine tool can be set up to limit the input power of the drive unit in such a way that the internal temperature of the drive unit during operation of the mobile machine tool at an ambient temperature of 20 °C is at most 80 °C, preferably at most 60 °C.
  • the power loss occurring in the drive unit can be limited.
  • the limitation can be such that the mechanical power delivered by the drive unit can remain the same despite the reduced input power or can even be increased compared to an unrestricted input power, in particular due to a disproportionately reduced power loss.
  • the machine tool in particular the drive unit, has a solids filter, in particular a filter magnet, which is designed to remove particles, in particular abrasion, from the water-containing lubricant, whereby the service life of the water-containing lubricant can be significantly extended.
  • the mobile machine tool in particular the drive unit, can have a have lubricant filters.
  • the water-containing lubricant can be free of solids or at least substantially free of solids and/or without solid residues, at least before the start of the running-in phase.
  • the water-based lubricant can be free of nanoparticles or other friction particles before the start of the running-in phase. It can therefore be produced particularly inexpensively. It can also be biodegradable. In particular, it can be biologically harmless.
  • the lubricant filter can also be designed particularly easily, since particles contained in the originally solid-free, water-based lubricant can be classified as contaminants and can therefore be removed by the lubricant filter. The separation between contaminants and lubricant can thus be achieved by simply separating liquid versus solid material.
  • the water-based lubricant contains nano friction particles, especially before the start of the running-in phase. This allows the nano polishing effect to be further enhanced, especially at the start of the running-in phase.
  • the nano friction particles can be made of at least one inorganic and/or at least one organic material. They can be designed to dissolve and/or decompose during the operation of the mobile machine tool, for example during the running-in phase, so that the extent of the additional polishing effect can be limited.
  • the water-based lubricant can contain nanoparticles, especially before the start of the running-in phase.
  • the nanoparticles can be nanofriction particles or at least act as nanofriction particles.
  • the nanoparticles can cause a tribological effect in the drive unit.
  • the mobile machine tool can be operated wirelessly.
  • the mobile machine tool can have a, in particular rechargeable, Energy storage.
  • the rechargeable energy storage device can be an accumulator or a fuel cell.
  • the mobile machine tool can also be set up to drive a diamond-containing tool.
  • the mobile machine tool can be set up to saw, drill and/or grind using the diamond-containing tool.
  • high work outputs are required, often with long periods of use.
  • the energy requirement for work typical for diamond-containing tools is therefore particularly high, so that avoiding power loss due to friction is particularly desirable.
  • the scope of the invention further includes a method for energy-efficient operation of a mobile machine tool according to the invention, wherein a drive unit of the mobile machine tool, in which a composite roughness sigma of two interacting contact surfaces of the drive unit is greater than 0.01 ⁇ m before the start of a running-in phase, is lubricated with a water-containing lubricant, in particular in the running-in phase.
  • the method according to the invention thus makes it possible to form a lubricant film that is so thin through the water-based lubricant that the two interacting contact surfaces are moved towards each other in the area of boundary friction and/or mixed friction.
  • Particles can detach from the initially rough contact surfaces, for example, and act as friction particles.
