EP3963899B1 - Device and system for measuring the sound volumes of noises of a road vehicle in road traffic - Google Patents

Device and system for measuring the sound volumes of noises of a road vehicle in road traffic Download PDF

Info

Publication number
EP3963899B1
EP3963899B1 EP20720375.3A EP20720375A EP3963899B1 EP 3963899 B1 EP3963899 B1 EP 3963899B1 EP 20720375 A EP20720375 A EP 20720375A EP 3963899 B1 EP3963899 B1 EP 3963899B1
Authority
EP
European Patent Office
Prior art keywords
aks
acoustic sensor
circuit board
printed circuit
road vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20720375.3A
Other languages
German (de)
French (fr)
Other versions
EP3963899A1 (en
Inventor
Markus Strobel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF Friedrichshafen AG
Original Assignee
ZF Friedrichshafen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZF Friedrichshafen AG filed Critical ZF Friedrichshafen AG
Publication of EP3963899A1 publication Critical patent/EP3963899A1/en
Application granted granted Critical
Publication of EP3963899B1 publication Critical patent/EP3963899B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/04Structural association of microphone with electric circuitry therefor
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/017Detecting movement of traffic to be counted or controlled identifying vehicles
    • G08G1/0175Detecting movement of traffic to be counted or controlled identifying vehicles by photographing vehicles, e.g. when violating traffic rules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • H04R1/083Special constructions of mouthpieces
    • H04R1/086Protective screens, e.g. all weather or wind screens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/34Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means
    • H04R1/345Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means for loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/02Details casings, cabinets or mounting therein for transducers covered by H04R1/02 but not provided for in any of its subgroups
    • H04R2201/029Manufacturing aspects of enclosures transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2410/00Microphones
    • H04R2410/07Mechanical or electrical reduction of wind noise generated by wind passing a microphone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/13Acoustic transducers and sound field adaptation in vehicles

Definitions

  • the invention relates to a device and a system for measuring the volume of noise from a road vehicle in traffic.
  • Noise pollution for example at early and/or late hours or at night, is a major annoyance for many roadside residents. According to statistics, traffic noise is the second most important form of environmental pollution after air pollution. Traffic noise can increase the risk of heart disease and/or diabetes for those affected. Speed measurement systems and speed limits are known measures against noise pollution.
  • U.S. 2019/082256 A1 Devices for measuring the volume of noise from a road vehicle in traffic are from the prior art U.S. 2019/082256 A1 , U.S. 3,661,224 A and JP H03 113700 A known.
  • U.S. 2019/082256 A1 describes the features mentioned in the preamble of claim 1.
  • the documents JP 2004 312156 A , U.S. 2005/220448 A1 , EP 2 566 182 A1 , U.S. 2013/251183 A1 and U.S. 2013/083957 A1 show measures to protect against contamination in an acoustic sensor.
  • the object of the invention was to improve the measures against noise pollution in road traffic.
  • the device measures the volume of noise from a road vehicle in traffic.
  • the device solves the task through system properties from the specific matching of individual components of the device to one another.
  • the device includes an acoustic sensor.
  • the device includes protective grids to protect the device against the ingress of coarser foreign bodies.
  • the protective grille comprises at least one opening for admitting airborne sound into the device. The opening is arranged axially offset to an axial axis of the device.
  • the device includes a flow bypass. The flow bypass runs between the protective grille and the acoustic sensor. In this way, fluids and/or foreign bodies that have entered the device due to air currents are guided away from the acoustic sensor and out of the device.
  • the device comprises a sound channel arranged parallel to the axial axis, at the first end of which, in the air flow direction, the protective grille is arranged and at the second end of which the acoustic sensor is arranged is.
  • the diameter, length, volume, shape and/or material properties of the sound channel are adapted in order to dampen the device's natural modes.
  • the device also includes a printed circuit board.
  • the printed circuit board includes components and their connections for pre-processing analog or digital signals from the acoustic sensor.
  • the components are designed for analog or digital signal processing and/or for implementing filter functions, phase reversal functions, compressor functions and/or amplifier functions.
