EP3976928B1 - Anordnung für turbomaschine und turbomaschine - Google Patents
Anordnung für turbomaschine und turbomaschine Download PDFInfo
- Publication number
- EP3976928B1 EP3976928B1 EP20728038.9A EP20728038A EP3976928B1 EP 3976928 B1 EP3976928 B1 EP 3976928B1 EP 20728038 A EP20728038 A EP 20728038A EP 3976928 B1 EP3976928 B1 EP 3976928B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- rotor
- longitudinal axis
- damper
- blades
- radial thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 241000272165 Charadriidae Species 0.000 claims description 10
- 238000006073 displacement reaction Methods 0.000 description 17
- 239000000463 material Substances 0.000 description 11
- 238000013016 damping Methods 0.000 description 9
- 238000000576 coating method Methods 0.000 description 8
- 238000007789 sealing Methods 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 7
- 238000011144 upstream manufacturing Methods 0.000 description 7
- 239000006096 absorbing agent Substances 0.000 description 5
- 238000010009 beating Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000010363 phase shift Effects 0.000 description 5
- 230000035939 shock Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000001050 lubricating effect Effects 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 229910052961 molybdenite Inorganic materials 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 1
- 229920003223 poly(pyromellitimide-1,4-diphenyl ether) Polymers 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/26—Antivibration means not restricted to blade form or construction or to blade-to-blade connections or to the use of particular materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/16—Form or construction for counteracting blade vibration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/22—Blade-to-blade connections, e.g. for damping vibrations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/22—Blade-to-blade connections, e.g. for damping vibrations
- F01D5/225—Blade-to-blade connections, e.g. for damping vibrations by shrouding
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/32—Rotors specially for elastic fluids for axial flow pumps
- F04D29/321—Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
- F04D29/324—Blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/661—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
- F04D29/668—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps damping or preventing mechanical vibrations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/30—Application in turbines
- F05D2220/36—Application in turbines specially adapted for the fan of turbofan engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/60—Assembly methods
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/80—Platforms for stationary or moving blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/96—Preventing, counteracting or reducing vibration or noise
Definitions
- the present invention relates to an assembly for a turbomachine and a turbomachine.
- the invention relates more specifically to an assembly for a turbomachine comprising a damper.
- a turbomachine known from the state of the art comprises a casing and a fan capable of being rotated relative to the casing, around a longitudinal axis, thanks to a fan shaft.
- the fan comprises a disc centered on the longitudinal axis, and a plurality of vanes distributed circumferentially at the level of the external part of the disc.
- the operating range of the blower is limited. More precisely, the evolution of a compression ratio of the fan as a function of a flow of air that it sucks in when it is put into rotation, is restricted to a predetermined range.
- the fan is in fact subject to aeroelastic phenomena which destabilize it. More specifically, the air circulating through the fan in operation brings energy to the blades, and the blades respond in their own modes to levels that may exceed the endurance limit of the material from which they are made. This fluid-structure coupling therefore generates vibratory instabilities which accelerate the wear of the fan, and reduce its service life.
- shock absorbers were described in the documents FR 2 949 142 , EP 1 985 810 And FR 2 923 557 , on behalf of the Claimant. These dampers are all configured to be housed between the platform and the root of each blade, within the housing delimited by the respective stilts of two successive blades. Furthermore, such dampers operate during relative movement between two successive blade platforms, by dissipation of vibration energy, for example by friction. Therefore, these dampers only aim to damp a first vibratory mode of the blades which characterizes a synchronous response of the blades to aerodynamic stresses. In this first vibratory mode, the inter-blade phase shift is non-zero. Other shock absorbers have been described in the document WO 2016/059348 .
- An object of the invention is to damp a mode of vibration of a rotor in which the phase difference between the blades of said rotor is zero.
- Another object of the invention is to influence the damping of vibration modes of a rotor in which the phase difference between the blades of said rotor is non-zero.
- Another object of the invention is to provide a damping solution that is simple and easy to implement.
- the second vibratory mode is characterized by a zero inter-blade phase shift. Consequently, placing a damper between two successive blades of a rotor, as has already been proposed in the prior art, produces no effect on the second vibratory mode.
