EP3976926B1 - Turbomaschinenanordnung mit dämpfer - Google Patents

Turbomaschinenanordnung mit dämpfer Download PDF

Info

Publication number
EP3976926B1
EP3976926B1 EP20727321.0A EP20727321A EP3976926B1 EP 3976926 B1 EP3976926 B1 EP 3976926B1 EP 20727321 A EP20727321 A EP 20727321A EP 3976926 B1 EP3976926 B1 EP 3976926B1
Authority
EP
European Patent Office
Prior art keywords
rotor
bearing part
bearing
fixedly mounted
assembly according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20727321.0A
Other languages
English (en)
French (fr)
Other versions
EP3976926A1 (de
Inventor
Philippe Gérard Edmond JOLY
Romain Nicolas LAGARDE
Jean-Marc Claude Perrollaz
Laurent Jablonski
François Jean Comin
Edouard Antoine Dominique Marie DE JAEGHERE
Charles Jean-Pierre Douguet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP3976926A1 publication Critical patent/EP3976926A1/de
Application granted granted Critical
Publication of EP3976926B1 publication Critical patent/EP3976926B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/26Antivibration means not restricted to blade form or construction or to blade-to-blade connections or to the use of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/10Anti- vibration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/04Antivibration arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/668Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps damping or preventing mechanical vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/36Application in turbines specially adapted for the fan of turbofan engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise

Definitions

  • the present invention relates to an assembly for a turbomachine.
  • the invention relates more specifically to an assembly for a turbomachine comprising a shock absorber.
  • the invention also relates to a turbomachine.
  • a turbomachine known from the state of the art comprises a casing and a fan capable of being rotated relative to the casing, around a longitudinal axis, thanks to a fan shaft.
  • the fan comprises a disk centered on the longitudinal axis, and a plurality of blades distributed circumferentially at the external part of the disk.
  • the operating range of the blower is limited. More precisely, the evolution of a compression ratio of the fan as a function of an air flow rate which it sucks in when it rotates, is restricted to a predetermined domain.
  • the fan is in fact subject to aeroelastic phenomena which destabilize it. More precisely, the air circulating through the operating fan provides energy to the blades, and the blades respond in their own modes at levels which may exceed the endurance limit of the material which constitutes them. This fluid-structure coupling therefore generates vibrational instabilities which accelerate the wear of the fan and shorten its lifespan.
  • shock absorbers examples have been described in the documents FR 2 949 142 , EP 1 985 810 And FR 2 923 557 , on behalf of the Applicant. These shock absorbers are all configured to be housed between the platform and the foot of each blade, within the housing delimited by the respective stilts of two successive blades. Furthermore, such shock absorbers operate during relative movement between two successive blade platforms, by dissipation of vibration energy, for example by friction. Therefore, these shock absorbers only focus on damping a first vibration mode of the blades which characterizes a synchronous response of the blades to aerodynamic stresses. In this first vibration mode, the inter-blade phase shift is non-zero.
  • An aim of the invention is to damp a mode of vibration of a rotor in which the phase shift between the blades of said rotor is zero.
  • Another aim of the invention is to influence the damping of vibration modes of a rotor in which the phase shift between the blades of said rotor is non-zero.
  • Another aim of the invention is to propose a simple and easy to implement damping solution.
  • the first support part exerts a first centrifugal force on the first rotor
  • the second support part exerts a second centrifugal force on the second rotor.
  • the first support part is integral in vibration with the first rotor
  • the second support part is integral in vibration with the second rotor.
  • the connecting part the damper therefore ensures vibrational coupling between the first rotor and the second rotor.
  • the connecting part being thinned relative to the first support part and the second support part, it has greater tangential flexibility respectively than the first support part and the second support part. In this way, it is possible to damp a movement of the first rotor relative to the second rotor, in a plane orthogonal to the longitudinal axis.
  • the second vibration mode is effectively damped, and the first vibration mode is also capable of being damped.
  • damping is provided by the shear work of the connecting part.
  • damping is provided by friction of one or the other of the first support part or the second support part respectively on the first rotor or on the second rotor.
  • a turbomachine comprising an assembly as previously described, and in which the first rotor is a fan, and the second rotor is a low pressure compressor.
  • a turbomachine 1 comprises a casing 10, a fan 12, a low pressure compressor 140, a high pressure compressor 142, a combustion chamber 16, a high pressure turbine 180 and a low pressure turbine 182.
  • Each of the fan 12, the low pressure compressor 140, the high pressure compressor 142, the high pressure turbine 180, and the low pressure turbine 182, is movable in rotation relative to the casing 10 around a longitudinal axis X-X.
  • blower 12 and the low pressure compressor 140 are integral in rotation, and are capable of being rotated by a low pressure shaft 13 which is itself capable of being rotated by the low pressure turbine 182.
  • the high pressure compressor 142 is, for its part, capable of being rotated by a high pressure shaft 15, which is itself capable of being rotated by the high pressure turbine 180.
  • the blower 12 sucks in a flow of air 110 which separates between a secondary flow 112, circulating around the casing 10, and a primary flow 111, successively compressed within the low pressure compressor 140 and the high pressure compressor 142, ignited within the combustion chamber 16, then successively expanded within the high pressure turbine 180 and the low pressure turbine 182.
  • the upstream and downstream are defined here in relation to the direction of normal air flow 110, 111, 112 through the turbomachine 1.
  • an axial direction corresponds to the direction of the longitudinal axis XX
  • an radial direction is a direction which is perpendicular to this longitudinal axis XX and which passes through said longitudinal axis XX
  • a circumferential, or tangential, direction corresponds to the direction of a flat and closed curved line, all the points of which are located at equal distance from the longitudinal axis XX.
  • internal (or interior) and “external (or exterior)”, respectively, are used in reference to a radial direction so that the internal part or face (ie radially internal) of an element is closer to the longitudinal axis XX than the external part or face (ie radially external) of the same element.
