EP3976847A1 - Procédé de protection contre la corrosion - Google Patents
Procédé de protection contre la corrosionInfo
- Publication number
- EP3976847A1 EP3976847A1 EP20739755.5A EP20739755A EP3976847A1 EP 3976847 A1 EP3976847 A1 EP 3976847A1 EP 20739755 A EP20739755 A EP 20739755A EP 3976847 A1 EP3976847 A1 EP 3976847A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sublayer
- hafnium
- layer
- nickel
- cobalt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/02—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
- C23C28/3455—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/024—Deposition of sublayers, e.g. to promote adhesion of the coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/028—Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/321—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
- C23C28/3215—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/10—Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
- C23C4/11—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/134—Plasma spraying
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/10—Oxidising
- C23C8/12—Oxidising using elemental oxygen or ozone
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/80—After-treatment
Definitions
- the invention relates to the field of the manufacture of superalloy parts, and more particularly to the protection by thermal barriers of superalloy parts.
- a superalloy or high performance alloy is a metal alloy exhibiting excellent mechanical strength and good resistance to high temperature creep (typically 0.7 to 0.8 times its melting point), good surface stability as well as good resistance to corrosion and oxidation.
- Superalloys typically exhibit a face centered cubic crystal structure of the austenitic type.
- the alloying elements at the base of a superalloy are most often nickel, cobalt and iron, but also titanium and aluminum.
- thermal barrier assembly For the corrosion and oxidation resistance of superalloys, it is known to form what is called a thermal barrier assembly, composed of a substrate (the part in superalloy to be protected), an underlayer and a thermal barrier on the underlayer.
- composition and the quality of the metallic layer play a fundamental role in the in-service behavior of a thermal barrier assembly.
- Parts are already known in the state of the art which successively comprise from the inside to the outside: a substrate in monocrystalline nickel-based superalloy, a sublayer and a thermal barrier.
- a first technique is to add a large amount of hafnium
- a second technique consists of adding a small amount of hafnium to the underlayer during deposition thereof.
- this technique makes it possible to improve only the adhesion of the thermal barrier in the case of a deposition according to a physical vapor deposition (PVD) method by cathodic sputtering and does not work in the case of a deposition by sputtering.
- PVD physical vapor deposition
- thermal spraying according to a method of the “Suspension Plasma Spraying” (SPS - translated by “projection of suspension assisted plasma”) type which requires prior sandblasting to have a rough surface condition. Sandblasting tears material from the underlayment, which in this case reduces the amount of hafnium.
- a third technique consists in adding a large quantity of hafnium to the sub-layer during the deposition thereof so as to keep enough hafnium to improve the adhesion of the thermal barrier in the case of a deposition of the type. SPS.
- this solution degrades the protection of superalloys against corrosion and oxidation.
- the objective of the invention is therefore to overcome the aforementioned drawbacks of the state of the art.
- the object of the invention is in particular to provide a method making it possible to improve the adhesion and the life of the thermal barrier deposited by SPS, CVD or PVD on an underlayer, without degrading the corrosion resistance and the oxidation of the part.
- the invention relates to a method of protection against corrosion and oxidation of a part made of monocrystalline nickel-based superalloy, free of hafnium, which comprises at least the following steps consisting of:
- the invention advantageously proposes the use of a third sub-layer intended to act as a screen during pickling - by sandblasting - to preserve the integrity of the second sub-layer doped with hafnium, and therefore to conserve the quantity of 'hafnium deposited.
- sandblasting is a necessary preliminary step for the thermal projection of the thermal barrier. But, the sanding tears off the material. Therefore, the use of a third sub-layer, free of hafnium and intended to be stripped off during sandblasting, helps protect the second sub-layer doped with hafnium. So,
- the hafnium-doped sublayer is not or only slightly torn off by sandblasting and therefore retains the amount of hafnium which has been incorporated into it.