- the damper of the previously described assembly has, for its part, the advantage of influencing the second vibratory mode because it plays on an effect of the second vibratory mode: the displacement of the first rotor relative to the second rotor, in the plane orthogonal to the longitudinal axis.
- the damper disrupts the cause, ie dampens the second vibrational mode.
- the first vibratory mode also contributes to the displacement of the first rotor relative to the second rotor, in the plane orthogonal to the longitudinal axis. Therefore, by opposing this effect, the damper also participates in disturbing another cause, i.e. damping the first mode vibratory.
- the damper being annular, it makes it possible to distribute the support stresses applied by the damper on the first rotor and on the second rotor, over a larger surface. From there, the damper wears less the first rotor and the second rotor on which it bears.
- the third part being thicker than the first part and the second part, it is more massive.
- the third part therefore makes it possible to limit the tangential propagation of the vibrational modes to which the first rotor and the second rotor are subjected.
- the shock absorber is capable, thanks to this third part, of dissipating the vibrations by its work in bending and inertia.
- turbomachine as indicated in claim 11, comprising an assembly as previously described, and in which the first rotor is a fan, and the second rotor is a low-pressure compressor.
- a turbomachine 1 comprises a casing 10, a fan 12, a low pressure compressor 140, a high pressure compressor 142, a combustion chamber 16, a high pressure turbine 180 and a low pressure turbine 182.
- Each of the fan 12, the low pressure compressor 140, the high pressure compressor 142, the high pressure turbine 180, and the low pressure turbine 182, is rotatable relative to the casing 10 around a longitudinal axis X-X.
- the fan 12 and the low pressure compressor 140 are integral in rotation, and are capable of being rotated by a low pressure shaft 13 which is itself capable of being rotated by the low pressure turbine 182.
- the high pressure compressor 142 is, for its part, capable of being rotated by a high pressure shaft 15, which is itself capable of being rotated by the high pressure turbine 180.
- the fan 12 draws in a flow of air 110 which separates between a secondary flow 112, circulating around the casing 10, and a primary flow 111, successively compressed within the low pressure compressor 140 and the high pressure compressor 142, ignited within the combustion chamber 16, then successively expanded within the high pressure turbine 180 and the low pressure turbine 182.
- an axial direction corresponds to the direction of the longitudinal axis X-X
- an radial direction is a direction which is perpendicular to this longitudinal axis X-X and which passes through said longitudinal axis X-X
- a circumferential, or tangential, direction corresponds to the direction of a flat and closed curved line, all the points of which lie at equal distance from the longitudinal axis X-X.
- the terms "internal (or interior)” and “external (or exterior)”, respectively, are used in reference to a radial direction so that the internal (i.e. radially internal) part or face d an element is closer to the longitudinal axis X-X than the external (i.e. radially external) part or face of the same element.
- the blade root 1220 can be integral with the disc 120 when the fan 12 is a one-piece bladed disc. Alternatively, as shown in picture 3 , the blade root 1220 can be configured to be housed in a cell 1200 of the disc 120 provided for this purpose.
- the low-pressure compressor 140 also comprises a plurality of vanes 1400 fixedly mounted at an outer part of a shroud 1402, said shroud 1402 comprising a circumferential extension 1404 at the outer end of which radial sealing wipers 1406 extend.
- the radial sealing wipers 1406 come opposite the platforms 1226 of the blades 122 of the fan 12, so as to guarantee the internal sealing of the flow stream within which the primary flow 111 circulates.
- the shroud 1402 of the low pressure compressor 140 is fixed to the disc 120 of the fan 12, for example by bolting.
- Each of the blades 122 of the plurality of blades 122 of the fan 12 is capable of beating, by vibrating with respect to the disc 120 during a rotation of the fan 12 with respect to the casing 10. More precisely, during the coupling between the air 110 circulating within the fan 12 and the profiled blades 1222, the blades 122 are the seat of aeroelastic phenomena of flutter on different vibratory modes, and whose amplitude can be such that it exceeds the endurance limits of the materials constituting the fan 12. These vibratory modes are furthermore coupled to the opposing forces of compression upstream of the turbine engine 1, and of expansion downstream of the latter.
