EP3619338A1 - Piece de turbine en superalliage et procede de fabrication associe par bombardement de particules chargees - Google Patents

Piece de turbine en superalliage et procede de fabrication associe par bombardement de particules chargees

Info

Publication number
EP3619338A1
EP3619338A1 EP18728684.4A EP18728684A EP3619338A1 EP 3619338 A1 EP3619338 A1 EP 3619338A1 EP 18728684 A EP18728684 A EP 18728684A EP 3619338 A1 EP3619338 A1 EP 3619338A1
Authority
EP
European Patent Office
Prior art keywords
metal
layer
underlayer
substrate
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18728684.4A
Other languages
German (de)
English (en)
Inventor
Amar Saboundji
Virginie Jaquet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran SA
Original Assignee
Safran SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran SA filed Critical Safran SA
Publication of EP3619338A1 publication Critical patent/EP3619338A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3471Introduction of auxiliary energy into the plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5826Treatment with charged particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/10Manufacture by removing material
    • F05D2230/13Manufacture by removing material using lasers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • F05D2230/313Layer deposition by physical vapour deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • F05D2230/314Layer deposition by chemical vapour deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/40Heat treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/175Superalloys

Definitions

  • the invention relates to a turbine part, such as a turbine blade or a distributor blade, for example, used in aeronautics.
  • the exhaust gases generated by the combustion chamber can reach high temperatures, higher than 1200 ° C or 1600 ° C.
  • Parts of the turbojet, in contact with these exhaust gases, such as turbine blades, for example, must be able to maintain their mechanical properties at these high temperatures.
  • Superalloys are a family of high strength metal alloys that can work at temperatures relatively close to their melting temperatures, typically 0.7 to 0.8 times their melting temperatures.
  • Figure 1 schematically illustrates a section of a turbine part 1, for example a turbine blade or a distributor blade.
  • the part 1 comprises a substrate 2 of monocrystalline metal superalloy covered with a thermal barrier 10.
  • FIG. 2 is a photomicrograph illustrating a section of a portion of the thermal barrier 10 of the turbine part 1, covering the substrate 2.
  • the black rectangle of FIG. 2 is a scale bar corresponding to a length of 50 ⁇ . .
  • the thermal barrier 10 comprises a metal sub-layer 3, a protective layer 4 and a thermally insulating layer 5.
  • the metal sub-layer 3 covers the substrate 2 in metallic superalloy.
  • the metal sub-layer 3 is covered with the protective layer 4, formed by thermal oxidation of the metal underlayer 3 (the protective layer is designated by TGO, acronym for Thermally Grown Oxide).
  • TGO Thermally Grown Oxide
  • the protective layer 4 protects the superalloy substrate from corrosion and / or oxidation.
  • the thermally insulating layer 5 covers the protective layer 4.
  • the thermally insulating layer 5 may be ceramic, for example made of yttriated zirconia.
  • the metal sub-layer 3 provides a connection between the surface of the superalloy substrate and the
  • the thermal barrier it is known to etch the oxides formed on the surface of the underlayer after the deposition of the underlayer. These oxides are formed in contact with the ambient atmosphere and are unstable or metastable when using the turbine part.
  • Sandblasting is used to etch oxides formed on the surface of the underlayer after deposition of the underlayer.
  • impurities are transported to the surfaces of the underlayer. These impurities are incorporated into the protective layer during the formation of the protective layer by oxidation;
  • the protective layer has in particular small grains (for example of a size less than 1 ⁇ ), known to reduce the resistance to corrosion and oxidation of thermal barriers, as well as the adhesion of the protective layer to the undercoat ;
  • An object of the invention is to provide a solution for effectively protecting a superalloy turbine part from oxidation and corrosion while having a longer service life than with known thermal barriers.
  • a protective metal oxide layer covering the underlayer comprising steps of:
  • the underlayer is bombarded with charged particles, it is possible to obtain an etched surface of the metal sub-layer in contact with the protective layer having a roughness less than the roughnesses generally obtained by conventional mechanical sand blasting techniques. .
  • the roughness obtained has a better homogeneity. This results in the protective layer growing at homogeneous kinetics during its formation, which makes it possible to avoid mechanical stresses during the use of the part, causing the protective layer to peel.
  • the invention is advantageously completed by the following characteristics, taken individually or in any of their technically possible combinations:
  • the step of bombarding charged particles is carried out by a plasma
  • the method comprises a step of depositing the metal sub-layer in the vapor phase on the substrate before step a);
  • the workpiece is heated under vacuum at a temperature above 1000 ° C between steps a) and b); the part is heated between 800 ° C. and 1200 ° C. between the deposition of the metal underlayer and step a).
  • the piece is kept under vacuum between steps a) and b).
  • step a) is implemented in a first vacuum chamber
  • step b) is implemented in a second vacuum chamber, and the piece is transported, between steps a) and b), of the first speaker to the second speaker in a passage, kept under vacuum, connecting the two speakers.
  • the invention also relates to a turbine part comprising: a monocrystalline nickel base superalloy substrate,
  • a protective metal oxide layer covering the underlayer characterized in that the metal underlayer has a surface in contact with the protective layer and in that the surface has an average roughness of between 100 nm and 1 ⁇ .
  • the standard deviation of the roughness of the surface is less than 20% of the average roughness of the surface
  • the protective layer comprises a layer of alumina in phase a.
  • FIG. 1 schematically illustrates a section of a turbine part, for example a turbine blade or a fin distributor
  • FIG. 2 is a photomicrograph illustrating a section of a portion of the thermal barrier of the turbine part
  • FIG. 3 illustrates a method of manufacturing a turbine part
  • FIG. 5 is a photomicrograph illustrating the surface of the metal underlayer in contact with the protective layer
  • FIG. 6 illustrates a device for depositing the metal underlayer
  • FIG. 7 illustrates a device for bombarding charged particles on the metal sub-layer
  • FIG. 8 illustrates a device for keeping the turbine part under vacuum between a step of etching the metal underlayer and a step of forming the protective layer.
  • superalloy refers to a complex alloy having, at high temperature and at high pressure, very good resistance to oxidation, corrosion, creep and cyclic stresses (particularly mechanical or thermal). Superalloys find particular application in the manufacture of parts used in aeronautics, for example turbine blades, because they are a family of high-strength alloys that can work at temperatures relatively close to their melting points (typically 0). , 7 to 0.8 times their melting temperatures).
  • the "base” of the superalloy refers to the main metal component of the matrix. In the majority of cases, the superalloys comprise an iron, cobalt or nickel base, but also sometimes a titanium or aluminum base.
  • Nickel-based superalloys have the advantage of offering a good compromise between oxidation resistance, high temperature rupture strength and weight, which justifies their use in the hottest parts of turbojet engines.
  • vacuum denotes a primary, medium or high vacuum, that is to say characterized by a pressure of between 10 -3 and 5 mbar, such a vacuum can be adapted to a bombardment of charged particles by example by the forming a plasma at room temperature.
  • the plasma can be an argon plasma.
  • alumina refers to an allotropic variety of alumina corresponding to corundum, of rhombohedral crystalline structure.
  • a layer of alumina may be formed by several grains of ⁇ -alumina, each of the grains delimiting a crystalline phase a.
  • Roughness is generally understood to mean a measurement of the surface state representative of the deviations in the normal direction of an average plane locally tangent to the surface considered.
  • R a the arithmetic average of the standard deviations of a surface from the mean surface, will be referred to as:
  • Vi is a measure of a deviation of the surface from the mean surface.
  • Homogeneity of the roughness is defined as a roughness dispersion smaller than a reference dispersion, characterized and / or measured by a standard deviation of the roughness of a surface less than 20% of the average roughness.
  • the manufacturing method 100 of a turbine part comprises the following steps.
  • a metal sub-layer 3 is deposited on a substrate 2 base nickel monocrystalline.
  • one or more metal layers comprising nickel and / or aluminum may be deposited by physical vapor deposition (PVD).
  • PVD physical vapor deposition
  • Such a deposit can be made by sputtering, and / or by any other known method of PVD.
  • a second step 102 of the method the substrate provided with the metal underlayer is heated to a temperature T of between 800 ° C. and 1200 ° C. This heat treatment causes the diffusion of the metal ions of the underlayer 3 into the substrate 2 so as to form an interdiffusion zone, allowing better resistance to oxidation during the use of the part.
  • a surface of the metal sub-layer 3 is bombarded with charged particles. These particles may be ions, such as argon ions, and / or electrons. For example, it is possible to etch a surface of the metal sub-layer 3 with the plasma 7, that is to say by using a plasma 7.
  • the substrate provided with a metal underlayer can be placed in an enclosure kept under vacuum , in which a continuous flow of one or more gases supplying the chemical element (s) composing the plasma is controlled.
  • one or more gases are used for metal etching.
  • argon or oxygen is used. This charged particle bombardment step is used to etch the metastable oxides formed natively on the surface 16 of the underlayer 3.
  • the surface roughness 16 may be smaller than using known methods of the prior art, such as sanding and electrochemical etching.
  • the surface 16 of the metal sub-layer 3 has for example an average roughness R a less than 1 ⁇ , preferably less than 500 nm and preferably between 00 nm and 300 nm.
  • the use of a bombardment of charged particles also makes it possible to etch the entire surface 16 of the part in a homogeneous manner. This effect is particularly suitable for parts 1 whose geometry is complex.
  • the standard deviation of the roughness on the surface 16 of the plasma etched sub-layer 3 is less than 500 nm, preferably less than 300 nm and preferably less than 100 nm.
  • the bombardment of charged particles of step 103 may be carried out by any ionic and / or electronic bombardment method for etching a metal surface with a roughness R a of less than 1 ⁇ m. It can also be performed using a femtosecond laser.
  • the part 1 is rotated during the step 103 of bombardment of charged particles.
  • the piece 1 can be arranged in a drum in the enclosure or on a rotary support.
  • the rotation of the part makes it possible to increase the homogeneity of the roughness of the surface 16 of the underlayer 3. As the bombardment of charged particles does not cause any mechanical contact during the etching, the transport of impurities on the surface 16 of the underlayer 3 is avoided.
  • a fourth step 104 of the process the part is heated, advantageously under vacuum, to a temperature greater than 1000 ° C.
  • atoms of the plasma such as argon atoms, possibly adsorbed on the surface 16 of the metal underlayer 3, are removed or transported away from the room.
  • the protective layer 4 is formed on the bombarded surface 16 of the metal sub-layer 3.
  • the surface 16 may be a plasma-etched surface during the step 103 of the process.
  • the protective layer 4 is advantageously only composed of ⁇ -alumina.
  • the part is heated in an atmosphere comprising oxygen at a temperature above 1000 ° C., so as to form a protective layer 4 by thermal oxidation.
  • the temperature of 1000 ° C. is reached in less than ten minutes and preferably in less than five minutes, so as to avoid the formation of metastable oxide on the metal sub-layer 3.
  • protective layers made according to known methods.
  • the protective layer 4 may for example comprise a layer of alumina in phase a. This layer may be formed of grains having an average size in a plane locally tangent to the surface 16, greater than 50 ⁇ ⁇ . Increasing the grain size of alumina a makes it possible to increase the lifetime of the thermal barrier.
  • the protective layer 4 may also comprise a layer of alumina exclusively in phase a.
  • the homogeneity of the roughness of the surface 16 of the metal sub-layer 3 bombarded by charged particles makes it possible to form the protective layer 4 at constant kinetics on the surface 16 of the metal sub-layer 3.
  • the protective layer 4 formed has substantially constant mechanical properties and thickness on the surface 16 of the sub-surface. metal layer 3, which avoids mechanical stresses during the use of the workpiece, causing peeling of the protective layer 4.
  • All the steps of the process can advantageously be carried out under vacuum, or generally, without exposing the room to the ambient atmosphere.
  • the part can be kept under vacuum between the steps 103 and 105 of the process.
  • the formation of unstable and / or metastable oxide on the surface 16 is avoided.
  • FIG. 4 schematically illustrates the section of a turbine part part 1 obtained by a method according to the method of FIG. 3.
  • the turbine part 1 is for example a turbine blade, a distributor blade or any other element, part or piece of turbine. It comprises a monocrystalline nickel base superalloy substrate 2, a metal sub-layer 3 covering the substrate 2 and a protective metal oxide layer 4 covering the underlayer 3.
  • a thermally insulating layer 5 may for example cover the protective layer 4.
  • the thermal barrier 10 comprises the metal sub-layer 3, the protective layer 4 and the thermally insulating layer 5.
  • the metal sub-layer 3 has a surface 16 in contact with the protective layer 4 having a roughness of less than 1 ⁇ m, preferably less than 1 ⁇ m. at 500 nm and preferably between 100 and 300 nm.
  • Figure 5 is a photomicrograph of a detail of a turbine part 1.
  • the black rectangle of Figure 5 is a scale bar corresponding to 5 ⁇ m.
  • the part comprises a protective metal oxide layer 4 covering a metal sub-layer 3.
  • the metal sub-layer 3 has been etched with plasma, then a protective layer 4 has been formed on the metal underlayer 3.
  • the PVD deposit corresponding to step 101 may be made inside an enclosure 12 containing part 1 and one or more target (s) 8 corresponding to (x) material (s). to place.
  • the part 1 illustrated in FIG. 6 can be a turbine blade 6, a distributor blade, or any other element, part or part of a turbine.
  • the superalloy substrate 2 can be biased by an electrical connection 15 connected to a potential generator electric.
  • an argon plasma 7 can be formed, the positive species of which are attracted to the cathode (target 8) and collide with it.
  • the atoms of the target (s) 8 are pulverized and then condense on said part so as to form the sub-layer (s) 3 metal.
  • the deposit conditions are as follows:
  • heating during the deposition from 100 to 900 ° C .;
  • the ion bombardment is carried out for 10 to 30 minutes.
  • the bombardment of charged particles for example implemented by a plasma 7, corresponding to step 103, can be carried out inside an enclosure 12 containing part 1 and one or more targets 8 corresponding to the material (s) to be deposited.
  • the enclosure may be the enclosure used during step 101 illustrated in FIG. 6.
  • the superalloy substrate 2 may be polarized by an electrical connection 15 connected to an electric potential generator.
  • an argon plasma 7 may be formed, the positive species of which are attracted to the cathode (turbine part). and collide with it.
  • the surface 16 of the metal sub-layer 3 can be etched.
  • the deposit conditions are as follows:
  • - polarization from 0 to - 400 V.
  • step 103 of manufacture of the part can be carried out in a first enclosure 13.
  • the part can be transported from the first enclosure to a second enclosure 14, in which is implemented the step 105, in a passage 9 maintained under vacuum, connecting the two enclosures 13, 14.
  • the passage may be delimited by a channel, a conduit and / or a pipe.
  • the workpiece can be kept under vacuum between steps 103 and 105 so as to avoid the formation of metastable or unstable oxide before formation of the protective layer 4 in step 105.
  • the passage may comprise a valve 11, for controlling the vacuum in only one of the first or second speakers, depending on the step of manufacturing the workpiece.
  • the opening of the valve 11 is adapted to transport the turbine part, from the first chamber to the second chamber.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