  • the printed circuit board includes the acoustic sensor on one side of the printed circuit board.
  • the acoustic sensor is arranged on the rear side of the printed circuit board in the air flow direction.
  • the acoustic sensor has its sound entry opening on the component mounting side of the printed circuit board, and the printed circuit board includes a printed circuit board opening for the sound entry.
  • the acoustic sensor is arranged on the front side of the printed circuit board in the air flow direction. In this case, the acoustic sensor has its sound entry opening on the side of the acoustic sensor opposite the component mounting side of the printed circuit board.
  • the circuit board also includes a computing unit.
  • the arithmetic unit is designed to generate a control signal for a detection unit as a function of signals from the acoustic sensor when it is detected that a target volume has been exceeded. The road vehicle is thus detected. Furthermore, the device includes an interface to provide the control signal of the detection unit.
  • the invention provides a device that detects the volume of passing road vehicles and the road vehicle can flash when a limit value is exceeded, similar to a speed monitoring system.
  • the special feature of the device according to the invention is the functionality and airborne sound detection and its conversion under difficult environmental and flow conditions that exist in road traffic. These environmental conditions also result from the intended use and/or installation locations of the device in road traffic, where relative air currents arise.
  • airborne noise can be detected and converted into electrical signals in a temperature range from -50°C to +90°C, for example -30°C to +70°C.
  • the device according to the invention is characterized in that the individual components of the device, for example the acoustic sensor, Protective grille, the opening for the airborne sound inlet, i.e. the sound inlet opening, the flow bypass and the sound channel, are coordinated with one another, taking airborne and/or structure-borne noise, aeroacoustics, flow and fluid dynamics, electronics and mechanics into account.
  • the device according to the invention provides weather protection for the acoustic sensor of the device. This allows noise in road traffic to be measured under unfavorable weather conditions, such as precipitation. With the device according to the invention, noise measurements of individual road vehicles are carried out by means of the acoustic sensor. If a target volume is exceeded during such a measurement, the device controls a detection unit in order to detect the respective road vehicle, for example to photograph it, comparable to a speed measuring system. In principle, speed limits can therefore be avoided.
  • Road vehicles are, for example, passenger cars, commercial vehicles or tractors.
  • Road vehicles are motor-driven, for example by means of internal combustion engines, electric motors or hybrid-electric.
  • noise is caused by the engine, static friction between the tires and the road surface and the flow resistance of the road vehicle.
  • intentionally starting off with squealing tires constitutes noise pollution.
  • the loudness of these noises is the amplitude, sound pressure or sound pressure level of the airborne noise emanating from these noises.
  • a threshold of 80 decibels is a target volume.
  • the device represents a housing for the acoustic sensor.
  • the term acoustic sensor designates both the acoustic sensor as a component of the device and the entire device.
  • An acoustic sensor is a sensor that detects mechanical vibrations, for example caused by airborne sound waves, and converts them into a processable signal, for example an electrical signal such as an electrical voltage.
  • the signal emitted by the acoustic sensor corresponds to the volume of the noise.
  • the acoustic sensor includes an analog and/or digital signal output.
  • the transformation takes place in two stages. In a first acoustic-mechanical In the transformation stage, the airborne sound is transformed into the movement of an object according to a specific reception principle. In the second mechanical-electrical conversion stage, the movement of the object is converted into an electrical signal according to a specific converter principle.
  • acoustic sensors are an arrangement of a magnet and an electric coil, microphones, accelerometers, piezo sensors or strain gauges.
  • a micro-electromechanical system, MEMS for short, comprising an arrangement of semiconductor elements that absorb vibrations, can also be used as an acoustic sensor.
  • the protective grille is a grille with a mechanical protective function.
  • the protective grille is constructed in such a way that coarser foreign bodies, i.e. particles with a diameter of at least 2 mm, for example dirt particles such as mud particles, dust particles, soot particles, grains of salt, stones, insects or other particles contained in the air, do not get into the Device can penetrate.
