EP3899083A1 - Pièce de turbine en superalliage comprenant du rhenium et/ou du ruthenium et procédé de fabrication associé - Google Patents

Pièce de turbine en superalliage comprenant du rhenium et/ou du ruthenium et procédé de fabrication associé

Info

Publication number
EP3899083A1
EP3899083A1 EP19850726.1A EP19850726A EP3899083A1 EP 3899083 A1 EP3899083 A1 EP 3899083A1 EP 19850726 A EP19850726 A EP 19850726A EP 3899083 A1 EP3899083 A1 EP 3899083A1
Authority
EP
European Patent Office
Prior art keywords
substrate
layer
chromium
platinum
rhenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19850726.1A
Other languages
German (de)
English (en)
Inventor
Amar Saboundji
Alice AGIER
Virginie JAQUET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran SA
Original Assignee
Safran SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran SA filed Critical Safran SA
Publication of EP3899083A1 publication Critical patent/EP3899083A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/286Particular treatment of blades, e.g. to increase durability or resistance against corrosion or erosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/40Heat treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/95Preventing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/13Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
    • F05D2300/132Chromium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/14Noble metals, i.e. Ag, Au, platinum group metals
    • F05D2300/143Platinum group metals, i.e. Os, Ir, Pt, Ru, Rh, Pd
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/175Superalloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/607Monocrystallinity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/611Coating

Definitions

  • the invention relates to a turbine part, such as a turbine blade or a distributor vane for example, used in aeronautics.
  • the exhaust gases generated by the combustion chamber can reach high temperatures, above 1200 ° C, or even 1600 ° C.
  • the parts of the turbojet engine, in contact with these exhaust gases, such as the blades turbine, for example, must be able to maintain their mechanical properties at these high temperatures.
  • Superalloys are a family of high-strength metal alloys that can work at temperatures relatively close to their melting points (typically 0.7 to 0.8 times their melting temperatures).
  • rhenium and / or ruthenium into a superalloy to increase its capacity for mechanical resistance, in particular to creep, at high temperature.
  • the introduction of rhenium and / or ruthenium makes it possible to increase the temperature of use of these superalloys by about 100 ° C. compared to the first polycrystalline superalloys.
  • the increase in the average mass fraction of rhenium and / or ruthenium in the superalloy requires a reduction in the average mass fraction of chromium in the superalloy, so as to keep a stable allotropic structure of the superalloy, in particular a y-y 'phase.
  • the chromium in the superalloy promotes the formation of Cr2Ü3 oxide, having the same crystallographic structure as CI -AI2O3 and thus allowing the germination of a layer of CI -AI2O3.
  • This stable CI -AI2O3 layer helps protect the superalloy against oxidation.
  • the increase in the average mass fraction of rhenium and / or ruthenium consequently results in less resistance to oxidation of the superalloy compared to a superalloy devoid of rhenium and / or ruthenium.
  • Figures 1 to 3 schematically illustrate a section of a turbine part 1 of the prior art, for example a turbine blade 7 or a distributor fin.
  • the part 1 comprises a substrate 2 made of monocrystalline metal superalloy covered with a coating 10, for example with an environmental barrier comprising a thermal barrier.
  • the environmental barrier typically comprises a sublayer, preferably a metallic sublayer 3, a protective layer and a thermally insulating layer.
  • the sub-layer 3 covers the substrate 2 in metal superalloy.
  • the sublayer 3 is itself covered with the protective layer, formed by oxidation of the metallic sublayer 3.
  • the protective layer protects the superalloy substrate 2 from corrosion and / or oxidation.
  • the thermally insulating layer covers the protective layer.
  • the thermally insulating layer can be made of ceramic, for example of yttria zirconia.
  • the sublayer 3 is typically made from a simple nickel aluminide B-NiAl or modified platinum B- NiAlPt.
  • the average atomic aluminum fraction (between 35% and 45%) of the sublayer 3 is sufficient to exclusively form a protective layer of aluminum oxide (AI2O3) making it possible to protect the substrate 2 in superalloy against oxidation and corrosion.
  • Inter-diffusion can lead to the formation of primary and secondary reaction zones (called “SRZ” or Secondary Reaction Zone in English) in a part of the substrate 2 in contact with the sublayer 3.
  • FIG. 2 is a photomicrograph of the section of an underlay 3 covering a substrate 2 of a part 1.
  • the microphotography is carried out before the part is subjected to a series of thermal cycles making it possible to simulate the temperature conditions of the part 1 during its use.
  • Substrate 2 is rich in rhenium, that is to say that the average mass fraction of rhenium is greater than or equal to 0.04. It is known to use rhenium in the composition of superalloys to increase the creep resistance of superalloy parts.
  • the substrate 2 has a y-y ’phase, and in particular a g-Ni phase.
  • the sublayer 3 is of the 6- NiAlPt type.
  • the substrate 2 has a primary inter-diffusion zone 5, in the part of the substrate directly covered by the sublayer 3.
  • the substrate 2 also has a secondary inter-diffusion zone 6, directly covered by the primary inter-diffusion 5.
  • the scale bar corresponds to a length equal to 20 ⁇ m.
  • Figure 3 is a photomicrograph of the section of the sub-layer 3 covering the substrate 2 of the part 1.
  • the photomicrograph shows the sublayer 3 and the substrate 2 after having subjected them to the series of thermal cycles described above.
  • the sublayer 3 covers the substrate 2.
  • the substrate 2 has a primary inter-diffusion zone 5 and a secondary inter-diffusion zone 6.
  • the scale bar corresponds to a length equal to 20 ⁇ m.
  • An object of the invention is to provide a solution for effectively protecting a superalloy turbine part from oxidation and corrosion while increasing its service life, when in use, compared to known parts.
  • Another object of the invention is to limit or prevent the formation of secondary reaction zones while allowing an aluminum oxide to be formed during the use of the part.
  • Another object of the invention is to at least partially prevent the formation of cracks in the substrate of a part subjected to high temperature conditions, for example above 1000 ° C. as well as the peeling of the layer protective aluminum oxide.
  • a substrate in monocrystalline nickel-based superalloy comprising chromium and at least one element chosen from rhenium and ruthenium, the substrate having a y-y 'phase, an average mass fraction of rhenium and ruthenium greater than or equal to 4% and an average mass fraction of chromium less than or equal to 5% and preferably less than or equal to 3%,
  • sublayer covering at least part of a surface of the substrate, the part being characterized in that the sublayer has a y-y ’phase and an average atomic fraction:
  • the undercoat has exclusively a phase y-y '
  • the undercoat has an average atomic fraction of silicon lower at 2%
  • the sublayer has a thickness of between 5 ⁇ m and 50 ⁇ m, and preferably between 5 ⁇ m and 15 ⁇ m
  • a protective layer of aluminum oxide covers the sublayer
  • a thermally insulating layer of ceramic covers the protective layer in aluminum oxide.
  • the invention also relates to a turbine blade comprising a part described above.
  • the invention also relates to a method for manufacturing a turbine part, comprising a substrate in monocrystalline nickel-based superalloy, comprising chromium and at least one element chosen from rhenium and ruthenium, having a phase y-y ', a average mass fraction of rhenium and ruthenium greater than or equal to 4% and an average mass fraction of chromium less than or equal to 5% and preferably less than or equal to 3%, an undercoat covering at least part of a surface of the substrate, the sublayer (4) having a phase y-y 'and an average atomic fraction: in chromium between 5% and 10%, in aluminum between 10% and 20%, in platinum between 1 5% and 25%, the method comprising at least the steps consisting in: a) depositing an enrichment layer on the substrate, the enrichment layer having at least an average atomic fraction of platinum greater than 90% and an average atomic fraction of chromium co between 3% and 10%, b) heat treating the assembly formed by the substrate and the enrich
  • step a) of depositing an enrichment layer at least one layer of chromium and one layer of platinum are deposited separately, the chromium layer or layers having a total thickness of between 200 nm and 2 ⁇ m and the platinum layer or layers having a total thickness of between 3 ⁇ m and 10 ⁇ m, during step a) of depositing an enrichment layer, chromium and platinum are deposited simultaneously, during step b ), the assembly formed by the substrate and the enrichment layer is heat treated at a temperature above 1000 ° C. for more than one hour, preferably for more than
  • the deposition of the enrichment layer is carried out by a method chosen from a physical vapor deposition, thermal spraying, evaporation by electron gun, pulsed laser ablation and sputtering.
  • FIG. 1 schematically illustrates a section of a turbine part according to the state of the art, for example a turbine blade or a distributor fin.
  • Figure 2 is a scanning electron micrograph of the microstructure of a substrate and an underlay of the turbine part, before the part has been subjected to a series of thermal cycles.
  • FIG. 3 is a scanning electron micrograph of the microstructure of a substrate and an undercoat of the turbine part, after the part has been subjected to a series of thermal cycles.
  • Figure 4 schematically illustrates a method of manufacturing a part comprising a substrate and an undercoat, in accordance with an embodiment of the invention.
  • Figure 5 is a scanning electron micrograph of a substrate and an undercoat of the part, before the part has been subjected to a series of thermal cycles.
  • Figure 6 is a scanning electron micrograph of a substrate and an undercoat of the part, before the part has been subjected to a series of thermal cycles.
  • superalloy designates an alloy having, at high temperature and high pressure, very good resistance to oxidation, corrosion, creep and to cyclic stresses (in particular mechanical or thermal).
  • superalloys find a particular application in the manufacture of parts used in aeronautics, for example turbine blades, because they constitute a family of high resistance alloys which can work at temperatures relatively close to their melting points (typically 0 , 7 to 0.8 times their melting temperatures).
  • a superalloy may have a biphasic microstructure comprising a first phase (called phase y) forming a matrix, and a second phase (called phase y ’) forming precipitates hardening in the matrix.
  • phase y a first phase
  • phase y a second phase
  • the coexistence of these two phases is designated by phase y- y ’.
  • the base of the superalloy designates the main metal component of the matrix. In the majority of cases, the superalloys comprise an iron, cobalt or nickel base, but also sometimes a titanium or aluminum base.
  • the base of the superalloy is preferably a nickel base.
  • the nickel-based superalloys have the advantage of offering a good compromise between resistance to oxidation, high tensile strength temperature and weight, which justifies their use in the hottest parts of turbojets.
  • Phase g ’ has an ordered L12 structure, derived from the face-centered cubic structure, consistent with the matrix, that is to say having an atomic mesh very close to it.
  • phase g Due to its orderly nature, phase g ’has the remarkable property of having a mechanical resistance which increases with temperature up to approximately 800 ° C.
  • a superalloy is, in all of the embodiments of the invention, rich in rhenium and or in ruthenium, that is to say that the average mass fraction of rhenium and in ruthenium of the superalloy is greater than or equal to 4 3 ⁇ 4, making it possible to increase the creep resistance of superalloy parts compared to superalloy parts without rhenium.
  • a superalloy is also, in all of the embodiments of the invention, low in chromium on average, that is to say that the average mass fraction in the whole of the superalloy in chromium is less than 0.05 , preferably less than 0.03.
  • the depletion of chromium during enrichment in rhenium and / or ruthenium of the superalloy makes it possible to keep a stable allotropic structure of the superalloy, in particular a g-g ’phase.
  • atomic fraction refers to the molar fraction, that is, the ratio of the amount of material in an element or group of elements to the total amount.
  • mass fraction refers to the ratio of the mass of an element or group of elements to the total mass.
  • FIG. 4 illustrates a method of manufacturing a part 1, comprising a substrate 2 and a sublayer 4.
  • the substrate 2 used is of the CMSX-4 plus type (registered trademark) and has the chemical composition, in average atomic fraction , described in Table 1.
  • an enrichment layer 1 1 is deposited on the substrate 2.
  • the enrichment layer 1 1 has at least an average atomic fraction of platinum greater than 90% and an average atomic fraction of chromium between 3% and 10%.
  • the enrichment layer 1 1 comprises at least chromium and platinum, and preferably chromium, platinum, hafnium and silicon.
  • the enrichment layer 1 1 does not include nickel. The different elements of the enrichment layer 1 1 can be combined.
  • the various elements of the enrichment layer 1 1 can be deposited simultaneously.
  • the enrichment layer 11 may also include several superimposed layers: each element can be deposited separately.
  • at least one layer of platinum and at least one layer of chromium can be deposited separately.
  • the chromium layer or layers have a total thickness of between 200 nm and 2 ⁇ m and the platinum layer or layers having a total thickness of between 3 ⁇ m and 10 ⁇ m.
  • the quantity of metals diffused during the process according to an embodiment of the invention is optimized.
  • the deposition of the layer or layers forming the enrichment layer 1 1 can be carried out under vacuum, for example by vapor phase (PVD process, acronym of the English term "Physical Vapor Deposition”).
  • PVD process acronym of the English term "Physical Vapor Deposition”
  • Different methods of PVD can be used for the manufacture of the enrichment layer 1 1, such as sputtering, electron gun evaporation, laser ablation and physical vapor deposition assisted by electron beam.
  • the enrichment layer 11 can also be deposited by thermal spraying.
  • the assembly formed by the substrate 2 and the enrichment layer 11 is heat treated, so that the enrichment layer 11 diffuses at least partially into the substrate 2.
  • a sublayer 4 is formed on the surface of the substrate 2.
  • the heat treatment is preferably carried out for more than one hour at a temperature between 1000 ° C and 1200 ° C, preferably for more than two hours at a temperature between 1000 ° C and 1200 ° C, and even more preferably substantially four hours at a temperature between 1050 ° C and 1150 ° C.
  • a sufficient quantity of platinum and chromium is deposited during step 401, so that, after step 402 of heat treatment, the average atomic fraction of platinum in the sublayer 4 is between 15% and 25%, and so that the average atomic fraction of chromium in the sublayer 4 is greater than 5% and preferably between 5% and 20%.
  • the amount of platinum and chromium deposited in the enrichment layer 11 is therefore higher the lower the atomic molar fraction of chromium and platinum in the substrate 2, which is typically the case for an enriched substrate 2 rhenium and / or ruthenium.
  • the thickness of the enrichment layer 11 is preferably between 100 nm and 20 ⁇ m.
  • FIG. 5 is a scanning electron microscopy photograph of the microstructure of a substrate 2 and a sublayer 4 of a part 1.
  • the sublayer 4 is produced by the process illustrated in FIG. 4, in which is deposited an enrichment layer 11 comprising only chromium and platinum, during step 401 of the process.
  • the scale bar of FIG. 5 corresponds to a length equal to 20 ⁇ m.
  • the sublayer 4 generally has a phase yy 'and an average atomic fraction of chromium greater than 5%, preferably between 5% and 20%, aluminum between 10% and 20%, platinum between 15% and 25%.
  • sublayer 4 has an average atomic fraction of chromium substantially equal to 5.8%, an average atomic fraction of aluminum substantially equal to 1 1%, an average atomic fraction of platinum substantially equal to 21%, an atomic fraction hafnium average less than 0.5% and an average silicon atomic fraction less than 1%.
  • the sub-layer 4 preferably has exclusively a y-y 'phase. Indeed, the introduction of elements into the substrate 2 by the enrichment method described above makes it possible not to cause phase transition of the substrate 2, and thus to avoid mechanical stresses in the substrate 2 which could cause the appearance of cracks 8.
  • a substantially horizontal line divides the sublayer 4 into two superimposed parts: this line corresponds to the limit between the substrate 2 and the enrichment layer 11 before the heat treatment step 402 during the manufacture of a part 1.
  • the thickness of the sublayer 4 is typically between 1 ⁇ m and 100 ⁇ m, and preferably between 5 ⁇ m and 50 ⁇ m.
  • the average atomic fraction of chromium in sublayer 4 makes it possible to promote the formation of a-AhCh when the part is used under working conditions.
  • FIG. 6 is a scanning electron micrograph photograph of a part 1 comprising the substrate 2 and the sublayer 4, after the prolonged heat treatment. During the prolonged heat treatment, the part 1 is placed in air for 100 hours at 1050 ° C. and then for 10 hours at 1150 ° C. No crack 8 is detectable in the substrate 2 after the prolonged heat treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Physical Vapour Deposition (AREA)
  • Composite Materials (AREA)

Abstract

La présente invention concerne une pièce de turbine, comprenant un substrat en superalliage base nickel monocristallin, comprenant du chrome et au moins un élément choisi parmi le rhénium et le ruthénium, le substrat présentant une phase γ-γ', une fraction massique moyenne en rhénium et en ruthénium supérieure ou égale à 4% et une fraction massique moyenne en chrome inférieure ou égale à 5% et préférentiellement inférieure ou égale à 3%, une sous-couche recouvrant au moins une partie d'une surface du substrat, caractérisée en ce quela sous-couche présente une phase γ-γ' et une fraction atomique moyenne en chrome supérieure à 5%, en aluminium comprise entre 10% et 20%, et en platine comprise entre 15% et 25%.

Description

PIECE DE TURBINE EN SUPERALLIAGE COMPRENANT DU RHENIUM ET/OU DU RUTHENIUM ET PROCEDE DE FABRICATION ASSOCIE
DOMAINE DE L'INVENTION L’invention concerne une pièce de turbine, telle qu’une aube de turbine ou une ailette de distributeur par exemple, utilisée dans l’aéronautique.
ETAT DE LA TECHNIQUE
Dans un turboréacteur, les gaz d’échappement générés par la chambre de combustion peuvent atteindre des températures élevées, supérieure à 1200° C, voire 1600° C. Les pièces du turboréacteur, en contact avec ces gaz d’échappement, telles que les aubes de turbine par exemple, doivent ainsi être capables de conserver leurs propriétés mécaniques à ces températures élevées.
A cet effet, il est connu de fabriquer certaines pièces du turboréacteur en « superalliage ». Les superalliages constituent une famille d’alliages métalliques à haute résistance pouvant travailler à des températures relativement proches de leurs points de fusion (typiquement 0,7 à 0,8 fois leurs températures de fusion).
Il est connu d’introduire du rhénium et/ou du ruthénium dans un superalliage pour augmenter sa capacité de résistance mécanique, en particulier au fluage, à haute température. En particulier, l’introduction de rhénium et/ou de ruthénium permet d’augmenter la température d’utilisation de ces superalliages d’environ 100° C par rapport aux premiers superalliages polycristallins.
Toutefois, l’augmentation de la fraction massique moyenne de rhénium et/ou de ruthénium du superalliage nécessite une réduction de la fraction massique moyenne de chrome du superalliage, de manière garder une structure allotropique stable du superalliage, en particulier une phase y-y’. Or le chrome dans le superalliage favorise la formation d’oxyde Cr2Ü3, ayant la même structure cristallographique que CI -AI2O3 et ainsi permettant la germination d’une couche de CI -AI2O3. Cette couche de CI -AI2O3 stable contribue à protéger le superalliage contre l’oxydation. L’augmentation de la fraction massique moyenne de rhénium et/ou de ruthénium entraîne par conséquent une résistance moindre à l’oxydation du superalliage comparativement à un superalliage dépourvu de rhénium et/ou de ruthénium.
Afin de renforcer la résistance thermique de ces superalliages et de les protéger contre l’oxydation et la corrosion, il est également connu de les recouvrir d’une barrière thermique.
Les figures 1 à 3 illustrent schématiquement une section d’une pièce 1 de turbine de l’art antérieur, par exemple une aube 7 de turbine ou une ailette de distributeur. La pièce 1 comprend un substrat 2 en superalliage métallique monocristallin recouvert d’un revêtement 10, par exemple d’une barrière environnementale comprenant une barrière thermique.
La barrière environnementale comprend typiquement une sous-couche, préférentiellement une sous-couche 3 métallique, une couche protectrice et une couche thermiquement isolante. La sous-couche 3 recouvre le substrat 2 en superalliage métallique. La sous-couche 3 est elle-même recouverte de la couche protectrice, formée par oxydation de la sous-couche 3 métallique. La couche protectrice permet de protéger le substrat 2 en superalliage de la corrosion et/ou de l’oxydation. La couche thermiquement isolante recouvre la couche protectrice. La couche thermiquement isolante peut être en céramique, par exemple en zircone yttriée.
La sous-couche 3 est typiquement fabriquée à base d’aluminure de nickel simple B-NiAl ou modifié platine B- NiAlPt. La fraction atomique moyenne en aluminium (comprise entre 35 % et 45 %) de la sous-couche 3 est suffisante pour former exclusivement une couche protectrice d’oxyde d’aluminium (AI2O3 ) permettant de protéger le substrat 2 en superalliage contre l’oxydation et la corrosion.
Toutefois, lorsque la pièce est soumise à de hautes températures, la différence des concentrations en nickel, et surtout en aluminium, entre le substrat 2 en superalliage et la sous-couche 3 métallique entraîne une diffusion des différents éléments, en particulier du nickel compris dans le substrat vers la sous-couche métallique, et de l’aluminium compris dans la sous-couche métallique vers le superalliage. Ce phénomène est appelé « inter-diffusion ». L’inter-diffusion peut entraîner la formation de zones de réaction primaires et secondaires (appelées « SRZ » ou Secondary Reaction Zone en anglais) dans une partie du substrat 2 en contact avec la sous-couche 3.
La figure 2 est une microphotographie de la section d’une sous-couche 3 recouvrant un substrat 2 d’une pièce 1 . La microphotographie est réalisée avant que la pièce ne soit soumise à une série de cycles thermiques permettant de simuler les conditions en température de la pièce 1 lors de son utilisation. Le substrat 2 est riche en rhénium, c’est-à-dire que la fraction massique moyenne en rhénium est supérieure ou égale à 0,04. Il est connu d’utiliser le rhénium dans la composition des superalliages pour augmenter la résistance au fluage des pièces en superalliage. Typiquement, le substrat 2 présente une phase y-y’, et en particulier une phase g-Ni. La sous-couche 3 est de type 6- NiAlPt. Le substrat 2 présente une zone d’inter-diffusion primaire 5, dans la partie du substrat directement recouverte par la sous-couche 3. Le substrat 2 présente également une zone d’inter-diffusion secondaire 6, directement recouverte par la zone d’inter-diffusion primaire 5. La barre d’échelle correspond à une longueur égale à 20 pm.
La figure 3 est une microphotographie de la section de la sous-couche 3 recouvrant le substrat 2 de la pièce 1 . La microphotographie présente la sous- couche 3 et le substrat 2 après les avoir soumis à la série de cycles thermiques décrite précédemment. La sous-couche 3 recouvre le substrat 2. Le substrat 2 présente une zone d’inter-diffusion primaire 5 et une zone d’inter-diffusion secondaire 6. La barre d’échelle correspond à une longueur égale à 20 pm.
Les phénomènes d’inter-diffusion entraînent un appauvrissement prématuré de la sous-couche en aluminium, ce qui favorise des transformations de phases dans la sous-couche (B-NiAl y’-NhAl, transformation martensitique). Ces transformations modifient la structure allotropique de la sous-couche 3 et/ou des zones d’inter-diffusion, et y génèrent des fissures 8, favorisant l’écaillage (ou rumpling en anglais) de la couche protectrice d’oxyde d’aluminium.
Ainsi, les inter-diffusions entre le substrat 2 en superalliage et la sous-couche 3 peuvent avoir des conséquences néfastes sur la durée de vie de la pièce en superalliage. EXPOSE DE L'INVENTION
Un but de l’invention est de proposer une solution pour protéger efficacement une pièce de turbine en superalliage de l’oxydation et de la corrosion tout en augmentant sa durée de vie, lors de son utilisation, par rapport aux pièces connues.
Un autre but de l’invention est de limiter ou d’empêcher la formation de zones de réaction secondaires tout en permettant à un oxyde l’aluminium d’être formé lors de l’utilisation de la pièce.
Enfin, un autre but de l’invention est d’empêcher au moins partiellement la formation de fissures dans le substrat d’une pièce soumise à des conditions de températures élevées, par exemple supérieures à 1000° C ainsi que l’écaillage de la couche protectrice en oxyde d’aluminium.
Ces buts sont atteints dans le cadre de la présente invention grâce à une pièce de turbine, comprenant :
- un substrat en superalliage base nickel monocristallin, comprenant du chrome et au moins un élément choisi parmi le rhénium et le ruthénium, le substrat présentant une phase y-y’, une fraction massique moyenne en rhénium et en ruthénium supérieure ou égale à 4 % et une fraction massique moyenne en chrome inférieure ou égale à 5 % et préférentiellement inférieure ou égale à 3 %,
- une sous-couche recouvrant au moins une partie d’une surface du substrat, la pièce étant caractérisée en ce que la sous-couche présente une phase y-y’ et une fraction atomique moyenne :
- en chrome comprise entre 5 % et 10 %,
- en aluminium comprise entre 10 % et 20 %, et
- en platine comprise entre 1 5 % et 25 %.
L'invention est avantageusement complétée par les caractéristiques suivantes, prises individuellement ou en l’une quelconque de leurs combinaisons techniquement possibles : la sous-couche présente exclusivement une phase y-y’, la sous-couche présente une fraction atomique moyenne en silicium inférieure à 2 %, la sous-couche présente une épaisseur comprise entre 5 pm et 50 pm, et préférentiellement comprise entre 5 pm et 15 pm, une couche protectrice en oxyde d’aluminium recouvre la sous-couche, une couche thermiquement isolante en céramique recouvre la couche protectrice en oxyde d’aluminium.
L’invention concerne également une aube de turbine comprenant une pièce décrite précédemment.
L’invention concerne également un procédé de fabrication d’une pièce de turbine, comprenant un substrat en superalliage base nickel monocristallin, comprenant du chrome et au moins un élément choisi parmi le rhénium et le ruthénium, présentant une phase y-y’, une fraction massique moyenne en rhénium et en ruthénium supérieure ou égale à 4 % et une fraction massique moyenne en chrome inférieure ou égale à 5 % et préférentiellement inférieure ou égale à 3 %, une sous-couche recouvrant au moins une partie d’une surface du substrat, la sous-couche (4) présentant une phase y-y’ et une fraction atomique moyenne : en chrome comprise entre 5 % et 10 %, en aluminium comprise entre 10 % et 20 %, en platine comprise entre 1 5 % et 25 %, le procédé comprenant au moins les étapes consistant à : a) déposer une couche d’enrichissement sur le substrat, la couche d’enrichissement présentant au moins une fraction atomique moyenne en platine supérieure à 90 % et une fraction atomique moyenne en chrome comprise entre 3 % et 10 %, b) traiter thermiquement l’ensemble formé par le substrat et la couche d’enrichissement de manière à ce que la couche d’enrichissement diffuse au moins partiellement dans le substrat.
L'invention est avantageusement complétée par les caractéristiques suivantes, prises individuellement ou en l’une quelconque de leurs combinaisons techniquement possibles : lors de l’étape a) de dépôt d’une couche d’enrichissement, on dépose séparément au moins une couche de chrome et une couche de platine, la ou les couches de chrome présentant une épaisseur totale comprise entre 200 nm et 2 pm et la ou les couches de platine présentant une épaisseur totale comprise entre 3 pm et 10 pm, lors de l’étape a) de dépôt d’une couche d’enrichissement, on dépose simultanément du chrome et du platine, lors de l’étape b), on traite thermiquement l’ensemble formé par le substrat et la couche d’enrichissement à une température supérieure à 1000° C pendant plus d’une heure, préférentiellement pendant plus de
2 heures, le dépôt de la couche d’enrichissement est mis en oeuvre par une méthode choisie parmi un dépôt physique en phase vapeur, une projection thermique, une évaporation par canon à électron, une ablation laser pulsée et une pulvérisation cathodique.
DESCRIPTION DES FIGURES
D’autres caractéristiques, buts et avantages de l’invention ressortiront de la description qui suit, qui est purement illustrative et non limitative, et qui doit être lue en regard des dessins annexés sur lesquels :
[Fig. 1 ] La figure 1 , déjà commentée, illustre schématiquement une section d’une pièce de turbine conforme à l’état de la technique, par exemple une aube de turbine ou une ailette de distributeur.
[Fig. 2] La figure 2 est une photographie en microscopie électronique à balayage de la microstructure d’un substrat et d’une sous-couche de la pièce de turbine, avant que la pièce ait été soumise à une série de cycles thermiques.
[Fig. 3] La figure 3 est une photographie en microscopie électronique à balayage de la microstructure d’un substrat et d’une sous-couche de la pièce de turbine, après que la pièce ait été soumise à une série de cycles thermiques. [Fig. 4] La figure 4 illustre schématiquement un procédé de fabrication d’une pièce comprenant un substrat et une sous-couche, conforme à un mode de réalisation de l’invention.
[Fig. 5] La figure 5 est une photographie en microscopie électronique à balayage d’un substrat et d’une sous-couche de la pièce, avant que la pièce ait été soumise à une série de cycles thermiques.
[Fig. 6] La figure 6 est une photographie en microscopie électronique à balayage d’un substrat et d’une sous-couche de la pièce, avant que la pièce ait été soumise à une série de cycles thermiques.
Sur l’ensemble des figures, les éléments similaires portent des références identiques.
DEFINITIONS
On désigne par le terme superalliage un alliage présentant, à haute température et à haute pression, une très bonne résistance à l'oxydation, à la corrosion, au fluage et à des contraintes cycliques (notamment mécaniques ou thermiques). Les superalliages trouvent une application particulière dans la fabrication de pièces utilisées dans l'aéronautique, par exemple des aubes de turbine, car ils constituent une famille d’alliages à haute résistance pouvant travailler à des températures relativement proches de leurs points de fusion (typiquement 0,7 à 0,8 fois leurs températures de fusion).
Un superalliage peut présenter une microstructure biphasique comprenant une première phase (appelée phase y ) formant une matrice, et une deuxième phase (appelée phase y’ ) formant des précipités durcissant dans la matrice. La coexistence de ces deux phases est désignée par phase y- y’.
La base du superalliage désigne le composant métallique principal de la matrice. Dans la majorité des cas, les superalliages comprennent une base fer, cobalt, ou nickel, mais également parfois une base titane ou aluminium. La base du superalliage est préférentiellement une base nickel.
Les superalliages base nickel présentent l’avantage d’offrir un bon compromis entre résistance à l’oxydation, résistance à la rupture à haute température et poids, ce qui justifie leur emploi dans les parties les plus chaudes des turboréacteurs.
Les superalliages base nickel sont constitués d’une phase g (ou matrice) de type austénitique cubique à face centrée g-Ni, contenant éventuellement des additifs en solution solide de substitution a (Co, Cr, W, Mo), et d’une phase g’ (ou précipités) de type g'-Ni^C, avec X = Al, Ti ou Ta. La phase g’ possède une structure L12 ordonnée, dérivée de la structure cubique à face centrée, cohérente avec la matrice, c’est-à-dire ayant une maille atomique très proche de celle-ci.
De par son caractère ordonné, la phase g’ présente la propriété remarquable d’avoir une résistance mécanique qui augmente avec la température jusqu’à 800° C environ. La cohérence très forte entre les phases g et g’ confère une tenue mécanique à chaud très élevée des superalliages à base nickel, qui dépend elle-même du ratio g/g’ et de la taille des précipités durcissant.
Un superalliage est, dans l’ensemble des modes de réalisation de l’invention, riche en rhénium et ou en ruthénium, c’est-à-dire que la fraction massique moyenne en rhénium et en ruthénium du superalliage est supérieure ou égale à 4 ¾, permettant d’augmenter la résistance au fluage des pièces en superalliage comparativement aux pièces en superalliage sans rhénium. Un superalliage est également, dans l’ensemble des modes de réalisation de l’invention, pauvre en chrome en moyenne, c’est-à-dire que la fraction massique moyenne dans l’ensemble du superalliage en chrome est inférieure à 0,05, préférentiellement inférieure à 0,03. En effet, l’appauvrissement en chrome lors d’un enrichissement en rhénium et/ou en ruthénium du superalliage permet de manière garder une structure allotropique stable du superalliage, en particulier une phase g-g’.
Les termes « fraction atomique » désignent la fraction molaire, c’est-à-dire le rapport entre la quantité de matière d’un élément ou d’un groupe d’élément sur la quantité totale.
Les termes « fraction massique » désignent le rapport de la masse d’un élément ou d’un groupe d’éléments sur la masse totale. DESCRIPTION DETAILLEE DE L'INVENTION
La figure 4 illustre un procédé de fabrication d’une pièce 1 , comprenant un substrat 2 et une sous-couche 4. Le substrat 2 utilisé est du type CMSX-4 plus (marque déposée) et présente la composition chimique, en fraction atomique moyenne, décrite dans le tableau 1 .
[Tableaux 1 ]
Lors d’une première étape 401 du procédé, on dépose une couche d’enrichissement 1 1 sur le substrat 2. La couche d’enrichissement 1 1 présente au moins une fraction atomique moyenne en platine supérieure à 90 % et une fraction atomique moyenne en chrome comprise entre 3 % et 10 %. La couche d’enrichissement 1 1 comprend au moins du chrome et du platine, et préférentiellement du chrome, du platine, du hafnium et du silicium. Préférentiellement, la couche d’enrichissement 1 1 ne comprend pas de nickel. Les différents éléments de la couche d’enrichissement 1 1 peuvent être alliés.
Les différents éléments de la couche d’enrichissement 1 1 peuvent être déposés simultanément. La couche d’enrichissement 1 1 peut également comprendre plusieurs couches superposées : chaque élément peut être déposé séparément. En particulier, on peut déposer séparément au moins une couche de platine et au moins une couche de chrome. Dans ce cas, la ou les couches de chrome présentent une épaisseur totale comprise entre 200 nm et 2 pm et la ou les couches de platine présentant une épaisseur totale comprise entre 3 pm et 10 pm. Ainsi, la quantité de métaux diffusés lors du procédé selon un mode de réalisation de l’invention est optimisée.
Le dépôt de la ou des couches formant la couche d’enrichissement 1 1 peut être réalisé sous vide, par exemple par en phase vapeur (procédé de PVD, acronyme du terme anglais « Physical Vapor Déposition »). Différentes méthodes de PVD peuvent être utilisées pour la fabrication de la couche d’enrichissement 1 1 , telles que la pulvérisation cathodique, l’évaporation par canon à électron, l’ablation laser et le dépôt physique en phase vapeur assisté par faisceau d’électrons. La couche d’enrichissement 11 peut également être déposée par projection thermique.
Lors d’une deuxième étape 402 du procédé, on traite thermiquement l’ensemble formé par le substrat 2 et la couche d’enrichissement 11 , de manière à ce que la couche d’enrichissement 11 diffuse au moins partiellement dans le substrat 2. Ainsi, une sous-couche 4 est formée à la surface du substrat 2. Le traitement thermique est préférentiellement réalisé pendant plus d’une heure à une température comprise entre 1000° C et 1200° C, préférentiellement pendant plus de deux heures à une température comprise entre 1000° C et 1200° C, et encore plus préférentiellement sensiblement quatre heures à une température comprise entre 1050° C et 1150° C.
De manière générale, on dépose lors de l’étape 401 une quantité de platine et de chrome suffisante, pour que, après l’étape 402 de traitement thermique, la fraction atomique moyenne de platine dans la sous-couche 4 soit comprise entre 15 % et 25 %, et pour que la fraction atomique moyenne de chrome dans la sous-couche 4 soit supérieure à 5 % et préférentiellement comprise entre 5 % et 20 %. La quantité de platine et de chrome déposée dans la couche d’enrichissement 11 est donc d’autant plus élevée que la fraction molaire atomique en chrome et en platine du substrat 2 est basse, ce qui est typiquement le cas d’un substrat 2 enrichi en rhénium et/ou en ruthénium.
L’épaisseur de la couche d’enrichissement 11 est préférentiellement comprise entre 100 nm et 20 pm.
La figure 5 est une photographie en microscopie électronique à balayage de la microstructure d’un substrat 2 et d’une sous-couche 4 d’une pièce 1. La sous- couche 4 est fabriquée par le procédé illustré sur la figure 4, dans lequel on dépose une couche d’enrichissement 11 comprenant uniquement du chrome et du platine, lors de l’étape 401 du procédé. La barre d’échelle de la figure 5 correspond à une longueur égale à 20 pm. La sous-couche 4 présente, de manière générale, une phase y-y’ et une fraction atomique moyenne en chrome supérieure à 5 %, préférentiellement comprise entre 5 % et 20 %, en aluminium comprise entre 10 % et 20 %, en platine comprise entre 15 % et 25 %. En particulier, la sous-couche 4 présente une fraction atomique moyenne en chrome sensiblement égale à 5,8 %, une fraction atomique moyenne en aluminium sensiblement égale à 1 1 %, une fraction atomique moyenne en platine sensiblement égale à 21 %, une fraction atomique moyenne en hafnium inférieure à 0,5 % et une fraction atomique moyenne en silicium inférieure à 1 %.
La sous-couche 4 présente préférentiellement exclusivement une phase y-y’. En effet, l’introduction d’éléments dans le substrat 2 par le procédé d’enrichissement précédemment décrit permet de ne pas entraîner de transition de phase du substrat 2, et ainsi d’éviter des contraintes mécaniques dans le substrat 2 qui pourraient entraîner l’apparition de fissures 8. Une ligne sensiblement horizontale partage la sous-couche 4 en deux parties superposées : cette ligne correspond à la limite entre le substrat 2 et la couche d’enrichissement 1 1 , avant l’étape de traitement thermique 402 lors de la fabrication d’une pièce 1 .
L’épaisseur de la sous-couche 4 est typiquement comprise entre 1 pm et 100 pm, et préférentiellement entre 5 pm et 50 pm.
En particulier, la fraction atomique moyenne en chrome dans la sous-couche 4 permet de favoriser la formation d’a-AhCh lors de l’utilisation de la pièce dans des conditions de travail.
En référence à la figure 6, la sous-couche 4 permet d’éviter la formation de fissures lors d’un traitement thermique prolongé, représentatif des conditions de travail d’une turbine. La barre d’échelle correspond à une longueur égale à 20 pm. La figure 6 est une photographie en microscopie électronique à balayage d’une pièce 1 comprenant le substrat 2 et la sous-couche 4, après le traitement thermique prolongé. Pendant le traitement thermique prolongé, la pièce 1 est placée sous air pendant 100 heures à 1050° C puis pendant 10 heure à 1 1 50° C. Aucune fissure 8 n’est détectable dans le substrat 2 après le traitement thermique prolongé.

Claims

REVENDICATIONS
1. Pièce (1 ) de turbine, comprenant :
- un substrat (2) en superalliage base nickel monocristallin, comprenant du chrome et au moins un élément choisi parmi le rhénium et le ruthénium, le substrat (2) présentant une phase g-g’, une fraction massique moyenne en rhénium et en ruthénium supérieure ou égale à 4 % et une fraction massique moyenne en chrome inférieure ou égale à 5 % et préférentiellement inférieure ou égale à 3 %,
- une sous-couche (4) recouvrant au moins une partie d’une surface du substrat
(2) ,
caractérisée en ce que la sous-couche (4) présente une phase g-g’ et une fraction atomique moyenne :
- en chrome comprise entre 5 % et 10 %,
- en aluminium comprise entre 10 % et 20 %, et
- en platine comprise entre 1 5 % et 25 %.
2. Pièce (1 ) selon la revendication 1 , dans laquelle la sous-couche (4) présente exclusivement une phase g-g’.
3. Pièce (1 ) selon la revendication 1 ou 2, dans laquelle la sous-couche (4) présente une fraction atomique moyenne en silicium inférieure à 2 %.
4. Pièce (1 ) selon l’une des revendications 1 à 3, dans laquelle la sous- couche (4) présente une épaisseur comprise entre 5 pm et 50 pm, et préférentiellement comprise entre 5 pm et 15 pm.
5. Pièce (1 ) selon l’une des revendications 1 à 4, comprenant une couche protectrice en oxyde d’aluminium recouvrant la sous-couche (4).
6. Pièce (1 ) selon la revendication 5, comprenant une couche thermiquement isolante en céramique recouvrant la couche protectrice en oxyde d’aluminium.
7. Aube (7) de turbine, comprenant une pièce (1 ) selon l’une des revendication 1 à 6.
8. Procédé de fabrication d’une pièce (1 ) de turbine, comprenant :
- un substrat (2) en superalliage base nickel monocristallin, comprenant du chrome et au moins un élément choisi parmi le rhénium et le ruthénium, présentant une phase g-g’, une fraction massique moyenne en rhénium et en ruthénium supérieure ou égale à 4 % et une fraction massique moyenne en chrome inférieure ou égale à 5 % et préférentiellement inférieure ou égale à 3 %,
- une sous-couche (4) recouvrant au moins une partie d’une surface du substrat
(2) ,
la sous-couche (4) présentant une phase g-g’ et une fraction atomique moyenne :
- en chrome comprise entre 5 % et 10 %,
- en aluminium comprise entre 10 % et 20 %,
- en platine comprise entre 1 5 % et 25 %,
comprenant au moins des étapes de :
a) dépôt d’une couche d’enrichissement (1 1 ) sur le substrat (2), la couche d’enrichissement (1 1 ) présentant au moins une fraction atomique moyenne en platine supérieure à 90 % et une fraction atomique moyenne en chrome comprise entre 3 % et 10 %,
b) traitement thermique de l’ensemble formé par le substrat (2) et la couche d’enrichissement (1 1 ) de manière à ce que la couche d’enrichissement (1 1 ) diffuse au moins partiellement dans le substrat (2).
9. Procédé selon la revendication 8, dans lequel, lors de l’étape a) de dépôt d’une couche d’enrichissement, on dépose séparément au moins une couche de chrome, et une couche de platine, la ou les couches de chrome présentant une épaisseur totale comprise entre 200 nm et 2 pm et la ou les couches de platine présentant une épaisseur totale comprise entre 3 pm et 10 pm.
10. Procédé selon la revendication 8, dans lequel, lors de l’étape a) de dépôt d’une couche d’enrichissement, on dépose simultanément du chrome et du platine.
1 1. Procédé selon l’une des revendications 8 à 10, dans lequel on traite thermiquement l’ensemble formé par le substrat (2) et la couche d’enrichissement (11 ) à une température supérieure à 1000° C pendant plus d’une heure, préférentiellement pendant plus de 2 heures.
12. Procédé selon l’une des revendications 8 à 1 1 , dans lequel le dépôt de la couche d’enrichissement (11 ) est mis en oeuvre par une méthode choisie parmi un dépôt physique en phase vapeur, une projection thermique, une évaporation par canon à électron, une ablation laser pulsée et une pulvérisation cathodique.
EP19850726.1A 2018-12-21 2019-12-20 Pièce de turbine en superalliage comprenant du rhenium et/ou du ruthenium et procédé de fabrication associé Pending EP3899083A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1873972A FR3090696B1 (fr) 2018-12-21 2018-12-21 Piece de turbine en superalliage comprenant du rhenium et/ou du ruthenium et procede de fabrication associe
PCT/FR2019/053254 WO2020128394A1 (fr) 2018-12-21 2019-12-20 Pièce de turbine en superalliage comprenant du rhenium et/ou du ruthenium et procédé de fabrication associé

Publications (1)

Publication Number Publication Date
EP3899083A1 true EP3899083A1 (fr) 2021-10-27

Family

ID=67107595

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19850726.1A Pending EP3899083A1 (fr) 2018-12-21 2019-12-20 Pièce de turbine en superalliage comprenant du rhenium et/ou du ruthenium et procédé de fabrication associé

Country Status (5)

Country Link
US (1) US11873736B2 (fr)
EP (1) EP3899083A1 (fr)
CN (1) CN113242913A (fr)
FR (1) FR3090696B1 (fr)
WO (1) WO2020128394A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3102775B1 (fr) * 2019-11-05 2022-04-22 Safran Piece d'aeronef en superalliage comprenant un canal de refroidissement

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4526814A (en) * 1982-11-19 1985-07-02 Turbine Components Corporation Methods of forming a protective diffusion layer on nickel, cobalt, and iron base alloys
EP0718420B1 (fr) * 1994-12-24 1999-04-21 Rolls Royce Plc Revêtement de barrière thermique et méthode pour l'appliquer sur un article en superalliage
US6066405A (en) * 1995-12-22 2000-05-23 General Electric Company Nickel-base superalloy having an optimized platinum-aluminide coating
EP0846788A1 (fr) * 1996-12-06 1998-06-10 Siemens Aktiengesellschaft Substrat à base de superalliage pourvu d'un revêtement d'enrichissement et méthodes de sa fabrication
US6475642B1 (en) * 2000-08-31 2002-11-05 General Electric Company Oxidation-resistant coatings, and related articles and processes
US6497920B1 (en) * 2000-09-06 2002-12-24 General Electric Company Process for applying an aluminum-containing coating using an inorganic slurry mix
US7157151B2 (en) * 2002-09-11 2007-01-02 Rolls-Royce Corporation Corrosion-resistant layered coatings
US20100151125A1 (en) * 2003-08-04 2010-06-17 General Electric Company Slurry chromizing process
EP1524334A1 (fr) * 2003-10-17 2005-04-20 Siemens Aktiengesellschaft Couche protectrice pour proteger un élément structurel contre la corrosion et l'oxydation aux temperatures hautes et élément structurel
ATE433502T1 (de) * 2004-08-18 2009-06-15 Univ Iowa State Res Found Inc Hochtemperaturbeschichtungen und massivlegierungen aus -ni+ '-ni3al-legierungen, die mit einer aus der pt gruppe modifiziert sind, und die einer hochtemperaturkorrosionsbeständigkeit aufweisen
US7229701B2 (en) * 2004-08-26 2007-06-12 Honeywell International, Inc. Chromium and active elements modified platinum aluminide coatings
US20060093849A1 (en) * 2004-11-02 2006-05-04 Farmer Andrew D Method for applying chromium-containing coating to metal substrate and coated article thereof
US7531217B2 (en) * 2004-12-15 2009-05-12 Iowa State University Research Foundation, Inc. Methods for making high-temperature coatings having Pt metal modified γ-Ni +γ′-Ni3Al alloy compositions and a reactive element
US7247393B2 (en) * 2005-09-26 2007-07-24 General Electric Company Gamma prime phase-containing nickel aluminide coating
EP1870485A1 (fr) * 2006-06-22 2007-12-26 Siemens Aktiengesellschaft Composition et méthode de métallisation d'un composant
US7846243B2 (en) * 2007-01-09 2010-12-07 General Electric Company Metal alloy compositions and articles comprising the same
US20100159136A1 (en) * 2008-12-19 2010-06-24 Rolls-Royce Corporation STATIC CHEMICAL VAPOR DEPOSITION OF y-Ni + y'-Ni3AI COATINGS
GB2511768A (en) * 2013-03-12 2014-09-17 Rolls Royce Plc Erosion Resistant Coating
US9587302B2 (en) * 2014-01-14 2017-03-07 Praxair S.T. Technology, Inc. Methods of applying chromium diffusion coatings onto selective regions of a component

Also Published As

Publication number Publication date
FR3090696B1 (fr) 2020-12-04
CN113242913A (zh) 2021-08-10
US20220065111A1 (en) 2022-03-03
FR3090696A1 (fr) 2020-06-26
WO2020128394A1 (fr) 2020-06-25
US11873736B2 (en) 2024-01-16

Similar Documents

Publication Publication Date Title
EP3532648B1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine.
FR2503189A1 (fr) Composition de revetement pour superalliages resistant a l'oxydation a haute temperature et superalliages revetus de cette composition
EP3601634B1 (fr) Piece de turbine en superalliage et procede de fabrication associe
FR2718464A1 (fr) Article en super alliage ayant un revêtement de barrière thermique et sa fabrication.
WO2020128394A1 (fr) Pièce de turbine en superalliage comprenant du rhenium et/ou du ruthenium et procédé de fabrication associé
EP3698020B1 (fr) Pièce de turbine en superalliage comprenant du rhénium et procédé de fabrication associé
EP3685018B1 (fr) Pièce de turbine en superalliage comprenant du rhénium et/ou du ruthénium et procédé de fabrication associé
WO2012146864A1 (fr) Pièce comportant un revêtement sur un substrat métallique en superalliaae, le revêtement comprenant une sous-couche métallique
EP3532653B1 (fr) Pièce comprenant un substrat en superalliage monocristallin à base de nickel et son procédé de fabrication
FR3113255A1 (fr) Protection contre l’oxydation ou la corrosion d’une pièce creuse en superalliage
FR2924129A1 (fr) Procede pour realiser un revetement d'aluminiure de nickel modifie platine monophase
WO2021089945A1 (fr) Piece d'aeronef en superalliage comprenant un canal de refroidissement
EP4041930A1 (fr) Piece d'aeronef en superalliage comprenant du rhenium et/ou du ruthenium et procede de fabrication associe
WO2024023428A1 (fr) Procede d'application de revetement et aube de turbine avec revetement applique suivant ce procede
EP4192635A1 (fr) Protection contre l'oxydation ou la corrosion d'une piece creuse en superalliage
FR2999611A1 (fr) Procede de fabrication d'un revetement et piece thermomecanique en superalliage comprenant un revetement obtenu selon ce procede

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210622

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20240321