EP4055201A1 - Piece d'aeronef en superalliage comprenant un canal de refroidissement - Google Patents

Piece d'aeronef en superalliage comprenant un canal de refroidissement

Info

Publication number
EP4055201A1
EP4055201A1 EP20816268.5A EP20816268A EP4055201A1 EP 4055201 A1 EP4055201 A1 EP 4055201A1 EP 20816268 A EP20816268 A EP 20816268A EP 4055201 A1 EP4055201 A1 EP 4055201A1
Authority
EP
European Patent Office
Prior art keywords
substrate
mass fraction
cavity
layer
superalloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20816268.5A
Other languages
German (de)
English (en)
Inventor
Amar Saboundji
Jérémy RAME
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran SA
Original Assignee
Safran SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran SA filed Critical Safran SA
Publication of EP4055201A1 publication Critical patent/EP4055201A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/06Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases
    • C23C10/08Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases only one element being diffused
    • C23C10/10Chromising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/30Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes using a layer of powder or paste on the surface
    • C23C10/32Chromising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/36Embedding in a powder mixture, i.e. pack cementation only one element being diffused
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/36Embedding in a powder mixture, i.e. pack cementation only one element being diffused
    • C23C10/38Chromising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/36Embedding in a powder mixture, i.e. pack cementation only one element being diffused
    • C23C10/38Chromising
    • C23C10/40Chromising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/36Embedding in a powder mixture, i.e. pack cementation only one element being diffused
    • C23C10/44Siliconising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/36Embedding in a powder mixture, i.e. pack cementation only one element being diffused
    • C23C10/44Siliconising
    • C23C10/46Siliconising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/52Embedding in a powder mixture, i.e. pack cementation more than one element being diffused in one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/58Embedding in a powder mixture, i.e. pack cementation more than one element being diffused in more than one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/60After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to an aircraft part, such as a turbine blade or a distributor blade.
  • the exhaust gases generated by the combustion chamber can reach high temperatures, for example greater than 1200 ° C, or even 1600 ° C.
  • the parts of the turbojet, in contact with these gases. exhaust, such as turbine blades for example, must thus be able to retain their mechanical properties at these high temperatures.
  • Superalloys are a family of high strength metal alloys that can work at temperatures relatively close to their melting points (typically 0.7 to 0.8 times their melting point).
  • a superalloy part always has an operating temperature limit above which the part creep is too great for the part to be usable.
  • a fluid such as a gas leaving the low pressure compressor, can be introduced into the cooling channel or channels. Its circulation then allows the room to be cooled.
  • the walls of the cooling channel (s) are sensitive to the environment. In particular, these walls can be oxidized and / or corroded during the use of the part, which reduces its time of use.
  • An aim of the invention is to provide a solution for manufacturing a turbine part comprising a cooling channel which is less sensitive to oxidation and or to corrosion than the cooling channels of the prior art.
  • a part comprising a substrate made of a nickel-based superalloy, the substrate having a first average mass fraction of one or more first elements chosen from hafnium, silicon and chromium, substrate comprising at least one cavity open in the room and preferably a cooling channel, the substrate comprising a surface layer at least partially forming the cavity, the surface layer having a second average mass fraction of the first element (s) strictly greater than the first average mass fraction.
  • the part further comprises a coating covering the surface layer, the coating having a mass fraction of the first element (s) greater than 50%, and preferably greater than 90 3 ⁇ 4,
  • the thickness I2 of the protective coating being at least greater than 50 nm
  • the first element is hafnium and the second mass fraction is between 0.4% and 4.5%
  • the first element is silicon
  • the second mass fraction is between 4% and 10%
  • the first element is chromium and the second mass fraction is between 0.2% and 5%
  • the substrate comprises rhenium and / or ruthenium and the average mass fraction of rhenium and / or ruthenium of the substrate is greater than or equal to 3%, and preferably greater than or equal to 4%,
  • the part is a turbine part.
  • Another aspect of the invention is an aircraft turbine comprising a part according to the invention.
  • Another aspect of the invention is an aircraft comprising a part according to the invention.