  • the opening for the air inlet is positioned in the protective grille in such a way that no direct jet and/or particle stream acts on the first membrane in the axial direction of the sensor.
  • the first membrane is thus mechanically protected by the arrangement and/or geometry of the opening.
  • the aperture or apertures are substantially 2mm wide and substantially 5mm long.
  • the flow bypass ensures that fluids that have entered through the air inlet, for example water, air, and small particles, such as dirt and/or dust, do not agglomerate on the acoustically permeable membrane, but rather through an opening at the outlet of the flow bypass for an air outlet again be transported out of the device.
  • the flow bypass is a self-cleaning flow bypass.
  • the flow bypass is designed acoustically, flow-acoustically and flow-dynamically, so that the generation of aeroacoustic noise generated by the flow is reduced and the acting flow-dynamic forces do not negatively influence, for example damage or degrade, the subsequent components of the device.
  • the sound channel is used for the targeted sound guidance of the airborne sound waves to the acoustic sensor.
  • the sound channel is acoustically specially dimensioned so that if possible no or only few and weak natural modes are formed in the usable frequency range of the acoustic sensor. This targeted dimensioning is essentially based on geometric parameters such as diameter, length, volume and shape.
  • the printed circuit board is also called a board or printed circuit board.
  • the components of the printed circuit board include, for example, logic modules such as ASICS or FPGAs.
  • one component implements a high-pass filter that allows airborne sound waves with frequencies greater than 300 Hz to pass.
  • the dynamic range of a signal is limited by means of compressor functions.
  • the components are, for example, mounted directly on the surface of the printed circuit board, for example soldered, and are also called surface mounted devices, or SMD for short.
  • the circuit board opening corresponds to a hole or a through hole on the circuit board for entry of the airborne sound into the acoustic sensor, which is arranged on the rear side of the circuit board in the air flow direction.
  • the rear side of the circuit board in the air flow direction is the surface of the circuit board on which the components and the acoustic sensor are arranged.
  • a computing unit receives input values, calculates output values from these input values according to a specific process, and outputs the output values.
  • a computing unit is implemented by an electronic circuit unit.
  • Logic components, ASICs, FGPAs, CPUs and GPUs are computing units.
  • the processing unit is integrated on the printed circuit board, for example as a surface mounted device, or SMD for short.
  • a detection unit is, for example, an optical imaging system that generates a photo of the road vehicle. This identifies the road vehicle from which the target volume is exceeded, ie from which a noise nuisance emanates. This allows the police to stop roaring road vehicles and in the event that the target volume is exceeded penalties are imposed. This can reduce the risk of heart disease and/or diabetes for those affected who are exposed to noise pollution.
  • the interface is wired or wireless.
  • the interface is designed for signal transmission using radio technology.
  • the device is coupled to a speed enforcement system.
  • the detection unit is a camera of the speed surveillance system and the interface is an interface to the speed surveillance system.
  • the speed enforcement system is a stationary system or a mobile system, for example mounted on a trailer.
  • the acoustic sensor includes a microphone.
  • the microphone includes a microphone capsule and a transducer.
  • the acoustic-mechanical conversion takes place in the microphone capsule.
  • the microphone capsule includes, for example, a membrane that is excited to vibrate by airborne noise.
  • the mechanical-electrical conversion takes place in the converter.
  • the transducer is, for example, an electrodynamic transducer, such as in a voice coil microphone, or an electrostatic transducer, such as in a condenser microphone.
  • the acoustic sensor is implemented as a MEMS microphone.
  • MEMS microphones are miniaturized microphones that are designed, for example, in SMD technology for direct use on the printed circuit board.
  • MEMS microphones have small dimensions and are easy to process industrially, for example MEMS microphones can be assembled in a reflow soldering process. Compared to other microphones, MEMS microphones are less sensitive to high temperatures and are therefore particularly well suited for automotive applications.
  • the acoustic sensor is an electret condenser microphone.
  • the device comprises an acoustically permeable, hydrophobic and/or lipophobic first membrane.
  • the first membrane is downstream of the protective grille at the first end of the sound duct arranged.