- this arrangement makes it possible to be able to deposit the thermal barrier by thermal spraying of the SPS type (process for which sandblasting is necessary) while maintaining the chosen mass percentage of hafnium so as to promote the resistance of the thermal barrier and to prolong its duration. life, while promoting the corrosion and oxidation resistance of the superalloy part.
- Said thermal barrier layer can be deposited by thermal spraying according to a method of the Suspension Plasma Spraying type.
- Said thermal barrier layer can be deposited using a PVD physical vapor deposition method, preferably by sputtering.
- the third underlayer can be completely stripped off during sandblasting.
- the mass percentage of hafnium in the second sublayer can correspond to a predetermined value.
- the mass percentage of hafnium in the second sublayer can be determined as follows: V2 + V3 + V4
- C 3 Cmoy - - with V2 the volume of the first sublayer, V3 the volume of the second sublayer and V4 the volume of the third sublayer and Cmoy the average mass percentage of hafnium in the part.
- the oxidation treatment of said second sublayer can be carried out by a heat treatment under partial pressure of oxygen or argon, this heat treatment possibly comprising a temperature rise phase until a temperature of between 900 ° C is reached. C and 1200 ° C, a phase of maintaining this temperature for less than an hour and a cooling phase until reaching room temperature.
- the first sublayer and / or the third sublayer consists of an alloy chosen from NiPtAI or MCrAIX, with M equal to cobalt, nickel, or cobalt-nickel, and with X equal to yttrium or silicon.
- the second sub-layer can be made of an alloy chosen from AlHf or MCrAlYHf, with M equal to cobalt, nickel, or cobalt-nickel.
- the third sublayer can be made of an alloy selected from NiPtAI or MCrAIX, with M equal to cobalt, nickel, or cobalt-nickel, and with X equal to yttrium or silicon.
- All of the deposition steps can be performed by a single deposition device.
- the invention relates to a part in monocrystalline superalloy based on nickel free of hafnium, protected against corrosion by a method according to the invention., With V2 the volume of the first sublayer, V3 the volume of the second sublayer and V4 the volume of the third sublayer and Cmoy the average mass percentage of hafnium in the part.
- the oxidation treatment of said second sublayer can be carried out by a heat treatment under partial pressure of oxygen or argon, this heat treatment possibly comprising a temperature rise phase until a temperature of between 900 ° C is reached. C and 1200 ° C, a phase of maintaining this temperature for less than an hour and a cooling phase until reaching room temperature.
- the first sublayer and / or the third sublayer consists of an alloy chosen from NiPtAI or MCrAIX, with M equal to cobalt, nickel, or cobalt-nickel, and with X equal to yttrium or silicon.
- the second sublayer can be made of an alloy chosen from AlHf or MCrAlYHf, with M equal to cobalt, nickel, or cobalt-nickel.
- the third sublayer can be made of an alloy selected from NiPtAl or MCrAIX, with M equal to cobalt, nickel, or cobalt-nickel, and with X equal to yttrium or silicon.
- All of the deposition steps can be performed by a single deposition device.
- the invention relates to a part of monocrystalline nickel-based superalloy free of hafnium, protected against corrosion by a process according to the invention.
- Figure 1 shows a first step of the process according to the invention.
- Figure 2 shows a second step of the process according to the invention.
- Figure 3 shows a third step of the process according to the invention.
- Figure 4 shows a fourth step of the process according to the invention.
- Figure 5 shows a fifth step of the process according to the invention.
- Figure 6 shows a sixth step of the method according to the invention.
- FIG. 7 represents a seventh step of the method according to the invention.
- the invention relates to a method of protecting against corrosion and oxidation of a part made of a monocrystalline nickel-based superalloy, free of hafnium.
- the method comprises at least the following steps consisting of:
- a first step of the process may consist in manufacturing a part 1 of monocrystalline superalloy based on nickel free (free) of hafnium.
- Part 1 can for example be obtained by foundry or additive manufacturing and has the desired shape.