L'invention concerne une pièce de turbine, telle qu'une aube de turbine ou une ailette de distributeur par exemple, comprenant un substrat en superalliage base nickel monocristallin, une sous-couche métallique recouvrant le substrat, et une couche protectrice en oxyde métallique recouvrant la sous-couche, caractérisé en ce que la sous-couche métallique a une surface en contact avec la couche protectrice et la surface présente une rugosité moyenne inférieure à 1 μm.

Description

PIECE DE TURBINE EN SUPERALLIAGE ET PROCEDE DE FABRICATION ASSOCIE PAR BOMBARDEMENT DE PARTICULES CHARGEES
DOMAINE DE L'INVENTION
L'invention concerne une pièce de turbine, telle qu'une aube de turbine ou une ailette de distributeur par exemple, utilisée dans l'aéronautique.
ETAT DE LA TECHNIQUE
Dans un turboréacteur, les gaz d'échappement générés par la chambre de combustion peuvent atteindre des températures élevées, supérieure à 1200° C, voire 1600°C. Les pièces du turboréacteur, en contact avec ces gaz d'échappement, telles que les aubes de turbine par exemple, doivent ainsi être capables de conserver leurs propriétés mécaniques à ces températures élevées.
A cet effet, il est connu de fabriquer certaines pièces du turboréacteur en « superalliage ». Les superalliages constituent une famille d'alliages métalliques à haute résistance pouvant travailler à des températures relativement proches de leurs températures de fusion, typiquement 0,7 à 0,8 fois leurs températures de fusion.
Afin de renforcer la résistance thermique de ces superalliages et de les protéger contre l'oxydation et la corrosion, il est connu de les recouvrir d'un revêtement jouant un rôle de barrière thermique.
La figure 1 illustre schématiquement une section d'une pièce de turbine 1 , par exemple une aube de turbine ou une ailette de distributeur. La pièce 1 comprend un substrat 2 en superalliage métallique monocristallin recouvert d'une barrière thermique 10.
La figure 2 est une microphotographie illustrant une section d'une partie de la barrière thermique 10 de la pièce de turbine 1 , recouvrant le substrat 2. Le rectangle noir de la figure 2 est une barre d'échelle correspondant à une longueur de 50 μιτι. La barrière thermique 10 comprend une sous-couche métallique 3, une couche protectrice 4 et une couche thermiquement isolante 5. La sous-couche métallique 3 recouvre le substrat 2 en superalliage métallique. La sous-couche métallique 3 est recouverte de la couche protectrice 4, formée par oxydation thermique de la sous-couche métallique 3 (la couche protectrice est désignée par TGO, acronyme anglais de Thermally Grown Oxide). La couche protectrice 4 permet de protéger le substrat en superalliage de la corrosion et/ou de l'oxydation. La couche thermiquement isolante 5 recouvre la couche protectrice 4. La couche thermiquement isolante 5 peut être en céramique, par exemple en zircone yttriée. La sous-couche métallique 3 assure une liaison entre la surface du substrat en superalliage et la couche protectrice.
Lors de la fabrication de la barrière thermique, il est connu de décaper les oxydes formés à la surface de la sous-couche après le dépôt de la sous-couche. Ces oxydes sont formés en contact avec l'atmosphère ambiante et sont instables ou métastables lors de l'utilisation de la pièce de turbine.
A cet effet, il est connu de sabler la surface extérieure de la sous-couche métallique. Le sablage permet de décaper les oxydes formés à la surface de la sous-couche après le dépôt de la sous-couche.
Toutefois, lorsqu'une TGO est formée sur la sous-couche après une étape de sablage selon une méthode connue :
- des impuretés sont transportées à la surfaces de la sous-couche. Ces impuretés sont incorporées dans la couche protectrice lors de la formation de la couche protectrice par oxydation ;
- la taille des grains de la TGO est hétérogène. La couche protectrice présente en particulier de petits grains (par exemple d'une taille inférieure à 1 μπι), connus pour diminuer la résistance à la corrosion et à l'oxydation des barrières thermiques, ainsi que l'adhérence de la couche protectrice à la sous-couche ;
- différentes phases allotropiques peuvent coexister dans la couche protectrice. Dans le cas d'une TGO en alumine, il est connu que dans des conditions d'utilisation de la pièce, à haute température, les phases différentes de la phase a se transforment en phase a en changeant de volume. Cette variation de volume entraîne des contraintes de traction et des fissures dans la TGO, favorisant son écaillage. Ainsi, la durée de vie de la barrière thermique est significativement diminuée ;
- la cinétique de croissance de la TGO est différente sur différentes parties de la sous-couche métallique. Cette disparité de la cinétique de croissance de la TGO entraîne des contraintes mécaniques dans la TGO lors de l'utilisation de la barrière thermique et une diminution de sa durée de vie. RESUME DE L'INVENTION
Un but de l'invention est de proposer une solution pour protéger efficacement une pièce de turbine en superalliage de l'oxydation et de la corrosion tout en présentant une durée de vie plus longue qu'avec les barrières thermiques connues.
Ce but est atteint dans le cadre de la présente invention grâce à un procédé de fabrication d'une pièce de turbine comprenant :
- un substrat en superalliage base nickel monocristallin,
- une sous-couche métallique recouvrant le substrat, et
- une couche protectrice en oxyde métallique recouvrant la sous-couche, le procédé comprenant des étapes de :
a) bombardement de particules chargées sur une surface de la sous-couche métallique, puis
b) formation de la couche protectrice sur la surface bombardée lors de l'étape a).
Comme la sous-couche est bombardée par des particules chargées, il est possible d'obtenir une surface gravée de la sous-couche métallique en contact avec la couche protectrice présentant une rugosité inférieure aux rugosités généralement obtenues par des techniques classiques de décapage par sablage mécanique. De plus, la rugosité obtenue présente une meilleure homogénéité. Cela a pour effet que la couche protectrice croît à une cinétique homogène lors de sa formation, ce qui permet d'éviter des contraintes mécaniques pendant l'utilisation de la pièce, entraînant l'écaillage de la couche protectrice. L'invention est avantageusement complétée par les caractéristiques suivantes, prises individuellement ou en l'une quelconque de leurs combinaisons techniquement possibles :
l'étape de bombardement de particules chargées est mise en uvre par un plasma ;
- le procédé comprend une étape de dépôt de la sous-couche métallique en phase vapeur sur le substrat avant l'étape a) ;
on chauffe la pièce, sous vide, à une température supérieure à 1000°C, entre les étapes a) et b) ; on chauffe la pièce entre 800 °C et 1200°C entre le dépôt de la sous-couche métallique et l'étape a).
la pièce est mise en rotation pendant l'étape a) ;
la pièce est gardée sous vide entre les étapes a) et b).
- on chauffe la pièce à une température supérieure à 1000 °C pendant l'étape b) ;
l'étape a) est mise en œuvre dans une première enceinte sous vide, l'étape b) est mise en œuvre dans une seconde enceinte sous vide, et la pièce est transportée, entre les étapes a) et b), de la première enceinte vers la deuxième enceinte dans un passage, maintenu sous vide, reliant les deux enceintes.
L'invention a également pour objet une pièce de turbine comprenant : un substrat en superalliage base nickel monocristallin,
une sous-couche métallique recouvrant le substrat, et
une couche protectrice en oxyde métallique recouvrant la sous-couche, caractérisée en ce que la sous-couche métallique a une surface en contact avec la couche protectrice et en ce que la surface présente une rugosité moyenne comprise entre 100 nm et 1 μηη.
L'invention est avantageusement complétée par les caractéristiques suivantes, prises individuellement ou selon l'une quelconque de leurs combinaisons techniquement possibles :
l'écart-type de la rugosité de la surface est inférieur à 20% de la rugosité moyenne de la surface ;
la couche protectrice comprend une couche d'alumine en phase a.
PRESENTATION DES DESSINS
D'autres caractéristiques et avantages ressortiront encore de la description qui suit, laquelle est purement illustrative et non limitative, et doit être lue en regard des figures annexées, parmi lesquelles :
- la figure 1 illustre schématiquement une section d'une pièce de turbine, par exemple une aube de turbine ou une ailette de distributeur ; - la figure 2 est une microphotographie illustrant une section d'une partie de la barrière thermique de la pièce de turbine ;
- la figure 3 illustre un procédé de fabrication d'une pièce de turbine ;
- la figure 4 illustre schématiquement la section d'une partie de pièce de turbine ;
- la figure 5 est une microphotographie illustrant la surface de la sous- couche métallique en contact avec la couche protectrice ;
- la figure 6 illustre un dispositif de dépôt de la sous-couche métallique ;
- la figure 7 illustre un dispositif de bombardement de particules chargées sur la sous-couche métallique ;
- la figure 8 illustre un dispositif permettant de garder la pièce de turbine sous vide entre une étape de gravure de la sous-couche métallique et une étape de formation de la couche protectrice. DEFINITIONS
On désigne par le terme « superalliage » un alliage complexe présentant, à haute température et à haute pression, une très bonne résistance à l'oxydation, à la corrosion, au fluage et à des contraintes cycliques (notamment mécaniques ou thermiques). Les superalliages trouvent une application particulière dans la fabrication de pièces utilisées dans l'aéronautique, par exemple des aubes de turbine, car ils constituent une famille d'alliages à haute résistance pouvant travailler à des températures relativement proches de leurs points de fusion (typiquement 0,7 à 0,8 fois leurs températures de fusion).
La « base » du superalliage désigne le composant métallique principal de la matrice. Dans la majorité des cas, les superalliages comprennent une base fer, cobalt, ou nickel, mais également parfois une base titane ou aluminium.
Les « superalliages base nickel » présentent l'avantage d'offrir un bon compromis entre résistance à l'oxydation, résistance à la rupture à haute température et poids, ce qui justifie leur emploi dans les parties les plus chaudes des turboréacteurs.
On désigne par le terme « vide » un vide primaire, moyen ou poussé, c'est- à-dire caractérisé par une pression comprise entre 10"3 et 5 mbar. Un tel vide peut être adapté à un bombardement de particules chargées, par exemple par la formation d'un plasma, à température ambiante. Le plasma peut être un plasma d'argon.
On désigne par alumine a une variété allotropique de l'alumine correspondant à la Corindon, de structure cristalline rhomboédrique. Une couche d'alumine a peut être formée par plusieurs grains d'alumine a, chacun des grains délimitant une phase cristalline a.
On désigne par rugosité, de manière générale, une mesure de l'état de surface représentative des déviations dans la direction normale d'un plan moyen localement tangent à la surface considérée. On désignera par rugosité moyenne, Ra, la moyenne arithmétique de la norme des déviations d'une surface par rapport à la surface moyenne, soit :
où Vi est une mesure d'une déviation de la surface par rapport à la surface moyenne.
On désigne par homogénéité de la rugosité une dispersion de la rugosité plus petite qu'une dispersion de référence, caractérisée et/ou mesurée par un écart type de la rugosité d'une surface inférieur à 20% de la rugosité moyenne. DESCRIPTION DETAILLEE DE L'INVENTION
En référence à la figure 3, le procédé de fabrication 100 d'une pièce de turbine comprend les étapes suivantes.
Lors d'une première étape 101 du procédé de fabrication de la pièce 1 , on dépose une sous-couche métallique 3 sur un substrat 2 base nickel monocristallin. On peut par exemple déposer une ou plusieurs couches métalliques comprenant du nickel et/ou de l'aluminium par dépôt physique en phase vapeur (PVD). Un tel dépôt peut être réalisé par pulvérisation cathodique, et/ou selon toute autre méthode connue de PVD.
Lors d'une seconde étape 102 du procédé, on chauffe le substrat muni de la sous-couche métallique à une température T comprise entre 800°C et 1200°C. Ce traitement thermique entraîne la diffusion des ions métalliques de la sous- couche 3 dans le substrat 2 de manière à former une zone d'interdiffusion, permettant une meilleure tenue à l'oxydation lors de l'utilisation de la pièce. Lors d'une troisième étape 103 du procédé, on bombarde une surface de la sous-couche métallique 3 avec des particules chargées. Ces particules peuvent être des ions, comme des ions d'argon, et/ou des électrons. On peut par exemple graver une surface de la sous-couche métallique 3 au plasma 7, c'est-à-dire en utilisant un plasma 7. Le substrat muni d'une sous-couche métallique peut être placée dans une enceinte maintenue sous vide, dans laquelle on contrôle un écoulement continu d'un ou plusieurs gaz apportant le ou les élément(s) chimique(s) composant le plasma. De manière générale, on utilise un ou plusieurs gaz permettant une gravure métallique. Avantageusement, on utilise de l'argon ou de l'oxygène. Cette étape de bombardement de particules chargées permet de décaper les oxydes métastables formés de manière native sur la surface 16 de la sous-couche 3.
Ainsi, la rugosité de surface 16 peut être plus petite qu'en utilisant les méthodes connues de l'art antérieure, tels que le sablage et la gravure électrochimique. La surface 16 de la sous-couche métallique 3 présente par exemple une rugosité moyenne Ra inférieure à 1 μιτι, préférentiellement inférieure à 500 nm et préférentiellement comprise entre 00 nm et 300 nm.
L'utilisation d'un bombardement de particules chargées permet également de graver l'ensemble de la surface 16 de la pièce de manière homogène. Cet effet est particulièrement adapté aux pièces 1 dont la géométrie est complexe. Par exemple, l'écart type de la rugosité sur la surface 16 de la sous-couche 3 gravée au plasma est inférieure à 500 nm, préférentiellement inférieure à 300 nm et préférentiellement inférieure à 100 nm.
De manière générale, le bombardement de particules chargées de l'étape 103 peut être réalisé par toute méthode de bombardement ionique et/ou électronique permettant de graver une surface métallique avec une rugosité Ra inférieure à 1 pm. Elle peut également être réalisée en utilisant un laser femtoseconde.
Avantageusement, la pièce 1 est mise en rotation pendant l'étape 103 de bombardement de particules chargées. A cet effet, on peut agencer la pièce 1 dans un tambour dans l'enceinte ou sur un support rotatif. La rotation de la pièce permet d'augmenter l'homogénéité de la rugosité de la surface 16 de la sous- couche 3. Comme le bombardement de particules chargées n'entraîne aucun contact mécanique lors de la gravure, on évite le transport d'impuretés sur la surface 16 de la sous-couche 3.
Lors d'une quatrième étape 104 du procédé, on chauffe la pièce, avantageusement sous vide, à une température supérieure à 1000° C. Ainsi, des atomes du plasma, comme des atomes d'argon, éventuellement adsorbés à la surface 16 de la sous-couche métallique 3, sont éliminés ou transportés à l'écart de la pièce.
Lors d'une cinquième étape 105 du procédé, on forme la couche protectrice 4 sur la surface 16 bombardée de la sous-couche métallique 3. La surface 16 peut être une surface gravée au plasma lors de l'étape 103 du procédé. La couche protectrice 4 est avantageusement uniquement composée d'alumine a. A cet effet, on chauffe la pièce, dans une atmosphère comprenant de l'oxygène à une température supérieure à 1000 °C, de manière à former une couche protectrice 4 par oxydation thermique. Préférentiellement, la température de 1000 °C est atteinte en moins de dix minutes et préférentiellement en moins de cinq minutes, de manière à éviter la formation d'oxyde métastable sur la sous-couche métallique 3.
La rugosité Ra de la surface 16 de la sous-couche métallique 3, petite au regard des valeurs de rugosité usuelles, permet de former une couche protectrice 4 comprenant des grains d'alumine a dont la taille est supérieure aux grains d'alumine a des couches protectrices réalisées selon des méthodes connues. La couche protectrice 4 peut par exemple comprendre une couche d'alumine en phase a. Cette couche peut être formée de grains présentant une taille moyenne, dans un plan localement tangent à la surface 16, supérieure à 50 μιη. L'augmentation de la taille des grains de l'alumine a permet d'augmenter la durée de vie de la barrière thermique. La couche protectrice 4 peut également comprendre une couche d'alumine exclusivement en phase a.
En outre, l'homogénéité de la rugosité de la surface 16 de la sous-couche métallique 3 bombardée par des particules chargées permet de former la couche protectrice 4 à une cinétique constante sur la surface 16 de la sous-couche métallique 3. Ainsi, la couche protectrice 4 formée présente des propriétés mécaniques et une épaisseur sensiblement constantes sur la surface 16 de la sous- couche métallique 3, ce qui permet d'éviter des contraintes mécaniques pendant l'utilisation de la pièce, entraînant l'écaillage de la couche protectrice 4.
L'ensemble des étapes du procédé peut avantageusement être réalisé sous vide, ou de manière générale, sans exposer la pièce à l'atmosphère ambiante. En particulier, la pièce peut être gardée sous-vide entre les étapes 103 et 105 du procédé. Ainsi, on évite la formation d'oxyde instable et/ou métastable sur la surface 16.
La figure 4 illustre schématiquement la section d'une partie de pièce 1 de turbine obtenue par un procédé conforme au procédé de la figure 3. La pièce 1 de turbine est par exemple une aube de turbine, une ailette de distributeur ou tout autre élément, partie ou pièce de turbine. Elle comprend un substrat 2 en superalliage base nickel monocristallin, un sous-couche métallique 3 recouvrant le substrat 2 et une couche protectrice 4 en oxyde métallique recouvrant la sous- couche 3. Une couche thermiquement isolante 5 peut par exemple recouvrir la couche protectrice 4. La barrière thermique 10 comprend la sous-couche métallique 3, la couche protectrice 4 et la couche thermiquement isolante 5. La sous-couche métallique 3 a une surface 16 en contact avec la couche protectrice 4 présentant une rugosité inférieure à 1 pm, préférentiellement inférieure à 500 nm et préférentiellement comprise entre 100 et 300 nm.
La figure 5 est une microphotographie d'un détail d'une pièce 1 de turbine. Le rectangle noir de la figure 5 est une barre d'échelle correspondant à 5 pm. La pièce comprend une couche protectrice 4 en oxyde métallique recouvrant une sous-couche métallique 3. Dans ce mode de réalisation de l'invention, la sous- couche métallique 3 a été gravée au plasma, puis une couche protectrice 4 a été formée sur la sous-couche métallique 3.
En référence à la figure 6, le dépôt PVD correspondant à l'étape 101 peut être réalisé à l'intérieur d'une enceinte 12 contenant la pièce 1 et une ou plusieurs cible(s) 8 correspondant au(x) matériau(x) à déposer. La pièce 1 illustrée sur la figure 6 peut être une aube 6 de turbine, une ailette de distributeur, ou tout autre élément, partie ou pièce d'une turbine. Le substrat 2 en superalliage peut être polarisé par une liaison électrique 15 reliée à un générateur de potentiel électrique. Sous l'application d'une différence de potentiel positive entre la (les) cible(s) 8 et le substrat 2, un plasma 7 d'argon peut se former, dont les espèces positives sont attirées par la cathode (cible 8) et entrent en collision avec celle-ci. Les atomes de la ou des cible(s) 8 sont pulvérisés et se condensent alors sur ladite pièce de manière à former la ou les sous-couche(s) 3 métalliques. De préférence, les conditions de dépôt sont les suivantes :
- chauffage pendant le dépôt : de 100 à 900 °C ;
- pression : de 0, 1 Pa à 1 Pa ;
- densité de puissance : 2 à 15 W/cm2 ;
- polarisation : de 0 à 400 V.
Le bombardement ionique est réalisé pendant 10 à 30 minutes.
En référence à la figure 7, le bombardement de particules chargées, par exemple mis en œuvre par un plasma 7, correspondant à l'étape 103, peut être réalisé à l'intérieur d'une enceinte 12 contenant la pièce 1 et une ou plusieurs cibles 8 correspondant au(x) matériau(x) à déposer. L'enceinte peut être l'enceinte utilisée lors de l'étape 101 illustrée sur la figure 6. Le substrat 2 en superalliage peut être polarisé par une liaison électrique 15 reliée à un générateur de potentiel électrique. Sous l'application d'une différence de potentiel négative entre la (les) cible(s) 8 et le substrat 2, un plasma 7 d'argon peut se former, dont les espèces positives sont attirées par la cathode (pièce de turbine) et entrent en collision avec celle-ci. Ainsi, la surface 16 de la sous-couche métallique 3 peut être gravée. De préférence, les conditions de dépôt sont les suivantes :
- pression : de 0, 1 Pa à 1 Pa ;
- densité de puissance : 2 à 15 W/cm2 ;
- polarisation : de 0 à - 400 V.
En référence à la figure 8, l'étape 103 de fabrication de la pièce peut être mise en oeuvre dans une première enceinte 13. La pièce peut être transportée de la première enceinte à une seconde enceinte 14, dans laquelle est mise en oeuvre l'étape 105, dans un passage 9 maintenu sous vide, reliant les deux enceintes 13, 14. Le passage peut être délimité par un canal, un conduit et/ou un tuyau. Ainsi, la pièce peut être gardée sous vide entre les étapes 103 et 105 de manière à éviter la formation d'oxyde métastable ou instable avant la formation de la couche protectrice 4 lors de l'étape 105. Le passage peut comprendre une vanne 11 , permettant de contrôler le vide dans seulement l'une des première ou deuxième enceintes, en fonction de l'étape de fabrication de la pièce. L'ouverture de la vanne 11 est adaptée au transport de la pièce de turbine, de la première enceinte vers la deuxième enceinte.

Claims

REVENDICATIONS
1 . Procédé de fabrication d'une pièce (1 ) de turbine comprenant :
- un substrat (2) en superalliage base nickel monocristallin,
- une sous-couche métallique (3) recouvrant le substrat, et
- une couche (4) protectrice en oxyde métallique recouvrant la sous-couche, le procédé comprenant des étapes de :
a) bombardement de particules chargées (7) sur une surface (16) de la sous-couche métallique, puis
b) formation de la couche protectrice (4) sur la surface bombardée lors de l'étape a).
2. Procédé selon la revendication 1 , dans lequel le bombardement de particules chargées est mis en œuvre par un plasma.
3. Procédé selon la revendication 1 ou 2, comprenant une étape de dépôt de la sous-couche métallique en phase vapeur sur le substrat avant l'étape a) du procédé.
4. Procédé selon l'une des revendications 1 à 3, comprenant une étape de chauffage de la pièce, sous vide, à une température supérieure à 1000° C, entre les étapes a) et b).
5. Procédé selon l'une des revendications 1 à 4, dans lequel on chauffe la pièce entre 800° C et 1200° C entre le dépôt de la sous-couche métallique et l'étape a).
6. Procédé selon l'une des revendications 1 à 5, dans lequel la pièce est mise en rotation pendant l'étape a).
7. Procédé selon l'une des revendications 1 à 6, dans lequel la pièce est gardée sous vide entre les étapes a) et b).
8. Procédé selon l'une des revendications 1 à 7, dans lequel on chauffe la pièce à une température supérieure à 1000 ° C pendant l'étape b).
9. Procédé selon l'une des revendications 1 à 8, dans lequel l'étape a) est mise en œuvre dans une première enceinte (13) sous vide, l'étape b) est mise en œuvre dans une seconde enceinte (14) sous vide, et dans lequel la pièce est transportée, entre les étapes a) et b), de la première enceinte vers la deuxième enceinte dans un passage (9), maintenu sous vide, reliant les deux enceintes.
10. Pièce (1 ) de turbine comprenant :
- un substrat (2) en superalliage base nickel monocristallin,
- une sous-couche (3) métallique recouvrant le substrat, et
- une couche protectrice (-4) en oxyde métallique recouvrant la sous-couche, caractérisée en ce que la sous-couche métallique a une surface (16) en contact avec la couche protectrice et la surface présente une rugosité moyenne comprise entre 100 nm et 1 \\m.
1 1 . Pièce de turbine selon la revendication 10 dans laquelle l'écart-type de la rugosité de la surface est inférieur à 20% de la rugosité moyenne de la surface (16).
12. Pièce de turbine selon la revendication 10 ou 1 1 , dans laquelle la couche protectrice comprend une couche d'alumine en phase a.
EP18728684.4A 2017-05-05 2018-05-07 Piece de turbine en superalliage et procede de fabrication associe par bombardement de particules chargees Pending EP3619338A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1700488A FR3065968B1 (fr) 2017-05-05 2017-05-05 Piece de turbine en superalliage et procede de fabrication associe par bombardement de particules chargees
PCT/FR2018/000109 WO2018202964A1 (fr) 2017-05-05 2018-05-07 Piece de turbine en superalliage et procede de fabrication associe par bombardement de particules chargees

Publications (1)

Publication Number Publication Date
EP3619338A1 true EP3619338A1 (fr) 2020-03-11

Family

ID=62492669

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18728684.4A Pending EP3619338A1 (fr) 2017-05-05 2018-05-07 Piece de turbine en superalliage et procede de fabrication associe par bombardement de particules chargees

Country Status (5)

Country Link
US (1) US20200191002A1 (fr)
EP (1) EP3619338A1 (fr)
CN (1) CN110709536A (fr)
FR (1) FR3065968B1 (fr)
WO (1) WO2018202964A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3043564A1 (fr) * 2019-05-15 2020-11-15 Safran Procede de formation d'une couche d'alumine a la surface d'un substrat metallique

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4321310A (en) * 1980-01-07 1982-03-23 United Technologies Corporation Columnar grain ceramic thermal barrier coatings on polished substrates
GB9204791D0 (en) * 1992-03-05 1992-04-22 Rolls Royce Plc A coated article
EP1327702A1 (fr) * 2002-01-10 2003-07-16 ALSTOM (Switzerland) Ltd Revêtement de liaison de type MCrAlY et procédé de depôt de ce revêtement de liason de type MCrAlY
US8323801B2 (en) * 2006-01-18 2012-12-04 E I Du Pont De Nemours And Company Process for forming a durable low emissivity moisture vapor permeable metallized sheet including a protective metal oxide layer
EP2631324A4 (fr) * 2010-10-19 2014-04-16 Nat Inst For Materials Science Élément en un superalliage à base de ni contenant une couche d'accrochage résistante à la chaleur
US20120148769A1 (en) * 2010-12-13 2012-06-14 General Electric Company Method of fabricating a component using a two-layer structural coating
TW201414405A (zh) * 2012-09-20 2014-04-01 Hon Hai Prec Ind Co Ltd 支撐裝置
US20160236989A1 (en) * 2015-02-17 2016-08-18 United Technologies Corporation Toughened bond layer and method of production

Also Published As

Publication number Publication date
WO2018202964A1 (fr) 2018-11-08
FR3065968A1 (fr) 2018-11-09
FR3065968B1 (fr) 2020-11-20
CN110709536A (zh) 2020-01-17
US20200191002A1 (en) 2020-06-18

Similar Documents

Publication Publication Date Title
CA2828792C (fr) Procede de realisation d'une barriere thermique dans un systeme multicouche de protection de piece metallique et piece munie d'un tel systeme de protection
CA2757386A1 (fr) Methode de fabrication d'une barriere thermique recouvrant un substrat metallique en superalliage et piece thermomecanique resultant de cette methode de fabrication
EP3707297B1 (fr) Procede de fabrication d'une barriere thermique sur une piece d'une turbomachine
FR2932496A1 (fr) Procede de depot d'une barriere thermique
EP3469112B1 (fr) Procédé de protection contre la corrosion et l'oxydation d'une pièce en superalliage monocristallin à base de nickel exempt d'hafnium
FR2941965A1 (fr) Procede de depot d'une couche de protection sur une piece
EP3619338A1 (fr) Piece de turbine en superalliage et procede de fabrication associe par bombardement de particules chargees
EP3099848B1 (fr) Procede de reparation localisee d'une barriere thermique endommagee
WO2010092298A1 (fr) Procede de depot d'une couche de protection sur une piece.
FR3053076A1 (fr) Piece de turbomachine revetue d'une barriere thermique et d'un revetement de protection contre les cmas et procede pour l'obtenir
WO2022029393A1 (fr) Sous-couche pour superalliage base nickel permettant l'amelioration de la duree de vie des pieces et son procede de mise en œuvre
EP3685018B1 (fr) Pièce de turbine en superalliage comprenant du rhénium et/ou du ruthénium et procédé de fabrication associé
EP4041930B1 (fr) Piece d'aeronef en superalliage comprenant du rhenium et/ou du ruthenium et procede de fabrication associe
EP3532653B1 (fr) Pièce comprenant un substrat en superalliage monocristallin à base de nickel et son procédé de fabrication
WO2020229747A1 (fr) Procédé de formation d'une couche d'alumine à la surface d'un substrat métallique
WO2020240130A1 (fr) Procédé de protection contre la corrosion
WO2023094752A1 (fr) Procédé de revêtement par électrophorèse d'une pièce en matériau composite à matrice céramique par une barrière environnementale
FR3053075A1 (fr) Piece de turbomachine revetue d'une barriere thermique et d'un revetement de protection contre les cmas et procede pour l'obtenir
FR2739631A1 (fr) Revetement de surface anticorrosion de type mcraly, procede de depot d'un tel revetement, aube monocristalline de turbine a gaz pourvue d'un tel revetement

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20221014