  • the flow bypass runs between the protective grid and the first membrane.
  • the first membrane is permeable to airborne sound waves. Due to the hydrophobic and/or lipophobic behavior, the sound channel is protected against emissions from moisture and particles, for example.
  • the first membrane is a microporous membrane.
  • a membrane with 1.3 ⁇ 10 9 pores/cm 2 is microporous.
  • Such a membrane is particularly waterproof and allows protection at least according to IPX4K.
  • the first membrane is designed to enable protection according to IP69K.
  • the number 6 in IP69K means complete tightness and thus protection against the ingress of solid objects and dust. 9K designates protection against the ingress of water during high-pressure or steam jet cleaning. This is particularly advantageous for protection in automotive applications.
  • the degree of protection indicates the suitability of components for different environmental conditions.
  • the protected systems are divided into corresponding types of protection, so-called International Protection, abbreviated IP codes.
  • IP codes International Protection
  • IPX6K provides protection against powerful jets of water under increased pressure, specific to road vehicles.
  • the shape and/or material properties of the protective grille are adapted in order to protect the first membrane, the sound channel and/or the acoustic sensor against flow-dynamic and/or static forces that arise, for example, from the relative wind or weather.
  • the protective grille and the openings of the protective grille are designed to be rotationally symmetrical, for example.
  • the protective grille is made of plastic, for example, and is shaped in such a way, ie has such a geometry, as to offer a degree of protection of at least IPX6K. A mechanical protective effect of the device is thus achieved and the acoustic sensor is protected against such influences.
  • the protective screen comprises an open-cell material, for example a foam material such as an open-cell polyurethane foam material.
  • Wind and/or water absorption can be adjusted by scalable size of pores in the material.
  • Foam materials are characterized by a very low density and easy processing and processing. Foams are particularly easy to produce from polyurethane.
  • Open-pored polyurethane foam is also called filter foam. Filter foam is particularly good for wind absorption. Filter foam is classified according to pore size/number of pores. The unit used is the number of pores per inch, abbreviated PPI.
  • the protective grille includes a filter foam in the range of 10 to 80 PPI.
  • the protective grille is an exchangeable protective grille in order to be replaced in the event of coarse soiling without having to replace the entire device.
  • the shape and/or material properties of the flow bypass are adapted in order to dampen the aeroacoustic noise generated by the air flow through the flow bypass and/or to protect the first membrane against flow-dynamic and/or static forces.
  • the flow bypass is shaped in such a way that there are as few edges or similar shapes in the flow bypass as possible where flow separation and/or flow turbulence can occur.
  • Flow stalls and/or flow turbulence generate aeroacoustic noise.
  • Flow stalls and/or flow turbulence generate aeroacoustic noise.
  • Targeted shaping greatly reduces the susceptibility to stalls and/or flow turbulence and thus aeroacoustic noise generation as well. This is particularly advantageous in the case of relative air flows, for example during movement of the device when driving a road vehicle.
  • the sound channel is open at one of its two ends and at the other end with a closing element with a Reflection factor complete.
  • Open means open to sound entry.
  • the sound channel, at the sound entry opening of which an acoustically permeable membrane is arranged, is open at this opening.
  • the flow resistance of the sound channel can be adjusted.
  • the final element is the acoustic sensor, for example the microphone, or the printed circuit board.
  • the sound channel essentially has the shape of a truncated cone or a horn part and the first membrane is arranged at the first end of the sound channel with a larger first area and the acoustic sensor is arranged at the second end of the sound channel with a smaller second area.
  • a horn part such as in Fig.1 the DE 38 43 033 C2 a robust system for the highly sensitive detection of airborne sound waves is disclosed.
  • a sound channel in the form of a horn section acoustically couples the receiver particularly well to the sound field, so that as much of the external sound energy as possible arrives at the receiver. This achieves minimal acoustic damping of the flow of sound energy.
  • the sound channel and the flow bypass are implemented by an inflow component.
  • the inflow component includes a bulge.
  • the bulge includes a hollow space that runs through the axial axis and through which the sound channel is realized.
  • the inflow component is brought together with the protective grille in such a way that the flow bypass is realized by a free space between the inflow component and the protective grille.
  • the inflow component and its bulge are shaped in such a way that the aeroacoustic noise generated by the air flow through the flow bypass is dampened.
  • the inflow component and its bulge do not include any flow separation edges in the flow bypass.
  • the device comprises a housing in which the printed circuit board is arranged.
  • the housing protects the printed circuit board and its components from mechanical and/or thermal influences.
  • the housing includes fasteners, such as screws, around the housing and the device to be attached to an object of a traffic infrastructure, for example a traffic light mast, a crash barrier or a speed enforcement system.
  • the printed circuit board is arranged perpendicularly or parallel to the axial axis of the device.
  • the second end of the sound channel is arranged in the radial extension of a lateral surface of the sound channel.
  • the acoustic sensor for example the microphone and/or the microphone capsule, is coupled to the sound channel parallel to the axial axis of the device. If the printed circuit board is arranged in parallel, the acoustic sensor is coupled to the sound channel perpendicular to the axial axis of the device, that is to say tangentially. Particularly good signals from the acoustic sensor are obtained with the parallel arrangement.
  • the device comprises an elastic sealing component for coupling the acoustic sensor to the sound channel and/or to the printed circuit board.
  • the sealing component compensates for geometric tolerances when assembling the device.
  • the elasticity ensures a defined decoupling of the acoustic sensor, including the microphone capsule, from structure-borne noise. Furthermore, the elasticity ensures an acoustically closed connection between the sound channel and the microphone capsule.
  • the device comprises a decoupling component for damping vibrations and/or for decoupling structure-borne noise.
  • the decoupling component is arranged at a coupling point between the device and a component in which the device can be installed and/or by which the device can be mechanically held.
  • the decoupling component is made of a two-component material that produces an impedance jump that has an acoustic and/or vibration-related effect.
  • the two-component material includes a relatively soft, relatively low impedance material and a relatively hard, relatively high impedance material.
  • the soft material is arranged in front of the hard material in the air flow direction. The impedance jump is carried out over the entire contact surface of the protective grid and the decoupling component.
  • the decoupling component is a molded part, for example.
  • the protective grille and the decoupling component is formed from an injection molded part.
  • the decoupling component is made from vibration-damping materials of different densities, for example from mixed-cell polyurethane foams.
  • the decoupling component has, for example, high mechanical strength and/or good insulating properties. The device can be kept insensitive to vibrations by means of the decoupling component.
  • the device comprises a second membrane for venting the device.
  • the second membrane provides static pressure balancing for the device.
  • the proportional static pressure is compensated by the second membrane.
  • the second membrane prevents the formation of condensate in the device.
  • the device can be retrofitted to objects in the traffic infrastructure as a retrofit component.
  • the computing unit is designed to process an artificially intelligent algorithm.
  • the artificially intelligent algorithm is trained to classify the road vehicles depending on the signals from the acoustic sensor.
  • the target volume depends on the road vehicle classified.
  • the artificially intelligent algorithm is, for example, an artificial neural network trained to classify noise from road vehicles.
  • the device recognizes which type of road vehicle is causing the noise pollution. This makes it possible to distinguish, for example, noise and noise pollution from tractors or trucks, which are usually louder than cars, from noise and noise pollution from cars. The device thus recognizes which type of road vehicle F is causing the noise pollution.
  • the system according to the invention measures the volume of noise from a road vehicle in traffic.
  • the system includes a device according to the invention and a detection unit operatively connected to the device.
  • the detection unit is arranged behind the device in the direction of travel of the road vehicle.
  • the detection unit detects the road vehicle as a function of a control signal from the device. For example, if the device measures that noises emanating from the road vehicle exceed a target volume, the detection unit, which is arranged a few meters behind the device, for example, is activated and photographs the road vehicle.
  • the device triggers the detection unit like a light barrier of a speed enforcement system.
  • the detection unit comprises a camera.