- Table 1 below shows several examples of superalloys that may be used in the process according to the invention. They are identified by the letters A to F.
- the second step of the process is shown in FIG. 2.
- This step consists in depositing a first sublayer 2, without hafnium.
- This first sublayer 2 will serve to limit the diffusion of the hafnium present in the second sublayer 3 in room 1.
- the first sublayer 2 can consist of an alloy chosen from NiPtAl or MCrAIX, with M equal to cobalt, nickel, or cobalt-nickel, and with X equal to yttrium or silicon.
- the first sub-layer may have a thickness of between 5 ⁇ m and 50 ⁇ m.
- the first sublayer 2 can be deposited by physical vapor deposition (PVD) or, preferably, by chemical vapor deposition (CVD).
- PVD physical vapor deposition
- CVD chemical vapor deposition
- the third step shown in FIG. 3 corresponds to the deposition of the second sublayer 3.
- the second sublayer 3 is doped with hafnium.
- the second sublayer 3 can consist of an alloy chosen from AlHf or
- MCrAlYHf with M equal to cobalt, nickel, or cobalt-nickel.
- the mass percentage (atomic) of hafnium C3 of the second sublayer 3 is calculated relative to the volume of all the sublayers, as a function of the average mass percentage Cmoy of hafnium in the part, according to:
- C2 the mass percentage of hafnium in the first sublayer 2, V2 the volume of the first sublayer 2, V3 the volume of the second sublayer 3, C4 the mass percentage of hafnium in the third sublayer 4 and V4 the volume of the third sublayer 4.
- C2 and C4 are zero, so:
- the hafnium present in the second sublayer 3 makes it possible to reinforce the grain boundaries of the second sublayer 3, thus blocking the diffusion of metal cations and slowing the diffusion of oxygen in the second. sublayer 3 and therefore the oxidation kinetics of the second sublayer 3.
- the second sublayer can be deposited by physical vapor deposition (PVD) or, preferably, by chemical vapor deposition (CVD).
- PVD physical vapor deposition
- CVD chemical vapor deposition
- the fourth step of the process corresponds to the deposition of a third sub-layer 4, free of hafnium.
- the third sublayer 4 is a particularly advantageous arrangement of
- this sublayer is intended to be stripped, and therefore mainly torn off, during a sanding step, but its presence makes it possible to preserve as much as possible the second sublayer 3 during sanding (and therefore to keep a maximum of hafnium).
- the third sublayer 4 can be made of the same alloy as the first sublayer 2.
- the third sublayer 2 can be made of an alloy chosen from NiPtAl or MCrAIX, with M equal to cobalt, nickel, or cobalt-nickel, and with X equal to yttrium or silicon.
- the third sublayer 4 can be deposited according to a PVD or preferably CVD process.
- the three sublayers can be projected by the same deposition device. This arrangement makes it possible to simplify the method according to the invention (compared to the methods of the prior art).
- the fifth step of the process is a step of etching by sandblasting the third sublayer 4.
- Sandblasting makes it possible to prepare the deposition of the thermal barrier by thermal spraying of the Suspension Plasma Spraying (SPS) type, in particular by
- the second sub-layer is preserved. layer 3.
- the outer layer is either again the second sublayer 3 (as shown in FIG. 5) or a residual fraction of the third sublayer 4, but with a surface finish modified (the surface roughness of said second or third flush sub-layer 3, 4 is increased), and it still exhibits, substantially, the desired mass percentage of hafnium C3.
- the second or third sub-layer 3, 4 which is flush with the surface and in the modified surface condition, as obtained after at least partial stripping of the surface, will be designated as the “upper” sub-layer.
- third sublayer 4 More precisely, if the third sublayer 3 is practically completely stripped, the upper sublayer is the second sublayer 2, and if not it is always the third sublayer 3, at least this that remains.
- the sixth step of the process is a step of surface oxidation, i.e. of the upper sublayer, so as to obtain a layer of oxidized material 5 doped with hafnium.
