EP3964328B1 - Überprüfung eines werkzeugs einer werkzeugmaschine - Google Patents

Überprüfung eines werkzeugs einer werkzeugmaschine Download PDF

Info

Publication number
EP3964328B1
EP3964328B1 EP20194899.9A EP20194899A EP3964328B1 EP 3964328 B1 EP3964328 B1 EP 3964328B1 EP 20194899 A EP20194899 A EP 20194899A EP 3964328 B1 EP3964328 B1 EP 3964328B1
Authority
EP
European Patent Office
Prior art keywords
tool
flight
time
frequency signal
coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20194899.9A
Other languages
English (en)
French (fr)
Other versions
EP3964328A1 (de
Inventor
Thomas Weber
Kim Fritz
Gerald Krumm
Robert Schröder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sick AG
Original Assignee
Sick AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sick AG filed Critical Sick AG
Priority to EP20194899.9A priority Critical patent/EP3964328B1/de
Priority to US17/405,472 priority patent/US11701747B2/en
Priority to JP2021136870A priority patent/JP7239654B2/ja
Publication of EP3964328A1 publication Critical patent/EP3964328A1/de
Application granted granted Critical
Publication of EP3964328B1 publication Critical patent/EP3964328B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/24Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
    • B23Q17/2452Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves for measuring features or for detecting a condition of machine parts, tools or workpieces
    • B23Q17/2457Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves for measuring features or for detecting a condition of machine parts, tools or workpieces of tools
    • B23Q17/2461Length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/002Arrangements for observing, indicating or measuring on machine tools for indicating or measuring the holding action of work or tool holders
    • B23Q17/003Arrangements for observing, indicating or measuring on machine tools for indicating or measuring the holding action of work or tool holders by measuring a position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0957Detection of tool breakage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/24Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
    • B23Q17/248Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves using special electromagnetic means or methods
    • B23Q17/2485Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves using special electromagnetic means or methods using interruptions of light beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/24Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
    • B23Q17/248Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves using special electromagnetic means or methods
    • B23Q17/2495Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves using special electromagnetic means or methods using interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0904Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool before or after machining
    • B23Q17/0914Arrangements for measuring or adjusting cutting-tool geometry machine tools

Definitions

  • the invention relates to a sensor and a method for checking a tool of a machine tool according to the preamble of claims 1 and 11 respectively.
  • Examples of such machine tools are metal-cutting processing machines such as turning and milling machines, in which a drill is often clamped as a tool. By checking the tool, a change is automatically detected, especially a defect.
  • Optical testing systems work under difficult environmental conditions. Within machine tools, there are chip deposits on the drill head as well as on the workpiece as well as residues of coolant and lubricant as a residue on the drill or distributed by the drill and the pressure of application within the machining cell. These disturbances have a direct impact on the measurement accuracy and the reliability of the optical measurement.
  • the EP 2 915 627 B1 reveals a light grid for tool control.
  • the light grid's beams can be activated individually and thus adapted to the specific test.
  • this does not overcome the aforementioned disadvantages of an optical inspection system.
  • Another approach to checking a tool measures the energy consumption of the drive. However, it is difficult to clearly relate energy consumption to the condition of the tool. In addition, energy consumption varies greatly during machining, even if the tool has not been changed.
  • the TDR measuring principle (time domain reflectometry) is known from completely different applications than checking a tool.
  • One of the oldest applications of the TDR principle is the location of breaks in overseas pipelines.
  • Another common area of application is the determination of filling levels.
  • the TDR principle is based on determining the transit times of an electromagnetic pulse to determine the distance to a discontinuity in the line impedance, such as a cable break or a product interface. It is therefore similar to radar, with the difference being that the electromagnetic waves are not emitted into the open air, but are guided along a conductor.
  • the DE 10 2014 109 399 1 discloses a sensor for a roller conveyor, the sensor element of which is integrated into a roller or a frame of the roller conveyor.
  • the sensor feeds a high-frequency signal into the sensor element and receives it again in order to detect objects on the roller conveyor.
  • the signal transit time to the object is measured.
  • the GB 2 405 479 A deals with the diagnosis of a downdrill telemetry system.
  • errors in the telemetry system are detected using a TDR box.
  • reflections of the transmitted pulses at open spots or short circuits are recorded.
  • the machine tool can preferably be one of the metal-cutting processing machines mentioned in the introduction, in particular a CNC machine.
  • a robot arm with a tool, a DIY machine such as a drill or a cordless screwdriver and generally a machine with a tool can also be considered a machine tool.
  • the primary purpose of checking the tool is to determine whether a tool is damaged or whether it is still suitable for machining a workpiece. This particularly applies to tool breakage. However, other things can also be checked, such as whether the correct tool is clamped and whether it is clamped correctly.
  • the invention is based on the basic idea of testing the tool based on the transit time of a high-frequency signal running in the tool.
  • a high-frequency pulse is used, in particular according to the TDR measuring principle, which is also a multiple pulse or any other pattern.
  • the sensor has a high-frequency transmitter and a high-frequency receiver to transmit and receive the high-frequency signal.
  • High-frequency transmitters and high-frequency receivers can be designed together as transceivers.
  • a coupling unit of the sensor couples the high-frequency signal into the tool and the returning high-frequency signal out of the tool.
  • the coupling can be indirect, i.e. initially in other elements such as a tool holder.
  • the high-frequency signal runs from the high-frequency transmitter to the coupling point, in the tool to the tool tip, back to the coupling point and then to the high-frequency receiver.
  • the measured transit time can be adjusted for constant components, such as the signal paths from the high-frequency transmitter to the coupling point and from the coupling point to the high-frequency receiver, as well as a portion of the tool length from the coupling point to a tool base in the opposite direction of the tool tip, for example by calibration.
  • other signal parts do not run to the tool tip and back, but to the base of the tool and possibly into other machine parts. These are interference components, the running time to be evaluated is that to the tool tip.
  • the high-frequency signal is coupled into the tool or runs in the tool.
  • the high-frequency signal does not necessarily penetrate the tool; it is more of a high-frequency wave on the surface with a penetration depth that can depend on, among other things, the frequency and the tool material.
  • These linguistic and technical details should not be important; what is also meant is a high-frequency signal “on” the tool or “in an upper layer of the tool”.
  • the invention has the advantage that the disadvantages mentioned in the introduction are overcome.
  • the measuring principle according to the invention is significantly more robust against typical disturbances caused by contamination in the environment of a machine tool than optical detection. Since there is no need for a separate measuring station, there is no space required.
  • the sensor can check the tool during normal work flow and so the cycle time of the machine tool is not affected.
  • the measurement for checking can be carried out, for example, on the travel path between two processing points. A measurement is also conceivable during the processing itself. Reflections are evaluated that occur when the high-frequency signal propagates along the tool and an impedance change occurs at the point where the tool penetrates the workpiece. This allows the presence of the workpiece to be checked and, at least roughly, it can even be determined in the sense of a quality or process test how far the tool has already penetrated into the workpiece.
  • the senor has an output for outputting length information of the tool obtained from the running time and/or a display for displaying length information of the tool obtained from the running time. This means that the result of the measurement is available externally to a higher-level control or a user for checking the tool.
  • the control and evaluation unit is preferably designed to compare the measured running time with an expected running time of an expected tool and in particular to output or display a result of the comparison.
  • the sensor itself knows the expectations of the tool and can output a test result instead of or in addition to the pure runtime information.
  • the expectation may relate to a type of tool and preferably to an intact tool.
  • the comparison can be made at the level of the running times themselves or a variable derived from them, such as the tool length.
  • the test result can be binary, such as an OK or defect/maintenance information. It is conceivable to issue a stop signal to the machine tool so that it is stopped with an incorrect or defective tool or does not even start.
  • the tool preferably has a rotating tool, in particular a drill. This is a very common use case for a machine tool.
  • the coupling unit preferably has a coupling piece that at least partially surrounds the circumference of the tool and/or a tool holder of the tool.
  • This is in particular an annular or partially annular coupling piece.
  • This shape of the coupling piece is particularly suitable for coupling into a rotating tool.
  • the coupling unit is preferably designed to couple the high-frequency signal directly into the tool.
  • the sensor thus comes into direct coupling contact with the tool.
  • a conductive, inductive or capacitive coupling is conceivable. With this form of coupling, retrofitting the sensor into existing machine tools is particularly easy. The question of whether the high-frequency signal couples into the tool or rather just on its surface has already been discussed above.
  • the coupling unit is preferably designed to couple the high-frequency signal into a tool holder of the tool or a shaft of the machine tool.
  • the coupling into the tool takes place only indirectly via the Tool holder.
  • the high-frequency signal then runs from the tool holder into the tool.
  • the tool holder is connected to the shaft and also rotates.
  • the control and evaluation unit is preferably designed to take into account a previously recorded reference signal when determining the running time, in particular a reference signal that was recorded for an expected tool.
  • the expected tool is in particular the right tool that is correctly clamped and intact and therefore ready for use.
  • the reference signal is stored, for example, in advance in a memory of the control and evaluation unit.
  • At least the main interference influences are known from the reference signal. These include impedance jumps in the transition between the free tool part and the tool part held by the tool holder, other influences from machine parts surrounding the tool and, for example, an echo from the tool base in addition to the useful echo from the tool tip.
  • the reference signal can be subtracted from the received signal before the transit time evaluation, for example.
  • the reference signal can also be preprocessed, for example a useful echo from the tool tip can be removed from it, since otherwise the desired measurement effect would possibly be weakened during operation by forming the difference.
  • a machine tool according to claim 4 is provided.
  • the possible versions of the machine tool have already been discussed above.
  • the sensor is preferably mounted on the machine, but in any case its coupling unit is attached to the tool with at least indirect coupling contact, so that the high-frequency signal gets into and out of the tool.
  • the machine tool preferably has insulation between the tool and a tool holder of the tool.
  • the coupling unit couples directly to the tool, because the high-frequency signal would not come from the tool holder against the insulation into the tool.
  • the tool forms the inner conductor, the tool holder and other parts of the machine form the outer conductor of a coaxial conductor corresponding to a probe of a TDR sensor. Insulation, tools and sensors could be retrofitted in this embodiment.
  • the machine tool preferably has insulation around a tool holder of the tool compared to the rest of the machine tool.
  • the coupling unit only couples to the tool indirectly via the tool holder.
  • a coaxial conductor is implemented with the tool holder and, in its extension, the tool as an inner conductor and the rest of the machine as an outer conductor.
  • the method according to the invention is preferably carried out with a sensor according to the invention.
  • a high-frequency signal is coupled into the tool and coupled out of the tool, the high-frequency signal running between coupling and decoupling to a tool tip of the tool and back, and the transit time of the high-frequency signal up to the tool tip is determined.
  • the determination of the running time is preferably carried out during the regular workflow of the machine tool. It is therefore not necessary for the tool to assume a specific position or a specific operating state in order to be checked; in particular, it does not need to be specifically transferred to a measuring station.
  • the duration is preferably determined in certain work phases. Even if the tool does not have to be brought into a suitable state for the inspection, it is still advantageous to use certain work phases of the machine tool's already intended workflow for the inspection. Such a work phase is when the tool is not located near a workpiece, but as freely as possible in space, so that there are hardly any external influences on the measurement. Conversely, it can also be advantageous to select work phases in which the environment has certain influences on the measurement. If possible, these are well-defined influences or even influences that support the checking of the tool. It is conceivable to record a reference signal for this known environment in advance and take it into account when determining the transit time.
  • the determination of the running time is preferably carried out in a work phase in which the tool comes into contact with a work medium, in particular is immersed in a work medium or is moved with it.
  • a work phase with a specific tool environment.
  • the work equipment can, for example, process the tool, regrind it or be an object to be picked up by the tool, such as a screw.
  • the working fluid is particularly preferably a coolant or lubricant.
  • Such a tool changes the dielectric constant around the tool.
  • the corresponding impedance changes Along the propagation path of the high-frequency signal on the tool, additional echoes and also the changed dielectric properties of the environment as a whole lead to a delay in the high-frequency signal and thus an extension of the running time.
  • FIG. 1 shows a block diagram of a sensor 10 for tool testing.
  • the sensor 10 has a high-frequency transmitter 12 and a high-frequency receiver 14, which can also be designed together as a transceiver.
  • High-frequency transmitter 12 and high-frequency receiver 14 are connected to a coupling unit 16 in order to send a high-frequency signal to the measuring section 18, shown only schematically here, and to receive it from there.
  • a control and evaluation unit 20 generates via the high-frequency transmitter 12 high-frequency signals, in particular high-frequency pulses, which, after traveling over the measuring section 18, are converted into a received signal by the high-frequency receiver 14 and then evaluated.
  • control and evaluation unit 20 measures the transit time of the high-frequency signal and thus the length of the measuring section 18 in accordance with the known principle of time domain reflectometry or the TDR measuring principle. Evaluation steps are conceivable in order to clean up the recorded transit time, for example to deal with internal signal transit times, as well as to deal with interference or signal pulses in the received signal that do not come from the intended end of the measuring section 18 as desired.
  • a reference signal is recorded in advance in a known environment and taken into account in the evaluation, in particular by forming a difference with the respective received signal.
  • the running time or a variable derived from it can be output at an output 22 and/or displayed on a display.
  • the function of the sensor 10 is to check a tool, i.e. if the measuring section 18 is at least partially a signal path within a tool. In this case, the evaluation can go one step further and check whether the running time or a variable derived from it, such as the tool length, corresponds to an expectation. Then, instead of or in addition to the running time, the result of this test is output at the output 22 or on the display. It is preferably a binary result which indicates whether the test revealed a defect in the tool or another possible error situation, such as an incorrectly clamped tool or an incorrectly clamped tool. In a preferred embodiment, a test that has identified the tool as not being correct has a direct effect on a control of the machine tool and stops or refuses its operation.
  • a challenge for the sensor 10 is the coupling and decoupling of the high-frequency signal into or out of the tool. This will be discussed below with reference to the Figures 2-5 explained in addition to further advantageous embodiments of the invention.
  • Figure 2 shows a very simplified sectional view of a section of a machine tool 24 with a tool holder 26 into which a tool 28 is clamped. Otherwise, only a shaft 30 with bearing 32, with which the tool holder 26 and thus also the clamped tool 28 rotates, and a small section of a housing 34 are shown of the machine tool 24. The remaining complexity of a machine tool 24 is not shown because the countless possible variations in this respect do not contribute to the understanding of the invention.
  • the sensor 10 couples with its coupling unit 16 to the tool holder 26.
  • a coaxial conductor is indicated, the inner conductor of which forms the tool holder 26 and in the extension of which the tool 28 and the outer conductor of which forms the rest of the machine such as the housing 34.
  • the reference number 10 of the sensor is in Figure 2 only purely functionally the transition to the example in Figure 1 shown sensor 10 indicated. Physically, the sensor 10 may actually be mounted on the machine tool 24, but may also be located elsewhere.
  • Tool holder 26 and tool 28 Figure 2 form the measuring section 18 of Figure 1 .
  • the fixed transit time component of travel paths of the high-frequency signal through the coupling unit 16 and the tool holder 26 can be eliminated by calibration or other evaluation in order to obtain the pure transit time through the tool 28.
  • the breakage of the clamped tool 28 results in a change in length and thus a change in the measured transit time of the high-frequency signal.
  • This measurement information can be passed on as a transit time, change in transit time, length, change in length or other derived quantity and preferably in the form of a binary message with the content "ok” or "defective", i.e. a binary state for a test without abnormalities and the other binary state for a test with abnormalities.
  • a high-frequency signal is passed from the sensor 10 into the tool holder 26, which is reflected at the far tip of the tool 28.
  • Tool holder 26 and tool 28 function as the inner conductor of a coaxial line.
  • the reflected high-frequency signal is coupled out, detected in the sensor 10, converted into a received signal and the received signal is further evaluated.
  • the running time measured becomes shorter if the tool 28 breaks. This can then be output as a damage report or change in runtime.
  • the coupling between the coupling unit 16 and the tool holder 26 is preferably implemented with an annular arrangement or at least with a ring segment which has a sufficient, high-frequency-compatible coupling between the ring and the rotating tool holder 26.
  • the coupling can be conductive, inductive or capacitive.
  • the coupling should also take place in a protected area where, if possible, no chips, process fluids or other disruptive materials occur due to processing.
  • the high frequency signal will inevitably propagate in directions other than just the tip of the tool 28.
  • a part of the high-frequency signal runs in the opposite direction to the shaft 30.
  • the bearing 32 of the shaft 30 can form a short circuit with total reflection, or the shaft 30 has a greater extent than in Figure 2 indicated and passes through different surrounding materials with impedance jumps that trigger intermediate echoes.
  • Such unwanted reflections also occur on the path of the high-frequency signal through the tool 28, for example at the exit of the tool 28 from the surrounding machine.
  • the received signal not only has the useful signal from the tip of the tool 28.
  • the other reflection points are constant at least over a certain operating time, methods for masking out static interference points can be used.
  • a received signal is recorded and stored as a reference signal in a reference situation, for example directly after the clamping of a tool 28, which has been checked by a person skilled in the art as the correct tool 28, as being intact and as being correctly clamped.
  • the expert can also be dispensed with if it is simply assumed that the tool 28 is OK at the start of machining.
  • the reference signal is taken into account, for example a corrected received signal is generated and further processed from the respective received signal by forming a difference with the reference signal. In this way, the influence of static interference points is eliminated or at least reduced.
  • a high-frequency pulse is emitted and the temporal position of a useful echo from the tip of the tool is determined based on its center of gravity or by evaluating an edge.
  • the interference can introduce further echoes that overlap with the useful echo or make it more difficult to identify.
  • the influence of false echoes can be reduced with a reference signal as described.
  • the coupling can preferably be implemented in such a way that false echoes and useful echoes are separated from one another in time.
  • a running time measurement can be used to determine whether the tool 28 is correctly clamped or whether it is the right tool, provided that the sensor 10 knows a corresponding expectation of the running time. It is not possible to clearly distinguish between arbitrary tools 28, since, for example, the diameter has no or almost no influence on the running time. However, within the scope of the measurement resolution, many errors relating to an incorrect tool 28 or an incorrectly clamped tool 28 are recognized based on the running time in order to improve the reliability of the machine tool 24.
  • An advantage of the invention is that the inspection of the tool 28 can be integrated into the normal workflow of the machine tool 24. It is not necessary to bring the tool 28 into a special position specifically for the inspection or to a separate measuring station as is conventional. Nevertheless, certain work phases of the normal workflow are preferably used for checking. For example, if the tool 28 is located near a metal environment of the machine tool 24, then this can be used to shield high frequency influences from the environment by measuring when the tool 28 is in a favorable position with respect to the metal environment. It is conceivable to use a work phase for the check in which all objects are as far away as possible from the tool 28.
  • Figure 3 shows a similar sectional view Figure 2 with a different tool holder 26 and a different tool 28.
  • This is intended to emphasize once again that the specific design of the machine tool 24, the tool holder 26 with tool 28 and the coupling unit 16 to the sensor 10 is only to be understood as an example and can be varied.
  • a taped or beveled arrangement is specifically chosen, which enables particularly low-reflection coupling of high-frequency signals and promotes propagation in the desired direction towards the tool 28 and its tip.
  • the invention is neither a specific one Tool holder 26, which can be designed, for example, as a Morse taper, steep taper or hollow shaft taper, is still limited to certain tools 28 with a wide variety of lengths, diameters and drill heads.
  • the tool 28 neither has to be a drill nor does it have to rotate.
  • Figure 4 shows the machine tool 24 with its shaft 30, tool holder 26 and tool 28 as well as the coupling via the coupling unit 16 of the sensor 10 again in an abstracted form.
  • the high-frequency signal is coupled into the tool holder 26.
  • a coupling to the shaft 30 or the movable or rotating part of the machine tool 24 could also take place, since there is usually a metallic and therefore conductive connection to the tool holder 26.
  • the movable part of the machine tool 24, i.e. in particular the shaft 30 with the tool holder 26, should be isolated from the rest of the machine tool 24 by insulation 36.
  • the tool holder 26 and the tool 28 then form, as desired, the inner conductor of a coaxial system and the surrounding part of the machine separated from it by the insulation 36 forms the outer conductor.
  • the running time can be determined using the usual procedure of a TDR measurement method.
  • Figure 5 shows similar in an abstracted representation Figure 4 another embodiment of the invention.
  • the coupling takes place directly on the tool 28 and not indirectly via the tool holder 26.
  • the tool 28 is isolated from the tool holder 26 by an insulation 36.
  • This also creates a coaxial system, with the tool 28 as the inner conductor and the tool holder 26 together with the shaft 30 and the surrounding part of the machine as the outer conductor.
  • This increases the complexity of the drive train of the machine tool 24 to a certain extent.
  • retrofitting with the sensor 10 according to the invention for tool control is simplified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Description