  • the road vehicle is thus photographed when a target volume is exceeded.
  • the detection unit is a speed enforcement system that includes a camera.
  • the system is embodied as a mobile system, for example mounted on a trailer.
  • FIG. 1 shows a protective grid 2, a printed circuit board L, a computing unit 4 and an interface I of an exemplary embodiment of the device AKS according to the invention. Detailed views of this embodiment are in the Figures 6, 7 and 8 shown.
  • the arithmetic unit 4 is mounted on the printed circuit board L.
  • the computing unit 4 processes an artificial neural network.
  • the artificial neural network includes convolutional layers and/or fully connected layers.
  • the artificial neural network is trained to classify noises from road vehicles F depending on the type of road vehicle F. By means of the artificial neural network, the device recognizes which type of road vehicle F is causing the noise pollution.
  • the arithmetic unit 4 determines a control signal for a detection unit K, in order to detect the road vehicle F, as a function of signals from an acoustic sensor 1 of the AKS device when it detects that a target volume has been exceeded.
  • the interface I provides the control signal for the detection unit K, see also 2 .
  • the system includes the AKS device 1 .
  • the interface I of the AKS device is a wired interface, for example, to the detection unit K.
  • the detection unit K is a stationary traffic speed camera for monitoring speeding.
  • the detection unit K includes a camera CAM.
  • the road vehicle F generates noise when driving.
  • the respective airborne sound waves of the noises are recorded and evaluated by the AKS device. Recognizes the arithmetic unit 4 of If the device AKS exceeds the target volume, the camera CAM of the detection unit K is controlled via the interface I of the device AKS in order to detect and identify the road vehicle.
  • the system is mounted on a trailer, for example, which can be driven to defined locations, such as locations with a high level of noise pollution. This makes the system mobile.
  • a printed circuit board L is arranged perpendicularly to an axial axis A of the device AKS.
  • the circuit board is arranged parallel to the axial axis A of the device AKS.
  • a second end E2 of a sound channel 7 is arranged in a radial extension of a lateral surface of the sound channel 7 .
  • the device AKS includes a component B.
  • the component B holds the device AKS.
  • the component B is, for example, an injection molded part or a component produced using an additive method, for example a 3D printing method.
  • the component B includes a circular opening.
  • the component B is only in the 3 , 4 and 5 shown.
  • a protective grid 2 according to the invention is inserted into this opening.
  • the protective grid 2 is coupled to the component B by means of a decoupling component 11 according to the invention, see FIG 3 , 4 and 5 .
  • the protective grille 2 and the decoupling component 11 are made from an injection molded part.
  • the 3 , 4 and 5 includes the protective grille 2 four symmetrically arranged slot-shaped openings 3a, 3b, 3c and 3d.
  • the openings 3a, 3b, 3c and 3d are entry openings for airborne sound waves into the device AKS, as are the openings 3a, 3b and 3c in Figures 1, 2 , 6, 7 and 8 .
  • the airborne sound waves enter the AKS device in the air flow direction R.
  • the openings 3a, 3b, 3c and 3d are arranged axially offset to an axial axis A of the device AKS.
  • the exploded view in figure 5 shows the openings 3a, 3b, 3c and 3d, the protective grid 2 and the decoupling component 11 in a combined state.
  • an inflow component 8 is inserted into the decoupling component 11 .
  • the inflow component 8 comprises a rotationally symmetrical bulge 9.
  • the inflow component 8 is inserted in such a way that a free space remains between the inflow component 8, its bulge 9 and the protective grille 2.
  • the free space forms a flow bypass 6 according to the invention.
  • the flow bypass 6 includes air outlets 6a. The air is discharged from the AKS device through the air outlets.
  • the bulge 9 of the inflow component 8 comprises a hollow space H running through the axial axis A.
  • the hollow space H has the shape of a horn part with a larger first area at a first end E1 of the hollow space H and a smaller second area at a second end E2.
  • the first and the second surface are each base or cover surfaces of the cavity H and are symmetrical to the axial axis A.
  • the cavity H is created, for example, by drilling a hole in the bulge.