- a surface portion of the top underlayer undergoes oxidation so that the material in that surface portion is transformed (it is oxidized).
- the oxidation treatment shown in Figure 6, provides a layer of oxidized material 5 doped with hafnium. More specifically, in a preferential manner, it is a layer of aluminum oxide (A1203, also called alumina) comprising hafnium in its grain boundaries, in other words an oxide layer of aluminum doped at its grain boundaries with hafnium.
- This oxidation treatment is carried out inside an enclosure under partial pressure of oxygen or argon.
- the different stages of the oxidation treatment are preferably as follows:
- the last step of the process, shown in Figure 7 is a step of depositing the thermal barrier 6.
- the thermal barrier 6 is deposited using an SPS thermal spray method.
- the thermal barrier is deposited directly on the layer of oxidized material 5.
- the hafnium present in the second sub-layer 3 and in the layer of oxidized material 5 can diffuse in the thermal barrier so as to extend it. lifetime.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Physical Vapour Deposition (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1905569A FR3096690B1 (fr) | 2019-05-27 | 2019-05-27 | Procédé de protection contre la corrosion |
PCT/FR2020/050874 WO2020240130A1 (fr) | 2019-05-27 | 2020-05-26 | Procédé de protection contre la corrosion |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3976847A1 true EP3976847A1 (fr) | 2022-04-06 |
Family
ID=68987740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20739755.5A Pending EP3976847A1 (fr) | 2019-05-27 | 2020-05-26 | Procédé de protection contre la corrosion |
Country Status (5)
Country | Link |
---|---|
US (1) | US12006577B2 (zh) |
EP (1) | EP3976847A1 (zh) |
CN (1) | CN113891953B (zh) |
FR (1) | FR3096690B1 (zh) |
WO (1) | WO2020240130A1 (zh) |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2076091A1 (en) * | 1991-09-09 | 1993-03-10 | Edward H. Goldman | Superalloy component with dispersion-containing protective coatings, and method of preparation |
EP1411148A1 (en) * | 2002-10-15 | 2004-04-21 | ALSTOM Technology Ltd | Method of depositing a MCrALY-coating on an article and the coated article |
US20050079370A1 (en) * | 2003-10-10 | 2005-04-14 | Corderman Reed Roeder | Nano-multilayered structures, components and associated methods of manufacture |
CA2739008C (en) * | 2008-09-30 | 2015-04-07 | Rolls-Royce Corporation | Coating including a rare earth silicate-based layer including a second phase |
FR2941967B1 (fr) * | 2009-02-11 | 2011-05-13 | Snecma | Methode de fabrication d'une barriere thermique recouvrant une piece realisee dans un substrat metallique en superalliage et piece thermomecanique resultant de cette methode de traitement |
JP5620577B2 (ja) * | 2010-07-23 | 2014-11-05 | ロールス−ロイス コーポレイション | Cmas耐性遮熱コーティング層を含む遮熱コーティング |
CN102127738B (zh) * | 2010-11-25 | 2013-01-30 | 北京航空航天大学 | 一种多层热障涂层及其制备方法 |
CN103966615B (zh) * | 2014-04-11 | 2016-06-29 | 北京航空航天大学 | 一种1200℃完全抗氧化的二元微量活性元素掺杂的PtNiAl粘结层及其制备方法 |
FR3052463B1 (fr) * | 2016-06-10 | 2020-05-08 | Safran | Procede de fabrication d'une piece en superalliage a base de nickel contenant de l'hafnium |
FR3052464B1 (fr) * | 2016-06-10 | 2018-05-18 | Safran | Procede de protection contre la corrosion et l'oxydation d'une piece en superalliage monocristallin a base de nickel exempt d'hafnium |
-
2019
- 2019-05-27 FR FR1905569A patent/FR3096690B1/fr active Active
-
2020
- 2020-05-26 EP EP20739755.5A patent/EP3976847A1/fr active Pending