  • the blade root 1220 can be made integrally with the disc 120 when the fan 12 is a one-piece bladed disc. Alternatively, as visible on the Figure 3 , the blade root 1220 can be configured to be housed in a cell 1200 of the disc 120 provided for this purpose.
  • the low pressure compressor 140 also comprises a plurality of blades 1400 fixedly mounted at an external part of a shroud 1402, said shroud 1402 comprising a circumferential extension 1404 at the external end of which radial sealing lips 1406 extend.
  • the radial sealing lips 1406 come opposite the platforms 1226 of the blades 122 of the fan 12, so as to guarantee the internal sealing of the flow vein within which the primary flow 111 circulates.
  • the shroud 1402 of the low pressure compressor 140 is fixed to the disc 120 of the fan 12, for example by bolting.
  • Each of the blades 122 of the plurality of blades 122 of fan 12 is capable of beating, vibrating relative to the disc 120 during a rotation of the fan 12 relative to the casing 10. More precisely, during the coupling between the air 110 circulating within the fan 12 and the profiled blades 1222, the blades 122 are the seat of aeroelastic floating phenomena in different vibration modes, and the amplitude of which can be such that it exceeds the endurance limits of the materials constituting the fan 12. These vibration modes are further coupled to the opposing compression forces upstream of the turbomachine 1, and expansion downstream thereof.
  • a first vibration mode characterizes a synchronous response of the blades 122 to aerodynamic stresses, in which the inter-blade phase shift is non-zero.
  • a second vibration mode characterizes an asynchronous response of the blades 122 to aerodynamic stresses, in which the inter-blade phase shift is zero.
  • the amplitude of the beats of the second vibration mode is also greater as the blades 122 of fan 12 are large.
  • this second vibration mode is coupled between the blades 122, the disk 120, and the fan shaft 13.
  • the frequency of the second vibration mode is, moreover, one and a half times greater than that of the first vibration mode.
  • the second vibration mode presents a nodal deformation at mid-height of the blades 122 of fan 12.
  • the beating of the blades 122 implies a non-zero moment on the low pressure shaft 13.
  • these vibration modes result in intense torsional forces within the low pressure shaft 13.
  • the length of the blades 122 of the fan 12 is greater than the length of the blades 1400 of the low pressure compressor 140. Consequently, the tangential bending moment caused by the beating of a blade 122 of the fan 12 is greater than the tangential bending moment driven by the beating of a blade 1400 of the low pressure compressor 140.
  • the blades of the blades 122 of the fan 12 and of the blades 1400 of the low pressure compressor then have very different behaviors.
  • the mounting stiffness within the fan 12 is different from the mounting stiffness within the low pressure compressor 140.
  • the amplitude of this movement for the second vibratory mode is for example between 0.01 and 0.09 millimeter, typically of l of the order of 0.06 millimeter, or, in another example, is of the order of a few tenths of a millimeter, for example 0.1 or 0.2 or 0.3 millimeter.
  • a shock absorber 2 is used to dampen these vibrations of the fan 12 and/or the low pressure compressor 140.
  • the damper 2 is in particular configured to damp a movement of the fan 12 relative to the low pressure compressor 140, in a plane orthogonal to the longitudinal axis XX, the movement being caused by a beating of at least one blade 122 among the plurality of blades 122 of the fan 12. Indeed, it is by damping such a movement that it is possible to influence the second vibration mode.
  • the second vibration mode is characterized by a zero inter-blade phase shift. Consequently, placing a damper between two successive blades 122 of the fan, as has already been proposed in the prior art, produces no effect on the second vibration mode.
  • the damper 2 here influences the second vibration mode because it plays on an effect of the second vibration mode: the movement of the fan 12 relative to the low pressure compressor 140, in the plane orthogonal to the longitudinal axis XX, as visible on the figure 2 .
  • the shock absorber 2 disrupts the cause, that is to say dampens the second vibration mode.
  • the first vibration mode also participates in the movement of the fan 12 relative to the low pressure compressor 140, in the plane orthogonal to the longitudinal axis XX. Consequently, by opposing this effect, the shock absorber 2 also contributes to disrupting another cause, that is to say damping the first vibration mode.
  • the first support part 21 has a first radial thickness E1 in a section plane which includes the longitudinal axis XX
  • the second support part 22 has a second radial thickness E2 in the section plane
  • the part of connection 20 has a radial connection thickness E0 in the cutting plane.
  • Figure 3 provides an example of a view in such a cutting plane.
  • the radial connection thickness E0 is smaller than the first radial thickness E1 and the second radial thickness E2.
  • the connecting part 20 is therefore thinned relative to the first support part 21 and the second support part 22.
  • the first support part 21 and the second support part 22 are massive. Consequently, in operation, each of the first support part 21 and the second support part 22 exerts a respective centrifugal force C1, C2 on the fan 12 and the low pressure compressor 140, on which said support parts 21, 22 come to bear.
  • the first support part 21 has a radially external surface coming into contact with a radially internal surface of the fan 12, typically a radially internal surface of the platform 1226.