  • Another aspect of the invention is a method of manufacturing an aircraft part according to the invention, comprising at least the following steps:
  • the heat treatment is carried out in a vacuum chamber or in an enclosure comprising one or more inert gases, preferably at least one gas chosen from argon and helium,
  • the heat treatment step is carried out for one to eight hours, in an enclosure in which the temperature is controlled between 700 ° C and 1300 ° C and preferably between 900 ° C and 1250 ° C.
  • Another aspect of the invention is a method for cooling an aircraft part, in which the part is in accordance with the invention, the method comprising a step of injecting a cooling fluid into the cavity.
  • FIG. 1 schematically illustrates a section of an aircraft part, for example a turbine blade, or a distributor fin, comprising a cooling channel,
  • FIG. 2 schematically illustrates a method of manufacturing a part according to one embodiment of the invention
  • FIG. 3 schematically illustrates the wall of a cooling channel during the manufacture of a part according to an embodiment of the invention
  • FIG. 4 schematically illustrates the wall of a cooling channel during the manufacture of a part according to an embodiment of the invention
  • FIG. 5 schematically illustrates the wall of a cooling channel of a room according to one embodiment of the invention
  • FIG. 6 is a photomicrograph of a wall of a cooling channel during the manufacture of a part according to an embodiment of the invention
  • FIG. 7 is a photomicrograph of a wall of a cooling channel of a room according to one embodiment of the invention.
  • superalloy denotes an alloy exhibiting, at high temperature and at high pressure, very good resistance to oxidation, corrosion, creep and cyclic stresses (in particular mechanical or thermal).
  • superalloys find a particular application in the manufacture of parts used in aeronautics, for example turbine blades, because they constitute a family of high resistance alloys which can work at temperatures relatively close to their melting points (typically 0 , 7 to 0.8 times their melting temperatures).
  • a superalloy can have a two-phase microstructure comprising a first phase (called “y phase”) forming a matrix, and a second phase (called “y phase”) forming precipitates hardening in the matrix.
  • y phase a first phase
  • y phase a second phase
  • the coexistence of these two phases is referred to as "y-y phase”.
  • the "base” of the superalloy refers to the main metal component of the matrix. In the majority of cases, the superalloys include an iron, cobalt or nickel base, but also sometimes a titanium or aluminum base.
  • the base of the superalloy is preferably a nickel base.
  • Nickel-based superalloys have the advantage of offering a good compromise between resistance to oxidation, resistance to breakage at high temperature and weight, which justifies their use in the hottest parts of turbojets.
  • the phase y ' has an ordered L12 structure, derived from the face-centered cubic structure, consistent with the matrix, that is to say having an atomic mesh very close to the latter.
  • phase g ' has the remarkable property of having a mechanical resistance which increases with temperature up to approximately 800 ° C.
  • the very strong coherence between phases g and g ′ confers a very high mechanical resistance to hot nickel-based superalloys, which itself depends on the ratio g / g ′ and on the size of the hardening precipitates.
  • a superalloy is preferably rich in rhenium and / or ruthenium, that is to say that the average mass fraction of rhenium and ruthenium of the superalloy is greater than or equal to 3%, and preferably to 4%, making it possible to increase the creep resistance of superalloy parts compared to rhenium-free superalloy parts.
  • a superalloy is preferably poor in chromium on average, that is to say that the average mass fraction in the whole of the chromium superalloy is less than 5%, preferably less than 3%.
  • the chromium depletion during rhenium and / or ruthenium enrichment of the superalloy makes it possible to keep a stable allotropic structure of the superalloy, in particular a g-Y phase ’ ⁇
  • mass fraction refers to the ratio of the mass of an element or a group of elements to the total mass.
  • the term “protective coating” is understood to mean a layer covering the substrate and making it possible to protect it chemically and / or mechanically.
  • the protective coating preferably makes it possible to prevent corrosion and / or oxidation of the substrate.
  • the protective coating can preferably be a bonding layer between the substrate and a thermal protection layer.
  • open cavity of a room is meant a cavity connected to the outside of the room.
  • second vacuum is understood to mean a vacuum in which the atmosphere is controlled at a pressure of between 10 7 millibars and 10 3 millibars excluded.
  • primary vacuum is understood to mean a vacuum in which the atmosphere is controlled at a pressure of between 10 3 and 1 millibars.
  • an aircraft part 1 comprises a substrate 2 in monocrystalline superalloy.
  • the aircraft part is preferably a turbine part.
  • the monocrystalline superalloy is preferably a nickel-based superalloy, but can also be a cobalt-based superalloy, for example obtained by an equiaxial casting process or by directed solidification.
  • Substrate 2 preferably mainly has a g-g ’phase.
  • the substrate 2 can also comprise rhenium and / or ruthenium, the average mass fraction of rhenium and / or ruthenium being greater than or equal to 3%, and preferably greater than or equal to 4%, making it possible to increase the creep resistance of the superalloy part compared to superalloy parts without rhenium and / or ruthenium.
  • the substrate 2 preferably has a first average mass fraction of chromium in the whole of the weak substrate, that is to say less than 5 3 ⁇ 4.
  • the substrate exhibits mechanical properties of resistance to creep at high temperature which are greater than a substrate exhibiting a first mass fraction of chromium greater than 5%.
  • Table 1 describes examples of the composition of substrate 2, in average mass fraction of each element in the whole of substrate 2.
  • the substrate 2 forms at least one cavity 12 in the part 1.
  • the cavity 12 is a cooling channel 13 of the part 1.
  • the cooling channel 13 can have a fluid inlet. coolant and a coolant outlet. It is thus possible to introduce a cooling fluid, such as a gas from the low-pressure compressor, into the room's cooling channel, so as to reduce the temperature of the room during its use.
  • one aspect of the invention is a method for manufacturing an aircraft part.
  • Such a method comprises a step 201 of supplying a part comprising a substrate 2 as described above. Such a substrate 2 has then already undergone the steps of dissolving the eutectics and quenching.
  • the method comprises a step 202 of depositing, on at least part of the cavity 12, at least one layer 14 for treating a first element chosen from hafnium, silicon and chromium.
  • several layers 14, each layer 14 comprising a different element chosen from hafnium, silicon and chromium can be deposited on at least part of the cavity 12.
  • the thickness h of the layer 14 deposited during step 102 can be between 10 nm and 10 ⁇ m.
  • the thickness h of the deposited layer 14 is preferably between 50 nm and 500 nm.
  • the thickness h of the deposited layer 14 is preferably between 100 nm and 500 nm.
  • the thickness h of the layer 14 deposits and is preferably between 0.5 micrometers and 3 micrometers.
  • the deposition of the layer or layers 14 on the cavity 12 can be carried out by chemical vapor deposition (CVD) methods, such as PECVD, LPCVD, UHVCVD, APCVD, ALCVD, UHVCVD.
  • CVD chemical vapor deposition
  • the method comprises a step 203 of heat treatment of the substrate 2 and of the layer 14 so as to diffuse the first element (s) of the layer 14 in the substrate 2.
  • the first element (s) of the layer 14 diffuse in the substrate 2, so as to form a surface layer C1 in the substrate 2.
  • a second average mass fraction in the first element (s) ( s) in the surface layer C1 is strictly greater than the first average mass fraction in the first element in the substrate 2.
  • the substrate 2 comprises the surface layer C1, and is covered by a coating C2, resulting from the layer 14 deposited before the heat treatment step 203.
  • the coating C2 may only include the first element (s). However, it is possible that, during the heat treatment step 203, certain elements of the substrate 2 are introduced into the layer 14. Thus, the coating C2 has a mass fraction of the first element (s) greater than 50%, and preferably greater than at 90%.
  • the thickness I2 of the surface layer C1 is greater than 50 nm, ie the characteristic diffusion length of the first element (s).
  • the thickness I2 can in particular be greater than 100 nm, and preferably between 100 nm and 100 ⁇ m.
  • the coating C2 has a thickness I3 of between 50 nm and 100 ⁇ m.
  • the surface layer C1 has a second mass fraction of the first element suitable for forming a protective coating by oxidation of the first element.
  • the second mass fraction may preferably be between 0.4% and 4.5%.
  • the first element is silicon
  • the second mass fraction may preferably be between 4% and 10%.
  • the first element is chromium
  • the second mass fraction may preferably be between 0.2% and 5%.
  • the substrate 2 and the layer or layers 14 obtained during step 202 can for example be placed in an enclosure for the implementation of the thermal treatment step 203.
  • the enclosure can be placed under vacuum, or filled with one or more inert gases, such as argon and / or helium.
  • a secondary vacuum can be maintained inside the enclosure.
  • a primary vacuum can be controlled inside the enclosure, the primary vacuum being formed by at least one element chosen from among argon, helium and dihydrogen.
  • the heat treatment step 203 comprises a thermal rise sub-step in which the temperature in the enclosure is controlled so as to increase at a rate within a range of 5 to 100 ° C. per minute.
  • the heat treatment step is carried out for one to eight hours, in an enclosure in which the temperature is controlled between 700 ° C and 1300 ° C, and preferably between 900 ° C and 1250 ° C. Above 700 ° C, and preferably above 900 ° C, the first element or elements diffuse into the substrate 2.
  • the temperature is controlled below 1300 ° C, and preferably below 1250 ° C, from so as not to degrade the superalloy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

La présente invention concerne une pièce comprenant un substrat en superalliage base nickel, le substrat présentant une première fraction massique moyenne d'un ou plusieurs premiers éléments choisis parmi du hafnium, du silicium et du chrome, le substrat comprenant au moins une cavité ouverte dans la pièce et préférentiellement un canal de refroidissement, le substrat comprenant en outre une couche superficielle formant au moins en partie la cavité, la couche superficielle présentant une deuxième fraction massique moyenne du ou des premiers éléments strictement supérieure à la première fraction massique moyenne.

Description

PIECE D’AERONEF EN SUPERALLIAGE COMPRENANT UN CANAL DE
REFROIDISSEMENT DOMAINE DE L'INVENTION
L’invention concerne une pièce d’aéronef, telle qu’une aube de turbine ou une ailette de distributeur.
ETAT DE LA TECHNIQUE Dans un turboréacteur, les gaz d’échappement générés par la chambre de combustion peuvent atteindre des températures élevées, par exemple supérieure à 1200° C, voire 1600° C. Les pièces du turboréacteur, en contact avec ces gaz d’échappement, telles que les aubes de turbine par exemple, doivent ainsi être capables de conserver leurs propriétés mécaniques à ces températures élevées.
A cet effet, il est connu de fabriquer certaines pièces du turboréacteur en « superalliage ». Les superalliages constituent une famille d ’alliages métalliques à haute résistance pouvant travailler à des températures relativement proches de leurs points de fusion (typiquement 0,7 à 0,8 fois leurs températures de fusion).
Toutefois, une pièce en superalliage présente toujours une température limite de fonctionnement au-dessus de laquelle le fluage de la pièce est trop important pour que la pièce puisse être utilisée.
A cet effet, il est connu de fabriquer des pièces d ’aéronef comprenant un ou plusieurs canaux de refroidissement. Un fluide, tel qu’un gaz sortant du compresseur basse pression, peut-être introduit dans le ou les canaux de refroidissement. Sa circulation permet alors de refroidir la pièce. Toutefois, les parois du ou des canaux de refroidissement sont sensibles à l’environnement. En particulier, ces parois peuvent être oxydées et ou corrodées lors de l’utilisation de la pièce, ce qui diminue son temps d’utilisation.
EXPOSE DE L'INVENTION
Un but de l’invention est de proposer une solution pour fabriquer une pièce de turbine comprenant un canal de refroidissement moins sensible à l’oxydation et ou à la corrosion que les canaux de refroidissement de l’art antérieur.
Ce but est atteint dans le cadre de la présente invention grâce à une pièce comprenant un substrat en superalliage base nickel, le substrat présentant une première fraction massique moyenne d’un ou plusieurs premiers éléments choisis parmi du hafnium, du silicium et du chrome, le substrat comprenant au moins une cavité ouverte dans la pièce et préférentiellement un canal de refroidissement, le substrat comprenant une couche superficielle formant au moins en partie la cavité, la couche superficielle présentant une deuxième fraction massique moyenne du ou des premiers éléments strictement supérieure à la première fraction massique moyenne.
L'invention est avantageusement complétée par les caractéristiques suivantes, prises individuellement ou en l’une quelconque de leurs combinaisons techniquement possibles :
- la pièce comprend en outre un revêtement recouvrant la couche superficielle, le revêtement présentant une fraction massique du ou des premiers éléments supérieure à 50 %, et préférentiellement supérieure à 90 ¾,
- l’épaisseur I2 du revêtement de protection étant au moins supérieure à 50 nm, - le premier élément est du hafnium et la deuxième fraction massique est comprise entre 0,4 % et 4,5 %,
- le premier élément est du silicium, et la deuxième fraction massique est comprise entre 4 % et 10 %,
- le premier élément est du chrome et la deuxième fraction massique est comprise entre 0,2 % et 5 %,
- le substrat comprend du rhénium et/ou du ruthénium et la fraction massique moyenne en rhénium et/ou en ruthénium du substrat est supérieure ou égale à 3 %, et préférentiellement supérieure ou égale à 4 %,
- la pièce est une pièce de turbine.
Un autre aspect de l’invention est une turbine d’aéronef comprenant une pièce conforme à l’invention.
Un autre aspect de l’invention est un aéronef comprenant une pièce conforme à l’invention.
Un autre aspect de l’invention est un procédé de fabrication d’une pièce d’aéronef conforme à l’invention, comprenant au moins les étapes suivante :
- fourniture d’une pièce comprenant un substrat en superalliage base nickel, le substrat comprenant au moins une cavité ouverte dans la pièce,
- dépôt sur au moins une partie de la cavité d’au moins une couche d’un ou plusieurs premiers éléments choisis parmi du hafnium, du silicium et du chrome,
- traitement thermique du substrat et de la couche de sorte à faire diffuser le ou les premiers éléments de la couche dans le substrat.
L'invention est avantageusement complétée par les caractéristiques suivantes, prises individuellement ou en l’une quelconque de leurs combinaisons techniquement possibles :
- le traitement thermique est mis en oeuvre dans une enceinte sous vide ou dans une enceinte comprenant un ou des gaz inertes, préférentiellement au moins un gaz choisi parmi l’argon et l’hélium,
- l’étape de traitement thermique est mise en oeuvre pendant une à huit heures, dans une enceinte dans laquelle la température est contrôlée entre 700°C et 1300°C et préférentiellement entre 900°C et 1250°C. Un autre aspect de l’invention est un procédé de refroidissement d’une pièce d’aéronef, dans lequel la pièce est conforme à l’invention, le procédé comprenant une étape d’injection d’un fluide de refroidissement dans la cavité.
DESCRIPTION DES FIGURES
D’autres caractéristiques, buts et avantages de l’invention ressortiront de la description qui suit, qui est purement illustrative et non limitative, et qui doit être lue en regard des dessins annexés sur lesquels :
[Fig. 1 ] - la figure 1 illustre schématiquement une section d’une pièce d’aéronef, par exemple une aube de turbine, ou une ailette de distributeur, comprenant un canal de refroidissement,