  • the interacting contact surfaces can thus smooth themselves out automatically during the running-in phase. This reduces friction and makes it possible to operate the mobile machine tool in a particularly energy-efficient manner without having to change the lubricant in advance, in particular during the manufacture of the mobile machine tool.
  • interacting contact surfaces would have to undergo a particularly high-quality, usually very expensive, surface treatment.
  • the mobile machine tool which is subjected to the method according to the invention, in particular its drive unit and the lubricant used in the drive unit, can have at least one of the features mentioned above in connection with the mobile machine tool and its components.
  • the invention generally encompasses mobile machine tools and thus, for example, construction robots or hand-held power tools, the invention is explained using the example of a hand-held power tool solely to facilitate understanding.
  • Fig.1 shows a mobile machine tool in the form of a handheld power tool 10.
  • the handheld power tool 10 is designed as a drilling machine, in particular as a diamond drilling machine. It can be operated wirelessly. For this purpose, it has a rechargeable battery 14 in the area of a housing 12.
  • the battery 14 contains lithium.
  • the handheld power tool 10 is designed as a portable device. It has a weight between 0.5 and 15 kg and generally less than 25 kg.
  • the handheld power tool 10 also has a tool holder 16.
  • a tool 18 is accommodated in the tool holder 16.
  • the tool 18 is designed as a diamond drilling tool. It therefore contains diamonds.
  • the mobile power tool is designed and/or usable as a hammer drill and/or as a chiseling machine.
  • a drive unit 20 of the hand-held power tool 10 is also shown in Fig.1
  • the drive unit 20 is located inside the housing 12 and is shown superimposed on the housing 12 for illustrative purposes only.
  • the drive unit 20 drives a shaft to which the tool holder 16 is coupled.
  • the drive unit 20 has an electropneumatic impact mechanism and a rotary drive, which drive the shaft by impacting and rotating respectively.
  • the impact mechanism and The rotary drive is mechanically connected to an electric motor of the drive unit 20 via a gear of the drive unit 20 and can be driven by the latter.
  • the drive unit 20 has a water-based lubricant, which is used to lubricate gear elements, such as gears, of the drive unit 20.
  • the drive unit 20 is designed to be water vapor resistant.
  • all seals of the drive unit 20 that can come into contact with the water-based lubricant are made of a water vapor resistant material.
  • the water vapor resistant material can preferably be temperature resistant up to at least 120°C.
  • the handheld power tool 10 has a cooling system that is designed such that the internal temperature of the drive unit 20 is at most 60°C when the handheld power tool 10 is in operation at an ambient temperature of 20°C.
  • Surfaces in the interior of the drive unit 20, in particular the interacting contact surfaces of paired gears, are manufactured with a composite roughness sigma of at least 0.1 ⁇ m and thus have such a composite roughness before the start of a running-in phase.
  • Fig.2 shows a diagram of lubricating film thicknesses of different lubricants, with the lubricating film thicknesses set to 100% for a substantially water-free, polyglycol-based lubricant, in Fig.2 marked as lubricant S0 , are shown in standardized form.
  • the lubricant S0 has a kinematic viscosity of 80 mm 2 /s at 40°C.
  • water W is also shown schematically in the diagram.
  • Lubricants S1, S2, S3, S4 and S5 are water-based lubricants which are used according to the invention in the hand-held power tool 10 ( Fig.1 ) can be used. They have lubricating film thicknesses between 30% and approximately 60% of the lubricating film thickness of the reference serving essentially water-free lubricant S0. The lubricants have a kinematic viscosity of 100 mm 2 /s at 40°C.
  • the lubricants S1 , S2 , S3 , S4 and S5 each have a water content of between 30% and 35%. They also contain at least between 40% and 60% polyglycols. Like the lubricant S0, they are fully formulated.
  • All of the above-mentioned water-based lubricants S1 to S5 contain additional additives, in particular biocidal, anti-corrosive, anti-wear, high-pressure and foam-controlling additives.