- a first vibratory mode characterizes a synchronous response of the blades 122 to aerodynamic stresses, in which the inter-blade phase shift is non-zero.
- a second vibratory mode characterizes an asynchronous response of the blades 122 to aerodynamic stresses, in which the inter-blade phase shift is zero.
- the amplitude of the beats of the second vibratory mode is also greater than the blades 122 of fan 12 are large.
- this second vibratory mode is coupled between the blades 122, the disk 120, and the fan shaft 13.
- the frequency of the second vibratory mode is, moreover, one and a half times greater than that of the first vibratory mode.
- the second vibratory mode has a nodal deformation at mid-height of the blades 122 of the fan 12.
- the beating of the blades 122 implies a non-zero moment on the low pressure shaft 13.
- these vibratory modes lead to intense torsional forces within the low pressure shaft 13.
- the length of the blades 122 of the fan 12 is greater than the length of the blades 1400 of the low pressure compressor 140.
- the tangential bending moment caused by the beats of a blade 122 of the fan 12 is greater than the tangential bending moment driven by beats of a blade 1400 of the low pressure compressor 140.
- the blades of the blades 122 of the fan 12 and of the blades 1400 of the low pressure compressor 140 then have very different behaviors.
- the mounting stiffness within the fan 12 is different from the mounting stiffness within the low pressure compressor 140.
- the amplitude of this displacement for the second vibratory mode is for example between 0.01 and 0.09 millimeters, typically 1 'order of 0.06 millimeters, or, in another example, is of the order of a few tenths of a millimeter, for example 0.1 or 0.2 or 0.3 millimeters.
- a damper 2 is used in order to dampen these vibrations of the fan 12 and/or of the low pressure compressor 140.
- the damper 2 is in particular configured to damp a displacement of the fan 12 relative to the low pressure compressor 140, in a plane orthogonal to the longitudinal axis X-X, the displacement being caused by a beat of at least one blade 122 among the plurality of blades 122 of the fan 12.
- the damper 2 is annular, and therefore extends all around the longitudinal axis XX. More precisely, the first part 21 has a first radially internal surface 211 extending all around the longitudinal axis XX, and a first radially outer surface 212 extending all around the first radially inner surface 211.
- the second part 22 has a second radially inner surface 221 extending all around the longitudinal axis XX, and a second radially external surface 222 extending all around the second radially internal surface 221.
- the third part 23 has a third radially internal surface 2310 extending all around the longitudinal axis XX, and a third radially external surface 2320 extending all around the third radially inner surface 2310.
- the first part 21 has a first radial thickness E1 measured perpendicular to the longitudinal axis XX between the first radially inner surface 211 and the first radially outer surface 212.
- the second part 22 has a second radial thickness E2 measured perpendicular to the longitudinal axis XX between the second radially internal surface 221 and the second radially external surface 222.
- the third part 23 has a third radial thickness E3 measured perpendicularly to the longitudinal axis XX between the third radially internal surface 2310 and the third radially outer surface 2320.
- the third radial thickness E3 is greater than at least one of the first radial thickness E1 and the second radial thickness E2. In one embodiment, for example illustrated in figure 4 , the third radial thickness E3 is greater than each of the first radial thickness E1 and the second radial thickness E2. In this way, the third part 23 is more massive than the first part 21 and than the second part 22. In an equally advantageous variant, the second radial thickness E2 is greater than the first radial thickness E1, so as to promote the support of the second part 22 on the low pressure compressor 140.
- the first part 21 bears against each of the platforms 1226 of the blades 122 of the fan 12, preferably at the level of an internal surface of each of the platforms 1226.
- An annular damper 2 is moreover particularly adapted for a fan 12 comprising a disk 120 which is bladed in one piece. Indeed, in a fan 12 where the blades 122 are attached to the disk 120, if the damper 2 is annular, then the support of the first part 21 on the different platforms 1226 of the blades 122 is not uniform. This induces inhomogeneous damping around the longitudinal axis XX and, from there, risks of wear of the platforms 1226 and of the damper 2.