[Fig. 2] - la figure 2 illustre schématiquement un procédé de fabrication d’une pièce selon un mode de réalisation de l’invention,
[Fig. 3] - la figure 3 illustre schématiquement la paroi d’un canal de refroidissement lors de la fabrication d’une pièce selon un mode de réalisation de l’invention,
[Fig. 4] - la figure 4 illustre schématiquement la paroi d’un canal de refroidissement lors de la fabrication d’une pièce selon un mode de réalisation de l’invention,
[Fig. 5] - la figure 5 illustre schématiquement la paroi d’un canal de refroidissement d’une pièce selon un mode de réalisation de l’invention,
[Fig. 6] - la figure 6 est une microphotographie d’une paroi d’un canal de refroidissement lors de la fabrication d’une pièce selon un mode de réalisation de l’invention,
[Fig. 7] - la figure 7 est une microphotographie d’une paroi d’un canal de refroidissement d’une pièce selon un mode de réalisation de l’invention.
Sur l’ensemble des figures, les éléments similaires portent des références identiques. DEFINITIONS
On désigne par le terme « superalliage » un alliage présentant, à haute température et à haute pression, une très bonne résistance à l'oxydation, à la corrosion, au fluage et à des contraintes cycliques (notamment mécaniques ou thermiques). Les superalliages trouvent une application particulière dans la fabrication de pièces utilisées dans l'aéronautique, par exemple des aubes de turbine, car ils constituent une famille d’alliages à haute résistance pouvant travailler à des températures relativement proches de leurs points de fusion (typiquement 0,7 à 0,8 fois leurs températures de fusion).
Un superalliage peut présenter une microstructure biphasique comprenant une première phase (appelée « phase y ») formant une matrice, et une deuxième phase (appelée « phase y’ ») formant des précipités durcissant dans la matrice. La coexistence de ces deux phases est désignée par « phase y-y’ ».
La « base » du superalliage désigne le composant métallique principal de la matrice. Dans la majorité des cas, les superalliages comprennent une base fer, cobalt, ou nickel, mais également parfois une base titane ou aluminium. La base du superalliage est préférentiellement une base nickel.
Les « superalliages base nickel » présentent l’avantage d’offrir un bon compromis entre résistance à l’oxydation, résistance à la rupture à haute température et poids, ce qui justifie leur emploi dans les parties les plus chaudes des turboréacteurs.
Les superalliages base nickel sont constitués d’une phase y (ou matrice) de type austénitique cubique à face centrée y-Ni, contenant éventuellement des additifs en solution solide de substitution a (Co, Cr, W, Mo), et d’une phase y’ (ou précipités) de type y’-N X, avec X = Al, Ti ou Ta. La phase y’ possède une structure L12 ordonnée, dérivée de la structure cubique à face centrée, cohérente avec la matrice, c’est-à-dire ayant une maille atomique très proche de celle-ci. De par son caractère ordonné, la phase g’ présente la propriété remarquable d’avoir une résistance mécanique qui augmente avec la température jusqu’à 800° C environ. La cohérence très forte entre les phases g et g’ confère une tenue mécanique à chaud très élevée des superalliages à base nickel, qui dépend elle-même du ratio g/g’ et de la taille des précipités durcissant.
Un superalliage est préférentiellement riche en rhénium et ou en ruthénium, c’est-à-dire que la fraction massique moyenne en rhénium et en ruthénium du superalliage est supérieure ou égale à 3 %, et préférentiellement à 4 %, permettant d ’augmenter la résistance au fluage des pièces en superalliage comparativement aux pièces en superalliage sans rhénium.
Un superalliage est préférentiellement pauvre en chrome en moyenne, c’est-à-dire que la fraction massique moyenne dans l’ensemble du superalliage en chrome est inférieure à 5 %, préférentiellement inférieure à 3 %. En effet, l’appauvrissement en chrome lors d’un enrichissement en rhénium et/ou en ruthénium du superalliage permet de manière garder une structure allotropique stable du superalliage, en particulier une phase g- Y’·
Les termes « fraction massique » désignent le rapport de la masse d’un élément ou d’un groupe d’éléments sur la masse totale.
On entend par « revêtement de protection » une couche recouvrant le substrat et permettant de le protéger chimiquement et/ou mécaniquement. Le revêtement de protection permet préférentiellement d’éviter la corrosion et/ou l’oxydation du substrat. Le revêtement de protection peut être préférentiellement une couche de liaison entre le substrat et une couche de protection thermique.
On entend par « cavité ouverte » d’une pièce une cavité reliée à l’extérieur de la pièce.
On entend par « vide secondaire » un vide dans lequel l’atmosphère est contrôlée à une pression comprise entre 10 7 millibars et 10 3 millibars exclu. On entend par « vide primaire » un vide dans lequel l’atmosphère est contrôlée à une pression comprise entre 10 3 et 1 millibars.
DESCRIPTION DETAILLEE DE L'INVENTION Substrat 2
En référence à la figure 1 , une pièce 1 d’aéronef comprend un substrat 2 en superalliage monocristallin. La pièce d’aéronef est préférentiellement une pièce de turbine. Le superalliage monocristallin est préférentiellement un superalliage base nickel, mais peut être également un superalliage base cobalt, par exemple obtenu par un procédé de coulée equiaxe ou par solidification dirigée. Le substrat 2 présente préférentiellement majoritairement une phase g-g’. Le substrat 2 peut également comprendre du rhénium et/ou du ruthénium, la fraction massique moyenne du rhénium et/ou du ruthénium étant supérieure ou égale à 3 %, et préférentiellement supérieure ou égale à 4 %, permettant d’augmenter la résistance au fluage de la pièce en superalliage comparativement aux pièces en superalliage sans rhénium et/ou ruthénium.
Le substrat 2 présente préférentiellement une première fraction massique moyenne en chrome dans l’ensemble du substrat faible, c’est-à-dire inférieure à 5 ¾. Ainsi, le substrat présente des propriétés mécaniques de résistance au fluage à haute température supérieures à un substrat présentant une première fraction massique en chrome supérieure à 5 %. Le tableau 1 décrit des exemples de composition du substrat 2, en fraction massique moyenne de chaque élément dans l’ensemble du substrat 2.