  • the water-based lubricants S1 to S5 are designed without solid residues.
  • Fig. 3a to 3c show in schematic representations different friction states of the drive unit 20 ( Fig.1 ).
  • the contact surfaces 22, 24 can, for example, be areas of meshing gears of the drive unit 20.
  • the surface shapes of the contact surfaces 22, 24 are not shown to scale for illustration purposes, in particular in order to clearly show the waviness of the surfaces.
  • water-based lubricant 26 with different lubricating film thicknesses is located between the contact surfaces 22, 24.
  • the water-based lubricant 26 can be one of the lubricants S1, S2, S3, S4 or S5 (all Fig.2 ) are equivalent to.
  • the thickness of the lubricant film that forms is on average less than the composite roughness sigma.
  • the relative lubricant film thickness is therefore less than 1, for example between 0.1 and 0.4, in particular between 0.1 and 0.2 at a test temperature of 40°C and a surface pressure of 1 GPa at 20% slip.
  • the condition according to Fig. 3a corresponds to a state of the hand tool 10 ( Fig.1 ) immediately after their manufacture, i.e. before the start of a running-in phase.
  • the hand-held power tool 10 is operated during a running-in phase.
  • the drive unit 20 is lubricated by the lubricant 26 contained in the drive unit 20.
  • the hand-held power tool can be operated for a period of 1 to 10 hours, for example 7 hours.
  • Fig. 3a to 3c separate Particles 30 in the water-containing lubricant 26 are shown as an example and provided with a reference number.
  • Fig. 3b shows a friction condition in which mixed friction prevails between the contact surfaces 22, 24.
  • the relative lubricating film thickness is in the range between 1 and 3.
  • This condition corresponds to an advanced stage of the running-in phase.
  • Fig. 3c shows a friction state in which pure fluid friction prevails between the contact surfaces 22, 24. This state corresponds to a state of the drive unit 20 after the end of the running-in phase.
  • the bond roughness sigma of the contact surfaces 22, 24 has been further reduced considerably.
  • the surface formation of the contact surfaces 22, 24 is shown greatly exaggerated for illustrative purposes only.
  • the relative lubricating film thickness has increased to greater than 3.
  • the automatically smoothed contact surfaces 22, 24 thus enable further operation of the hand-held power tool 10 and in particular of the drive unit 20 with considerably reduced friction.
  • Fig. 4a and 4b show microscopic images of areas of transmission parts after completing a fatigue test.
  • FIG. 4a The results for a mobile machine tool whose drive unit is lubricated with the essentially water-free lubricant S0 serving as a reference are shown in the images according to Fig. 4b the result in a mobile machine tool whose drive unit is lubricated with the water-containing lubricant S3 according to the invention.
  • FIG. 5a and Fig. 5b Microscopic images of bearing balls after performing the fatigue load tests. Analogous to the two previous illustrations, the upper figure shows Fig. 5a , the result for a drive unit, where the essentially water-free lubricant S0 was used as the lubricant, and the lower figure, Fig. 5b , shows the result for a drive unit in which the water-based lubricant S3 was used.
  • the bearing ball of the Fig. 5b shows a much more pronounced metallic clear gloss than the bearing ball of the Fig. 5a , which is due to a significantly reduced surface roughness compared to the conventionally lubricated bearing ball.
  • the invention described above could achieve energy savings of up to 180 W of saved power loss or approximately 8 percent of the mechanical gear efficiency in a mains-powered mobile machine tool.
  • the sump temperatures of the water-containing lubricants could be kept below 60°C even at an electrical input power of the machine tool of 2.8 kW.
  • the water-containing lubricant has a viscosity between 40 and 50 mm 2 /s, in particular 46 mm 2 /s, at 40°C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Lubricants (AREA)
  • Cleaning In General (AREA)