  • the second support part 22 has a radially external surface, coming into contact with a radially internal surface of the low pressure compressor 140, typically a radially internal surface of the circumferential extension 1404, for example a radially internal surface of the oil lips. sealing 1406.
  • the support parts 21, 22 are each dynamically coupled respectively to the blower 12 and to the low pressure compressor 140 on which each rests, so as to undergo the same vibrations as each of the blower 12 and the low pressure compressor 140.
  • the support parts 21, 22 are stiffer than the connecting part 20, particularly in a tangential direction.
  • the second radial thickness E2 is greater than the first radial thickness E1, so as to better guarantee the support of the second part 22.
  • the connecting part 20, thinner, is more flexible, particularly in a tangential direction. It therefore allows the fan 12 to transmit the vibrations to which it is subject to the low pressure compressor 140 and, reciprocally, it allows the low pressure compressor 140 to transmit the vibrations to which it is subject to the fan 12. Indeed, for frequencies high vibrations, damping is ensured in particular by the shear work of the connecting part 20, that is to say by viscoelastic dissipation.
  • damping is notably ensured by friction of one or the other of the first support part 21 or the second support part 22 respectively against the fan 12 or against the low pressure compressor 140.
  • the first support part 21 comes to rest on the platform 1226 of a blade 122 of the fan 12, at the level of an internal surface of the platform 1226. More precisely, the first support part 21 comes to support on the platform 1226 of a blade 122, without coming to bear on the platform 1226 of another blade 122 of the fan 12.
  • the second support part 22 comes to bear on the circumferential extension 1404 of the ferrule 1402 of the low pressure compressor 140, at the level of an internal surface of the radial sealing lips 1406.
  • shock absorber 2 is located there particularly effective.
  • the thinning of the connecting part 20 ensures a clearance which allows the shock absorber 2 to avoid rubbing on a corner of the radial sealing lips 1406.
  • All or part of the blades 122 of the fan 12 can also be equipped with such a shock absorber 2, depending on the desired damping, but also the assembly and/or maintenance characteristics.
  • the first support part 21 is fixedly mounted on the fan 12, for example by gluing. This facilitates the integration of the damper 2 within the turbomachine 1, and guarantees the support of the first support part 21 on the fan 12.
  • the second support part 22 is fixedly mounted on the low pressure compressor 140, for example by gluing. The first support part 21 can then be mounted free to rub on the fan 12.
  • the shock absorber 2 comprises a material from the range having the trade name “SMACTANE ® ST” and/or “SMACTANEO SP”, for example a material of the type “SMACTANE ® ST 70” and/or “SMACTANE ® ST 70”. SMACTANE® SP 50”. It has in fact been observed that such materials have appropriate damping properties.
  • the first support part 21 comes to rest on the fan 12 in a first support zone extending over a first angular sector A1 around the longitudinal axis XX, and the second part d
  • the support 22 comes to rest on the low pressure compressor 140 in a second support zone extending over a second angular sector A2 around the longitudinal axis XX.
  • the first angular sector A1 corresponds to the angular sector occupied by the platform 1226 of a blade 122 of the fan 12.
  • the first support part 21 extends over the entire circumferential dimension of the platform 1226 of the blade 122, at an internal surface of said platform 1226.
  • the shock absorber 2 comprises a third support part 23 bearing on the fan 12 in a third support zone, different from the first support zone.
  • the third support zone extends over a third angular sector A3 around the longitudinal axis XX, the third angular sector A3 being lower than the first angular sector A1.
  • the third support part 23 makes it possible to improve the stability of the shock absorber 2.
  • the third support part 23 advantageously comes to bear on a downstream surface of the stilt 1224 of the blade 122, as visible on the Figure 5 .
  • the third support part 23 comes, in this case, to rest on the stilt 1224 of a blade 122, without coming to rest on the stilt 1224 of another blade 122 of the fan 12.
  • a sacrificial plate 220 comes to rest on the low pressure compressor 140.
  • the sacrificial plate 220 is fixedly mounted on the second support part 22, for example by gluing, and/or by being housed within a groove 2200 of the second support part 22 provided for this purpose, as visible on the Figure 6 .
  • the sacrificial plate 220 is configured to guarantee the support of the second support part 22 on the low pressure compressor 140.
  • the mechanical stresses in operation are such as slight tangential, axial and radial movements of the shock absorber 2 are to be expected. These movements are in particular due to the vibrations to be damped, but also to the centrifugal loading of the shock absorber 2.
  • the sacrificial plate 220 comprises an anti- wear, for example Teflon type and/or any type of composite material.
  • the sacrificial plate 220 is further treated by dry lubrication, with a view to perpetuating the value of the coefficient of friction between the shock absorber 2 and the low pressure compressor 140.
  • This material with lubrication properties is for example of the type MoS2.
  • the sacrificial plate 220 may also include an additional coating, configured to reduce the friction and/or wear of the low pressure compressor 140. This additional coating is fixedly mounted on the sacrificial plate 220, for example by gluing.