  • Die Erfindung betrifft einen Sensor und ein Verfahren zur Überprüfung eines Werkzeugs einer Werkzeugmaschine nach dem Oberbegriff von Anspruch 1 beziehungsweise 11.
  • Beispiele derartiger Werkzeugmaschinen sind spanende Bearbeitungsmaschinen wie Dreh- und Fräsmaschinen, in denen häufig ein Bohrer als Werkzeug eingespannt ist. Durch die Überprüfung des Werkzeugs wird automatisch eine Veränderung erkannt, vor allem ein Defekt.
  • Es ist bekannt, Bruch oder Beschädigung eines Bohrers mit taktilen oder optischen Sensoren zu erkennen. Für den Prüfvorgang wird die Messstation separat angefahren. Der Arm, der mit dem Werkzeug gearbeitet hat, muss folglich nach jedem Arbeitsschritt erst die Messstation anfahren, um die Messung am Werkzeug vorzunehmen, bevor er in seine Ausgangslage zurückkehren kann. Dieser zusätzliche Prozessschritt hat negative Auswirkungen auf die Zykluszeit der Maschine. Zudem benötigt jeder Sensoraufbau inklusive Messbereich Platz innerhalb des Bearbeitungsraumes der Maschine. Dieser Platz ist allerdings zum einen stark begrenzt und sollte zum anderen als Nutzraum dem zu bearbeitenden Werkstück vorbehalten bleiben.
  • Optische Prüfsysteme arbeiten unter erschwerten Umgebungsbedingungen. Innerhalb der Werkzeugmaschinen gibt es Spanablagerungen am Bohrkopf ebenso wie am Werkstück sowie Reste von Kühl- und Schmiermittel als Rückstand am Bohrer beziehungsweise durch den Bohrer und den Druck des Aufbringens innerhalb der Bearbeitungszelle verteilt. Diese Störungen wirken sich direkt auf die Messgenauigkeit sowie die Zuverlässigkeit der optischen Messung aus.
  • Die EP 2 915 627 B1 offenbart ein Lichtgitter zur Werkzeugkontrolle. Um eine besonders schnelle Kontrolle des Werkzeugs zu ermöglichen, sind die Strahlen des Lichtgitters einzelnen aktivierbar und somit an die konkrete Prüfung anpassbar. Das überwindet aber noch nicht die genannten Nachteile eines optischen Prüfsystems.
  • Ein weiterer Ansatz zur Überprüfung eines Werkzeugs misst den Energieverbrauch des Antriebs. Es ist jedoch schwierig, den Energieverbrauch in eine eindeutige Beziehung mit dem Zustand des Werkzeugs zu setzen. Außerdem variiert der Energieverbrauch während der Bearbeitung stark, auch wenn das Werkzeug nicht verändert ist.
  • Aus völlig anderen Anwendungen als der Überprüfung eines Werkzeugs ist das TDR-Messprinzip (time domain reflectometry) bekannt. Eine der ältesten Anwendungen des TDR-Prinzips ist die Lokalisierung von Brüchen in Überseeleitungen. Ein weiteres herkömmliches Einsatzgebiet ist die Bestimmung von Füllständen. Das TDR-Prinzip basiert auf der Bestimmung von Laufzeiten eines elektromagnetischen Pulses zur Bestimmung des Abstandes einer Diskontinuität des Leitungswellenwiderstandes wie etwa eines Kabelbruchs oder einer Produktgrenzfläche. Es ähnelt somit dem Radar, wobei der Unterschied darin besteht, dass die elektromagnetischen Wellen nicht ins Freie abgestrahlt, sondern entlang eines Leiters geführt werden.
  • Die DE 10 2014 109 399 1 offenbart einen Sensor für eine Rollenbahn, dessen Sensorelement in eine Rolle oder einen Rahmen der Rollenbahn integriert ist. Der Sensor speist ein Hochfrequenzsignal in das Sensorelement ein und empfängt es wieder, um dadurch Objekte auf der Rollenbahn zu detektieren. Dabei wird in einer Ausführungsform die Signallaufzeit zu dem Objekt gemessen.
  • Die GB 2 405 479 A befasst sich mit der Diagnose eines Telemetriesystems eines Abwärtsbohrers. In einer Ausführungsform werden Fehler des Telemetriesystems mit einer TDR-Box erkannt. Dafür werden Reflexionen der Sendepulse an offenen Stellen oder Kurzschlüssen erfasst.
  • Aus der DE 10 2012 111 723 B3 ist ein Verfahren zur Bestimmung von Abmessungen und/oder Positionsdaten eines Werkzeugs bekannt. Dazu wird von einer Induktivität ein Wechselsignal variabler Frequenz induktiv in das Werkzeug eingekoppelt.
  • Es ist vor diesem Hintergrund Aufgabe der Erfindung, eine verbesserte Überprüfung eines Werkzeugs anzugeben.
  • Diese Aufgabe wird durch einen Sensor und ein Verfahren zur Überprüfung eines Werkzeugs einer Werkzeugmaschine nach Anspruch 1 beziehungsweise 11 gelöst. Bei der Werkzeugmaschine kann es sich vorzugsweise um eine der einleitend genannten spanenden Bearbeitungsmaschinen, insbesondere eine CNC-Maschine handeln. Auch ein Roboterarm mit einem Werkzeug, eine Heimwerkermaschine wie eine Bohrmaschine oder ein Akkuschrauber und allgemein eine Maschine mit einem Werkzeug lässt sich als Werkzeugmaschine auffassen. Durch die Überprüfung des Werkzeugs soll in erster Linie festgestellt werden, ob ein Werkzeug beschädigt ist beziehungsweise es noch zur Bearbeitung eines Werkstücks geeignet ist. Das betrifft insbesondere einen Werkzeugbruch. Es kann aber auch anderes geprüft werden, etwa ob das richtige Werkzeug eingespannt ist und ob es richtig eingespannt ist.
  • Die Erfindung geht von dem Grundgedanken aus, das Werkzeug anhand der Laufzeit eines in dem Werkzeug laufenden Hochfrequenzsignals zu prüfen. Dazu wird insbesondere nach dem TDR-Messprinzip ein Hochfrequenzpuls verwendet, der auch ein Mehrfachpuls oder ein sonstiges Muster sein kann. Der Sensor weist einen Hochfrequenzsender und einen Hochfrequenzempfänger auf, um das Hochfrequenzsignal auszusenden und wieder zu empfangen. Hochfrequenzsender und Hochfrequenzempfänger können gemeinsam als Transceiver ausgebildet sein. Eine Koppeleinheit des Sensors koppelt das Hochfrequenzsignal in das Werkzeug ein und das zurückkehrende Hochfrequenzsignal aus dem Werkzeug aus. Die Kopplung kann je nach Ausführungsform indirekt sein, also zunächst in andere Elemente wie eine Werkzeugaufnahme erfolgen. Das Hochfrequenzsignal läuft von dem Hochfrequenzsender zur Koppelstelle, im Werkzeug zur Werkzeugspitze, zurück zur Koppelstelle und dann zu dem Hochfrequenzempfänger. Die dabei gemessene Laufzeit kann um konstante Anteile, wie die Signalwege von Hochfrequenzsender zu Koppelstelle und von Koppelstelle zu Hochfrequenzempfänger sowie einen Anteil der Werkzeuglänge von der Koppelstelle zu einer Werkzeugbasis in Gegenrichtung der Werkzeugspitze beispielsweise durch Kalibration bereinigt werden. Je nach Ausführungsform laufen weitere Signalteile nicht zur Werkzeugspitze und zurück, sondern zur Basis des Werkzeugs und womöglich in weitere Maschinenteile. Das sind Störanteile, die auszuwertende Laufzeit ist diejenige zur Werkzeugspitze.
  • In dieser Beschreibung und in den Ansprüchen wird davon gesprochen, dass das Hochfrequenzsignal in das Werkzeug eingekoppelt wird beziehungsweise in dem Werkzeug läuft. Tatsächlich dringt das Hochfrequenzsignal nicht notwendig in das Werkzeug ein, es handelt sich eher um eine Hochfrequenzwelle an der Oberfläche mit einer Eindringtiefe, die unter anderem von der Frequenz und dem Werkzeugmaterial abhängen kann. Auf diese sprachlichen und technischen Feinheiten soll es nicht ankommen, es soll ebenso ein Hochfrequenzsignal "auf" dem Werkzeug oder "in einer oberen Schicht des Werkzeugs" gemeint sein.
  • Die Erfindung hat den Vorteil, dass die einleitend genannten Nachteile überwunden werden. Das erfindungsgemäße Messprinzip ist deutlich robuster gegen typische Störungen durch Verunreinigungen im Umfeld einer Werkzeugmaschine als eine optische Erfassung. Da es keiner separaten Messstation bedarf, entfällt der Platzbedarf dafür. Der Sensor kann während des normalen Arbeitsablaufes das Werkzeug überprüfen, und so wird die Zykluszeit der Werkzeugmaschine nicht beeinträchtigt. Die Messung zum Überprüfen kann beispielsweise auf dem Verfahrweg zwischen zwei Bearbeitungsstellen erfolgen. Auch während der Bearbeitung selbst ist eine Messung denkbar. Dabei werden Reflexionen ausgewertet, die auftreten, wenn sich das Hochfrequenzsignal entlang des Werkzeugs ausbreitet und eine Impedanzänderung an der Stelle entsteht, bei der das Werkzeug in das Werkstück eindringt. Damit lässt sich die Anwesenheit des Werkstücks prüfen, und zumindest grob ist sogar im Sinne einer Qualitäts- oder Ablaufprüfung feststellbar, wie weit das Werkzeug bereits in das Werkstück eingedrungen ist.