Claims (15)

  1. Machine-outil mobile, en particulier machine-outil portative (10) ou robot de construction, par exemple pour exécuter des travaux dans le domaine du bâtiment et/ou du génie civil, comprenant une unité d'entraînement (20),
    caractérisée en ce que l'unité d'entraînement (20) présente un lubrifiant à base d'eau (26), et/ou en ce que l'unité d'entraînement (20) est conçue pour fonctionner avec le lubrifiant à base d'eau (26), dans laquelle, avant le début d'une phase de rodage de l'unité d'entraînement (20), une rugosité composite sigma de deux surfaces de contact coopérantes (22, 24) de l'unité d'entraînement (20) est supérieure à 0,01 µm, de préférence d'au moins 0,1 µm, dans laquelle la rugosité composite sigma est la racine carrée de la somme des moyennes quadratiques au carré des ordonnées de profil Rq des surfaces de contact coopérantes (22, 24), et dans laquelle les ordonnées de profil Rq sont calculées selon DIN EN ISO 4287.
  2. Machine-outil mobile selon la revendication 1, caractérisée en ce que la rugosité composite sigma avant le début de la phase de rodage de l'unité d'entraînement (20) est au maximum de 3 µm, de préférence au maximum de 1 µm.
  3. Machine-outil mobile selon l'une quelconque des revendications précédentes, caractérisée en ce que le lubrifiant à base d'eau (26) est réalisé de telle sorte que l'épaisseur de film lubrifiant est comprise entre 10 % et 80 %, en particulier entre 30 % et 60 %, de manière particulièrement préférée entre 50 % et 60 % d'un lubrifiant (S0) sans eau ou du moins substantiellement sans eau, à base de polyglycol, présentant de préférence une viscosité cinématique de 80 mm2/s à 40 °C.
  4. Machine-outil mobile selon l'une quelconque des revendications précédentes, caractérisée en ce que le lubrifiant à base d'eau (26) présente au moins 5 %, de préférence au moins 15 %, de manière particulièrement préférée entre 30 % et 35 %, en particulier 33 %, d'eau (W).
  5. Machine-outil mobile selon l'une quelconque des revendications précédentes, caractérisée en ce que le lubrifiant à base d'eau (26) présente au maximum 90 %, de préférence au maximum 70 %, d'eau (W).
  6. Machine-outil mobile selon l'une quelconque des revendications précédentes, caractérisée en ce que le lubrifiant à base d'eau (26) présente au moins un additif, en particulier un additif anti-usure, un additif anticorrosion et/ou un additif antimicrobien, en particulier un additif entravant la croissance.
  7. Machine-outil mobile selon l'une quelconque des revendications précédentes, caractérisée en ce que le lubrifiant à base d'eau (26) présente à 40 °C une viscosité cinématique dans la plage d'un maximum de 320 mm2/s et de préférence d'un minimum de 30 mm2/s.
  8. Machine-outil mobile selon l'une quelconque des revendications précédentes, caractérisée en ce que la machine-outil mobile, en particulier l'unité d'entraînement (20), est conçue de telle sorte que la température intérieure de l'unité d'entraînement (20) en cours de fonctionnement de la machine-outil mobile (10) à une température ambiante de 20 °C est au maximum de 80 °C, de préférence au maximum de 60 °C.
  9. Machine-outil mobile selon l'une quelconque des revendications précédentes, caractérisée en ce que la machine-outil mobile est conçue pour limiter la puissance d'entrée de l'unité d'entraînement (20) de telle sorte que la température intérieure de l'unité d'entraînement (20) en cours de fonctionnement de la machine-outil mobile est pour une température ambiante de 20 °C au maximum de 80 °C, de préférence au maximum de 60 °C.
  10. Machine-outil mobile selon l'une quelconque des revendications précédentes, caractérisée en ce que la machine-outil mobile présente un filtre de matières solides, en particulier un aimant filtrant, qui est conçu pour éliminer des particules (30), en particulier des déchets d'abrasion, du lubrifiant à base d'eau (26).
  11. Machine-outil mobile selon l'une quelconque des revendications précédentes, caractérisée en ce que le lubrifiant à base d'eau (26) est réalisé au moins avant le début de la phase de rodage sans matières solides ou du moins substantiellement sans matières solides et/ou sans résidus solides.
  12. Machine-outil mobile selon l'une quelconque des revendications précédentes, caractérisée en ce que le lubrifiant à base d'eau (26) contient des nanoparticules de frottement, en particulier avant le début de la phase de rodage.
  13. Machine-outil mobile selon l'une quelconque des revendications précédentes, caractérisée en ce que la machine-outil mobile peut fonctionner sans fil.
  14. Machine-outil mobile selon l'une quelconque des revendications précédentes, caractérisée en ce que la machine-outil mobile est conçue pour entraîner un outil diamanté (18).
  15. Procédé de fonctionnement économe en énergie d'une machine-outil mobile selon l'une quelconque des revendications précédentes, dans lequel une unité d'entraînement (20) de la machine-outil mobile, dans laquelle avant le début de la phase de rodage, une rugosité composite sigma de deux surfaces de contact coopérantes (22, 24) de l'unité d'entraînement (20) est supérieure à 0,01 µm, en particulier supérieure à 0,1 µm, est lubrifiée avec un lubrifiant à base d'eau (26), en particulier pendant la phase de rodage, dans lequel la rugosité composite sigma est la racine carrée de la somme des moyennes quadratiques au carré des ordonnées de profil Rq des surfaces de contact coopérantes (22, 24), et dans lequel les ordonnées de profil Rq sont calculées selon DIN EN ISO 4287.
EP20213304.7A 2020-12-11 2020-12-11 Machine-outil mobile et procédé Active EP4011561B1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP20213304.7A EP4011561B1 (fr) 2020-12-11 2020-12-11 Machine-outil mobile et procédé
EP21820536.7A EP4259383A1 (fr) 2020-12-11 2021-11-26 Machine-outil mobile et procédé
US18/038,790 US20230405785A1 (en) 2020-12-11 2021-11-26 Mobile power tool and method
CN202180076925.2A CN116507705A (zh) 2020-12-11 2021-11-26 移动式动力工具和方法
PCT/EP2021/083139 WO2022122413A1 (fr) 2020-12-11 2021-11-26 Machine-outil mobile et procédé
CA3200706A CA3200706A1 (fr) 2020-12-11 2021-11-26 Machine-outil mobile et procede