- the internal surfaces of the platforms 1226 can comprise reliefs so as to be axisymmetric. This circumferential non-symmetry of the interior side of the platforms 1226 can thus optimize the mutual bearings of the shock absorber 2, in particular their distributions, while privileging, where appropriate, bearing wear on these reliefs.
- the second part 22 bears against the circumferential extension 1404 of the ferrule 1402 of the low pressure compressor 140, at the level of an internal surface of the radial sealing wipers 1406. Indeed, it is at this position that the displacement of the fan 12 relative to the low pressure compressor 140, in the plane orthogonal to the longitudinal axis X-X, is of greater amplitude, typically a few millimeters. Consequently, the damper 2 is particularly effective there.
- the damper 2 comprises a material from the range having the trade name “SMACTANE ® ST” and/or “SMACTANE ® SP”, for example a material of the “SMACTANE ® ST 70” type and/or “ SMACTANE® SP 50”. It has in fact been observed that such materials have appropriate damping properties.
- the first part 21 is configured to apply a first centrifugal force C1 to the fan 12, while the second part 22 is configured to apply a second centrifugal force C2 to the low pressure compressor 140.
- the first bearing part 21 has a radially outer surface coming into contact with a radially inner surface of the fan 12, typically a radially inner surface of the platform 1226.
- the second bearing part 22 has a radially outer surface coming into contact with a radially inner surface of the low pressure compressor 140, typically a radially inner surface of the circumferential extension 1404, for example a radially inner surface of the sealing wipers 1406.
- these parts 21, 22 are each dynamically coupled respectively to the fan 12 and to the low pressure compressor 140 on which each bears, so as to undergo the same vibrations as each of the fan 12 and of the low pressure compressor 140.
- the third part 23 is steeper, in particular in a tangential direction.
- a displacement of the fan 12 relative to the low pressure compressor 140 in a plane orthogonal to the longitudinal axis XX, causes tangential shearing of the damper 2 which causes circumferential displacements of said damper 2.
- the supports respectively on the fan 12 and the low pressure compressor 140 are therefore broken, then quickly resumed to apply the centrifugal forces C1, C2 again. These ruptures and resumptions of the supports allow damping.
- the tangential displacements of the high-frequency fan 12 are damped when the parts 21, 22 bear against the fan 12 and the low-pressure compressor 140. The rupture of the supports, then the circumferential sliding, makes it possible to dampen frequencies weaker.
- the third part 23 comprises a bulge 231, 232, preferably annular.
- the bulge 231, 232 comprises a first lip 231, also annular, and projecting radially towards the inside of the damper 2.
- the first lip 231 is intended to make the third part 23 heavier, which advantageously increases its tangential inertia.
- the bulge 231, 232 comprises a second lip 232, also annular, and projecting radially outwards from the damper 2.
- the second lip also ensures the axial setting of the damper 2 between the fan 12 and the low pressure compressor 140.
- the third part 23 provides axially positioned support for the damper 2, via the first support surface 2321, since it is a downstream axial surface of the damper 2 coming into contact with an upstream axial surface of the low-pressure compressor 140.
- the second part 22 provides radially positioned support for the damper 2, via the second support surface 2200, since it is a radially outer surface of the damper 2 coming into contact with a radially inner surface of the low pressure compressor 140.
- the second bearing surface 2200 contributes to the application of the second centrifugal force C2 on the low pressure compressor 140.
- it is the second lip 232 of the third part 23 which presents the first bearing surface 2321, as visible on the figure 4 .
- the third part 23 comprises a depression 233, preferably annular.
- the depression 233 can be made at the level of an external surface 2320 or of an internal surface 2310 of the third part 23, upstream or downstream of the bulge 231, 232. In the embodiment illustrated in the figure 5 , the depression 233 extends upstream of the bulge.
- the depression 233 extends downstream of the bulge 231, 232, as illustrated in the figure 4 , at an outer surface 2320 of the third part 23, it provides clearance which allows the damper 2 to avoid rubbing on a corner of the radial sealing wipers 1406.
- the depression 233 promotes the axial setting of the damper 2 between the fan 12 and the low pressure compressor 140, but also the sealing of the flow path of the flow of primary air 111. Indeed, under the effect of the first effort centrifugal C1, the first part 21 can thus be compressed downstream.
- At least one of the first part 21, the second part 22 and the third part 23 comprises an additional coating, configured to reduce the friction and/or the wear of the fan and/or the compressor. low pressure 140.
- This additional coating is mounted fixed on an outer surface of the damper 2, for example by gluing.
- the additional coating is of the dissipative and/or viscoelastic and/or damping type. It may in fact comprise a material from the range having the trade name “SMACTANE ® ST” and/or “SMACTANE ® SP”, for example a material of the “SMACTANE ® ST 70” and/or “SMACTANE ® SP 50” type. .
- the additional coating material advantageously has a friction coefficient of between 0.3 and 0.07.
- the coating makes it possible in particular to increase the tangential stiffness of the damper 2 when, in operation, it applies the centrifugal forces C1, C2 so that the movement of the fan 12 relative to the low pressure compressor 140, in the plane orthogonal to the longitudinal axis XX, or damped by energy dissipation by means of viscoelastic shearing of its coating.
- At least one of the first part 21, the second part 22 and the third part 23 is treated by dry lubrication, with a view to perpetuating the value of the coefficient of friction between the damper 2 and the one and/or the other of the fan 12 and of the low-pressure compressor 140.
- This material with lubricating properties is for example of the MoS2 type.
- the damper 2 is configured to damp a displacement of the fan 12 relative to the low pressure compressor 140, in the plane orthogonal to the longitudinal axis X-X.
- the damper 2 is also configured to damp a displacement of any first rotor 12 relative to any second rotor 140, in a plane orthogonal to the longitudinal axis XX, as long as the first rotor 12 is rotatable relative to the casing 10 around the longitudinal axis XX and comprises a disc 120 as well as a plurality of blades 122 capable of beating while vibrating relative to disc 120 during rotation of first rotor 12 relative to housing 10, and that second rotor 140 is also rotatable relative to housing 10 around longitudinal axis XX.
- the first rotor 12 can be a first stage of the high pressure compressor 142 or low pressure compressor 140, and the second rotor 140 be a second stage of said compressor 140, 142, successive to the first compressor stage 140, 142, upstream or downstream from it.
- the first rotor 12 can be a first stage of a high pressure turbine 180 or a low pressure turbine 182
- the second rotor 140 can be a second stage of said turbine 180, 182, successive to the first turbine stage 180, 182, in upstream or downstream of it.
- the damper 2 has a restricted size. Therefore, it can easily be integrated into existing turbomachinery.
- the damper 2 remains flexible enough to maximize the contact surfaces between said damper 2 and the rotors 12, 140 on which it bears. To do this, the damper 2 has a greater tangential stiffness than an axial stiffness and a radial stiffness.
- the contact forces between the damper 2 and the rotors 12, 140 can in particular be adjusted by means of additional coatings. At low frequencies, it is indeed necessary to ensure that the centrifugal forces C1, C2 exerted by the damper 2 on the rotors 12, 140 are not too great, in order to guarantee that the damper 2 can oscillate between a bonded state and a slippery state on the rotors 12, 140, and thus dampen by friction. At high frequencies, on the other hand, it is necessary to ensure that the centrifugal forces C1, C2 exerted by the damper 2 on the rotors 12, 140 are sufficiently great for the preload of the damper 2 on the rotors 12, 140 is sufficient to ensure that the damper 2 can be the viscoelastic shear seat.
- the wear of the rotors 12, 140 is in particular limited by treatment of the surfaces of the damper 2 resting on the rotors 12, 140, for example to provide them with a coating with a low coefficient of friction.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Claims (11)
- Baugruppe für eine Turbomaschine (1) mit:- einem Gehäuse (10),- einem ersten Rotor (12),∘ drehbar in Bezug auf das Gehäuse (10) um eine Längsachse (X-X), und Folgendes umfassend:* eine Scheibe (120), und* eine Vielzahl von Schaufeln (122), die bei einer Drehung des ersten Rotors (12) in Bezug auf das Gehäuse (10) relativ zur Scheibe (120) schlagen können,- einen zweiten Rotor (140), der in Bezug auf das Gehäuse (10) um die Längsachse (X-X) drehbar ist, und- einen Dämpfer (2), der so konfiguriert ist, dass er eine Verschiebung des ersten Rotors (12) in Bezug auf den zweiten Rotor (140) in einer Ebene orthogonal zur Längsachse (X-X) dämpft, wobei die Verschiebung durch ein Schlagen mindestens einer Schaufel (122) aus der Vielzahl von Schaufeln (122) verursacht wird, wobei der Dämpfer (2) umfasst:∘ einen ersten Teil (21), der am ersten Rotor (12) anliegt und Folgendes aufweist:* eine erste radial innere Oberfläche (211), die sich ganz um die Längsachse (X-X) herum erstreckt,* eine erste radial äußere Oberfläche (212), die sich ganz um die erste radial innere Oberfläche (211) herum erstreckt,* eine erste radiale Dicke (E1), die senkrecht zur Längsachse (X-X) zwischen der ersten radial inneren Oberfläche (211) und der ersten radial äußeren Oberfläche (212) gemessen wird, und- wobei die radial äußere Oberfläche eine radial innere Oberfläche des ersten Rotors (12) berührt,∘ einen zweiten Teil (22), der am zweiten Rotor (140) anliegt und aufweist:* eine zweite radial innere Oberfläche (221), die sich ganz um die Längsachse (X-X) herum erstreckt,* eine zweite radial äußere Oberfläche (222), die sich ganz um die zweite radial innere Oberfläche (221) herum erstreckt,* eine zweite radiale Dicke (E2), die senkrecht zur Längsachse (X-X) zwischen der zweiten radial inneren Oberfläche (221) und der zweiten radial äußeren Oberfläche (222) gemessen wird, und- wobei die radial äußere Oberfläche eine radial innere Oberfläche des zweiten Rotors (140) berührt, unddadurch gekennzeichnet, dass die dritte radiale Dicke (E3) größer als zumindest eine der ersten radialen Dicke (E1) und der zweiten radialen Dicke (E2) ist und der dritte Abschnitt (23) eine Wölbung (231, 232) umfasst.∘ einen dritten Teil (23), der den ersten Teil (21) mit dem zweiten Teil (22) verbindet und Folgendes aufweist:* eine dritte radial innere Oberfläche (231), die sich ganz um die Längsachse (X-X) herum erstreckt,* eine dritte radial äußere Oberfläche (232), die sich rund um die dritte radial innere Oberfläche (231) erstreckt, und* eine dritte radiale Dicke (E3), die senkrecht zur Längsachse (X-X) zwischen der dritten radial inneren Oberfläche (231) und der dritten radial äußeren Oberfläche (232) gemessen wird,
- Anordnung nach Anspruch 1, wobei:- der erste Teil (21) so konfiguriert ist, dass er eine erste Zentrifugalkraft (C1) auf den ersten Rotor (12) ausübt, und- der zweite Teil (22) so konfiguriert ist, dass er eine zweite Zentrifugalkraft (C2) auf den zweiten Rotor (140) ausübt.
- Anordnung nach einem der Ansprüche 1 oder 2, wobei die dritte radiale Dicke (E3) jeweils größer ist als die erste radiale Dicke (E1) und die zweite radiale Dicke (E2).
- Anordnung nach einem der Ansprüche 1 bis 3, wobei die zweite radiale Dicke (E2) größer ist als die erste radiale Dicke (E1).
- Anordnung nach einem der Ansprüche 1 bis 4, wobei die Ausbuchtung (231, 232) eine erste Lippe (231) umfasst, die radial in das Innere des Dämpfers (2) vorsteht.
- Anordnung nach einem der Ansprüche 1 bis 5, wobei die Ausbuchtung (231, 232) eine zweite Lippe (232) umfasst, die radial nach außen von dem Dämpfer (2) vorsteht.
- Anordnung nach einem der Ansprüche 1 bis 6, wobei der dritte Teil (23) eine Vertiefung (233) umfasst.
- Anordnung nach einem der Ansprüche 1 bis 7, wobei jede der Schaufeln (122) aus der Vielzahl von Schaufeln (122) umfasst:- einen Schaufelfuß (1220), der die Schaufel (122) mit der Scheibe (120) verbindet,- eine profilierte Schaufel (1222),- eine Stelze (1224), die die Schaufel (1222) mit dem Schaufelfuß (1220) verbindet, und- eine Plattform (1226), die die Schaufel (1222) mit der Stelze (1224) verbindet und sich quer zur Stelze (1224) erstreckt, wobei der erste Stützabschnitt (21) an jeder der Plattformen (1226) der Schaufeln (122) aus der Vielzahl von Schaufeln (122) anliegt.
- Anordnung nach einem der Ansprüche 1 bis 8, wobei der zweite Rotor (140) einen Ring (1402) umfasst, wobei der Ring (1402) eine Umfangserstreckung (1404) umfasst, wobei der zweite Stützabschnitt (22) an der Umfangserstreckung (1404) anliegt.
- Anordnung nach einem der Ansprüche 1 bis 9, wobei der Dämpfer (2) ringförmig ist und sich um die gesamte Längsachse (X-X) erstreckt.
- Turbomaschine (1) mit einer Anordnung nach einem der Ansprüche 1 bis 10, und wobei der erste Rotor (12) ein Gebläse ist und der zweite Rotor (140) ein Niederdruckverdichter ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1905734A FR3096731B1 (fr) | 2019-05-29 | 2019-05-29 | Ensemble pour turbomachine |
PCT/EP2020/064650 WO2020239808A1 (fr) | 2019-05-29 | 2020-05-27 | Ensemble pour turbomachine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3976928A1 EP3976928A1 (de) | 2022-04-06 |
EP3976928B1 true EP3976928B1 (de) | 2023-08-23 |
Family
ID=68072683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20728038.9A Active EP3976928B1 (de) | 2019-05-29 | 2020-05-27 | Anordnung für turbomaschine und turbomaschine |
Country Status (5)
Country | Link |
---|---|
US (1) | US11808169B2 (de) |
EP (1) | EP3976928B1 (de) |
CN (1) | CN114026312B (de) |
FR (1) | FR3096731B1 (de) |
WO (1) | WO2020239808A1 (de) |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2517779B1 (fr) * | 1981-12-03 | 1986-06-13 | Snecma | Dispositif d'amortissement des aubes d'une soufflante de turbomachine |
FR2585069B1 (fr) * | 1985-07-16 | 1989-06-09 | Snecma | Dispositif de limitation du debattement angulaire d'aubes montees sur un disque de rotor de turbomachine |
US5205713A (en) * | 1991-04-29 | 1993-04-27 | General Electric Company | Fan blade damper |
US5820346A (en) * | 1996-12-17 | 1998-10-13 | General Electric Company | Blade damper for a turbine engine |
US7121801B2 (en) * | 2004-02-13 | 2006-10-17 | United Technologies Corporation | Cooled rotor blade with vibration damping device |
FR2915510B1 (fr) | 2007-04-27 | 2009-11-06 | Snecma Sa | Amortisseur pour aubes de turbomachines |
FR2923557B1 (fr) * | 2007-11-12 | 2010-01-22 | Snecma | Ensemble d'une aube de soufflante et de son amortisseur, amortisseur d'aube de soufflante et methode de calibrage de l'amortisseur |
FR2949142B1 (fr) * | 2009-08-11 | 2011-10-14 | Snecma | Cale amortisseuse de vibrations pour aube de soufflante |
FR2961554B1 (fr) * | 2010-06-18 | 2012-07-20 | Snecma | Secteur angulaire de redresseur pour compresseur de turbomachine, redresseur de turbomachine et turbomachine comprenant un tel secteur |
FR2961553B1 (fr) * | 2010-06-18 | 2012-08-31 | Snecma | Secteur angulaire de redresseur pour compresseur de turbomachine, redresseur de turbomachine et turbomachine comprenant un tel secteur |
US9151170B2 (en) * | 2011-06-28 | 2015-10-06 | United Technologies Corporation | Damper for an integrally bladed rotor |
FR3003301B1 (fr) * | 2013-03-14 | 2018-01-05 | Safran Helicopter Engines | Anneau de turbine pour turbomachine |
US20170226861A1 (en) * | 2014-10-15 | 2017-08-10 | Safran Aircraft Engines | Rotary assembly for a turbine engine comprising a self-supported rotor collar |
GB201506196D0 (en) * | 2015-04-13 | 2015-05-27 | Rolls Royce Plc | Rotor damper |
CN204941612U (zh) * | 2015-09-16 | 2016-01-06 | 中国航空工业集团公司沈阳发动机设计研究所 | 一种可压缩阻尼块 |
-
2019
- 2019-05-29 FR FR1905734A patent/FR3096731B1/fr active Active
-
2020
- 2020-05-27 EP EP20728038.9A patent/EP3976928B1/de active Active
- 2020-05-27 US US17/614,667 patent/US11808169B2/en active Active
- 2020-05-27 WO PCT/EP2020/064650 patent/WO2020239808A1/fr unknown
- 2020-05-27 CN CN202080045179.6A patent/CN114026312B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
US11808169B2 (en) | 2023-11-07 |
FR3096731A1 (fr) | 2020-12-04 |
WO2020239808A1 (fr) | 2020-12-03 |
EP3976928A1 (de) | 2022-04-06 |
US20220228494A1 (en) | 2022-07-21 |
FR3096731B1 (fr) | 2021-05-07 |
CN114026312B (zh) | 2024-03-29 |
CN114026312A (zh) | 2022-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3724455B1 (de) | Dämpfungsvorrichtung | |
FR2961553A1 (fr) | Secteur angulaire de redresseur pour compresseur de turbomachine, redresseur de turbomachine et turbomachine comprenant un tel secteur | |
EP2739828B1 (de) | Laufrad für einen turbinenmotor | |
CA2726018C (fr) | Rotor de soufflante pour une turbomachine | |
FR3075284A1 (fr) | Dispositif amortisseur | |
FR3026774A1 (fr) | Turbomachine comportant un dispositif de freinage du rotor de soufflante. | |
FR2927357A1 (fr) | Dispositif d'amortissement des vibrations entre deux aubes de roue aubagee de turbomachine | |
EP3976926B1 (de) | Turbomaschinenanordnung mit dämpfer | |
FR2971022A1 (fr) | Etage redresseur de compresseur pour une turbomachine | |
EP1344896A1 (de) | Einrichtung, um eine Bläserwelle nach einer Havarie wieder zu lagern und zu rezentrieren | |
EP3976928B1 (de) | Anordnung für turbomaschine und turbomaschine | |
EP3728794B1 (de) | Dämpfervorrichtung | |
FR3096729A1 (fr) | Ensemble pour turbomachine | |
FR3075253B1 (fr) | Dispositif amortisseur | |
FR3096732A1 (fr) | Ensemble pour turbomachine | |
FR3096733A1 (fr) | Ensemble pour turbomachine | |
WO2020239803A1 (fr) | Ensemble pour turbomachine | |
FR3075283B1 (fr) | Dispositif amortisseur | |
FR3096730A1 (fr) | Ensemble pour turbomachine | |
FR3075254B1 (fr) | Dispositif amortisseur | |
FR2712631A1 (fr) | Ailette de rotor et ensemble ailettes-disque de rotor comportant une telle ailette. | |
FR3102205A1 (fr) | Rotor de turbomachine à masselotte | |
FR2962481A1 (fr) | Amortisseur de vibrations a bras de levier pour aube d'un rotor de moteur a turbine a gaz | |
FR3099213A1 (fr) | Rotor de soufflante pour une turbomachine d’aeronef | |
FR3042215B1 (fr) | Structure pour turbomachine comportant des moyens de retention axiale de bague exterieure de palier de roulement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20211224 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20230523 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602020016280 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20230823 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1602801 Country of ref document: AT Kind code of ref document: T Effective date: 20230823 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231226 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231123 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231223 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231124 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602020016280 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240419 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240418 Year of fee payment: 5 |
|
26N | No opposition filed |
Effective date: 20240524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240418 Year of fee payment: 5 |