  • the additional coating is of the dissipative and/or viscoelastic and/or damping type. It may in fact include a material from the range having the trade name “SMACTANE ® ST” and/or “SMACTANE ® SP”, for example a material of the type “SMACTANE ® ST 70” and/or “SMACTANE ® SP 50” . It may also comprise a material chosen from those having mechanical properties similar to those of vespel, Teflon or any other material with lubricating properties. More generally, the additional coating material advantageously has a friction coefficient of between 0.3 and 0.07.
  • the sacrificial plate 220 is optionally combined by juxtaposition with its additional coating.
  • the first support surface 2100 provides axial positioning support for the shock absorber 2 since it is a downstream axial surface of the shock absorber 2 coming into contact with an upstream axial surface. of the low pressure compressor 140.
  • the second support surface 2220 provides radially positioned support for the shock absorber 2 since it is a radially external surface of the shock absorber 2 coming into contact with a radially internal surface of the low pressure compressor 140.
  • the second support surface 2220 participates in the application of the second centrifugal force C2 on the low pressure compressor 140.
  • the first sacrificial plate 210 and the second sacrificial plate 222 advantageously have the same characteristics as those described with reference to the sacrificial plate 220 of the embodiment illustrated in Figure 6 , with the same benefits for damping a movement of the fan 12 relative to the low pressure compressor 140, in the plane orthogonal to the longitudinal axis XX.
  • a slot 213 is provided in the first support part 21, a metal insert 223 being inserted in the slot 213, the second sacrificial plate 222 being fixedly mounted on the metal insert 223, for example by gluing .
  • the metal insert 223 makes it possible to stiffen the shock absorber 2.
  • the metal insert 223 facilitates the deformation of the first sacrificial plate 221 and the second sacrificial plate 222.
  • a weight 3 is fixedly mounted on the shock absorber 2, for example by gluing.
  • the flyweight 3 makes it possible to adjust the centrifugal forces C1, C2 exerted by the shock absorber 2 on the fan 12 and on the low pressure compressor 140, so as to improve the dynamic coupling between the first support part 21 and the fan 12 , And between the second support part 22 and the low pressure compressor 140.
  • the weight 3 comprises an elastomeric material.
  • the weight 3 can then be fixedly mounted both on the first support part 21 and on the second support part 22, for example by gluing.
  • the weight 3 is fixedly mounted on the first support part 21, for example by gluing, preferably only on the first support part 21.
  • the flyweight is shifted upstream of the first support part 21, so as to leave the connecting part 20 free so that, in operation, it can effectively work in shear to cushion a movement of the fan 12 relative to to the low pressure compressor 140, in a plane orthogonal to the longitudinal axis XX.
  • the flyweight 3 is fixedly mounted on the second support part 22, for example by gluing, preferably only on the second support part 22.
  • the weight 3 is offset downstream of the second support part 22.
  • the weight 3 is fixedly mounted only on the first support part 21 if the second support part 22 is fixedly mounted on the low pressure compressor 140.
  • the damper 2 is configured to dampen a movement of the fan 12 relative to the low pressure compressor 140, in the plane orthogonal to the longitudinal axis X-X.
  • the shock absorber 2 is also configured to damp a movement of any first rotor 12 relative to any second rotor 140, in a plane orthogonal to the longitudinal axis XX, as long as the first rotor 12 is movable in rotation relative to the casing 10 around the longitudinal axis XX and comprises a disc 120 as well as a plurality of blades 122 capable of beating while vibrating relative to the disc 120 during a rotation of the first rotor 12 relative to the casing 10, and that the second rotor 140 is also movable in rotation relative to the casing 10 around the longitudinal axis XX.
  • the first rotor 12 can be a first stage of the high pressure compressor 142 or low pressure compressor 140, and the second rotor 140 be a second stage of said compressor 140, 142, successive to the first stage of compressor 140, 142, upstream or downstream of the latter.
  • the first rotor 12 can be a first stage of high pressure turbine 180 or low pressure turbine 182, and the second rotor 140 be a second stage of said turbine 180, 182, successive to the first stage of turbine 180, 182, in upstream or downstream of the latter.
  • the shock absorber 2 has a limited footprint. Therefore, it can easily be integrated into existing turbomachines.
  • the shock absorber 2 remains sufficiently flexible to maximize the contact surfaces between said shock absorber 2 and the rotors 12, 140 on which it rests. To do this, the shock absorber 2 has a greater tangential rigidity than an axial rigidity and a radial rigidity.
  • the contact forces between the shock absorber 2 and the rotors 12, 140 are adjusted by means of weights 3 and can in particular be adjusted by means of sacrificial plates 220, 221, 222 and/or additional coatings on said sacrificial plates 220, 221, 222.
  • sacrificial plates 220, 221, 222 and/or additional coatings on said sacrificial plates 220, 221, 222.
  • the wear of the rotors 12, 140 is notably limited by treatment of the surfaces of the shock absorber 2 bearing on the rotors 12, 140, for example to provide them with a coating with a low coefficient of friction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (14)