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20213304.7A EP4011561B1 (fr) 2020-12-11 2020-12-11 Machine-outil mobile et procédé

Publications (2)

Publication Number Publication Date
EP4011561A1 EP4011561A1 (fr) 2022-06-15
EP4011561B1 true EP4011561B1 (fr) 2024-04-10

Family

ID=73834200

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20213304.7A Active EP4011561B1 (fr) 2020-12-11 2020-12-11 Machine-outil mobile et procédé
EP21820536.7A Withdrawn EP4259383A1 (fr) 2020-12-11 2021-11-26 Machine-outil mobile et procédé

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP21820536.7A Withdrawn EP4259383A1 (fr) 2020-12-11 2021-11-26 Machine-outil mobile et procédé

Country Status (5)

Country Link
US (1) US20230405785A1 (fr)
EP (2) EP4011561B1 (fr)
CN (1) CN116507705A (fr)
CA (1) CA3200706A1 (fr)
WO (1) WO2022122413A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD1034128S1 (en) * 2022-02-07 2024-07-09 Robert Bosch Gmbh Hammer drill

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043278B2 (ja) * 1977-02-04 1985-09-27 芝浦メカトロニクス株式会社 ハンマドリル
US5927910A (en) * 1996-09-05 1999-07-27 Fix, Jr.; John William Automated drilling apparatus
DE19934170A1 (de) * 1999-07-21 2001-01-25 Henkel Kgaa Kühlschmierstoff und Kühlschmierstoffkonzentrat enthaltend feinteiligen elementaren Schwefel
DE19934182A1 (de) * 1999-07-21 2001-01-25 Cognis Deutschland Gmbh Schwefelhaltige Schmierstoffe
DE19959472A1 (de) * 1999-12-10 2001-06-21 Sundwig Gmbh Wälzlagerung für eine Welle oder Rolle und Verfahren zur Schmierung einer solchen Wälzlagerung
US8047302B2 (en) * 2001-12-21 2011-11-01 Wacker Neuson Produktion GmbH & Co. KG Drilling and/or striking hammer with a lubricating device
US7449432B2 (en) * 2006-03-07 2008-11-11 Ashland Licensing And Intellectual Property, Llc (Alip) Gear oil composition containing nanomaterial
DE102006000469A1 (de) * 2006-09-20 2008-04-03 Hilti Ag Wellenlagerdichtung
JP5154364B2 (ja) * 2008-10-24 2013-02-27 株式会社マキタ ギヤ室のシール構造
WO2012029191A1 (fr) * 2010-09-03 2012-03-08 Nanocarbon Research Institute, Ltd. Lubrification de nano-espaceur
JP5556542B2 (ja) * 2010-09-29 2014-07-23 日立工機株式会社 電動工具
CN102632484B (zh) * 2011-02-13 2015-05-06 南京德朔实业有限公司 动力工具
RU2012140965A (ru) * 2011-10-04 2014-03-27 Макита Корпорейшн Электроинструмент (варианты)
EP2811106B1 (fr) * 2013-06-07 2018-08-01 Sandvik Mining and Construction Oy Machine de forage de roches et procédé de lubrification