  • Der Sensor weist erfindungsgemäß einen Ausgang zum Ausgeben einer aus der Laufzeit gewonnenen Längeninformation des Werkzeugs und/oder eine Anzeige zum Anzeigen einer aus der Laufzeit gewonnenen Längeninformation des Werkzeugs auf. Damit wird das Ergebnis der Messung zur Überprüfung des Werkzeugs außen für eine übergeordnete Steuerung beziehungsweise einen Anwender verfügbar.
  • Die Steuer- und Auswertungseinheit ist bevorzugt dafür ausgebildet, die gemessene Laufzeit mit einer erwarteten Laufzeit eines erwarteten Werkzeugs zu vergleichen und insbesondere ein Ergebnis des Vergleichs auszugeben oder anzuzeigen. In dieser Ausführungsform kennt der Sensor selbst die Erwartungen an das Werkzeug und kann statt oder neben der reinen Laufzeitinformation ein Prüfergebnis ausgeben. Die Erwartung kann sich auf einen Typ des Werkzeugs und vorzugsweise auf ein intaktes Werkzeug beziehen. Der Vergleich kann auf Ebene der Laufzeiten selbst oder einer davon abgeleiteten Größe wie beispielsweise der Werkzeuglänge erfolgen. Das Prüfergebnis kann binär sein, etwa ein OK oder eine Defekt-/Wartungsinformation. Es ist denkbar, ein Stoppsignal an die Werkzeugmaschine auszugeben, damit sie mit einem falschen oder defekten Werkzeug angehalten wird beziehungsweise gar nicht erst anläuft.
  • Das Werkzeug weist bevorzugt ein rotierendes Werkzeug auf, insbesondere einen Bohrer. Das ist ein sehr häufiger Anwendungsfall bei einer Werkzeugmaschine.
  • Die Koppeleinheit weist bevorzugt ein Koppelstück auf, das den Umfang des Werkzeugs und/oder einer Werkzeugaufnahme des Werkzeugs zumindest teilweise umgibt. Es handelt sich dabei insbesondere um ein ringförmiges oder teilringförmiges Koppelstück. Diese Formgebung des Koppelstücks ist besonders für die Einkopplung in ein rotierendes Werkzeug geeignet.
  • Die Koppeleinheit ist bevorzugt dafür ausgebildet, das Hochfrequenzsignal direkt in das Werkzeug einzukoppeln. Der Sensor kommt damit unmittelbar in Koppelkontakt mit dem Werkzeug. Dabei ist eine konduktive, induktive oder kapazitive Kopplung denkbar. Mit dieser Form der Kopplung ist eine Nachrüstung des Sensors in existierende Werkzeugmaschinen besonders einfach. Zu der Frage, ob das Hochfrequenzsignal in das Werkzeug oder nicht vielmehr nur auf dessen Oberfläche koppelt, wurden oben schon Ausführungen gemacht.
  • Die Koppeleinheit ist bevorzugt dafür ausgebildet, das Hochfrequenzsignal in eine Werkzeugaufnahme des Werkzeugs oder eine Welle der Werkzeugmaschine einzukoppeln. In dieser Ausführungsform erfolgt die Kopplung in das Werkzeug nur mittelbar über die Werkzeugaufnahme. Das Hochfrequenzsignal läuft dann von der Werkzeugaufnahme weiter ins Werkzeug. Bei einem rotierenden Werkzeug wie einem Bohrer ist die Werkzeugaufnahme mit der Welle verbunden und rotiert ebenfalls.
  • Die Steuer- und Auswertungseinheit ist bevorzugt dafür ausgebildet, bei der Bestimmung der Laufzeit ein zuvor aufgenommenes Referenzsignal zu berücksichtigen, insbesondere ein Referenzsignal, das für ein erwartetes Werkzeug aufgenommen wurde. Das erwartete Werkzeug ist wiederum insbesondere das richtige Werkzeug, das richtig eingespannt und intakt, damit einsatzfähig ist. Das Referenzsignal wird beispielsweise vorab in einem Speicher der Steuer- und Auswertungseinheit abgelegt. Anhand des Referenzsignals sind zumindest die wesentlichen Störeinflüsse bekannt. Dazu zählen Impedanzsprünge im Übergang zwischen freiem Werkzeugteil und von der Werkzeugaufnahme gehaltenem Werkzeugteil, sonstige Einflüsse durch das Werkzeug umgebende Maschinenteile und beispielsweise ein Echo von der Werkzeugbasis zusätzlich zu dem Nutzecho von der Werkzeugspitze. Um das Referenzsignal und damit diese Störeinflüsse zu berücksichtigen, kann beispielsweise vor der Laufzeitauswertung das Referenzsignal von dem Empfangssignal abgezogen werden. Das Referenzsignal kann auch vorverarbeitet sein, beispielsweise ein Nutzecho von der Werkzeugspitze daraus entfernt sein, da sonst womöglich im Betrieb durch Differenzbildung auch der gesuchte Messeffekt abgeschwächt würde.
  • In vorteilhafter Weiterbildung ist eine Werkzeugmaschine gemäß Anspruch 4 vorgesehen. Die möglichen Ausprägungen der Werkzeugmaschine wurden oben bereits diskutiert. Vorzugsweise ist der Sensor an der Maschine montiert, jedenfalls aber dessen Koppeleinheit mit mindestens mittelbarem Koppelkontakt zu dem Werkzeug angebracht, so dass das Hochfrequenzsignal in das Werkzeug hinein und aus dem Werkzeug heraus gelangt.
  • Die Werkzeugmaschine weist bevorzugt eine Isolation zwischen dem Werkzeug und einer Werkzeugaufnahme des Werkzeugs auf. In dieser Ausführungsform koppelt die Koppeleinheit direkt mit dem Werkzeug, denn das Hochfrequenzsignal käme von der Werkzeugaufnahme gegen die Isolation nicht ins Werkzeug. Das Werkzeug bildet den Innenleiter, die Werkzeugaufnahme und weitere Teile der Maschine den Außenleiter eines Koaxialleiters entsprechend einer Sonde eines TDR-Sensors. Isolation, Werkzeug und Sensor könnten in dieser Ausführungsform nachgerüstet werden.
  • Die Werkzeugmaschine weist bevorzugt eine Isolation um eine Werkzeugaufnahme des Werkzeugs gegenüber der übrigen Werkzeugmaschine auf. In dieser Ausführungsform koppelt die Koppeleinheit nur mittelbar über die Werkzeugaufnahme mit dem Werkzeug.
  • Voraussetzung ist demnach, dass die Werkzeugaufnahme eine leitende Verbindung zu dem Werkzeug herstellt, was aber für übliche Werkzeugaufnahmen ohnehin der Fall ist. Hier wird ein Koaxialleiter mit der Werkzeugaufnahme und in dessen Verlängerung dem Werkzeug als Innenleiter sowie der übrigen Maschine als Außenleiter realisiert.
  • Das erfindungsgemäße Verfahren wird vorzugsweise mit einem erfindungsgemäßen Sensor durchgeführt. An einer Koppelstelle wird ein Hochfrequenzsignal in das Werkzeug eingekoppelt und aus dem Werkzeug ausgekoppelt, wobei das Hochfrequenzsignal zwischen Einkopplung und Auskopplung zu einer Werkzeugspitze des Werkzeugs und zurückläuft und die Laufzeit des Hochfrequenzsignals bis zu der Werkzeugspitze bestimmt wird.
  • Die Bestimmung der Laufzeit wird vorzugsweise während des regelmäßigen Arbeitsablaufs der Werkzeugmaschine durchgeführt. Es ist demnach nicht erforderlich, dass das Werkzeug eine bestimmte Position oder einen bestimmten Betriebszustand einnimmt, um überprüft werden zu können, insbesondere muss es nicht eigens in eine Messstation überführt werden.
  • Die Bestimmung der Laufzeit erfolgt vorzugsweise in bestimmten Arbeitsphasen. Auch wenn das Werkzeug nicht eigens in einen für die Überprüfung geeigneten Zustand gebracht werden muss, ist es doch vorteilhaft, bestimmte Arbeitsphasen des ohnehin vorgesehenen Arbeitsablaufs der Werkzeugmaschine für die Überprüfung zu nutzen. Eine derartige Arbeitsphase ist, wenn das Werkzeug sich nicht in der Nähe eines Werkstücks, sondern möglichst frei im Raum befindet, sodass es kaum äußere Einflüsse auf die Messung gibt. Es kann aber auch umgekehrt vorteilhaft sein, Arbeitsphasen auszuwählen, in denen die Umgebung bestimmte Einflüsse auf die Messung hat. Das sind dann nach Möglichkeit wohldefinierte oder sogar die Überprüfung des Werkzeugs unterstützende Einflüsse. Es ist denkbar, vorab ein Referenzsignal für diese bekannte Umgebung aufzunehmen und bei der Bestimmung der Laufzeit zu berücksichtigen.
  • Die Bestimmung der Laufzeit erfolgt bevorzugt in einer Arbeitsphase, in der das Werkzeug mit einem Arbeitsmittel in Kontakt kommt, insbesondere in ein Arbeitsmittel eingetaucht oder damit versetzt wird. Dies ist ein Spezialfall einer Arbeitsphase mit einer bestimmten Umgebung des Werkzeugs. Das Arbeitsmittel kann beispielsweise das Werkzeug bearbeiten, nachschleifen oder ein von dem Werkzeug aufzunehmender Gegenstand wie eine Schraube sein. Besonders bevorzugt handelt es sich bei dem Arbeitsmittel um ein Kühl- beziehungsweise Schmiermittel. Ein solches Arbeitsmittel verändert die Dielektrizitätskonstante um das Werkzeug. Die entsprechenden Impedanzänderungen entlang des Ausbreitungswegs des Hochfrequenzsignals am Werkzeug lassen zusätzliche Echos und außerdem die veränderten dielektrischen Eigenschaften der Umgebung insgesamt eine Verzögerung des Hochfrequenzsignals und somit Verlängerung der Laufzeit erwarten. Damit lässt sich prüfen, ob das Werkzeug an den vorgesehenen Stellen mit Kühl- beziehungsweise Schmiermittel benetzt ist oder wird. Damit kann möglicherweise andere Sensorik zur Überwachung des Flusses des Kühl- beziehungsweise Schmiermittels entfallen, beziehungsweise es kann überprüft werden, ob das Kühl- beziehungsweise Schmiermittel an die richtige Stelle gespritzt wird.
  • Das erfindungsgemäße Verfahren kann auf ähnliche Weise weitergebildet werden und zeigt dabei ähnliche Vorteile. Derartige vorteilhafte Merkmale sind beispielhaft, aber nicht abschließend in den sich an die unabhängigen Ansprüche anschließenden Unteransprüchen beschrieben.
  • Die Erfindung wird nachstehend auch hinsichtlich weiterer Merkmale und Vorteile beispielhaft anhand von Ausführungsformen und unter Bezug auf die beigefügte Zeichnung näher erläutert. Die Abbildungen der Zeichnung zeigen in:
  • Fig. 1
    eine Blockdarstellung eines Sensors zur Werkzeugprüfung;
    Fig. 2
    eine Schnittdarstellung einer Werkzeugaufnahme mit Werkzeug einer Werkzeugmaschine mit angekoppeltem Sensor zur Werkzeugprüfung;
    Fig. 3
    eine Schnittdarstellung ähnlich Figur 2 mit anderer Werkzeugaufnahme und anderem Werkzeug;
    Fig. 4
    eine schematische Darstellung der Ankopplung eines Sensors zur Werkzeugprüfung ans Werkzeug mittelbar über die Werkzeugaufnahme; und
    Fig. 5
    eine schematische Darstellung ähnlich Figur 4 nun mit Ankopplung direkt ans Werkzeug.
  • Figur 1 zeigt eine Blockdarstellung eines Sensors 10 zur Werkzeugprüfung. Der Sensor 10 weist einen Hochfrequenzsender 12 und einen Hochfrequenzempfänger 14 auf, die auch gemeinsam als Transceiver ausgebildet sein können. Hochfrequenzsender 12 und Hochfrequenzempfänger 14 sind mit einer Koppeleinheit 16 verbunden, um ein Hochfrequenzsignal auf die hier nur schematisch gezeigte Messstrecke 18 auszusenden und von dort zu empfangen. Eine Steuer- und Auswertungseinheit 20 erzeugt über den Hochfrequenzsender 12 Hochfrequenzsignale, insbesondere Hochfrequenzpulse, die nach ihrem Weg über die Messstrecke 18 von dem Hochfrequenzempfänger 14 in ein Empfangssignal gewandelt und dann ausgewertet werden.
  • Die Steuer- und Auswertungseinheit 20 misst auf diese Weise die Laufzeit des Hochfrequenzsignals und damit die Länge der Messstrecke 18 entsprechend dem an sich bekannten Prinzip der Zeitbereichsreflektometrie beziehungsweise dem TDR-Messprinzip. Dabei sind Auswertungsschritte denkbar, um die erfasste Laufzeit zu bereinigen, etwa um interne Signallaufzeiten, sowie mit Störungen oder Signalpulsen des Empfangssignals umzugehen, die nicht wie gewünscht vom vorgesehenen Ende der Messstrecke 18 stammen. Dazu wird beispielsweise vorab ein Referenzsignal in einer bekannten Umgebung aufgenommen und bei der Auswertung berücksichtigt, insbesondere durch Differenzbildung mit dem jeweiligen Empfangssignal.
  • Die Laufzeit oder eine daraus abgeleitete Größe kann an einem Ausgang 22 ausgegeben und/oder auf einer Anzeige angezeigt werden. Die Funktion des Sensors 10 ist die Überprüfung eines Werkzeugs, wenn also die Messstrecke 18 wenigstens teilweise ein Signalweg innerhalb eines Werkzeugs ist. Die Auswertung kann in diesem Fall einen Schritt weitergehen und prüfen, ob die Laufzeit oder eine daraus abgeleitete Größe, wie die Werkzeuglänge, einer Erwartung entspricht. Dann wird anstatt oder neben der Laufzeit an dem Ausgang 22 beziehungsweise auf der Anzeige das Ergebnis dieser Prüfung ausgegeben. Es ist vorzugsweise ein binäres Ergebnis, welches angibt, ob die Prüfung einen Defekt des Werkzeugs oder eine sonstige mögliche Fehlersituation, wie ein falsches eingespanntes Werkzeug oder ein nicht richtig eingespanntes Werkzeug ergeben hat. In einer bevorzugten Ausführungsform wirkt eine Prüfung, die das Werkzeug als nicht ordnungsgemäß erkannt hat, direkt auf eine Steuerung der Werkzeugmaschine ein und stoppt oder verweigert deren Betrieb.
  • Eine Herausforderung für den Sensor 10 ist die Ein- und Auskopplung des Hochfrequenzsignals in das Werkzeug beziehungsweise aus dem Werkzeug. Dies wird im Folgenden unter Bezugnahme auf die Figuren 2-5 neben weiteren vorteilhaften Ausgestaltungen der Erfindung erläutert.
  • Figur 2 zeigt eine sehr vereinfachende Schnittdarstellung eines Ausschnitts einer Werkzeugmaschine 24 mit einer Werkzeugaufnahme 26, in die ein Werkzeug 28 eingespannt ist. Von der Werkzeugmaschine 24 ist ansonsten nur eine Welle 30 mit Lagerung 32, mit der die Werkzeugaufnahme 26 und somit auch das eingespannte Werkzeug 28 rotiert, sowie ein kleiner Abschnitt eines Gehäuses 34 gezeigt. Die übrige Komplexität einer Werkzeugmaschine 24 ist nicht gezeigt, da die zahllosen Variationsmöglichkeiten in dieser Hinsicht zum Verständnis der Erfindung nicht beitragen.
  • Der Sensor 10 koppelt mit seiner Koppeleinheit 16 an die Werkzeugaufnahme 26. In Figur 2 ist ein Koaxialleiter angedeutet, dessen Innenleiter die Werkzeugaufnahme 26 und in deren Verlängerung das Werkzeug 28 und dessen Außenleiter die übrige Maschine wie das Gehäuse 34 bildet. Mit dem Bezugszeichen 10 des Sensors ist in Figur 2 nur rein funktional der Übergang zu dem beispielhaft in Figur 1 gezeigten Sensor 10 angedeutet. Physisch kann der Sensor 10 tatsächlich an der Werkzeugmaschine 24 montiert sein, sich aber auch woanders befinden. Werkzeugaufnahme 26 und Werkzeug 28 der Figur 2 bilden die Messstrecke 18 der Figur 1. Der fixe Laufzeitanteil von Laufwegen des Hochfrequenzsignals durch die Koppeleinheit 16 sowie die Werkzeugaufnahme 26 kann durch Kalibration oder sonstige Auswertung eliminiert werden, um die reine Laufzeit durch das Werkzeug 28 zu erhalten.
  • Anhand eines beispielhaft wie in Figur 2 mindestens mittelbar an das Werkzeug 28 angekoppelten Sensors 10 gemäß Figur 1 wird nun die erfindungsgemäße Werkzeugüberprüfung weiter erläutert. Dabei wird rein beispielhaft von einem Bruch des eingespannten Werkzeugs 28 gesprochen. Die Überprüfung funktioniert ganz analog auch dann, wenn es um andere Überprüfungen wie diejenige auf das richtige Werkzeug 28 oder dessen korrekte Lage und Verbindung mit und in der Werkzeugaufnahme 26 geht.
  • Durch den Bruch des eingespannten Werkzeuges 28 kommt es zu einer Längenänderung und damit einer Änderung in der gemessenen Laufzeit des Hochfrequenzsignals. Diese Messinformation kann als Laufzeit, Laufzeitänderung, Länge, Längenänderung oder sonstige abgeleitete Größe und bevorzugt in Form einer binären Meldung des Inhalts "in Ordnung" oder "defekt" weitergegeben werden, also einem binären Zustand für eine Prüfung ohne Auffälligkeit und dem anderen binären Zustand für eine Prüfung mit Auffälligkeit.
  • Um dies zu realisieren, wird von dem Sensor 10 ein Hochfrequenzsignal in die Werkzeugaufnahme 26 geleitet, das an der fernen Spitze des Werkzeugs 28 reflektiert wird. Werkzeugaufnahme 26 und Werkzeug 28 fungieren dabei quasi als Innenleiter einer Koaxialleitung. Das reflektierte Hochfrequenzsignal wird ausgekoppelt, in dem Sensor 10 erfasst, in ein Empfangssignal gewandelt und das Empfangssignal weiter ausgewertet. Die dabei gemessene Laufzeit wird bei einem Bruch des Werkzeugs 28 kürzer. Dies kann dann als Beschädigungsmeldung beziehungsweise Laufzeitänderung ausgegeben werden.
  • Die Kopplung zwischen der Koppeleinheit 16 und der Werkzeugaufnahme 26 ist vorzugsweise mit einer ringförmigen Anordnung oder zumindest mit einem Ringsegment umgesetzt, das eine ausreichende, hochfrequenztaugliche Kopplung zwischen Ring und drehender Werkzeugaufnahme 26 aufweist. Die Kopplung kann dabei je nach Ausführungsform konduktiv, induktiv oder kapazitiv erfolgen. Die Einkopplung sollte zudem in einem geschützten Bereich stattfinden, bei dem nach Möglichkeit keine Späne, Prozessflüssigkeiten oder sonstige störende Materialien aufgrund der Bearbeitung auftreten.
  • Das Hochfrequenzsignal wird sich unweigerlich auch in anderen Richtungen als nur zu der Spitze des Werkzeugs 28 ausbreiten. Ein Teil des Hochfrequenzsignals läuft in die Gegenrichtung zu der Welle 30. Dort kann die Lagerung 32 der Welle 30 einen Kurzschluss mit Totalreflexion bilden, oder die Welle 30 besitzt eine größere Ausdehnung als in Figur 2 angedeutet und passiert unterschiedliche umgebende Materialien mit Impedanzsprüngen, die Zwischenechos auslösen. Derartige unerwünschte Reflexionen treten auch auf dem Weg des Hochfrequenzsignals durch das Werkzeug 28 auf, etwa am Austritt des Werkzeugs 28 aus der umgebenden Maschine.
  • Durch derartige und weitere Störeinflüsse weist das Empfangssignal nicht nur das Nutzsignal von der Spitze des Werkzeugs 28 auf. Da aber die sonstigen Reflexionsstellen zumindest über eine gewisse Betriebszeit konstant sind, können Verfahren zur Ausblendung von statischen Störstellen zur Anwendung kommen. Vorzugsweise wird ein Empfangssignal in einer Referenzsituation als Referenzsignal aufgenommen und gespeichert, beispielsweise direkt nach dem Einspannen eines Werkzeugs 28, das von einem Fachmann als das korrekte Werkzeug 28, als intakt und als korrekt eingespannt geprüft wurde. Auf den Fachmann kann auch verzichtet werden, wenn einfach angenommen wird, dass das Werkzeug 28 zu Beginn der Bearbeitung in Ordnung ist. Bei späteren Messungen mit dem Werkzeug 28 wird das Referenzsignal berücksichtigt, beispielsweise aus dem jeweiligen Empfangssignal durch Differenzbildung mit dem Referenzsignal ein korrigiertes Empfangssignal erzeugt und weiterverarbeitet. Der Einfluss von statischen Störstellen wird auf diese Weise eliminiert oder doch zumindest reduziert.
  • In einer bevorzugten Ausführungsform wird ein Hochfrequenzpuls ausgesandt und die zeitliche Lage eines Nutzechos von der Spitze des Werkzeugs anhand dessen Schwerpunkt oder durch die Auswertung einer Flanke bestimmt. Die Störeinflüsse können weitere Echos einführen, die sich mit dem Nutzecho überlagern oder dessen Identifizierung erschweren. Der Einfluss von Störechos kann wie beschrieben mit einem Referenzsignal vermindert werden. Zudem kann die Einkopplung vorzugsweise so realisiert werden, dass Störechos und Nutzecho zeitlich voneinander getrennt sind.
  • Schon beim Einspannen und erstmaligen Vermessen eines Werkzeugs 28 kann durch eine Laufzeitmessung festgestellt werden, ob das Werkzeug 28 korrekt eingespannt ist beziehungsweise ob es sich um das richtige Werkzeug handelt, sofern der Sensor 10 eine entsprechende Erwartungshaltung an die Laufzeit kennt. Es lassen sich nicht beliebige Werkzeuge 28 eindeutig unterscheiden, da beispielsweise der Durchmesser keinen oder so gut wie keinen Einfluss auf die Laufzeit hat. Im Rahmen der Messauflösung werden jedoch anhand der Laufzeit schon viele Fehler in Bezug auf ein falsches Werkzeug 28 oder ein falsch eingespanntes Werkzeug 28 erkannt, um die Zuverlässigkeit der Werkzeugmaschine 24 zu verbessern.
  • Ein Vorteil der Erfindung besteht darin, dass die Überprüfung des Werkzeugs 28 in den normalen Arbeitsablauf der Werkzeugmaschine 24 integriert werden kann. Es ist nicht erforderlich, das Werkzeug 28 eigens für die Überprüfung in eine besondere Position oder wie herkömmlich zu einer gesonderten Messstation zu bringen. Dennoch werden vorzugsweise bestimmte Arbeitsphasen des normalen Arbeitsablaufs für die Überprüfung genutzt. Wenn sich beispielsweise das Werkzeug 28 in der Nähe einer Metallumgebung der Werkzeugmaschine 24 befindet, dann kann dies genutzt werden, um Hochfrequenzeinflüsse aus der Umgebung abzuschirmen, in dem gemessen wird, wenn sich das Werkzeug 28 in Bezug auf die Metallumgebung in einer günstigen Position befindet. Denkbar ist, eine Arbeitsphase für die Überprüfung zu nutzen, in der jegliche Gegenstände einen möglichst großen Abstand zu dem Werkzeug 28 haben.
  • Bei einer Werkzeugmaschine 24 ist es üblich, das Werkzeug 28 samt Werkzeugaufnahme 26 immer wieder mit einer Flüssigkeit, vorzugsweise Öl, in Kontakt zu bringen beziehungsweise dort einzutauchen. So wird das Werkzeug 28 mit Kühl- beziehungsweise Schmiermittel versorgt. Die Flüssigkeit verlangsamt die Ausbreitungsgeschwindigkeit des Hochfrequenzsignals deutlich. Das erlaubt zum einen eine verbesserte Messung mit geringeren zeitlichen Anforderungen. Außerdem ist damit gleich eine weitere Überprüfung denkbar, nämlich ob das Werkzeug 28 wie vorgesehen mit Kühl- beziehungsweise Schmiermittel versetzt wird.
  • Figur 3 zeigt eine Schnittdarstellung ähnlich Figur 2 mit anderer Werkzeugaufnahme 26 und anderem Werkzeug 28. Damit soll noch einmal unterstrichen werden, dass die konkrete Ausgestaltung der Werkzeugmaschine 24, der Werkzeugaufnahme 26 mit Werkzeug 28 und der Koppeleinheit 16 zu dem Sensor 10 nur beispielhaft zu verstehen ist und variiert werden kann. In Figur 3 ist speziell eine getaperte oder angeschrägte Anordnung gewählt, die eine besonders reflexionsarme Einkopplung von Hochfrequenzsignalen ermöglicht und die Ausbreitung in die gewünschte Richtung zu dem Werkzeug 28 und dessen Spitze hin begünstigt. Allgemein ist die Erfindung aber weder eine bestimmte Werkzeugaufnahme 26, die beispielsweise als Morsekegel, Steilkegel oder Hohlschaftskegel ausgestaltet sein kann, noch auf bestimmte Werkzeuge 28 mit verschiedensten Längen, Durchmessern und Bohrköpfen beschränkt. Weder muss das Werkzeug 28 ein Bohrer sein, noch muss es rotieren.
  • Figur 4 zeigt die Werkzeugmaschine 24 mit deren Welle 30, Werkzeugaufnahme 26 und Werkzeug 28 sowie die Ankopplung über die Koppeleinheit 16 des Sensors 10 nochmals in abstrahierter Form. Wie schon in den bisherigen Ausführungsbeispielen wird das Hochfrequenzsignal in die Werkzeugaufnahme 26 eingekoppelt. Ebenso könnte eine Kopplung an die Welle 30 beziehungsweise den beweglichen oder rotierenden Teil der Werkzeugmaschine 24 erfolgen, da in aller Regel eine metallische und damit leitende Verbindung zu der Werkzeugaufnahme 26 besteht.
  • Vorzugsweise sollte nun aber der bewegliche Teil der Werkzeugmaschine 24, also insbesondere die Welle 30 mit der Werkzeugaufnahme 26, durch eine Isolation 36 von der übrigen Werkzeugmaschine 24 isoliert werden. Die Werkzeugaufnahme 26 und das Werkzeug 28 bilden dann wie gewünscht den Innenleiter eines Koaxialsystems und der durch die Isolation 36 davon getrennte umgebende Teil der Maschine den Außenleiter. Auf diese Weise kann die Laufzeit mit dem üblichen Vorgehen eines TDR-Messverfahrens bestimmt werden.
  • Figur 5 zeigt in einer abstrahierten Darstellung ähnlich Figur 4 eine weitere Ausführungsform der Erfindung. Hier erfolgt die Einkopplung direkt auf das Werkzeug 28 und nicht mittelbar über die Werkzeugaufnahme 26. Das Werkzeug 28 wird durch eine Isolation 36 von der Werkzeugaufnahme 26 isoliert. Dadurch ist ebenfalls ein Koaxialsystem realisiert, mit dem Werkzeug 28 als Innenleiter und der Werkzeugaufnahme 26 samt Welle 30 und dem umgebenden Teil der Maschine als Außenleiter. Hierdurch wird in gewisser Weise die Komplexität des Antriebsstrangs der Werkzeugmaschine 24 erhöht. Dafür ist eine Nachrüstbarkeit mit dem erfindungsgemäßen Sensor 10 zur Werkzeugkontrolle vereinfacht.

Claims (14)

  1. Sensor (10) zur Überprüfung eines Werkzeugs (28) einer Werkzeugmaschine (24),
    wobei der Sensor (10) einen Hochfrequenzsender (12) zum Erzeugen eines Hochfrequenzsignals, einen Hochfrequenzempfänger (14) zum Erzeugen eines Empfangssignals aus einem empfangenen Hochfrequenzsignal, eine Koppeleinheit (16), um ein Hochfrequenzsignal in das Werkzeug (28) einzukoppeln und aus dem Werkzeug (28) auszukoppeln, sowie eine Steuer- und Auswertungseinheit (20) aufweist, um eine Laufzeit eines von dem Hochfrequenzsender (12) ausgesandten und von dem Hochfrequenzempfänger (14) wieder empfangenen Hochfrequenzsignals anhand des Empfangssignals des Hochfrequenzempfängers (14) zu bestimmen, gekennzeichnet durch einen Ausgang (22) zum Ausgeben einer aus der Laufzeit gewonnenen Längeninformation des Werkzeugs (28) und/oder eine Anzeige zum Anzeigen einer aus der Laufzeit gewonnenen Längeninformation des Werkzeugs (28).
  2. Sensor (10) nach Anspruch 1,
    wobei die Steuer- und Auswertungseinheit (20) dafür ausgebildet ist, die gemessene Laufzeit mit einer erwarteten Laufzeit eines erwarteten Werkzeugs (28) zu vergleichen und insbesondere ein Ergebnis des Vergleichs auszugeben oder anzuzeigen.
  3. Sensor (10) nach Anspruch 1 oder 2,
    wobei die Steuer- und Auswertungseinheit (20) dafür ausgebildet ist, bei der Bestimmung der Laufzeit ein zuvor aufgenommenes Referenzsignal zu berücksichtigen, insbesondere ein Referenzsignal, das für ein erwartetes Werkzeug (28) aufgenommen wurde.
  4. Werkzeugmaschine (24) mit einem Werkzeug (28) und mit einem Sensor (10) nach Anspruch 1.
  5. Werkzeugmaschine (24) nach Anspruch 4,
    wobei das Werkzeug (28) ein rotierendes Werkzeug, insbesondere einen Bohrer aufweist.
  6. Werkzeugmaschine (24) nach Anspruch 4 oder 5,
    wobei die Koppeleinheit (16) ein Koppelstück aufweist, das den Umfang des Werkzeugs (28) und/oder einer Werkzeugaufnahme (26) des Werkzeugs (28) zumindest teilweise umgibt.
  7. Werkzeugmaschine (24) nach einem der Ansprüche 4 bis 6,
    die eine Isolation (36) zwischen dem Werkzeug (28) und einer Werkzeugaufnahme (26) des Werkzeugs (28) aufweist.
  8. Werkzeugmaschine (24) nach einem der Ansprüche 4 bis 6,
    die eine Isolation (36) um eine Werkzeugaufnahme (26) des Werkzeugs (28) gegenüber der übrigen Werkzeugmaschine (24) aufweist.
  9. Werkzeugmaschine (24) nach einem der Ansprüche 4 bis 8,
    wobei die Koppeleinheit (16) dafür ausgebildet ist, das Hochfrequenzsignal direkt in das Werkzeug (28) einzukoppeln.
  10. Werkzeugmaschine (24) nach einem der Ansprüche 4 bis 8,
    wobei die Koppeleinheit (16) dafür ausgebildet ist, das Hochfrequenzsignal in eine Werkzeugaufnahme (26) des Werkzeugs (28) oder eine Welle (30) der Werkzeugmaschine (24) einzukoppeln.
  11. Verfahren zur Überprüfung eines Werkzeugs (26) einer Werkzeugmaschine (24),
    dadurch gekennzeichnet,
    dass, insbesondere mit einem Sensor (10) nach einem der Ansprüche 1 bis 3, an einer Koppelstelle (16) ein Hochfrequenzsignal in das Werkzeug (28) eingekoppelt und aus dem Werkzeug (28) ausgekoppelt wird, wobei das Hochfrequenzsignal zwischen Einkopplung und Auskopplung zu einer Werkzeugspitze des Werkzeugs (28) und zurückläuft und die Laufzeit des Hochfrequenzsignals bis zu der Werkzeugspitze bestimmt wird.
  12. Verfahren nach Anspruch 11,
    wobei die Bestimmung der Laufzeit während des regelmäßigen Arbeitsablaufs der Werkzeugmaschine (24) durchgeführt wird.
  13. Verfahren nach Anspruch 11 oder 12,
    wobei die Bestimmung der Laufzeit in bestimmten Arbeitsphasen erfolgt, in denen das Werkzeug (28) sich nicht in der Nähe eines Werkstücks befindet und/oder in denen sich das Werkzeug (28) in einer bekannten Umgebung befindet, wobei insbesondere ein Referenzsignal für die bekannte Umgebung vorab aufgenommen und bei der Bestimmung der Laufzeit berücksichtigt wird.
  14. Verfahren nach einem der Ansprüche 11 bis 13,
    wobei die Bestimmung der Laufzeit in einer Arbeitsphase erfolgt, in der das Werkzeug (28) mit einem Arbeitsmittel in Kontakt kommt, insbesondere in ein Arbeitsmittel eingetaucht oder damit versetzt wird.
EP20194899.9A 2020-09-07 2020-09-07 Überprüfung eines werkzeugs einer werkzeugmaschine Active EP3964328B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20194899.9A EP3964328B1 (de) 2020-09-07 2020-09-07 Überprüfung eines werkzeugs einer werkzeugmaschine
US17/405,472 US11701747B2 (en) 2020-09-07 2021-08-18 Inspection of a tool of a machine tool
JP2021136870A JP7239654B2 (ja) 2020-09-07 2021-08-25 工作機械の工具の検査

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20194899.9A EP3964328B1 (de) 2020-09-07 2020-09-07 Überprüfung eines werkzeugs einer werkzeugmaschine

Publications (2)

Publication Number Publication Date
EP3964328A1 EP3964328A1 (de) 2022-03-09
EP3964328B1 true EP3964328B1 (de) 2023-12-06

Family

ID=72665023

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20194899.9A Active EP3964328B1 (de) 2020-09-07 2020-09-07 Überprüfung eines werkzeugs einer werkzeugmaschine

Country Status (3)

Country Link
US (1) US11701747B2 (de)
EP (1) EP3964328B1 (de)
JP (1) JP7239654B2 (de)

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606331A (ja) * 1983-06-17 1985-01-14 Yoshiaki Kakino 回転する主軸から超音波振動を取り出す装置
JP2786512B2 (ja) 1990-04-09 1998-08-13 三菱重工業株式会社 工具異常検出方法
JPH0627051U (ja) * 1992-09-14 1994-04-12 株式会社椿本チエイン ワーク加工用工具の折損検出装置
JP4167007B2 (ja) 2002-05-17 2008-10-15 富士精工株式会社 工具状態検知装置
US6950034B2 (en) * 2003-08-29 2005-09-27 Schlumberger Technology Corporation Method and apparatus for performing diagnostics on a downhole communication system
EP1779949A1 (de) * 2005-11-01 2007-05-02 Volvo Lastvagnar Ab Einrichtung und Verfahren zur Erfassung von Werkzeugbrüchen in Werkzeugmaschinen
US7817061B2 (en) * 2006-04-11 2010-10-19 Xact Downhole Telemetry Inc. Telemetry transmitter optimization using time domain reflectometry
DE102009005745B4 (de) 2009-01-23 2011-09-01 Ott-Jakob Spanntechnik Gmbh Vorrichtung zur Überwachung der Lage eines Werkzeugs oder Maschinenelements
EP2678709B1 (de) * 2011-02-21 2018-03-28 Transrobotics, Inc. System und verfahren zur erfassung von abständen und/oder bewegungen
DE102013210749A1 (de) * 2012-11-27 2014-05-28 Robert Bosch Gmbh System mit einem Zusatzhandgriff und einem Handwerkzeug
DE102012111723B3 (de) * 2012-12-03 2014-05-15 Ott-Jakob Spanntechnik Gmbh Verfahren zur Bestimmung von Abmessungen und/oder Positionsdaten eines Werkzeugs
DE102013218150B4 (de) * 2013-09-11 2024-04-18 Robert Bosch Gmbh Isolationssystem für werkzeug und werkzeug mit demselben
DE102014102837B3 (de) 2014-03-04 2015-05-28 Sick Ag Vorrichtung zur Werkzeugkontrolle
DE102014109399B4 (de) * 2014-07-04 2017-03-16 Sick Ag Sensor für eine Rollenbahn und Verfahren zum Erkennen von auf einer Rollenbahn befindlichen Objekten
US20160305232A1 (en) * 2015-04-20 2016-10-20 Vetco Gray Inc. System and method for monitoring tool orientation in a well
WO2016205219A1 (en) * 2015-06-15 2016-12-22 Humatics Corporation High precision time of flight measurement system for industrial automation
JP6765590B2 (ja) 2016-02-29 2020-10-07 国立大学法人東海国立大学機構 振動加工装置及び振動加工方法
ES2935968T3 (es) * 2016-07-15 2023-03-13 Cqms Pty Ltd Sistema de monitorización de un miembro de desgaste y procedimiento para monitorizar un miembro de desgaste
EP3719307A1 (de) * 2019-04-01 2020-10-07 Siemens Gamesa Renewable Energy A/S Verteiltes system und verfahren zum erfassen der position und/oder geschwindigkeit eines rotorblattes während des betriebs einer windturbine

Also Published As

Publication number Publication date
JP7239654B2 (ja) 2023-03-14
JP2022044561A (ja) 2022-03-17
US20220072674A1 (en) 2022-03-10
EP3964328A1 (de) 2022-03-09
US11701747B2 (en) 2023-07-18

Similar Documents

Publication Publication Date Title
EP1769239B1 (de) Verfahren zur zerstörungsfreien prüfung von rohren
DE102007039382A1 (de) Verfahren zur zerstörungsfreien Prüfung von Rohren
EP3102931B2 (de) Verfahren zur ultraschallmessung einer wandstärke bei hohlventilen
WO2004055508A1 (de) Verfahren und vorrichtung zur grössenbestimmung eines risses in einem werkstück mittels der ultraschall-impuls-methode___________
EP2759372B1 (de) Werkzeugmaschine und Verfahren zum Überwachen eines Spannzustands
EP1400309A1 (de) Verfahren und Vorrichtung zum Prüfen einer Schneidengeometrie eines drehantreibbaren Werkzeugs
DE3611370C2 (de)
DE2429324A1 (de) Vorrichtung und verfahren zur untersuchung von gegenstaenden
EP3964328B1 (de) Überprüfung eines werkzeugs einer werkzeugmaschine
DE69214539T2 (de) Verfahren und Vorrichtung zur Überprüfung des Oberflächenzustands eines Bohrlochs
EP3199926B1 (de) Verfahren zum betreiben eines berührungslos arbeitenden ultraschall- oder radar-füllstandmessgeräts
EP1456612A2 (de) Verfahren zur bestimmung und/oder überwachung einer physikalischen oder chemischen prozessgrösse
EP3085490B1 (de) Vorrichtung zur überwachung der lage eines werkzeugs oder werkzeugträgers an einer arbeitsspindel
EP1576363B1 (de) Ultraschallprüfgerät und verfahren zur auswertung von ultraschallsignalen
DE2613799B1 (de) Verfahren zum Einrichten von Ultraschall-Pruefanlagen
DE102008039818A1 (de) Verfahren zur zerstörungsfreien Prüfung von metallischen Werkstücken auf Fehler mittels Ultraschall
DE2105749A1 (de) Verfahren zum Prüfen der Unversehrtheit und Qualltat der Verbindung und Anlagerung zwischen der Plattierung und der Oberflache der Bohrung eines plattierten Rohres
EP3781938A1 (de) Vorrichtung und verfahren zur bestimmung der ausdehnung von fehlstellen mittels v-durchschallung
EP1352234B1 (de) Verfahren und vorrichtung zur ultraschallprüfung von rohren zum nachweis von an einer innenwand des rohres befindlichen beulen
DE4020551A1 (de) Werkzeugueberwachung
DE10232131C1 (de) Vorrichtung und Verfahren zur Prüfung von Bohrungen oder Kanten in einem Meßgegenstand
EP3584572B1 (de) Prüfkopfzange zur ultraschall-riss-detektion, kit zur ultraschall-riss-detektion und verwendung der prüfkopfzange zur ultraschall-riss-detektion
DE102020134329B3 (de) Ultraschalldistanzsensor und Verfahren zum Überwachen des Ultraschalldistanzsensors
DE10119669A1 (de) Verfahren und Vorrichtung zum Prüfen und/oder Erkennen von Prüfobjekten, insbesondere solchen mit Gewinde
DE102008052983A1 (de) Wirbelstromsensor und Verfahren zum Ermitteln von aufgrund thermischer Einflüsse veränderter Werkstoffeigenschaften in einem zu untersuchenden Bauteil mit Hilfe desselben

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210427

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230329

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230803

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020006275

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240307

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231206

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240307

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231206

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231206

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231206

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240306

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231206

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231206

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231206