  • the cavity H forms a sound channel 7.
  • the airborne sound waves are guided through the sound channel 7 to the acoustic sensor 1.
  • the acoustic sensor 1 is arranged on the rear side of the printed circuit board L in the direction of air flow R, that is, the surface of the printed circuit board L fitted with the electronic components.
  • a first membrane 5 according to the invention is arranged at the first end E1 of the sound channel 7 .
  • the acoustic sensor 1 is arranged as an extension of the second end E2 of the sound channel 7 .
  • the acoustic sensor 1 is an electro-acoustic sensor, for example a microphone.
  • the acoustic sensor 1 is a MEMS microphone.
  • the acoustic sensor 1 is coupled to the sound channel 7 and to a printed circuit board 7 by means of a sealing component 10 .
  • the printed circuit board L is arranged in a housing G.
  • the housing G is an electronics housing.
  • the printed circuit board L includes components and their connections for preprocessing analog or digital signals from the acoustic sensor 1.
  • the printed circuit board L also includes plug connections S in order to connect the printed circuit board L and thus the device AKS to an electronic control unit in terms of signals.
  • the housing G includes a second membrane 12 designed as a venting membrane for static pressure equalization of the housing G and to prevent the formation of condensate in the housing G.
  • the housing G also includes fastening means 13, for example screws.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • General Physics & Mathematics (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

Die Erfindung bezieht sich auf eine Vorrichtung und ein System zur Messung von Lautstärken von Geräuschen eines Straßenfahrzeuges im Straßenverkehr.The invention relates to a device and a system for measuring the volume of noise from a road vehicle in traffic.

Lärmbelästigung, beispielsweise zu früher und/oder später Uhrzeit oder nachts, ist für viele Anwohner von Straßen ein großes Ärgernis. Verkehrslärm ist laut Statistiken die zweitstärkste Form der Umweltbelästigung nach der Luftverschmutzung. Verkehrslärm kann für Betroffene das Risiko von Herzkrankheiten und/oder Diabetes erhöhen. Als Maßnahmen gegen Lärmbelästigung sind Geschwindigkeitsmessanlagen und Tempolimits bekannt.Noise pollution, for example at early and/or late hours or at night, is a major annoyance for many roadside residents. According to statistics, traffic noise is the second most important form of environmental pollution after air pollution. Traffic noise can increase the risk of heart disease and/or diabetes for those affected. Speed measurement systems and speed limits are known measures against noise pollution.

Vorrichtungen zur Messung von Lautstärken von Geräuschen eines Straßenfahrzeuges im Straßenverkehr sind aus dem Stand der Technik US 2019/082256 A1 , US 3 661 224 A und JP H03 113700 A bekannt. US 2019/082256 A1 beschreibt die Merkmale, die im einleitenden Teil des Anspruchs 1 genannt werden. Die Dokumente JP 2004 312156 A , US 2005/220448 A1 , EP 2 566 182 A1 , US 2013/251183 A1 und US 2013/083957 A1 zeigen Maßnahmen zum Schutz gegen Verschmutzung bei einem Akustiksensor.Devices for measuring the volume of noise from a road vehicle in traffic are from the prior art U.S. 2019/082256 A1 , U.S. 3,661,224 A and JP H03 113700 A known. U.S. 2019/082256 A1 describes the features mentioned in the preamble of claim 1. The documents JP 2004 312156 A , U.S. 2005/220448 A1 , EP 2 566 182 A1 , U.S. 2013/251183 A1 and U.S. 2013/083957 A1 show measures to protect against contamination in an acoustic sensor.

Hier setzt die Erfindung an. Der Erfindung hat die Aufgabe zugrunde gelegen, die Maßnahmen gegen Lärmbelästigung im Straßenverkehr zu verbessern.This is where the invention comes in. The object of the invention was to improve the measures against noise pollution in road traffic.

Die nachfolgenden Definitionen und weiteren Ausführungen gelten für den gesamten Gegenstand der Erfindung.The following definitions and further explanations apply to the entire subject matter of the invention.