  1. Anordnung für eine Turbomaschine (1), umfassend:
    - ein Gehäuse (10),
    - einen ersten Rotor (12):
    o der im Verhältnis zum Gehäuse (10) um eine Längsachse (X-X) rotatorisch beweglich ist, und
    o umfasst:
    * eine Scheibe (120), und
    * eine Vielzahl von Schaufeln (122), die imstande sind, im Verhältnis zu der Scheibe (120) bei einer Rotation des ersten Rotors (12) im Verhältnis zum Gehäuse (10) zu schlagen,
    - einen zweiten Rotor (140), der im Verhältnis zum Gehäuse (10) um die Längsachse (X-X) rotatorisch beweglich ist, wobei der zweite Rotor (140) drehfest mit dem ersten Rotor (12) verbunden ist, und
    - einen Dämpfer (2), der dazu ausgelegt ist, eine Verlagerung des ersten Rotors (12) im Verhältnis zum zweiten Rotor (140) in einer orthogonalen Ebene zur Längsachse (X-X) zu dämpfen, wobei die Verlagerung durch ein Schlagen von mindestens einer Schaufel (122) von der Vielzahl von Schaufeln (122) verursacht wird, wobei der Dämpfer (2) umfasst:
    o einen ersten Anlageabschnitt (21):
    * der auf dem ersten Rotor (12) in Anlage gelangt,
    * der dazu ausgelegt ist, eine erste Zentrifugalkraft (C1) auf den ersten Rotor (12) auszuüben, und
    * eine radial äußere Oberfläche aufweist, die mit einer radial inneren Oberfläche des ersten Rotors (12) in Kontakt kommt,
    o einen zweiten Anlageabschnitt (22):
    * der auf dem zweiten Rotor (140) in Anlage gelangt,
    * der dazu ausgelegt ist, eine zweite Zentrifugalkraft (C2) auf den zweiten Rotor (140) auszuüben, und
    * eine radial äußere Oberfläche aufweist, die mit einer radial inneren Oberfläche des ersten Rotors (140) in Kontakt kommt,
    o einen Verbindungsabschnitt (20):
    * der den ersten Anlageabschnitt (21) mit dem zweiten Anlageabschnitt (22) verbindet, und
    * im Verhältnis zum ersten Anlageabschnitt (21) und zum zweiten Anlageabschnitt (22) verschlankt ist,
    wobei die Anordnung dadurch gekennzeichnet ist, dass sie ein Gewicht (3) umfasst, das auf dem Dämpfer (2) fest angebracht ist.
  2. Anordnung nach Anspruch 1, wobei der erste Anlageabschnitt (21) auf dem ersten Rotor (12) fest angebracht ist.
  3. Anordnung nach Anspruch 1, wobei der zweite Anlageabschnitt (22) auf dem zweiten Rotor (140) fest angebracht ist.
  4. Anordnung nach einem der Ansprüche 1 bis 3, wobei der erste Anlageabschnitt (21) auf dem ersten Rotor (12) in einer ersten Anlagezone in Anlage gelangt, die sich über einen ersten Winkelsektor (A1) um die Längsachse (X-X) erstreckt, wobei der Dämpfer (2) ferner einen dritten Anlageabschnitt (23) umfasst, der auf dem ersten Rotor (12) in einer dritten Anlagezone in Anlage gelangt, die sich von der ersten Anlagezone unterscheidet, wobei sich die dritte Anlagezone über einen dritten Winkelsektor (A3) um die Längsachse (X-X) erstreckt, wobei der dritte Winkelsektor (A3) kleiner als der erste Winkelsektor (A1) ist.
  5. Anordnung nach einem der Ansprüche 1 bis 4, wobei die Anordnung ferner eine Opferplatte (220) umfasst:
    - die auf dem zweiten Anlageabschnitt (12) fest angebracht ist, und
    - auf dem zweiten Rotor (140) in Anlage gelangt.
  6. Anordnung nach einem der Ansprüche 1 bis 5, wobei die Anordnung ferner umfasst:
    - eine erste Opferplatte (210), die auf dem ersten Anlageabschnitt (21) fest angebracht ist und die radial äußere Oberfläche des ersten Anlageabschnitts (21) aufweist, und
    - eine zweite Opferplatte (222), die auf dem zweiten Anlageabschnitt (22) fest angebracht ist und die radial äußere Oberfläche des zweiten Anlageabschnitts (22) aufweist.
  7. Anordnung nach Anspruch 6, wobei ein Schlitz (213) in den ersten Anlageabschnitt (21) eingearbeitet ist, wobei die Anordnung ferner einen Metalleinsatz (223) umfasst, der in den Schlitz (213) eingesetzt ist, wobei die zweite Opferplatte (222) auf dem Metalleinsatz (223) fest angebracht ist.
  8. Anordnung nach einem der Ansprüche 1 bis 7, wobei das Gewicht (3) auf dem ersten Anlageabschnitt (21) fest angebracht ist.
  9. Anordnung nach einem der Ansprüche 1 bis 8, wobei das Gewicht (3) auf dem zweiten Anlageabschnitt (22) fest angebracht ist.
  10. Anordnung nach einem der Ansprüche 1 bis 9, wobei das Gewicht (3) umfasst:
    - ein erstes Gewicht (31), das auf dem ersten Anlageabschnitt (21) fest angebracht ist, und
    - ein zweites Gewicht (32), das auf dem zweiten Anlageabschnitt (22) fest angebracht ist.
  11. Anordnung nach einem der Ansprüche 1 bis 10, wobei jede der Schaufeln (122) von der Vielzahl von Schaufeln (122) umfasst:
    - einen Schaufelfuß (1220), der die Schaufel (122) mit der Scheibe (120) verbindet,
    - eine Profilbeschaufelung (1222),
    - eine Stelze (1224), die die Beschaufelung (1222) mit dem Schaufelfuß (1220) verbindet, und
    - eine Plattform (1226), die die Beschaufelung (1222) mit der Stelze (1224) verbindet und sich quer zu der Stelze (1224) erstreckt, wobei der erste Anlageabschnitt (21) auf der Plattform (1226) einer Schaufel (122) von der Vielzahl von Schaufeln (122) in Anlage gelangt.
  12. Anordnung nach Anspruch 11, wobei der erste Anlageabschnitt (21) auf der Plattform (1226) der Schaufel (122) in Anlage gelangt, ohne auf einer Plattform (1226) einer anderen Schaufel (122) von der Vielzahl von Schaufeln (122) in Anlage zu gelangen.
  13. Anordnung nach einem der Ansprüche 1 bis 12, wobei der zweite Rotor (140) einen Ring (1402) umfasst, wobei der Ring (1402) eine Umfangserweiterung (1404) umfasst, wobei der zweite Anlageabschnitt (22) auf der Umfangserweiterung (1404) in Anlage gelangt.
  14. Turbomaschine (1), umfassend eine Anordnung nach einem der Ansprüche 1 bis 13, und wobei der erste Rotor (12) ein Gebläse und der zweite Rotor (140) ein Niederdruckkompressor ist.
EP20727321.0A 2019-05-29 2020-05-27 Turbomaschinenanordnung mit dämpfer Active EP3976926B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1905745A FR3096734B1 (fr) 2019-05-29 2019-05-29 Ensemble pour turbomachine
PCT/EP2020/064646 WO2020239804A1 (fr) 2019-05-29 2020-05-27 Ensemble pour turbomachine avec amortisseur