Also Published As

Publication number Publication date
EP4259383A1 (fr) 2023-10-18
EP4011561A1 (fr) 2022-06-15
CA3200706A1 (fr) 2022-06-16
CN116507705A (zh) 2023-07-28
WO2022122413A1 (fr) 2022-06-16
US20230405785A1 (en) 2023-12-21

Similar Documents

Publication Publication Date Title
DE202004021807U1 (de) Planetengetriebe als Vorstufe für einen großen Windturbinengenerator
DE3700974A1 (de) Fett fuer ein homokinetisches gelenk
DE102008011781A1 (de) Niedrigviskos bis hochviskos eingestellte wasserbasierte Schmierstoffzusammensetzung
DE112009000808T5 (de) Schmiermittelzusammensetzung und direkt wirkende Vorrichtungen mit der Schmiermittelzusammensetzung
DE10066411B3 (de) Rollenvorrichtung
EP4011561B1 (fr) Machine-outil mobile et procédé
EP1987926A2 (fr) Machine-outil à main avec mécanisme de percussion lubrifié
AT9168U1 (de) Betriebsbereites getriebe, betriebsflüssigkeit für ein solches und verfahren zu dessen erstinbetriebnahme
DE112008000540B4 (de) Schmierfett für Hochgeschwindigkeitslager, Wälzlager für hohe Geschwindigkeit und Verwendung des Wälzlagers
EP3622042B1 (fr) Composition de lubrifiant
CN1177916C (zh) 润滑液
CH373242A (de) Verfahren zur Herstellung eines Gleitlagers und nach dem Verfahren hergestelltes Gleitlager sowie dessen Verwendung
Ziegltrum et al. Influence of tribofilms on failures and friction of gears with particular focus on running-in
DE102016000389A1 (de) Angetriebene Schlagverdichtungssystem
WO2020090964A1 (fr) Constituant de traitement présentant une composition d'huile lubrifiante
DE102020210667A1 (de) Wälzlager, insbesondere Hybridwälzlager für einen Kältemittelkompressor
AT506675B1 (de) Einrichtung zur übertragung einer bewegung, insbesondere drehbewegung
WO2009026916A2 (fr) Réfrigérant lubrifiant
RU146778U1 (ru) Композиционное металлическое изделие с антифрикционным и упрочняющим металлокерамическим поверхностным сервовитным слоем
DE10136240B4 (de) Lageranordnung
DE19930560B4 (de) Verfahren zur Endbearbeitung von Oberflächen ionischer Keramik
CN101544926A (zh) 可形成超厚摩擦镀层的微、纳米软金属润滑剂中采用活化剂的制备工艺
EP4269034A1 (fr) Géométrie d'étanchéité pourvue de structure de transport pour une machine-outil mobile
DE102016204498A1 (de) Lagervorrichtung
CN1297065A (zh) 摩擦部件的摩擦表面的处理方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221215

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTG Intention to grant announced

Effective date: 20231130

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240125

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020007613

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

P01 Opt-out of the competence of the unified patent court (upc) registered

Free format text: CASE NUMBER: APP_41794/2024

Effective date: 20240716