EP4025719A1 - Procédé de formation d'une couche d'alumine à la surface d'un substrat métallique - Google Patents

Procédé de formation d'une couche d'alumine à la surface d'un substrat métallique

Info

Publication number
EP4025719A1
EP4025719A1 EP20732998.8A EP20732998A EP4025719A1 EP 4025719 A1 EP4025719 A1 EP 4025719A1 EP 20732998 A EP20732998 A EP 20732998A EP 4025719 A1 EP4025719 A1 EP 4025719A1
Authority
EP
European Patent Office
Prior art keywords
layer
aluminum
substrate
metal substrate
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20732998.8A
Other languages
German (de)
English (en)
Inventor
Marjorie Christine CAVARROC
Stephane Knittel
Jolenta SAPIEHA
Ludvik Martinu
Florence BERGERON
Simon LOQUAI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran SA
Original Assignee
Safran SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran SA filed Critical Safran SA
Publication of EP4025719A1 publication Critical patent/EP4025719A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0057Reactive sputtering using reactive gases other than O2, H2O, N2, NH3 or CH4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0694Halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by producing an aerosol and subsequent evaporation of the droplets or particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/42Electroplating: Baths therefor from solutions of light metals
    • C25D3/44Aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated

Definitions

  • the present invention relates to a method of forming an alumina layer on the surface of a metal substrate so as to provide said substrate with protection against oxidation and corrosion at high temperature.
  • the invention relates in particular to the protection of a substrate intended for use in an aeronautical turbomachine.
  • nickel-based superalloys in aeronautical turbomachines is known. With a view to reducing the weight of turbomachines, alloys comprising less heavy metals such as aluminum have been developed. By way of example, mention may be made of alloys based on titanium aluminide (also called TiAI alloys) which have good mechanical characteristics and which are significantly lighter than nickel-based superalloys.
  • TiAI alloys titanium aluminide
  • the present invention relates to a method of forming an alumina layer on the surface of a metal substrate made of an alloy comprising aluminum, the method comprising at least:
  • the deposition of a second layer by vapor deposition on the first layer comprising aluminum, a halogen and oxygen, and
  • the invention provides a solution in which an intermediate layer of aluminum (first layer) is deposited on the substrate before deposition of the second layer comprising aluminum, halogen and oxygen.
  • This first layer provides the aluminum to form the layer of alumina during the heat treatment in an oxidizing atmosphere.
  • the thickness of the first layer is greater than or equal to 20 nm.
  • Such a thickness value advantageously makes it possible to further reduce the phenomenon of aluminum depletion of the underlying substrate during the formation of the alumina layer.
  • the thickness of the first layer is less than or equal to 1000 nm, for example 500 nm.
  • the fact of limiting the thickness of the first layer makes it possible to avoid any risk of the aluminum diffusing from the first layer towards the underlying substrate and inducing a structural modification therein.
  • the thickness of the first layer can be between 20 nm and 1000 nm, for example between 20 nm and 500 nm.
  • the second layer is deposited by a process chosen from among physical vapor deposition, chemical vapor deposition, plasma assisted chemical vapor deposition and case cementation.
  • the second layer comprises a compound of the formula AlO n X m in which n and m are each strictly positive and X represents halogen.
  • the second layer can comprise a mixture of aluminum halide and aluminum oxyhalide, optionally with alumina.
  • the halogen is fluorine.
  • the second layer can comprise a compound of formula AlO n F m in which n and m are each strictly positive.
  • the second layer can comprise a mixture of aluminum fluoride and aluminum oxyfluoride, optionally with alumina.
  • the halogen is chlorine.
  • the thickness of the second layer is greater than or equal to 10 ⁇ m, preferably between 10 ⁇ m and 50 ⁇ m. Such a thickness makes it possible to promote the growth of the alumina layer on the one hand, and to minimize the internal stresses in the layer on the other hand, which allows the layer to avoid any risk of adhesion defect on the layer. the substrate.
  • the second layer is deposited from a vapor phase comprising a halogen gas, oxygen and aluminum.
  • the second layer is deposited from a vapor phase comprising fluorine, oxygen and aluminum.
  • the vapor phase can comprise CF 4 , C2F6, SiF 4, SF 6 or a mixture of these compounds, as well as oxygen and aluminum.
  • the second layer is deposited from a vapor phase comprising chlorine, oxygen and aluminum.
  • the vapor phase can comprise SiCl 4 , CI2 or a mixture of these compounds, as well as oxygen and aluminum.
  • the second layer is deposited by sputtering a target comprising aluminum in an atmosphere comprising oxygen and halogen gas.
  • the heat treatment is carried out at a temperature greater than or equal to 800 ° C.
  • the metal substrate is made of an alloy based on titanium aluminide.
  • the metal substrate is a part of a turbomachine, for example a part of an aeronautical turbomachine.
  • the invention also relates to a coated metal substrate comprising:
  • a second layer comprising aluminum, a halogen and oxygen, the second layer covering the first layer.
  • the coated metal substrate introduced above corresponds to the intermediate product obtained during the implementation of the process described above before the heat treatment in an oxidizing atmosphere.
  • the first layer has a thickness greater than or equal to 20 nm.
  • the thickness of the first layer may be less than or equal to 1000 nm, for example 500 nm.
  • the thickness of the first layer can be between 20 nm and 1000 nm, for example between 20 nm and 500 nm.
  • the halogen of the second layer is fluorine.
  • the second layer can comprise a compound of formula AlO n F m in which n and m are each strictly positive.
  • the second layer can comprise a mixture of aluminum fluoride and aluminum oxyfluoride, optionally with alumina.
  • FIG. 1 illustrates the substrate covered with the first layer of aluminum after implementation of a first step of an example of the method according to the invention.
  • FIG. 2 illustrates the substrate covered with the first and second layers after implementation of a second step of an exemplary process according to the invention.
  • FIG. 3 illustrates the substrate covered with a surface alumina layer obtained after heat treatment in an oxidizing atmosphere.
  • FIG. 4 schematically describes a device for the vapor deposition of layers on a substrate which can be implemented within the framework of the invention.
  • FIG. 5 represents a photograph obtained by scanning electron microscopy of the result obtained after implementation of a method according to the invention.
  • FIG. 6 represents a photograph obtained by scanning electron microscopy of the result obtained after implementation of a method outside the invention in which the first aluminum layer is not deposited.
  • the present invention relates to the coating of a metal substrate 11 made of an alloy comprising aluminum.
  • the treated substrate can be an alloy based on titanium aluminide, such as a gamma-TiAI alloy.
  • the treated substrate can constitute a part of a turbomachine, and for example a part of an aeronautical turbomachine.
  • the substrate is intended for use in an oxidizing atmosphere and at a temperature greater than or equal to 800 ° C.
  • the substrate can for example be a turbine part. It may for example be a turbine blade or a turbine ring sector.
  • the first aluminum layer 12 is first of all deposited on an external surface S of the substrate.
  • the first layer 12 can be deposited in contact with the external surface S of the substrate.
  • the first layer 12 formed of elementary aluminum (Al) can be deposited by implementing a technique known per se. In particular, it can be deposited by physical vapor deposition, for example by vacuum evaporation or by spraying.
  • the first aluminum layer 12 can be deposited by other deposition methods such as for example an electrochemical deposition, a chemical vapor deposition (CVD for the English acronym Chemical Vapor Deposition), a chemical vapor deposition assisted by plasma (PECVD for the English acronym Plasma Enhanced Chemical Vapor Déposition) or by case cementation.
  • CVD chemical vapor deposition
  • PECVD chemical vapor deposition assisted by plasma
  • the temperature imposed during the deposition of the first layer 12 may be between 20 ° C and 600 ° C, for example between 20 ° C and 400 ° C.
  • the first aluminum layer 12 can be deposited by magnetron radiofrequency sputtering, for example with a power equal to 200 W, under a reduced pressure, for example at 0.66 bar, using an argon flow rate. , for example 60 standard cubic centimeters per minute, and in temperature, for example at 400 ° C.
  • the first layer 12 may have a thickness ei of between 20 nm and 1000 nm.
  • the metal substrate 11 covered with the first layer 12 is illustrated in FIG.
  • the second layer 13 comprising aluminum, a halogen and oxygen is then formed on the first layer 12.
  • the second layer 13 can be deposited in contact with the first layer 12.
  • the first layer 12 is interposed between the substrate. 11 and the second layer 13. This second layer 13 is formed by vapor deposition.
  • the second layer 13 comprises a compound of formula AlOnXm in which n and m are each strictly positive and X represents halogen.
  • the second layer 13 can comprise a mixture of aluminum halide and aluminum oxyhalide, optionally with alumina.
  • the halogen can be fluorine or chlorine as indicated above.
  • the second layer 13 can comprise in atomic percentages:
  • the second layer 13 can have an atomic ratio between halogen and oxygen of between 2: 1 and 8: 1.
  • halogen is an activator of the reaction for the formation of alumina by oxidation of the aluminum present with oxygen.
  • the second layer 13 is produced by vapor deposition, and in particular by magnetron sputtering.
  • the temperature imposed during the deposition of the second layer 13 may be between 20 ° C and 800 ° C, for example between 20 ° C and 400 ° C.
  • FIG. 4 schematically represents a device making it possible to carry out deposition by magnetron sputtering.
  • a gas is introduced through the inlet 106 and a plasma is generated between the target 105 and the substrate 111 to be covered.
  • an electric field obtained by imposing a voltage between target 105 and substrate 111
  • electrons are generated by the target and can ionize the constituent atoms of the plasma by collision.
  • the presence of a magnetic field generated by a magnet 104 disposed near the target 105 confines the electrons generated near the target and increases the probability that the collision between an electron and an atom in the plasma will occur there.
  • a high energy species is generated, and the latter can bombard the target 105 and tear off, by elastic shock, particles from the target 105.
  • the particles from the target 105 thus torn off can then be separated. deposit on the substrate 111 to form the deposit.
  • the deposition of the second layer 13 can be carried out under vacuum, for example at a pressure less than or equal to 10 Pa (75 mTorr), for example between 0.67 Pa (5 mTorr) and 10 Pa (75 mTorr).
  • a pressure less than or equal to 10 Pa (75 mTorr) for example between 0.67 Pa (5 mTorr) and 10 Pa (75 mTorr).
  • a flow rate of inert gas injected into chamber 101 of between 1 standard cm 3 per minute and 100 standard cm 3 per minute.
  • the inert gas can for example be argon.
  • the halogen gas can be chosen from CF 4 , C 2 F 6 , SiF 4, SF 6 or a mixture of these compounds.
  • the halogen gas can be chosen from SiCl 4 , Cl 2 or a mixture of these compounds.
  • the second layer 13 may have a thickness e 2 greater than or equal to 0.1 ⁇ m, for example 10 ⁇ m, for example between 10 ⁇ m and 100 ⁇ m.
  • FIG. 2 represents a substrate 11 covered with a first layer of aluminum 12 and with a second layer 13 as described above. A heat treatment is then carried out in an oxidizing atmosphere so as to form the alumina layer 14 on the surface S of the metal substrate.
  • the heat treatment can be carried out at a temperature greater than or equal to 800 ° C, for example between 800 ° C and 1000 ° C, for example between 850 ° C and 900 ° C.
  • the heat treatment can be carried out in air.
  • the heat treatment can be annealing.
  • the growth of the alumina layer 14 during the heat treatment takes place by limiting or even eliminating the depletion of aluminum near the surface. S of the substrate.
  • an alumina layer 14 is formed on the surface S of the metal substrate 11.
  • the heat treatment can also lead to the formation on the alumina layer 14 of a layer 15 comprising titanium, aluminum and oxygen.
  • the alumina layer 14 has a thickness e3 of between 10 nm and 50,000 nm.
  • FIG. 5 is a photograph of a gamma-TiAI 201 substrate coated by the implementation of a method as described above.
  • the substrate 201 is covered with a layer of alumina 203 and having on its surface a layer 204 comprising titanium, aluminum and oxygen.
  • FIG. 6 is a photograph of a gamma-TiAI substrate 301 coated with an alumina layer 303 by a process outside the invention, not comprising the initial deposition of the aluminum layer.
  • This substrate also has on its surface a layer 304 comprising titanium, aluminum and oxygen.
  • the implementation of the method described above makes it possible to significantly reduce the zone depleted in aluminum (202 in FIG. 5 and 302 in FIG. 6) present on the surface of the substrate during the coating of a metal substrate. .
  • the zone depleted in aluminum near the coated surface of the substrate is 2 ⁇ m thick when the layer of alumina is prepared by a process of the invention ( zone 202 FIG. 5), against 4 ⁇ m when the alumina layer is prepared by a process outside the invention (zone 302 FIG. 6).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Electrochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

L'invention concerne un procédé de formation d'une couche d'alumine (203) à la surface d'un substrat métallique (201) en alliage comprenant de l'aluminium, le procédé comprenant au moins : - le dépôt d'une première couche d'aluminium sur une surface du substrat métallique, - le dépôt d'une deuxième couche par dépôt en phase vapeur sur la première couche, la deuxième couche comprenant de l'aluminium, un halogène et de l'oxygène, et - le traitement thermique du substrat revêtu des première et deuxième couches sous atmosphère oxydante afin de former la couche d'alumine à la surface du substrat métallique.

Description

Description
Titre de l'invention : Procédé de formation d'une couche d'alumine à la surface d'un substrat métallique
Domaine Technique
La présente invention concerne un procédé de formation d'une couche d'alumine à la surface d'un substrat métallique de sorte à conférer audit substrat une protection contre l'oxydation et la corrosion à haute température. L'invention concerne notamment la protection d'un substrat destiné à être utilisé dans une turbomachine aéronautique.
Technique antérieure
L'emploi de superalliages à base de nickel dans les turbomachines aéronautiques est connu. Dans l'optique de réduire le poids des turbomachines, des alliages comprenant des métaux moins lourds tels que l'aluminium ont été développés. A titre d'exemple, on peut citer les alliages à base d'aluminure de titane (aussi appelés alliages TiAI) qui présentent de bonnes caractéristiques mécaniques et qui sont significativement plus légers que les superalliages à base de nickel.
Il est toutefois souhaitable d'améliorer la résistance de ces alliages à l'oxydation et à la corrosion à haute température, c'est-à-dire à des températures supérieures à 800°C. Des solutions pour former une couche d'alumine protectrice à la surface de ce type d'alliages ont été développées. En particulier, la publication Hornauer et al. (Surface and Coatings Technology, 2003, 174, pp.1182-1186) a proposé une solution dans laquelle il y a d'abord implantation de chlore par un procédé plasma à la surface de la pièce puis dans laquelle la couche d'alumine protectrice est formée. Cette solution présente toutefois l'inconvénient de conduire localement, près de la surface de la pièce, à un appauvrissement en aluminium lors de la formation de la couche d'alumine. Cet appauvrissement en aluminium peut résulter en une altération indésirable des propriétés du substrat à haute température, notamment du fait de la formation de phases intermétalliques fragiles qui diminuent la durée de vie en fatigue du matériau. Exposé de l'invention
La présente invention concerne un procédé de formation d'une couche d'alumine à la surface d'un substrat métallique en alliage comprenant de l'aluminium, le procédé comprenant au moins :
- le dépôt d'une première couche d'aluminium sur une surface du substrat métallique,
- le dépôt d'une deuxième couche par dépôt en phase vapeur sur la première couche, la deuxième couche comprenant de l'aluminium, un halogène et de l'oxygène, et
- le traitement thermique du substrat revêtu des première et deuxième couches sous atmosphère oxydante afin de former la couche d'alumine à la surface du substrat métallique.
L'invention propose une solution dans laquelle une couche intermédiaire d'aluminium (première couche) est déposée sur le substrat avant dépôt de la deuxième couche comprenant l'aluminium, l'halogène et de l'oxygène. Cette première couche apporte l'aluminium pour former la couche d'alumine lors du traitement thermique en atmosphère oxydante. Du fait de cet apport, le phénomène d'appauvrissement local en aluminium du substrat métallique sous-jacent rencontré dans l'art antérieur est réduit, voire éliminé.
Dans un exemple de réalisation, l'épaisseur de la première couche est supérieure ou égale à 20 nm.
Une telle valeur d'épaisseur permet avantageusement de réduire davantage encore le phénomène d'appauvrissement en aluminium du substrat sous-jacent lors de la formation de la couche d'alumine.
Dans un exemple de réalisation, l'épaisseur de la première couche est inférieure ou égale à 1000 nm, par exemple à 500 nm.
Le fait de limiter l'épaisseur de la première couche permet d'éviter tout risque que l'aluminium ne diffuse depuis la première couche vers le substrat sous-jacent et y induise une modification structurelle.
En particulier, l'épaisseur de la première couche peut être comprise entre 20 nm et 1000 nm, par exemple entre 20 nm et 500 nm. Dans un exemple de réalisation, la deuxième couche est déposée par un procédé choisi parmi le dépôt physique en phase vapeur, le dépôt chimique en phase vapeur, le dépôt chimique en phase vapeur assisté par plasma et la cémentation en caisse.
La deuxième couche comprend un composé de formule AIOnXm dans laquelle n et m sont chacun strictement positifs et X représente l'halogène.
En particulier, la deuxième couche peut comprendre un mélange d'halogénure d'aluminium et d'oxyhalogénure d'aluminium, éventuellement avec de l'alumine.
Dans un exemple de réalisation, l'halogène est le fluor. Dans ce dernier cas, la deuxième couche peut comprendre un composé de formule AIOnFm dans laquelle n et m sont chacun strictement positifs. En particulier, la deuxième couche peut comprendre un mélange de fluorure d'aluminium et d'oxyfluorure d'aluminium, éventuellement avec de l'alumine. En variante, l'halogène est le chlore.
Dans un exemple de réalisation, l'épaisseur de la deuxième couche est supérieure ou égale à 10 pm, de préférence comprise entre 10 pm et 50 pm. Une telle épaisseur permet de favoriser la croissance de la couche d'alumine d'une part, et de minimiser les contraintes internes dans la couche d'autre part, ce qui permet à la couche d'éviter tout risque de défaut d'adhésion sur le substrat.
Dans un exemple de réalisation, la deuxième couche est déposée à partir d'une phase vapeur comprenant un gaz halogène, de l'oxygène et de l'aluminium.
Par exemple, la deuxième couche est déposée à partir d'une phase vapeur comprenant du fluor, de l'oxygène et de l'aluminium. Lorsque l'halogène est du fluor, la phase vapeur peut comporter du CF4, du C2F6, du SiF4 du SF6 ou un mélange de ces composés, ainsi que de l'oxygène et de l'aluminium.
En variante, la deuxième couche est déposée à partir d'une phase vapeur comprenant du chlore, de l'oxygène et de l'aluminium. Lorsque l'halogène est du chlore, la phase vapeur peut comporter du SiCI4, du CI2 ou un mélange de ces composés, ainsi que de l'oxygène et de l'aluminium.
Dans un exemple de réalisation, la deuxième couche est déposée par pulvérisation d'une cible comprenant de l'aluminium dans une atmosphère comprenant de l'oxygène et le gaz halogène.
Dans un exemple de réalisation, le traitement thermique est réalisé à une température supérieure ou égale à 800 °C. Dans un exemple de réalisation, le substrat métallique est en alliage à base d'aluminure de titane.
Dans un exemple de réalisation, le substrat métallique est une pièce de turbomachine, par exemple une pièce de turbomachine aéronautique.
Selon un autre de ses aspects, l'invention concerne également un substrat métallique revêtu comprenant :
- un substrat métallique en alliage comprenant de l'aluminium,
- une première couche d'aluminium sur une surface du substrat métallique, et
- une deuxième couche comprenant de l'aluminium, un halogène et de l'oxygène, la deuxième couche recouvrant la première couche.
Le substrat métallique revêtu introduit ci-dessus correspond au produit intermédiaire obtenu lors de la mise en œuvre du procédé décrit plus haut avant le traitement thermique en atmosphère oxydante.
Dans un exemple de réalisation, la première couche a une épaisseur supérieure ou égale à 20 nm. L'épaisseur de la première couche peut être inférieure ou égale à 1000 nm, par exemple à 500 nm. En particulier, l'épaisseur de la première couche peut être comprise entre 20 nm et 1000 nm, par exemple entre 20 nm et 500 nm. Dans un mode de réalisation, l'halogène de la deuxième couche est le fluor.
En particulier, la deuxième couche peut comprendre un composé de formule AIOnFm dans laquelle n et m sont chacun strictement positifs. En particulier, la deuxième couche peut comprendre un mélange de fluorure d'aluminium et d'oxyfluorure d'aluminium, éventuellement avec de l'alumine.
Description des figures
[Fig. 1] La figure 1 illustre le substrat recouvert de la première couche d'aluminium après mise en œuvre d'une première étape d'un exemple de procédé selon l'invention.
[Fig. 2] La figure 2 illustre le substrat recouvert des première et deuxième couches après mise en œuvre d'une deuxième étape d'un exemple de procédé selon l'invention.
[Fig. 3] La figure 3 illustre le substrat recouvert d'une couche d'alumine de surface obtenue après traitement thermique sous atmosphère oxydante. [Fig. 4] La figure 4 décrit de manière schématique un dispositif pour le dépôt en phase vapeur de couches sur un substrat pouvant être mis en œuvre dans le cadre de l'invention.
[Fig. 5] La figure 5 représente une photographie obtenue par microscopie électronique à balayage du résultat obtenu après mise en œuvre d'un procédé selon l'invention.
[Fig. 6] La figure 6 représente une photographie obtenue par microscopie électronique à balayage du résultat obtenu après mise en œuvre d'un procédé hors invention dans lequel la première couche d'aluminium n'est pas déposée.
Description des modes de réalisation
La présente invention concerne le revêtement d'un substrat métallique 11 en alliage comprenant de l'aluminium. Le substrat traité peut être un alliage à base d'aluminure de titane, comme un alliage gamma-TiAI.
Le substrat traité peut constituer une pièce de turbomachine, et par exemple une pièce de turbomachine aéronautique. Le substrat est destiné à être utilisé en atmosphère oxydante et à une température supérieure ou égale à 800°C. Le substrat peut par exemple être une pièce de turbine. Il peut par exemple s'agir d'une aube de turbine ou d'un secteur d'anneau de turbine.
La première couche d'aluminium 12 est tout d'abord déposée sur une surface externe S du substrat. La première couche 12 peut être déposée au contact de la surface externe S du substrat. La première couche 12 formée d'aluminium élémentaire (Al) peut être déposée par mise en œuvre d'une technique connue en soi. En particulier, elle peut être déposée par dépôt physique en phase vapeur, par exemple par évaporation sous vide ou par pulvérisation. La première couche d'aluminium 12 peut être déposée par d'autres méthodes de dépôt comme par exemple un dépôt électrochimique, un dépôt chimique en phase vapeur (CVD pour l'acronyme anglais Chemical Vapor Déposition), un dépôt chimique en phase vapeur assisté par plasma (PECVD pour l'acronyme anglais Plasma Enhanced Chemical Vapor Déposition) ou encore par cémentation en caisse. La température imposée lors du dépôt de la première couche 12 peut être comprise entre 20°C et 600°C, par exemple entre 20°C et 400°C. Dans un exemple de réalisation, la première couche d'aluminium 12 peut être déposée par pulvérisation radiofréquence magnétron, par exemple de puissance égale à 200 W, sous une pression réduite, par exemple à 0,66 bar, en utilisant un débit d'argon, par exemple de 60 centimètres cube standards par minute, et en température, par exemple à 400 °C.
La première couche 12 peut avoir une épaisseur ei comprise entre 20 nm et 1000 nm.
Le substrat métallique 11 recouvert de la première couche 12 est illustré à la figure
1.
On forme ensuite la deuxième couche 13 comprenant de l'aluminium, un halogène et de l'oxygène sur la première couche 12. La deuxième couche 13 peut être déposée au contact de la première couche 12. La première couche 12 est intercalée entre le substrat 11 et la deuxième couche 13. Cette deuxième couche 13 est formée par dépôt en phase vapeur.
Comme indiqué plus haut, la deuxième couche 13 comprend un composé de formule AlOnXm dans laquelle n et m sont chacun strictement positifs et X représente l'halogène. La deuxième couche 13 peut comprendre un mélange d'halogénure d'aluminium et d'oxyhalogénure d'aluminium, éventuellement avec de l'alumine. L'halogène peut être le fluor ou le chlore comme indiqué plus haut.
La deuxième couche 13 peut comprendre en pourcentages atomiques :
- 3% à 70% d'halogène, par exemple de 55% à 65% d'halogène,
- de 5% à 40% d'aluminium, par exemple de 10% à 30% d'aluminium, et
- del% à 20% d'oxygène, par exemple de 3% à 15% d'oxygène.
La deuxième couche 13 peut présenter un rapport atomique entre l'halogène et l'oxygène compris entre 2: 1 et 8: 1.
Les inventeurs ont constaté que l'halogène est un activateur de la réaction de formation de l'alumine par oxydation de l'aluminium présent avec l'oxygène.
La deuxième couche 13 est réalisée par dépôt en phase vapeur, et en particulier par pulvérisation cathodique magnétron. La température imposée lors du dépôt de la deuxième couche 13 peut être comprise entre 20°C et 800°C, par exemple entre 20°C et 400°C. La figure 4 représente schématiquement un dispositif permettant de réaliser un dépôt par pulvérisation cathodique magnétron.
Dans une chambre 101, un gaz est introduit par l'entrée 106 et un plasma est généré entre la cible 105 et le substrat 111 à recouvrir. Sous l'effet d'un champ électrique, obtenu en imposant une tension entre la cible 105 et le substrat 111, des électrons sont générés par la cible et peuvent ioniser par collision les atomes constitutifs du plasma. La présence d'un champ magnétique généré par un aimant 104 disposé à proximité de la cible 105 confine les électrons générés à proximité de la cible et augmente la probabilité que la collision entre un électron et un atome du plasma y ait lieu. Lorsqu'une telle collision a lieu, une espèce de haute énergie est générée, et cette dernière peut venir bombarder la cible 105 et arracher, par choc élastique, des particules de la cible 105. Les particules de la cible 105 ainsi arrachées peuvent alors se déposer sur le substrat 111 pour former le dépôt.
Le dépôt de la deuxième couche 13 peut être réalisé sous vide, par exemple à une pression inférieure ou égale à 10 Pa (75 mTorr), par exemple comprise entre 0,67 Pa (5 mTorr) et 10 Pa (75 mTorr). Durant le dépôt, on peut imposer :
- un débit d'oxygène injecté dans la chambre 101 compris entre 1 cm3 standard par minute (sccm) et 100 cm3 standards par minute, et
- un débit de gaz halogène dans la chambre 101 compris entre 2,5 cm3 standards par minute et 100 cm3 standards par minute,
- et optionnellement, un débit de gaz inerte injecté dans la chambre 101 compris entre 1 cm3 standard par minute et 100 cm3 standards par minute.
Le gaz inerte peut par exemple être l'argon.
Dans le cas où l'halogène est le fluor, le gaz halogène peut être choisi parmi le CF4, du C2F6, du SiF4 du SF6 ou un mélange de ces composés.
Dans le cas où l'halogène est le chlore, le gaz halogène peut être choisi parmi le SiCI4, du Cl2 ou un mélange de ces composés.
La deuxième couche 13 peut avoir une épaisseur e2 supérieure ou égale à 0,1 pm, par exemple à 10 pm, par exemple comprise entre 10 pm et 100 pm.
La figure 2 représente un substrat 11 recouvert d'une première couche d'aluminium 12 et d'une deuxième couche 13 telles que décrites ci-dessus. On réalise ensuite un traitement thermique dans une atmosphère oxydante de sorte à former la couche d'alumine 14 à la surface S du substrat métallique.
Le traitement thermique peut être réalisé à une température supérieure ou égale à 800°C, par exemple comprise entre 800°C et 1000°C, par exemple comprise entre 850°C et 900°C.
Le traitement thermique peut être réalisé sous air. Le traitement thermique peut être un recuit.
Comme décrit ci-dessus, du fait de la présence de la couche d'aluminium 12, la croissance de la couche d'alumine 14 au cours du traitement thermique se fait en limitant voire en supprimant l'appauvrissement en aluminium à proximité de la surface S du substrat.
A la fin du traitement thermique, et comme figuré schématiquement en figure 3, une couche d'alumine 14 est formée à la surface S du substrat métallique 11.
Le traitement thermique peut également mener à la formation sur la couche d'alumine 14, d'une couche 15 comprenant du titane, de l'aluminium et de l'oxygène.
Dans un exemple de réalisation, la couche d'alumine 14 présente une épaisseur e3 comprise entre 10 nm et 50000 nm.
La figure 5 est une photographie d'un substrat de gamma-TiAI 201 revêtu par la mise en œuvre d'un procédé tel que décrit ci-dessus. Le substrat 201 est recouvert d'une couche d'alumine 203 et présentant à sa surface une couche 204 comprenant du titane, de l'aluminium et de l'oxygène.
A titre de comparaison, la figure 6 est une photographie d'un substrat de gamma- TiAI 301 revêtu d'une couche d'alumine 303 par un procédé hors invention, ne comprenant pas le dépôt initial de la couche d'aluminium. Ce substrat présente également à sa surface une couche 304 comprenant du titane, de l'aluminium et de l'oxygène.
On peut observer que la mise en œuvre du procédé décrit ci-dessus permet de réduire significativement la zone appauvrie en aluminium (202 à la figure 5 et 302 à la figure 6) présente à la surface du substrat lors du revêtement d'un substrat métallique. Dans les exemples présentés en figures 5 et 6, on observe en effet que la zone appauvrie en aluminium à proximité de la surface revêtue du substrat fait 2 pm d'épaisseur lorsque la couche d'alumine est préparée par un procédé de l'invention (zone 202 figure 5), contre 4 pm lorsque la couche d'alumine est préparée par un procédé hors invention (zone 302 figure 6).
Dans la présente demande, l'expression « compris(e) entre ... et ... » doit s'entendre bornes incluses sauf mention explicite du contraire.

Claims

Revendications
[Revendication 1] Procédé de formation d'une couche d'alumine (14) à la surface d'un substrat métallique (11) en alliage comprenant de l'aluminium, le procédé comprenant au moins :
- le dépôt d'une première couche d'aluminium (12) sur une surface du substrat métallique,
- le dépôt d'une deuxième couche (13) par dépôt en phase vapeur sur la première couche, la deuxième couche comprenant de l'aluminium, un halogène et de l'oxygène, et
- le traitement thermique du substrat revêtu des première et deuxième couches sous atmosphère oxydante afin de former la couche d'alumine à la surface du substrat métallique.
[Revendication 2] Procédé selon la revendication 1, dans lequel l'épaisseur ei de la première couche d'aluminium (12) est comprise entre 20 nm et 1000 nm.
[Revendication 3] Procédé selon l'une des revendications 1 ou 2, dans lequel l'halogène est le fluor.
[Revendication 4] Procédé selon l’une quelconque des revendications 1 à 3, dans lequel la deuxième couche est déposée par un procédé choisi parmi le dépôt physique en phase vapeur, le dépôt chimique en phase vapeur, le dépôt chimique en phase vapeur assisté par plasma et la cémentation en caisse.
[Revendication 5] Procédé selon l'une quelconque des revendications 1 à 4, dans lequel l'épaisseur de la deuxième couche (13) est supérieure ou égale à 10 pm.
[Revendication 6] Procédé selon l'une quelconque des revendications 1 à 5, dans lequel la deuxième couche (13) est déposée à partir d'une phase gazeuse comprenant de l'oxygène, un gaz halogène et de l'aluminium.
[Revendication 7] Procédé selon la revendication 6, dans lequel la deuxième couche (13) est déposée par pulvérisation d'une cible (105) comprenant de l'aluminium dans une atmosphère comprenant de l'oxygène et le gaz halogène.
[Revendication 8] Procédé selon l'une quelconque des revendications 1 à 7, dans lequel le traitement thermique est réalisé à une température supérieure ou égale à 800°C.
[Revendication 9] Procédé selon l'une quelconque des revendications 1 à 8, dans lequel le substrat métallique (11) est en alliage à base d'aluminure de titane.
[Revendication 10] Procédé selon l'une quelconque des revendications 1 à 9, dans lequel le substrat métallique (11) est une pièce de turbomachine.
[Revendication 11] Substrat métallique revêtu comprenant :
- un substrat métallique (11) en alliage comprenant de l'aluminium,
- une première couche (12) d'aluminium sur une surface du substrat métallique, et
- une deuxième couche (13) comprenant de l'aluminium, un halogène et de l'oxygène, la deuxième couche recouvrant la première couche.
[Revendication 12] Substrat métallique selon la revendication 11, dans lequel la première couche (12) a une épaisseur ei comprise entre 20 nm et 1000 nm.
[Revendication 13] Substrat métallique selon l'une quelconque des revendications 11 ou 12, dans lequel la deuxième couche (13) comprend un composé de formule AIOnFm dans laquelle n et m sont chacun strictement positifs.
EP20732998.8A 2019-05-15 2020-04-24 Procédé de formation d'une couche d'alumine à la surface d'un substrat métallique Pending EP4025719A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA3043564A CA3043564A1 (fr) 2019-05-15 2019-05-15 Procede de formation d'une couche d'alumine a la surface d'un substrat metallique
PCT/FR2020/050708 WO2020229747A1 (fr) 2019-05-15 2020-04-24 Procédé de formation d'une couche d'alumine à la surface d'un substrat métallique

Publications (1)

Publication Number Publication Date
EP4025719A1 true EP4025719A1 (fr) 2022-07-13

Family

ID=71094617

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20732998.8A Pending EP4025719A1 (fr) 2019-05-15 2020-04-24 Procédé de formation d'une couche d'alumine à la surface d'un substrat métallique

Country Status (5)

Country Link
US (1) US20220259717A1 (fr)
EP (1) EP4025719A1 (fr)
CN (1) CN113825857B (fr)
CA (1) CA3043564A1 (fr)
WO (1) WO2020229747A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3139144A1 (fr) 2022-08-30 2024-03-01 Safran Procédé de dépôt d'un revêtement en oxyde d'aluminium

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503874A (en) * 1994-09-30 1996-04-02 General Electric Company Method for low temperature chemical vapor deposition of aluminides containing easily oxidized metals
US6177350B1 (en) * 1998-04-14 2001-01-23 Applied Materials, Inc. Method for forming a multilayered aluminum-comprising structure on a substrate
FR2814473B1 (fr) * 2000-09-25 2003-06-27 Snecma Moteurs Procede de realisation d'un revetement de protection formant barriere thermique avec sous-couche de liaison sur un substrat en superalliage et piece obtenue
US6852273B2 (en) * 2003-01-29 2005-02-08 Adma Products, Inc. High-strength metal aluminide-containing matrix composites and methods of manufacture the same
JP4257576B2 (ja) * 2003-03-25 2009-04-22 ローム株式会社 成膜装置
GB0903199D0 (en) * 2009-02-25 2009-04-08 Univ Birmingham Thermal barrier coatings for industrial gas turbines
CN102400102A (zh) * 2010-09-10 2012-04-04 鸿富锦精密工业(深圳)有限公司 金属表面抗指纹处理方法及制得的金属产品
CN102465255A (zh) * 2010-11-11 2012-05-23 鸿富锦精密工业(深圳)有限公司 壳体及其制造方法
CN102560349A (zh) * 2010-12-29 2012-07-11 鸿富锦精密工业(深圳)有限公司 镀膜件及其制备方法
TWI496931B (zh) * 2011-01-04 2015-08-21 Hon Hai Prec Ind Co Ltd 鍍膜件及其製作方法
DE102012002285B4 (de) * 2012-02-06 2020-06-04 Audi Ag Verfahren zum Herstellen eines Turbinenrotors
EP2906418B1 (fr) * 2012-10-12 2021-05-26 Corning Incorporated Articles ayant une résistance conservée
CN102925841A (zh) * 2012-11-07 2013-02-13 天津大学 具有富铝扩散层粘结层的陶瓷热障涂层及制备方法
FR3065968B1 (fr) * 2017-05-05 2020-11-20 Safran Piece de turbine en superalliage et procede de fabrication associe par bombardement de particules chargees

Also Published As

Publication number Publication date
CN113825857B (zh) 2024-03-19
WO2020229747A1 (fr) 2020-11-19
US20220259717A1 (en) 2022-08-18
CA3043564A1 (fr) 2020-11-15
CN113825857A (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
FR3025930A1 (fr) Gaines de combustible nucleaire, procedes de fabrication et utilisation contre l'oxydation.
FR2660938A1 (fr) Systemes de revetement pour la protection du titane envers l'oxydation.
FR2764310A1 (fr) Materiau multicouches a revetement anti-erosion, anti-abrasion, et anti-usure sur substrat en aluminium, en magnesium ou en leurs alliages
EP2396446B1 (fr) Méthode de fabrication d'une barrière thermique recouvrant un substrat métallique en superalliage et pièce thermomécanique résultant de cette méthode de fabrication
US5556713A (en) Diffusion barrier for protective coatings
EP4025719A1 (fr) Procédé de formation d'une couche d'alumine à la surface d'un substrat métallique
EP0738787A1 (fr) Procédé de fabrication d'une pièce métallique recouverte de diamant
EP3469112B1 (fr) Procédé de protection contre la corrosion et l'oxydation d'une pièce en superalliage monocristallin à base de nickel exempt d'hafnium
EP3227468B1 (fr) Procédé de fabrication d'une pièce revêtue d'un revêtement protecteur
FR3053076A1 (fr) Piece de turbomachine revetue d'une barriere thermique et d'un revetement de protection contre les cmas et procede pour l'obtenir
FR3113260A1 (fr) Sous-couche pour superalliage base nickel permettant l'amelioration de la duree de vie des pieces et son procede de mise en oeuvre
FR3065968A1 (fr) Piece de turbine en superalliage et procede de fabrication associe par bombardement de particules chargees
EP2582859B1 (fr) Procede d'aluminisation d'une surface avec depot prealable d'une couche de platine et de nickel
EP3976847A1 (fr) Procédé de protection contre la corrosion
EP3807450B1 (fr) Pièce revêtue par un revêtement de carbone amorphe non-hydrogéné sur une sous-couche comportant du chrome, du carbone et du silicium
WO2017085279A1 (fr) Revêtement anti-corrosion à base de nickel et son procédé d'obtention
FR3117508A1 (fr) Carénage aérodynamique arrière de mât de moteur d’aéronef
WO2021156562A1 (fr) Piece de turbomachine revetue ayant un substrat base nickel comprenant de l'hafnium
WO2022175325A1 (fr) Revêtement protecteur d'un substrat en alliage cuivreux et procédé correspondant
WO2022029392A1 (fr) Procede de preparation de surface compatible avec le revetement y/y' et le procede de depot sps
FR3053075A1 (fr) Piece de turbomachine revetue d'une barriere thermique et d'un revetement de protection contre les cmas et procede pour l'obtenir
FR2999611A1 (fr) Procede de fabrication d'un revetement et piece thermomecanique en superalliage comprenant un revetement obtenu selon ce procede

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)