[Table 1]
Tableau 1 En référence à la figure 1 , le substrat 2 forme au moins une cavité 12 dans la pièce 1. Préférentiellement, la cavité 12 est un canal de refroidissement 13 de la pièce 1. Le canal de refroidissement 13 peut présenter une entrée de fluide de refroidissement et une sortie de fluide de refroidissement. Il est ainsi possible d’introduire un fluide de refroidissement, tel qu’un gaz issu du compresseur basse pression, dans le canal de refroidissement de la pièce, de manière à diminuer la température de la pièce lors de son utilisation.
Procédé de fabrication de la pièce 1 et de protection de la cavité 12 En référence à la figure 2, un aspect de l’invention est un procédé de fabrication d’une pièce d’aéronef. Un tel procédé comprend une étape 201 de fourniture d’une pièce comprenant un substrat 2 tel que décrit précédemment. Un tel substrat 2 a alors déjà subi les étapes de mise en solution des eutectiques et de trempe. En référence à la figure 3 et à la figure 4, le procédé comprend une étape 202 de dépôt, sur au moins une partie de la cavité 12, d’au moins une couche 14 de traitement d’un premier élément choisi parmi le hafnium, le silicium et le chrome. En référence à la figure 3, plusieurs couches 14, chaque couche 14 comprenant un élément différent choisi parmi le hafnium, le silicium et le chrome, peuvent être déposées sur au moins une partie de la cavité 12.
L’épaisseur h de la couche 14 déposée lors de l’étape de 102 peut être comprise entre 10 nm et 10 pm. Quand le premier élément est du hafnium, l’épaisseur h de la couche 14 déposée est préférentiellement comprise entre 50 nm et 500 nm. Quand le premier élément est du silicium, l’épaisseur h de la couche 14 déposée est préférentiellement comprise entre 100 nm et 500 nm. Quand le premier élément est du chrome, l’épaisseur h de la couche 14 dépôts et est préférentiellement comprise entre 0,5 micromètres et 3 micromètres.
Le dépôt de la ou des couches 14 sur la cavité 12 peut être mis en oeuvre par des méthodes de dépôts chimiques en phase vapeur (CVD), tels que PECVD, LPCVD, UHVCVD, APCVD, ALCVD, UHVCVD.
En référence à la figure 2, à la figure 5, à la figure 6 et à la figure 7, le procédé comprend une étape 203 de traitement thermique du substrat 2 et de la couche 14 de sorte à faire diffuser le ou les premiers éléments de la couche 14 dans le substrat 2. Ainsi, le ou les premiers éléments de la couche 14 diffusent dans le substrat 2, de manière à former une couche superficielle C1 dans le substrat 2. Une deuxième fraction massique moyenne en premier(s) élément(s) dans la couche superficielle C1 est strictement supérieure à la première fraction massique moyenne en premier élément dans le substrat 2. Ainsi, il est possible de protéger la cavité 12, et préférentiellement le ou les canaux de refroidissement 13, de l’oxydation et/ou de la corrosion, tout en maintenant une fraction massique moyenne en chrome, en Hafnium, et/ou en silicium assez suffisamment basse dans le substrat 2.
En référence à la figure 7, après l’étape 203, le substrat 2 comprend la couche superficielle C1 , et est recouvert par un revêtement C2, issu de la couche 14 déposée avant l’étape 203 de traitement thermique. Le revêtement C2 peut ne comprendre que du ou des premiers éléments. Toutefois, il est possible que, pendant l’étape 203 de traitement thermique, certains éléments du substrat 2 soient introduits dans la couche 14. Ainsi, le revêtement C2 présente une fraction massique du ou des premiers éléments supérieure à 50 %, et préférentiellement supérieure à 90 %. L’épaisseur I2 de la couche superficielle C1 est supérieure à 50 nm, soit à la longueur caractéristique de diffusion du ou des premiers éléments. L’épaisseur I2 peut être notamment supérieure à 100 nm, et préférentiellement comprise entre 100 nm et 100 pm. Le revêtement C2 présente une épaisseur I3 comprise entre 50 nm et 100 pm.
Préférentiellement, la couche superficielle C1 présente une deuxième fraction massique en premier élément adaptée à former un revêtement de protection par oxydation du premier élément. Lorsque le premier élément est du hafnium, la deuxième fraction massique peut être préférentiellement comprise entre 0,4 % et 4,5 %. Lorsque le premier élément est du silicium, la deuxième fraction massique peut être préférentiellement comprise entre 4 % et 10 %. Lorsque le premier élément est du chrome, la deuxième fraction massique peut être préférentiellement comprise entre 0,2 % et 5 %.
Le substrat 2 et la ou les couches 14 obtenus lors de l’étape 202 peuvent être par exemple disposés dans une enceinte pour la mise en oeuvre de l’étape 203 de traitement thermique. Lors de l’étape 203 de traitement thermique, l’enceinte peut être mise sous vide, ou remplie d’un ou plusieurs gaz inertes, tels que l’argon et/ou l’hélium. Préférentiellement, un vide secondaire peut être maintenu à l’intérieur de l’enceinte. Préférentiellement, un vide primaire peut être contrôlé à l’intérieur de l’enceinte, le vide primaire étant formé par au moins un élément choisi parmi de l’argon, de l’hélium et du dihydrogène. Ainsi, il est possible d’éviter l’oxydation de la surface du substrat 2 lors de l’étape 203 de traitement thermique. Préférentiellement, l’étape 203 de traitement thermique comprend une sous-étape de montée thermique dans laquelle la température dans l’enceinte est contrôlée de manière à augmenter à une vitesse comprise dans une gamme de 5 à 100 °C par minute. Préférentiellement, l’étape de traitement thermique est mise en oeuvre pendant une à huit heures, dans une enceinte dans laquelle la température est contrôlée entre 700°C et 1300°C, et préférentiellement entre 900 °C et 1250 °C. Au-dessus de 700 °C, et préférentiellement au-dessus de 900 °C, le ou les premiers éléments diffusent dans le substrat 2. La température est contrôlée en dessous de 1300 °C, et préférentiellement en dessous de 1250 °C, de manière à ne pas dégrader le superalliage.