Publications (2)

Publication Number Publication Date
EP3976926A1 EP3976926A1 (de) 2022-04-06
EP3976926B1 true EP3976926B1 (de) 2024-01-10

Family

ID=68281564

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20727321.0A Active EP3976926B1 (de) 2019-05-29 2020-05-27 Turbomaschinenanordnung mit dämpfer

Country Status (5)

Country Link
US (1) US11808170B2 (de)
EP (1) EP3976926B1 (de)
CN (1) CN114026311B (de)
FR (1) FR3096734B1 (de)
WO (1) WO2020239804A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020239803A1 (fr) * 2019-05-29 2020-12-03 Safran Aircraft Engines Ensemble pour turbomachine

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE791375A (fr) * 1971-12-02 1973-03-01 Gen Electric Deflecteur et amortisseur pour ailettes de turbomachines
FR2585069B1 (fr) * 1985-07-16 1989-06-09 Snecma Dispositif de limitation du debattement angulaire d'aubes montees sur un disque de rotor de turbomachine
DE10014198A1 (de) * 2000-03-22 2001-09-27 Alstom Power Nv Beschaufelung mit Dämpfungselementen
US6776583B1 (en) * 2003-02-27 2004-08-17 General Electric Company Turbine bucket damper pin
US6851932B2 (en) * 2003-05-13 2005-02-08 General Electric Company Vibration damper assembly for the buckets of a turbine
DE102004023130A1 (de) * 2004-05-03 2005-12-01 Rolls-Royce Deutschland Ltd & Co Kg Dichtungs- und Dämpfungssystem für Turbinenschaufeln
JP2006125372A (ja) * 2004-11-01 2006-05-18 Mitsubishi Heavy Ind Ltd 回転機械翼の防振構造および回転機械
FR2896289B1 (fr) * 2006-01-13 2008-03-28 Snecma Sa Masselotte d'equilibrage, disque de rotor en etant equipe, rotor et moteur d'aeronef les comportant
FR2915510B1 (fr) * 2007-04-27 2009-11-06 Snecma Sa Amortisseur pour aubes de turbomachines
EP2019188A1 (de) * 2007-07-25 2009-01-28 Siemens Aktiengesellschaft Laufschaufelstufe mit Dämpfungselement
US8182228B2 (en) * 2007-08-16 2012-05-22 General Electric Company Turbine blade having midspan shroud with recessed wear pad and methods for manufacture
FR2923557B1 (fr) 2007-11-12 2010-01-22 Snecma Ensemble d'une aube de soufflante et de son amortisseur, amortisseur d'aube de soufflante et methode de calibrage de l'amortisseur
FR2949142B1 (fr) 2009-08-11 2011-10-14 Snecma Cale amortisseuse de vibrations pour aube de soufflante
US8540488B2 (en) * 2009-12-14 2013-09-24 Siemens Energy, Inc. Turbine blade damping device with controlled loading
DE102010015211B4 (de) * 2010-04-16 2013-06-20 Mtu Aero Engines Gmbh Dämpfungselement zur Dämpfung von Laufschaufelschwingungen, Laufschaufel sowie Rotor
FR2961553B1 (fr) * 2010-06-18 2012-08-31 Snecma Secteur angulaire de redresseur pour compresseur de turbomachine, redresseur de turbomachine et turbomachine comprenant un tel secteur
CN202578800U (zh) * 2012-04-12 2012-12-05 中国南方航空工业(集团)有限公司 叶片减振装置
US9261112B2 (en) * 2012-04-24 2016-02-16 General Electric Company Dampers for fan spinners of aircraft engines
FR2995003B1 (fr) * 2012-09-03 2014-08-15 Snecma Rotor de turbine pour une turbomachine
CN204941612U (zh) * 2015-09-16 2016-01-06 中国航空工业集团公司沈阳发动机设计研究所 一种可压缩阻尼块
EP3222811A1 (de) * 2016-03-24 2017-09-27 Siemens Aktiengesellschaft Schwingungsdämpfung in einer gasturbine
ITUA20162125A1 (it) * 2016-03-30 2017-09-30 Exergy Spa Turbomacchina radiale con compensazione della spinta assiale
US10260527B2 (en) * 2016-05-17 2019-04-16 General Electric Company Method and system for mitigating rotor bow
CN206000576U (zh) * 2016-06-22 2017-03-08 中国航空工业集团公司沈阳发动机设计研究所 一种转子叶片阻尼块轴向定位结构
CN106593545A (zh) * 2017-01-23 2017-04-26 中国航发沈阳发动机研究所 一种涡轮转子叶片缘板封严结构及具有其的发动机
FR3075253B1 (fr) * 2017-12-20 2019-11-22 Safran Aircraft Engines Dispositif amortisseur