- 2020-05-26 CN CN202080039924.6A patent/CN113891953B/zh active Active
- 2020-05-26 US US17/614,145 patent/US12006577B2/en active Active
- 2020-05-26 WO PCT/FR2020/050874 patent/WO2020240130A1/fr unknown
Also Published As
Publication number | Publication date |
---|---|
CN113891953B (zh) | 2023-09-26 |
FR3096690B1 (fr) | 2021-07-23 |
CN113891953A (zh) | 2022-01-04 |
US12006577B2 (en) | 2024-06-11 |
FR3096690A1 (fr) | 2020-12-04 |
WO2020240130A1 (fr) | 2020-12-03 |
US20220251713A1 (en) | 2022-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0884403A1 (fr) | Materiau multicouches à revetement anti-erosion, anti-abrasion, et anti-usure sur substrat en aluminium, en magnesium ou en leurs alliages. | |
EP3538500B1 (fr) | Piece de turbomachine revetue d'une barriere thermique et procede pour l'obtenir. | |
EP3469112B1 (fr) | Procédé de protection contre la corrosion et l'oxydation d'une pièce en superalliage monocristallin à base de nickel exempt d'hafnium | |
EP3377680B1 (fr) | Pièce de moteur d'aéronef comportant un revêtement de protection contre l'érosion et procédé de fabrication d'une telle pièce | |
FR2645072A1 (fr) | Structure composite ayant une grande resistance mecanique aux temperatures elevees | |
EP2014460B1 (fr) | Procédé pour protéger la surface d'un substrat en alliage intermétallique à base d'aluminiure de titane contre la corrosion | |
EP3601634B1 (fr) | Piece de turbine en superalliage et procede de fabrication associe | |
EP3976847A1 (fr) | Procédé de protection contre la corrosion | |
EP4025719A1 (fr) | Procédé de formation d'une couche d'alumine à la surface d'un substrat métallique | |
WO2003006712A1 (fr) | Procede de repartition globale d'une piece revetue d'une barriere thermique | |
WO2019077271A1 (fr) | Piece de turbine en superalliage comprenant du rhenium et procede de fabrication associe | |
FR3053076A1 (fr) | Piece de turbomachine revetue d'une barriere thermique et d'un revetement de protection contre les cmas et procede pour l'obtenir | |
EP3685018B1 (fr) | Pièce de turbine en superalliage comprenant du rhénium et/ou du ruthénium et procédé de fabrication associé | |
EP4041930B1 (fr) | Piece d'aeronef en superalliage comprenant du rhenium et/ou du ruthenium et procede de fabrication associe | |
EP3532653B1 (fr) | Pièce comprenant un substrat en superalliage monocristallin à base de nickel et son procédé de fabrication | |
WO2020128394A1 (fr) | Pièce de turbine en superalliage comprenant du rhenium et/ou du ruthenium et procédé de fabrication associé | |
EP3619338A1 (fr) | Piece de turbine en superalliage et procede de fabrication associe par bombardement de particules chargees | |
FR3108633A1 (fr) | Procédé de dépôt d’un revêtement sur une pièce métallique et pièce métallique obtenue selon un tel procédé | |
FR3147296A1 (fr) | Réalisation d’une couche barrière environnementale par voie électrophorétique | |
EP4055201A1 (fr) | Piece d'aeronef en superalliage comprenant un canal de refroidissement | |
FR3107080A1 (fr) | Piece de turbomachine revetue ayant un substrat base nickel comprenant de l'hafnium | |
FR3053075A1 (fr) | Piece de turbomachine revetue d'une barriere thermique et d'un revetement de protection contre les cmas et procede pour l'obtenir | |
FR2656632A1 (fr) | Procede de revetement de surfaces comprenant un depot metallurgique prealable d'au moins une couche d'aluminium et son anodisation dure, pieces traitees suivant ce procede, et procede de collage desdites pieces. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20211214 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |