EP3972932A1 - Procede de preparation de sel d'ammonium contenant un groupement fluorosulfonyle - Google Patents

Procede de preparation de sel d'ammonium contenant un groupement fluorosulfonyle

Info

Publication number
EP3972932A1
EP3972932A1 EP20737249.1A EP20737249A EP3972932A1 EP 3972932 A1 EP3972932 A1 EP 3972932A1 EP 20737249 A EP20737249 A EP 20737249A EP 3972932 A1 EP3972932 A1 EP 3972932A1
Authority
EP
European Patent Office
Prior art keywords
compound
formula
lithium
organic solvent
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20737249.1A
Other languages
German (de)
English (en)
Inventor
Grégory Schmidt
Philippe Leduc
Rémy Teissier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP3972932A1 publication Critical patent/EP3972932A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/086Compounds containing nitrogen and non-metals and optionally metals containing one or more sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/087Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms
    • C01B21/092Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms containing also one or more metal atoms
    • C01B21/0923Metal imides or amides
    • C01B21/0926Metal imides or amides of alkali metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/087Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms
    • C01B21/093Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms containing also one or more sulfur atoms
    • C01B21/0935Imidodisulfonic acid; Nitrilotrisulfonic acid; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/36Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of amides of sulfonic acids
    • C07C303/40Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of amides of sulfonic acids by reactions not involving the formation of sulfonamide groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a process for preparing ammonium salts containing a fluorosulfonyl group.
  • the present invention also relates to a process for preparing lithium salts of imides containing a fluorosulfonyl group.
  • Sulfonylimide type anions due to their very low basicity, are increasingly used in the field of energy storage in the form of inorganic salts in batteries, or organic salts in supercapacitors or in the field of liquids. ionic. With the battery market booming and the reduction of battery manufacturing costs becoming a major issue, a large-scale, low-cost synthesis process for this type of anions is needed.
  • LiPF 6 LiPF 6
  • LiPF 6 LiPF 6
  • LiFSI LiN (FS0 2 ) 2
  • LiFSI LiFSI
  • the examples of EP2505551 describe in particular the fluorination of a bis (chlorosulfonyl) imide with a fluorinating agent ZnF2 to form a zinc salt of bis (fluorosulfonyl) imide. Then, the zinc salt is contacted with an aqueous ammonia solution to form an ammonium salt of bis (fluorosulfonyl) imide. A cation exchange step is performed with LiOH to achieve LiFSI.
  • This process has the drawback of using an aqueous solution, which has the effect of dissolving the LiFSI.
  • the process includes additional extraction steps, which complicates the process and impacts production costs.
  • this process for preparing LiFSI comprises the preparation of several intermediate compounds (zinc salt, ammonium salt).
  • the accumulation of steps can cause a decrease in the final yields of LiFSI.
  • the present invention relates to a process for preparing a compound of the following formula (II):
  • R 1 represents F or an alkyl radical, linear or branched, substituted by at least one fluorine atom
  • said process comprising a step of bringing an anhydrous stream F1 comprising ammonia (NH 3) into contact with a compound of formula (I):
  • R 1 being as defined above.
  • anhydrous stream is meant a stream comprising a water content of less than 800 ppm, preferably less than or equal to 500 ppm, and advantageously less than or equal to 200 ppm. .
  • R 1 represents one of the following radicals: F, CF 3 , CHF2, CH 2 F, C2HF4, C2H2F 3 , C2H 3 F2, C 2 F 5 , C 3 F 7 , C 3 H 2 F 5 , C 3 H4F 3 , C4F 9 , C4H2F 7 , C 4 H 4 F 5 , OR C 5 F11, R 1 preferably being F.
  • the anhydrous stream F1 can be a liquid anhydrous stream or a gaseous anhydrous stream.
  • anhydrous flow F1 When the anhydrous flow F1 is a liquid flow, it may be a flow comprising liquid ammonia (NH 3 ) or ammonia (NH 3 ) in solution in an organic solvent or a mixture of organic solvents .
  • the organic solvent can be selected from the group consisting of esters, nitriles, ethers, amines, phosphines, and mixtures thereof.
  • the organic solvent is preferably selected from the group consisting of methyl acetate, ethyl acetate, butyl acetate, acetonitrile, propionitrile, isobutyronitrile, glutaronitrile, dioxane, tetrahydrofuran, methanol, ethanol, propanol, butanol, and mixtures thereof.
  • the organic solvent is butyl acetate.
  • the method may comprise, prior to the aforementioned contacting step, a step of dissolving gaseous or liquid NH 3 in an organic solvent or a mixture of organic solvents as defined above, advantageously forming an anhydrous liquid stream F1 .
  • the concentration of ammonia (NH 3 ) dissolved in an organic solvent or a mixture of organic solvents can be between 0.01 mol / L and the maximum solubility of ammonia in said organic solvent (s) ( s).
  • the anhydrous stream F1 is a gas stream, it contains gaseous ammonia (NH 3 ).
  • the aforementioned contacting step can be carried out at a temperature T ranging from 0 ° C to 40 ° C, preferably from 0 ° C to 30 ° C, and preferably from 2 ° C to 30 ° C.
  • the aforementioned contacting step can be carried out at a pressure P of between 0.1 and 15 bar absolute.
  • the molar ratio compound of formula (I): ammonia (NH 3 ) can be between 0.01 and 1, preferably between 0.1 and 0.5, and advantageously between 0.1 and 0.4.
  • the compound of formula (I) above can be obtained by a process comprising a fluorination step of a compound of formula (A):
  • R 2 represents one of the following radicals: Cl, F, CF 3 , CHF 2 , CH 2 F, C 2 HF 4 , C 2 H 2 F 3 , C 2 H 3 F 2 , C 2 F 5 , C3F7, C3H4F3, C3HF6, C4F9, C4H 2 F7, C4H4F5, C5F11, C6F13, C7F15, CeFu or C 9 F 19 , preferably R 2 representing Cl;
  • the fluorinating agent can be chosen from the group consisting of HF (for example anhydrous HF), KF, ASF 3 , B1F 3 , ZnF 2 , SnF 2 , PbF 2 , CuF 2 , and mixtures thereof, the agent of fluorination being preferably HF, and even more preferably anhydrous HF.
  • anhydrous HF THF containing less than 500 ppm of water, preferably less than 300 ppm of water, preferably less than 200 ppm of water.
  • This step can be carried out in at least one SOI organic solvent.
  • the SOI organic solvent preferably has a donor number between 1 and 70 and advantageously between 5 and 65.
  • the donor index of a solvent represents the value - DH, DH being the enthalpy of the interaction between the solvent and antimony pentachloride (according to the method described in Journal of Solution Chemistry, vol. 13, no. 9, 1984).
  • SOI organic solvent mention may in particular be made of esters, nitriles, dinitriles, ethers, diethers, amines, phosphines, and mixtures thereof.
  • the SOI organic solvent is chosen from the group consisting of methyl acetate, ethyl acetate, butyl acetate, acetonitrile, propionitrile, isobutyronitrile, glutaronitrile , dioxane, tetrahydrofuran, triethylamine, tripropylamine, diethylisopropylamine, pyridine, trimethylphosphine, triethylphosphine, diethylisopropylphosphine, and mixtures thereof.
  • the SOI organic solvent is dioxane or butyl acetate.
  • the fluorination step can be carried out at a temperature of between 0 ° C.
  • step b) is carried out at a temperature between 5 ° C and the boiling point of the SOI organic solvent (or of the mixture of SOI organic solvents), preferably between 20 ° C and the boiling point of the SOI.
  • SOI organic solvent or mixture of SOI organic solvents.
  • the fluorination step can be carried out at a pressure P, preferably between 0 and 16 bar abs.
  • This step is preferably carried out by dissolving the compound of formula (A) in the SOI organic solvent, or the mixture of SOI organic solvents, prior to the step of reaction with the fluorinating agent, preferably with the Anhydrous HF.
  • the molar ratio x between the fluorinating agent, preferably the anhydrous HF, and the compound of formula (A) used is preferably between 1 and 10, and advantageously between 1 and 5.
  • the fluorination step can be carried out in a closed environment or in an open environment, preferably step b) is carried out in an open environment with in particular the release of HCl in gas form.
  • the fluorination reaction typically leads to the formation of HCl, the majority of which can be degassed from the reaction medium (just like excess THF if the fluorinating agent is HF), for example by stripping with a neutral gas (such as than nitrogen, helium or argon).
  • a neutral gas such as than nitrogen, helium or argon
  • the compound of formula (I) can optionally be subjected to a distillation step.
  • the step of bringing an anhydrous stream F1 into contact with a compound of formula (I) can be carried out with a compound of formula (I) resulting directly from the fluorination step or resulting from an additional distillation step of the composition obtained at the end of the fluorination step.
  • the compound of formula (A) can be prepared by any means known to those skilled in the art, for example as described in WO2015 / 158979, W02009 / 123328, or alternatively by reaction between a chlorosulfonyl isocyanate with chlorosulfonic acid (US2013 / 331609).
  • Compound (A) may also be available commercially.
  • the present invention also relates to a process for preparing a compound of formula (III): F-SO2-N - SO2-R1 Li + (III) in which R 1 is as defined above, said process comprising the process for preparing a compound of formula (II) as defined above.
  • the present invention relates to a process for preparing a compound of formula (III) comprising:
  • a cation exchange step by bringing the compound of formula (II) into contact with a lithium salt, in particular selected from the group consisting of lithium fluorides, lithium chlorides, lithium carbonates, lithium hydroxides, lithium sulfates, lithium chlorates, lithium perchlorates, lithium nitrites, lithium nitrates, and mixtures thereof.
  • a lithium salt in particular selected from the group consisting of lithium fluorides, lithium chlorides, lithium carbonates, lithium hydroxides, lithium sulfates, lithium chlorates, lithium perchlorates, lithium nitrites, lithium nitrates, and mixtures thereof.
  • the aforementioned process may include an intermediate purification step of the compound of formula (II) prior to cation exchange step ii).
  • Purification can include a filtration step, washing with an organic solvent, an extraction step, etc.
  • Step ii) can be carried out in an organic solvent, preferably polar, or an aqueous solvent, such as, for example, water.
  • polar organic solvents mention may for example be made of alcohols, nitriles, carbonates and their mixtures.
  • alcohols for example, there may be mentioned methanol, ethanol, acetonitrile, dimethylcarbonate, ethylmethylcarbonate, and mixtures thereof.
  • the lithium salt can be a solid lithium salt or a lithium salt in solution in at least one organic solvent.
  • Reaction ii) can be carried out at a temperature between 0 ° C and the boiling point of the solvent used, preferably between 0 ° C and 50 ° C.
  • reaction time of step ii) can be for example between 1 hour and 5 days, preferably between 1 hour and 1 day.
  • the molar ratio between the lithium salt and the compound of formula (II) can be between 0.9 and 5.
  • the above-mentioned process can comprise a step iii) of recovering the product of formula (III).
  • the reaction medium can be filtered to remove the precipitate formed with the ammonium cation.
  • the filtrate can then be concentrated to remove the solvent.
  • a precipitate with the ammonium cation can form again and can be removed by filtration.
  • Excess lithium salt can be removed by washing with water which can be performed after evaporation or directly on the solution of the compound of formula (III) in an organic solvent chosen from the following families: esters, ethers, chlorinated or aromatic solvents such as, for example, dichloromethane, acetonitrile, acetate ethyl, butyl acetate, diethyl ether, tetrahydrofuran.
  • the solution of the compound of formula (III) obtained at the end of step ii) can be evaporated, for example by a thin-film evaporator or by an atomizer or by a rotary evaporator.
  • the compound of formula (III) thus obtained can be dissolved in an amount of water which can vary between 4/1 and 1/1 of the total mass of the compound of formula (III) with solvent.
  • the product dissolved in the aqueous solution can then be extracted using an organic solvent chosen from the following families: esters, ethers, chlorinated or aromatic solvents such as, for example, dichloromethane, ethyl acetate, butyl acetate, diethyl ether, tetrahydrofuran.
  • the solution of the compound of formula (III) obtained can be washed with water.
  • the washes can be multiple, ranging in particular from 2 to 10 with increasing or decreasing amounts during the washings.
  • the mass quantities of water used during the wash (s) are between 1/10 and 2 times the mass of the product solution to be washed.
  • the washed organic phase can then be evaporated in particular with a thin-film evaporator or an atomizer or a rotary evaporator.
  • the compound of formula (III) obtained by the above-mentioned process can be subjected to at least one purification step. It can be purification well known to those skilled in the art such as, for example, liquid-liquid extractions, recrystallization, etc.
  • the compound of formula (III) is selected from the following compounds: LiN (FS0 2) 2, UNSO2CF3SO2F, UNSO2C2F5SO2F, UNSO2CHF2SO2F, UNSO2CH2FSO2F, UNSO2C2HF4SO2F, UNSO2C2H2F3SO2F, UNSO2C2H3F2SO2F, UNSO2C 3 F 7 SO 2 F, UNSO2C 3 H2F 5 SO2F, UNSO2C 3 H4F 3 SO2F, UNSO2C4F 9 SO2F, UNSO2C4H2F 7 SO2F, UNSO2C4H4F 5 SO2F, LiNS02C 5 FiiS0 2 F, the compound of formula (III) preferably being LiN (FSC> 2) 2.
  • an intermediate step for preparing a compound of formula (II) advantageously makes it possible to prepare a compound of formula (III) such as LiFSI, at low cost and with a high yield.
  • this process advantageously makes it possible to avoid a step of neutralization, with an aqueous solution based on lithium, of the compound of formula (I) such as bis (fluorosulfonyl) imide which is unstable in aqueous solution, and therefore makes it possible to '' avoid the generation of degradation products likely to impact the performance of the final product.
  • by “between x and y”, or “ranging from x to y”, is meant an interval in which the limits x and y are included.
  • the temperature “between 30 and 100 ° C” includes in particular the values 30 ° C and 100 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La présente invention concerne un procédé de préparation d'un composé de formule (II) suivante : (II) dans laquelle R1 représente F ou un radical alkyle, linéaire ou ramifié, substitué par au moins un atome de fluor, ledit procédé comprenant une étape de mise en contact d'un flux anhydre F1 comprenant de l'ammoniac (NH3) avec un composé de formule (I) : (I) R1 étant tel que défini ci-dessus.

Description

PROCEDE DE PREPARATION DE SEL D’AMMONIUM CONTENANT UN GROUPEMENT
FLUOROSULFONYLE
DOMAINE DE L'INVENTION
La présente invention concerne un procédé de préparation de sels d’ammonium contenant un groupement fluorosulfonyle.
La présente invention concerne également un procédé de préparation de sels de lithium d’imides contenant un groupement fluorosulfonyle.
ARRIERE-PLAN TECHNIQUE
Les anions de type sulfonylimide, de par leur très faible basicité, sont de plus en plus utilisés dans le domaine du stockage d’énergie sous forme de sels inorganiques dans les batteries, ou de sels organiques dans les super condensateurs ou dans le domaine des liquides ioniques. Le marché des batteries étant en plein essor et la réduction des coûts de fabrication des batteries devenant un enjeu majeur, un procédé de synthèse à grande échelle et à bas coût de ce type d’anions est nécessaire.
Dans le domaine spécifique des batteries Li-ion, le sel actuellement le plus utilisé est le LiPF6 mais ce sel montre de nombreux désavantages tels qu’une stabilité thermique limitée, une sensibilité à l’hydrolyse et donc une plus faible sécurité de la batterie. Récemment de nouveaux sels possédant le groupement FS02 ont été étudiés et ont démontré de nombreux avantages comme une meilleure conductivité ionique et une résistance à l’hydrolyse. L’un de ces sels, le LiFSI (LiN(FS02)2) a montré des propriétés très intéressantes qui font de lui un bon candidat pour remplacer le LiPF6.
Il existe divers procédés de préparation du LiFSI. Les exemples de EP2505551 décrivent notamment la fluoration d’un bis(chlorosulfonyl)imide avec un agent de fluoration ZnF2 pour former un sel de zinc de bis(fluorosulfonyl)imide. Ensuite, le sel de zinc est mis en contact avec une solution aqueuse d’ammoniaque pour former un sel d’ammonium de bis(fluorosulfonyl)imide. Une étape d’échange de cation est réalisée avec LiOH pour parvenir au LiFSI.
Ce procédé a pour inconvénient l’emploi d’une solution aqueuse, qui a pour effet de solubiliser le LiFSI. Afin de récupérer le LiFSI dissous, le procédé comprend des étapes supplémentaires d’extraction, ce qui complexifie le procédé et impacte les coûts de production.
En outre, ce procédé de préparation du LiFSI comprend la préparation de plusieurs composés intermédiaires (sel de zinc, sel d’ammonium). L’accumulation d’étapes peut engendrer une diminution des rendements finaux en LiFSI. Il existe donc encore un besoin d’un procédé de préparation de sel de lithium de bis(fluorosulfonyl)imide ne présentant pas au moins l’un des inconvénients susmentionnés.
DESCRIPTION DE L’INVENTION
La présente invention concerne un procédé de préparation d’un composé de formule (II) suivante :
F-SO2-N--SO2-R1 NH4 + (II)
dans laquelle Ri représente F ou un radical alkyle, linéaire ou ramifié, substitué par au moins un atome de fluor, ledit procédé comprenant une étape de mise en contact d’un flux anhydre F1 comprenant de l’ammoniac (NH3) avec un composé de formule (I) :
F-SO2-NH-SO2-R1 (I)
R1 étant tel que défini ci-dessus.
Dans le cadre de l’invention, et sauf mention contraire, par « flux anhydre », on entend un flux comprenant une teneur en eau inférieure à 800 ppm, de préférence inférieure ou égale à 500 ppm, et avantageusement inférieure ou égale à 200 ppm.
Selon un mode de réalisation, R1 représente l’un des radicaux suivants : F, CF3, CHF2, CH2F, C2HF4, C2H2F3, C2H3F2, C2F5, C3F7, C3H2F5, C3H4F3, C4F9, C4H2F7, C4H4F5, OU C5F11 , R1 étant de préférence F.
Le flux anhydre F1 peut être un flux anhydre liquide ou un flux anhydre gazeux.
Lorsque le flux anhydre F1 est un flux liquide, il peut s’agir d’un flux comprenant de l’ammoniac (NH3) liquide ou de l’ammoniac (NH3) en solution dans un solvant organique ou un mélange de solvants organiques.
Le solvant organique peut être choisi dans le groupe constitué des esters, des nitriles, des éthers, des amines, des phosphines, et de leurs mélanges.
Le solvant organique est de préférence choisi dans le groupe constitué de l’acétate de méthyle, de l’acétate d’éthyle, de l’acétate de butyle, de l’acétonitrile, du propionitrile, de l’isobutyronitrile, du glutaronitrile, du dioxane, du tétrahydrofurane, du méthanol, de l’éthanol, du propanol, du butanol, et de leurs mélanges.
De préférence, le solvant organique est l’acétate de butyle.
Le procédé peut comprendre, préalablement à l’étape de mise en contact susmentionnée, une étape de dissolution de NH3 gazeux ou liquide dans un solvant organique ou un mélange de solvants organiques tels que définis ci-dessus, formant avantageusement un flux liquide anhydre F1 .
La concentration de l’ammoniac (NH3) dissout dans un solvant organique ou un mélange de solvants organiques peut être comprise entre 0,01 mol/L et la solubilité maximale de l’ammoniac dans ledit(lesdits) solvant(s) organique(s). Lorsque le flux anhydre F1 est un flux gazeux, il contient de l’ammoniac (NH3) gazeux.
L’étape de mise en contact susmentionnée peut être mise en oeuvre à une température T allant de 0°C à 40°C, de préférence de 0°C à 30°C, et préférentiellement de 2°C à 30°C.
L’étape de mise en contact susmentionnée peut être mise en oeuvre à une pression P comprise entre 0,1 et 15 bars absolus.
Le rapport molaire composé de formule (I) : ammoniac (NH3) peut être compris entre 0,01 et 1 , de préférence compris entre 0,1 et 0,5, et avantageusement entre 0,1 et 0,4.
Le composé de formule (I) susmentionnée peut être obtenu par un procédé comprenant une étape de fluoration d’un composé de formule (A) :
Cl-(S02)-NH-(S02)-R2 (A) dans laquelle R2 représente l’un des radicaux suivants : Cl, F, CF3, CHF2, CH2F, C2HF4, C2H2F3, C2H3F2, C2F5, C3F7, C3H4F3, C3HF6, C4F9, C4H2F7, C4H4F5, C5F11, C6F13, C7F15, CeFu ou C9F19, de préférence R2 représentant Cl ;
avec au moins un agent de fluoration.
L’agent de fluoration peut être choisi dans le groupe constitué de HF (par exemple HF anhydre), KF, ASF3, B1F3, ZnF2, SnF2, PbF2, CuF2, et de leurs mélanges, l’agent de fluoration étant de préférence HF, et encore plus préférentiellement HF anhydre.
Dans le cadre de l’invention, par « HF anhydre », on entend de THF contenant moins de 500 ppm d’eau, de préférence moins de 300 ppm d’eau de manière préférée moins de 200 ppm d’eau.
Cette étape peut être réalisée dans au moins un solvant organique SOI . Le solvant organique SOI possède de préférence un nombre donneur compris entre 1 et 70 et avantageusement compris entre 5 et 65. L’indice donneur d’un solvant représente la valeur - DH, DH étant l’enthalpie de l’interaction entre le solvant et le pentachlorure d’antimoine (selon la méthode décrite dans Journal of Solution Chemistry, vol. 13, n°9, 1984). Comme solvant organique SOI , on peut citer notamment les esters, les nitriles, les dinitriles, les éthers, les diéthers, les amines, les phosphines, et leurs mélanges.
De préférence, le solvant organique SOI est choisi dans le groupe constitué de l’acétate de méthyle, de l’acétate d’éthyle, de l’acétate de butyle, de l’acétonitrile, du propionitrile, de l’isobutyronitrile, du glutaronitrile, du dioxane, du tétrahydrofurane, de la triéthylamine, de la tripropylamine, de la diéthylisopropylamine, de la pyridine, de la triméthylphosphine, de la triéthylphosphine, de la diéthylisopropylphosphine, et de leurs mélanges. En particulier, le solvant organique SOI est le dioxane ou l’acétate de butyle. L’étape de fluoration peut être mise en oeuvre à une température comprise entre 0°C et la température d’ébullition du solvant organique SOI (ou du mélange de solvants organiques SOI ). De préférence, l’étape b) est réalisée à une température comprise entre 5°C et la température d’ébullition du solvant organique SOI (ou du mélange de solvants organiques SOI ), préférentiellement entre 20°C et la température d’ébullition du solvant organique SOI (ou du mélange de solvants organiques SOI ).
L’étape de fluoration peut être mise en oeuvre à une pression P, de préférence comprise entre 0 et 16 bars abs.
Cette étape est de préférence mise en oeuvre en dissolvant le composé de formule (A) dans le solvant organique SOI , ou le mélange de solvants organiques SOI , préalablement à l’étape de réaction avec l’agent de fluoration, de préférence avec l’HF anhydre.
Le rapport molaire x entre l’agent de fluoration, de préférence l’HF anhydre, et le composé de formule (A) mis en jeu est de préférence compris entre 1 et 10, et avantageusement entre 1 et 5.
L’étape de fluoration peut être effectuée en milieu fermé ou en milieu ouvert, de préférence l’étape b) est réalisée en milieu ouvert avec notamment dégagement d’HCI sous forme gaz.
La réaction de fluoration conduit typiquement à la formation de HCl, dont la majorité peut être dégazée du milieu réactionnel (tout comme THF excédentaire si l’agent de fluoration est le HF), par exemple par entraînement (stripping) par un gaz neutre (tel que l’azote, l’hélium ou l’argon).
Le composé de formule (I) peut éventuellement être soumis à une étape de distillation.
L’étape de mise en contact d’un flux anhydre F1 avec un composé de formule (I) peut être réalisée avec un composé de formule (I) issu directement de l’étape de fluoration ou issu d’une étape supplémentaire de distillation de la composition obtenue à l’issue de l’étape de fluoration.
Le composé de formule (A) peut être préparé par tous moyens connus de l’homme du métier, par exemple tel que décrit dans WO2015/158979, W02009/123328, ou encore par réaction entre un chlorosulfonyl isocyanate avec l’acide chlorosulfonique (US2013/331609).
Le composé (A) peut également être disponible commercialement.
La présente invention concerne également un procédé de préparation d’un composé de formule (III) : F-SO2-N--SO2-R1 Li+ (III) dans laquelle Ri est tel que défini précédemment, ledit procédé comprenant le procédé de préparation d’un composé de formule (II) tel que défini ci-dessus.
De préférence, la présente invention concerne un procédé de préparation d’un composé de formule (III) comprenant :
- i) le procédé de préparation d’un composé de formule (II) tel que défini ci-dessus ; et
- ii) une étape d’échange de cation par mise en contact entre le composé de formule (II) et un sel de lithium, en particulier choisi dans le groupe constitué des fluorures de lithium, des chlorures de lithium, des carbonates de lithium, des hydroxydes de lithium, des sulfates de lithium, des chlorates de lithium, des perchlorates de lithium, des nitrites de lithium, des nitrates de lithium, et de leurs mélanges.
Le procédé susmentionné peut comprendre une étape de purification intermédiaire du composé de formule (II) préalablement à l’étape ii) d’échange de cation. La purification peut comprendre une étape de filtration, de lavage avec un solvant organique, une étape d’extraction...
L’étape ii) peut être réalisée dans un solvant organique de préférence polaire, ou un solvant aqueux, tel que par exemple de l’eau.
Parmi les solvants organiques polaires, on peut par exemple citer les alcools, les nitriles, les carbonates et leurs mélanges. Par exemple, on peut citer le méthanol, l’éthanol, l’acétonitrile, le diméthylcarbonate, l’éthylméthylcarbonate, et leurs mélanges.
Le sel de lithium peut être un sel de lithium solide ou un sel de lithium en solution dans au moins un solvant organique.
La réaction ii) peut être réalisée à une température comprise entre 0°C et la température d’ébullition du solvant utilisé, de préférence entre 0°C et 50°C.
Le temps de réaction de l’étape ii) peut être compris par exemple entre 1 heure et 5 jours, de préférence entre 1 heure et 1 jour.
Le rapport molaire entre le sel lithium et le composé de formule (II) peut être compris entre 0,9 et 5.
Le procédé susmentionné peut comprendre une étape iii) de récupération du produit de formule (III).
Selon le sel de lithium utilisé, le milieu réactionnel peut être filtré pour éliminer le précipité formé avec le cation ammonium. Le filtrat peut ensuite être concentré pour éliminer le solvant. Un précipité avec le cation ammonium peut se former à nouveau et peut être éliminé par filtration. L’excès de sel de lithium peut être éliminé par un lavage à l’eau qui peut être réalisé après une évaporation ou directement sur la solution du composé de formule (III) dans un solvant organique choisi parmi les familles suivantes : les esters, les éthers, les solvants chlorés ou aromatiques comme par exemple le dichlorométhane, l’acétonitrile, l’acétate d’éthyle, l’acétate de butyle, le diéthyléther, le tétrahydrofurane.
Selon un premier mode de réalisation, la solution du composé de formule (III) obtenue à l’issue de l’étape ii) peut être évaporée, par exemple par un évaporateur à couche mince ou par un atomiseur ou par un évaporateur rotatif. Le composé de formule (III) ainsi obtenu peut être dissous dans une quantité d’eau qui peut varier entre 4/1 et 1/1 de la masse totale du composé de formule (III) avec solvant. Le produit dissous dans la solution aqueuse peut ensuite être extrait à l’aide d’un solvant organique choisi parmi les familles suivantes : les esters, les éthers, les solvants chlorés ou aromatique comme par exemple le dichlorométhane, l’acétate d’éthyle, l’acétate de butyle, le diéthyléther, le tétrahydrofurane.
Selon un second mode de réalisation, la solution du composé de formule (III) obtenue peut être lavée avec de l’eau. Les lavages peuvent être multiples, allant notamment de 2 à 10 avec des quantités croissantes ou décroissantes au cours des lavages. Les quantités massiques d’eau utilisées lors du ou des lavages sont comprises entre 1/10 et 2 fois la masse de solution de produit à laver. La phase organique lavée peut être ensuite évaporée notamment avec un évaporateur à couche mince ou un atomiseur ou un évaporateur rotatif.
Le composé de formule (III) obtenu par le procédé susmentionné peut être soumis à au moins une étape de purification. Il peut s’agir de purification bien connue de l’homme du métier tel que par exemple les extractions liquide-liquide, la recristallisation, ...
Selon un mode de réalisation, le composé de formule (III) est choisi parmi les composés suivants: LiN(FS02)2, UNSO2CF3SO2F, UNSO2C2F5SO2F, UNSO2CHF2SO2F, UNSO2CH2FSO2F, UNSO2C2HF4SO2F, UNSO2C2H2F3SO2F, UNSO2C2H3F2SO2F, UNSO2C3F7SO2F, UNSO2C3H2F5SO2F, UNSO2C3H4F3SO2F, UNSO2C4F9SO2F, UNSO2C4H2F7SO2F, UNSO2C4H4F5SO2F, LiNS02C5FiiS02F, le composé de formule (III) étant de préférence LiN(FSC>2)2.
Les inventeurs ont avantageusement trouvé que la mise en oeuvre d’une étape intermédiaire de préparation d’un composé de formule (II) permet avantageusement de préparer un composé de formule (III) tel que le LiFSI, à bas coût et avec un rendement élevé. Plus particulièrement, ce procédé permet avantageusement d’éviter une étape de neutralisation, avec une solution aqueuse à base de lithium, du composé de formule (I) tel que le bis(fluorosulfonyl)imide qui est instable en solution aqueuse, et donc permet d’éviter la génération de produits de dégradation susceptibles d’impacter les performances du produit final. Dans le cadre de l’invention, par « compris entre x et y », ou « allant de x à y », on entend un intervalle dans lequel les bornes x et y sont incluses. Par exemple, la température «comprise entre 30 et 100°C » inclus notamment les valeurs 30°C et 100°C.
Tous les modes de réalisation décrits ci-dessus peuvent être combinés les uns avec les autres. En particulier, chaque mode de réalisation d’une étape quelconque du procédé de l’invention peut être combiné avec un autre mode de réalisation particulier.

Claims

REVENDICATIONS
1 . Procédé de préparation d’un composé de formule (II) suivante :
F-SO2-N--SO2-R1 NH4 + (II) dans laquelle Ri représente F ou un radical alkyle, linéaire ou ramifié, substitué par au moins un atome de fluor, ledit procédé comprenant une étape de mise en contact d’un flux anhydre F1 comprenant de l’ammoniac (NH3) avec un composé de formule (I) :
F-SO2-NH-SO2-R1 (I)
R1 étant tel que défini ci-dessus.
2. Procédé selon la revendication 1 , caractérisé en ce R1 représente l’un des radicaux suivants : F, CF3, CHF2, CH2F, C2HF4, C2H2F3, C2H3F2, C2F5, C3F7, C3H2F5, C3H4F3, C4F9, C4H2F7, C4H4F5, ou C5F11 , R1 étant de préférence F.
3. Procédé selon l’une quelconque des revendications 1 ou 2, dans lequel le flux F1 est un flux gazeux comprenant de l’ammoniac (NH3) gazeux.
4. Procédé selon l’une quelconque des revendications 1 ou 2, dans lequel le flux F1 est un flux liquide comprenant de l’ammoniac (NH3) liquide ou de l’ammoniac (NH3) en solution dans un solvant organique ou un mélange de solvants organiques.
5. Procédé selon la revendication 4, dans lequel le solvant organique est choisi dans le groupe constitué des esters, des nitriles, des éthers, des amines, des phosphines, et de leurs mélanges.
6. Procédé selon l’une quelconque des revendications 4 ou 5, dans lequel le solvant organique est choisi dans le groupe constitué de l’acétate de méthyle, de l’acétate d’éthyle, de l’acétate de butyle, de l’acétonitrile, du propionitrile, de l’isobutyronitrile, du glutaronitrile, du dioxane, du tétrahydrofurane, du méthanol, de l’éthanol, du propanol, du butanol, et de leurs mélanges.
7. Procédé selon l’une quelconque des revendications 1 , 2, 4, 5 ou 6 , caractérisé en ce qu’il comprend une étape préalable de dissolution de NH3 gazeux ou liquide dans un solvant organique ou un mélange de solvants organiques.
8. Procédé selon l’une quelconque des revendications 4 à 7, caractérisé en ce que la concentration de l’ammoniac (NH3) dissout dans un solvant organique ou un mélange de solvants organiques est comprise entre 0,01 mol/L et la solubilité maximale de l’ammoniac dans ledit(lesdits) solvant(s) organique(s).
9. Procédé selon l’une quelconque des revendications 1 à 8, dans lequel l’étape de réaction est mise en oeuvre à une température T allant de 0°C à 40°C, de préférence de 0°C à 30°C, et préférentiellement de 2°C à 30°C.
10. Procédé selon l’une quelconque des revendications 1 à 9, dans lequel le rapport molaire composé de formule (I) : ammoniac est compris entre 0,01 et 1 , de préférence compris entre 0,1 et 0,5, et avantageusement entre 0,1 et 0,4.
1 1 . Procédé selon l’une quelconque des revendications 1 à 10, caractérisé en ce que le composé de formule (I) est obtenu par un procédé comprenant une étape de fluoration d’un composé de formule (A) :
Cl-(S02)-NH-(S02)-R2 (A) dans laquelle R2 représente l’un des radicaux suivants : Cl, F, CF3, CHF2, CH2F, C2HF4, C2H2F3, C2H3F2, C2F5, C3F7, C3H4F3, C3HF6, C4F9, C4H2F7, C4H4F5, C5F11, C6F13, C7F15, C8Fi7 OU C9F19, de préférence R2 représentant Cl ;
avec au moins un agent de fluoration.
12. Procédé selon la revendication 1 1 , caractérisé en ce que l’agent de fluoration est choisi dans le groupe constitué de HF, KF, ASF3, B1F3, ZnF2, SnF2, PbF2, CuF2, et de leurs mélanges, l’agent de fluoration étant de préférence HF, et encore plus préférentiellement HF anhydre.
13. Procédé de préparation d’un composé de formule (III) :
F-S02-N--S02-RI Li+ (III) comprenant une étape de préparation d’un composé de formule (II) selon l’une quelconque des revendications 1 à 12.
14. Procédé selon la revendication 13, caractérisé en ce qu’il comprend :
la préparation d’un composé de formule (II) selon l’une quelconque des revendications 1 à 12 ;
une étape d’échange de cation par mise en contact entre le composé de formule (II) et un sel de lithium, en particulier choisi dans le groupe constitué des fluorures de lithium, des chlorures de lithium, des carbonates de lithium, des hydroxydes de lithium, des sulfates de lithium, des chlorates de lithium, des perchlorates de lithium, des nitrite de lithium, des nitrates de lithium, et de leurs mélanges.
15. Procédé selon l’une quelconque des revendications 13 ou 14, caractérisé en ce que le composé de formule (III) est le LiN(FS02)2, UNSO2CF3SO2F, LiNS02C2F5S02F, UNSO2CHF2SO2F, UNSO2CH2FSO2F, UNSO2C2HF4SO2F, UNSO2C2H2F3SO2F, UNSO2C2H3F2SO2F, UNSO2C3F7SO2F, UNSO2C3H2F5SO2F, UNSO2C3H4F3SO2F, UNSO2C4F9SO2F, UNSO2C4H2F7SO2F, UNSO2C4H4F5SO2F, UNSO2C5F11SO2F, de préférence LiN(FSC>2)2.
EP20737249.1A 2019-05-22 2020-05-19 Procede de preparation de sel d'ammonium contenant un groupement fluorosulfonyle Pending EP3972932A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1905385A FR3096367B1 (fr) 2019-05-22 2019-05-22 Procede de preparation de sel d’ammonium contenant un groupement fluorosulfonyle
PCT/FR2020/050828 WO2020234537A1 (fr) 2019-05-22 2020-05-19 Procede de preparation de sel d'ammonium contenant un groupement fluorosulfonyle

Publications (1)

Publication Number Publication Date
EP3972932A1 true EP3972932A1 (fr) 2022-03-30

Family

ID=67742779

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20737249.1A Pending EP3972932A1 (fr) 2019-05-22 2020-05-19 Procede de preparation de sel d'ammonium contenant un groupement fluorosulfonyle

Country Status (4)

Country Link
US (1) US20220219984A1 (fr)
EP (1) EP3972932A1 (fr)
FR (1) FR3096367B1 (fr)
WO (1) WO2020234537A1 (fr)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2257495B1 (fr) 2008-03-31 2013-07-03 Nippon Shokubai Co., Ltd. Sel sulfonylimide et procédé de production de celui-ci
PL2505551T5 (pl) 2009-11-27 2022-05-23 Nippon Shokubai Co., Ltd. Sól fluorosulfonyloimidowa i sposób wytwarzania soli fluorosulfonyloimidowej
US9242862B2 (en) * 2011-02-10 2016-01-26 Nippon Soda Co., Ltd. Process for production of fluorosulfonylimide ammonium salt
KR101702656B1 (ko) 2011-03-03 2017-02-03 닛뽕소다 가부시키가이샤 플루오로술포닐이미드암모늄염의 제조 방법
FR3020060B1 (fr) 2014-04-18 2016-04-01 Arkema France Preparation d'imides contenant un groupement fluorosulfonyle
JP2016124735A (ja) * 2014-12-26 2016-07-11 株式会社日本触媒 フルオロスルホニルイミド化合物の製造方法
KR101718292B1 (ko) * 2015-11-26 2017-03-21 임광민 리튬 비스(플루오르술포닐)이미드의 신규한 제조방법

Also Published As

Publication number Publication date
US20220219984A1 (en) 2022-07-14
FR3096367B1 (fr) 2021-04-23
WO2020234537A1 (fr) 2020-11-26
FR3096367A1 (fr) 2020-11-27

Similar Documents

Publication Publication Date Title
EP3131847B1 (fr) Preparation d'imides contenant un groupement fluorosulfonyle
EP3494085B1 (fr) Procédé de séchage et de purification du sel de lithium de bis(fluorosulfonyl)imide
EP2922785B1 (fr) Procede de preparation de sel d'imides contenant un groupement fluorosulfonyle
EP2714588B1 (fr) Procede de preparation de bis(fluorosulfonyl)imidure de lithium ou sodium
EP2674395B1 (fr) Procédé pour la production de sel d'ammonium de fluorosulfonylimide
EP3494086A1 (fr) Procédé de séchage et de purification de lifsi
EP3334684A1 (fr) Procédé de préparation de bis(fluorosulfonyl)imide et de ses sels
WO2020109720A1 (fr) Procédé de préparation du sel de lithium de bis(fluorosulfonyl)imide
WO2013182767A1 (fr) Sel d'anions bicycliques aromatiques pour batteries li-ion
WO2019229363A2 (fr) Procede de recuperation et/ou purification d'un sel de potassium du bis(fluorosulfonyl)imide
CA2878050C (fr) Procede de preparation d'un compose sulfonimide et de ses sels
EP3802486A1 (fr) Procede de preparation de sel d'imides contenant un groupement fluorosulfonyle
EP2130821B1 (fr) Dérivés du 3,4,5-trinitropyrazole, leur préparation et les compositions énergétiques les renfermant
EP3972932A1 (fr) Procede de preparation de sel d'ammonium contenant un groupement fluorosulfonyle
WO2013182768A1 (fr) Sel d'anions bicycliques aromatiques pour batteries li-ion
WO2020115419A1 (fr) Procede de preparation de sel d'imides contenant un groupement fluorosulfonyle
WO2019224471A1 (fr) Procede de preparation de sel d'imides contenant un groupement fluorosulfonyle

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210929

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230915