Claims

REVENDICATIONS
1. Pièce (1 ) comprenant un substrat (2) en superalliage base nickel, le substrat (2) présentant une première fraction massique moyenne d’un ou plusieurs premiers éléments choisis parmi du hafnium, du silicium et du chrome, le substrat (2) comprenant au moins une cavité (12) ouverte dans la pièce (1 ) et préférentiellement un canal de refroidissement (13), la pièce étant caractérisée en ce que le substrat comprend une couche superficielle (C1 ) formant au moins en partie la cavité, la couche superficielle (C1 ) présentant une deuxième fraction massique moyenne du ou des premiers éléments strictement supérieure à la première fraction massique moyenne.
2. Pièce selon la revendication 1 , comprenant en outre un revêtement (C2), recouvrant la couche superficielle (C1 ), le revêtement (C2) présentant une fraction massique du ou des premiers éléments supérieure à 50 %, et préférentiellement supérieure à 90 %.
3. Pièce (1 ) selon la revendication 1 ou 2, dans laquelle l’épaisseur I2 du revêtement de protection étant au moins supérieure à 50 nm.
4. Pièce (1 ) selon l’une des revendications 1 à 3, dans laquelle le premier élément est du hafnium, et dans laquelle la deuxième fraction massique est comprise entre 0,4 % et 4,5 %.
5. Pièce (1 ) selon l’une des revendications 1 à 4, dans laquelle le premier élément est du silicium, et dans laquelle la deuxième fraction massique est comprise entre 4 % et 10 %.
6. Pièce (1 ) selon l’une des revendications 1 à 5, dans laquelle le premier élément est du chrome, et dans laquelle la deuxième fraction massique est comprise entre 0,2 % et 5 %.
7. Pièce (1 ) selon l’une des revendications 1 à 6, dans laquelle le substrat (2) comprend du rhénium et/ou du ruthénium, la fraction massique moyenne en rhénium et/ou en ruthénium du substrat étant supérieure ou égale à 3 %, et préférentiellement supérieure ou égale à 4 ¾.
8. Pièce (1 ) selon l’une des revendications 1 à 7, dans laquelle la pièce est une pièce de turbine.
9. Turbine d’aéronef comprenant une pièce conforme à l’une des revendications précédentes.
10. Aéronef comprenant une pièce conforme à l’une des revendications 1 à 5.
1 1 . Procédé de fabrication d’une pièce (1 ) d’aéronef conforme à la pièce de l’une des revendications 1 à 7, comprenant au moins les étapes suivante :
- fourniture d’une pièce comprenant un substrat (2) en superalliage base nickel, le substrat (2) comprenant au moins une cavité ouverte dans la pièce (1 ),
- dépôt sur au moins une partie de la cavité d’au moins une couche (14) d’un ou plusieurs premiers éléments choisis parmi du hafnium, du silicium et du chrome,
- traitement thermique du substrat (2) et de la couche (14) de sorte à faire diffuser le ou les premiers éléments de la couche (14) dans le substrat.
12. Procédé selon la revendication 11 , dans lequel le traitement thermique est mis en oeuvre dans une enceinte sous vide ou dans une enceinte comprenant un ou des gaz inertes, préférentiellement au moins un gaz choisi parmi l’argon et l’hélium.
13. Procédé selon l’une des revendications 11 à 12, dans lequel l’étape de traitement thermique est mise en oeuvre pendant une à huit heures, dans une enceinte dans laquelle la température est contrôlée entre 700° C et 1300°C et préférentiellement entre 900°C et 1250°C.
14. Procédé de refroidissement d’une pièce (1 ) d’aéronef, dans lequel la pièce (1 ) est conforme à l’une des revendications 1 à 8, le procédé comprenant une étape d’injection d’un fluide de refroidissement dans la cavité.
EP20816268.5A 2019-11-05 2020-11-05 Piece d'aeronef en superalliage comprenant un canal de refroidissement Pending EP4055201A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1912379A FR3102775B1 (fr) 2019-11-05 2019-11-05 Piece d'aeronef en superalliage comprenant un canal de refroidissement
PCT/FR2020/052002 WO2021089945A1 (fr) 2019-11-05 2020-11-05 Piece d'aeronef en superalliage comprenant un canal de refroidissement

Publications (1)

Publication Number Publication Date
EP4055201A1 true EP4055201A1 (fr) 2022-09-14

Family

ID=71452270

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20816268.5A Pending EP4055201A1 (fr) 2019-11-05 2020-11-05 Piece d'aeronef en superalliage comprenant un canal de refroidissement

Country Status (5)

Country Link
US (1) US20220356555A1 (fr)
EP (1) EP4055201A1 (fr)
CN (1) CN114667365A (fr)
FR (1) FR3102775B1 (fr)
WO (1) WO2021089945A1 (fr)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6273678B1 (en) * 1999-08-11 2001-08-14 General Electric Company Modified diffusion aluminide coating for internal surfaces of gas turbine components
US6933062B2 (en) * 2001-08-16 2005-08-23 General Electric Company Article having an improved platinum-aluminum-hafnium protective coating
US6921586B2 (en) * 2002-02-05 2005-07-26 General Electric Company Ni-Base superalloy having a coating system containing a diffusion barrier layer
WO2007008227A2 (fr) * 2004-08-18 2007-01-18 Iowa State University Research Foundation, Inc. Revetements et alliages massifs haute temperature, et alliages $g(g)-ni+$g(g)'-ni3al modifies par un metal du groupe pt resistants a la corrosion a chaud
US7364801B1 (en) * 2006-12-06 2008-04-29 General Electric Company Turbine component protected with environmental coating
US8262812B2 (en) * 2007-04-04 2012-09-11 General Electric Company Process for forming a chromium diffusion portion and articles made therefrom
US20090317287A1 (en) * 2008-06-24 2009-12-24 Honeywell International Inc. Single crystal nickel-based superalloy compositions, components, and manufacturing methods therefor
US20110256421A1 (en) * 2010-04-16 2011-10-20 United Technologies Corporation Metallic coating for single crystal alloys
FR2995807B1 (fr) * 2012-09-25 2015-10-09 Snecma Moule carapace a ecran thermique
FR3052464B1 (fr) * 2016-06-10 2018-05-18 Safran Procede de protection contre la corrosion et l'oxydation d'une piece en superalliage monocristallin a base de nickel exempt d'hafnium
FR3052463B1 (fr) * 2016-06-10 2020-05-08 Safran Procede de fabrication d'une piece en superalliage a base de nickel contenant de l'hafnium
FR3072717B1 (fr) * 2017-10-20 2019-10-11 Safran Piece de turbine en superalliage comprenant du rhenium et procede de fabrication associe
FR3090696B1 (fr) * 2018-12-21 2020-12-04 Safran Piece de turbine en superalliage comprenant du rhenium et/ou du ruthenium et procede de fabrication associe

Also Published As

Publication number Publication date
FR3102775A1 (fr) 2021-05-07
US20220356555A1 (en) 2022-11-10
CN114667365A (zh) 2022-06-24
FR3102775B1 (fr) 2022-04-22
WO2021089945A1 (fr) 2021-05-14

Similar Documents

Publication Publication Date Title
FR2474533A1 (fr) Piece mecanique resistant a la chaleur et procede de sa preparation
EP2601008B1 (fr) Poudre composite pour l'assemblage ou le rechargement par brasage-diffusion de pièces en superalliages
FR2932496A1 (fr) Procede de depot d'une barriere thermique
EP3469112B1 (fr) Procédé de protection contre la corrosion et l'oxydation d'une pièce en superalliage monocristallin à base de nickel exempt d'hafnium
EP3227468B1 (fr) Procédé de fabrication d'une pièce revêtue d'un revêtement protecteur
EP4055201A1 (fr) Piece d'aeronef en superalliage comprenant un canal de refroidissement
EP3601634B1 (fr) Piece de turbine en superalliage et procede de fabrication associe
EP3685018B1 (fr) Pièce de turbine en superalliage comprenant du rhénium et/ou du ruthénium et procédé de fabrication associé
EP3698020B1 (fr) Pièce de turbine en superalliage comprenant du rhénium et procédé de fabrication associé
WO2020128394A1 (fr) Pièce de turbine en superalliage comprenant du rhenium et/ou du ruthenium et procédé de fabrication associé
EP4041930B1 (fr) Piece d'aeronef en superalliage comprenant du rhenium et/ou du ruthenium et procede de fabrication associe
CA3040769A1 (fr) Piece comprenant un substrat en superalliage monocristallin a base de nickel et son procede de fabrication
WO2024023428A1 (fr) Procede d'application de revetement et aube de turbine avec revetement applique suivant ce procede
FR2924129A1 (fr) Procede pour realiser un revetement d'aluminiure de nickel modifie platine monophase
FR3107081A1 (fr) Piece de turbomachine en superalliage a teneur en hafnium optimisee
FR3096690A1 (fr) Procédé de protection contre la corrosion
FR3127144A1 (fr) Procédé de fabrication d’une pièce aéronautique bi-matériaux
FR3107080A1 (fr) Piece de turbomachine revetue ayant un substrat base nickel comprenant de l'hafnium
FR2966167A1 (fr) Procede de depot d'un revetement de protection a l'oxydation et a la corrosion a chaud sur un substrat en superalliage, revetement obtenu

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220603

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)