Also Published As

Publication number Publication date
FR3096734B1 (fr) 2021-12-31
CN114026311B (zh) 2024-04-02
US11808170B2 (en) 2023-11-07
WO2020239804A1 (fr) 2020-12-03
FR3096734A1 (fr) 2020-12-04
CN114026311A (zh) 2022-02-08
US20220228495A1 (en) 2022-07-21
EP3976926A1 (de) 2022-04-06

Similar Documents

Publication Publication Date Title
EP3724455B1 (de) Dämpfungsvorrichtung
EP2739828B1 (de) Laufrad für einen turbinenmotor
FR2585069A1 (fr) Dispositif de limitation du debattement angulaire d'aubes montees sur un disque de rotor de turbomachine
FR3075284A1 (fr) Dispositif amortisseur
WO2013107967A1 (fr) Secteur angulaire de redresseur a amortissement de vibrations par coin pour compresseur de turbomachine
EP3976926B1 (de) Turbomaschinenanordnung mit dämpfer
FR3096729A1 (fr) Ensemble pour turbomachine
EP3728794B1 (de) Dämpfervorrichtung
EP3976928B1 (de) Anordnung für turbomaschine und turbomaschine
FR3075253B1 (fr) Dispositif amortisseur
FR3096732A1 (fr) Ensemble pour turbomachine
FR3096733A1 (fr) Ensemble pour turbomachine
WO2020239803A1 (fr) Ensemble pour turbomachine
FR3096730A1 (fr) Ensemble pour turbomachine
FR3075283B1 (fr) Dispositif amortisseur
FR3075254B1 (fr) Dispositif amortisseur
EP3935265B1 (de) Rotor einer flugzeugturbomaschine mit dämpfungsvorrichtung
FR2712631A1 (fr) Ailette de rotor et ensemble ailettes-disque de rotor comportant une telle ailette.
FR3042215B1 (fr) Structure pour turbomachine comportant des moyens de retention axiale de bague exterieure de palier de roulement
FR3106615A1 (fr) Ensemble pour turbomachine
FR3099213A1 (fr) Rotor de soufflante pour une turbomachine d’aeronef
FR3126446A1 (fr) Amortisseur déformable pour roue mobile de turbomachine
FR3102205A1 (fr) Rotor de turbomachine à masselotte
FR2962481A1 (fr) Amortisseur de vibrations a bras de levier pour aube d'un rotor de moteur a turbine a gaz

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211224

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231013

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020024194

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20240110

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1649046

Country of ref document: AT

Kind code of ref document: T

Effective date: 20240110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240510