Die erfindungsgemäße Vorrichtung misst Lautstärken von Geräuschen eines Stra-βenfahrzeuges im Straßenverkehr. Die Vorrichtung löst die Aufgabe durch Systemeigenschaft aus der gezielten Abstimmung einzelner Komponenten der Vorrichtung aufeinander. Die Vorrichtung umfasst einen Akustiksensor. Ferner umfasst die Vorrichtung Schutzgitter zum Absichern der Vorrichtung gegen Eindringen von gröberen Fremdkörpern. Das Schutzgitter umfassend wenigstens eine Öffnung für einen Einlass von Luftschall in die Vorrichtung. Die Öffnung ist axial versetzt zu einer Axialachse der Vorrichtung angeordnet. Außerdem umfasst die Vorrichtung einen Strömungsbypass. Der Strömungsbypass verläuft zwischen dem Schutzgitter und dem Akustiksensor. Damit werden durch Luftströmungen in die Vorrichtung eingetretene Fluide und/oder Fremdkörper von dem Akustiksensor weg aus der Vorrichtung heraus geleitet. Des Weiteren umfasst die Vorrichtung einen parallel zur Axialachse angeordneten Schallkanal, an dessen einen in Luftströmungsrichtung ersten Ende das Schutzgitter angeordnet ist und an dessen zweitem Ende der Akustiksensor angeordnet ist. Durchmesser, Länge, Volumen, Formgebung und/oder Materialeigenschaften des Schallkanals sind angepasst, um Eigenmoden der Vorrichtung zu dämpfen. Außerdem umfasst die Vorrichtung eine Leiterplatte. Die Leiterplatte umfasst Bauelemente und deren Verbindungen zur Vorverarbeitung von analogen oder digitalen Signalen des Akustiksensors. Die Bauelemente sind ausgeführt zur analogen oder digitalen Signalverarbeitung und/oder zur Realisierung von Filterfunktionen, Funktionen zur Phasenumkehr, Kompressorfunktionen und/oder Verstärkerfunktionen. Ferner umfasst die Leiterplatte auf einer Seite der Leiterplatte den Akustiksensor. Beispielsweise ist der Akustiksensor auf der in Luftströmungsrichtung hinteren Seite der Leiterplatte angeordnet. In diesem Fall hat der Akustiksensor seine Schalleintrittsöffnung auf der Bauteilmontageseite der Leiterplatte und die Leiterplatte umfasst eine Leiterplattenöffnung für den Schalleintritt. Alternativ ist der Akustiksensor auf der in Luftströmungsrichtung vorderen Seite der Leiterplatte angeordnet. In diesem Fall hat der Akustiksensor seine Schalleintrittsöffnung auf der der Bauteilmontageseite der Leiterplatte gegenüberliegender Seite des Akustiksensors. Die Leiterplatte umfasst auch eine Recheneinheit. Die Recheneinheit ist ausgeführt, in Abhängigkeit von Signalen des Akustiksensors bei Erkennung einer Überschreitung einer Soll-Lautstärke ein Ansteuerungssignal für eine Erfassungseinheit zu erzeugen. Damit wird das Straßenfahrzeug zu erfasst. Ferner umfasst die Vorrichtung eine Schnittstelle, um das Ansteuerungssignal der Erfassungseinheit bereitzustellen.The device according to the invention measures the volume of noise from a road vehicle in traffic. The device solves the task through system properties from the specific matching of individual components of the device to one another. The device includes an acoustic sensor. Furthermore, the device includes protective grids to protect the device against the ingress of coarser foreign bodies. The protective grille comprises at least one opening for admitting airborne sound into the device. The opening is arranged axially offset to an axial axis of the device. In addition, the device includes a flow bypass. The flow bypass runs between the protective grille and the acoustic sensor. In this way, fluids and/or foreign bodies that have entered the device due to air currents are guided away from the acoustic sensor and out of the device. Furthermore, the device comprises a sound channel arranged parallel to the axial axis, at the first end of which, in the air flow direction, the protective grille is arranged and at the second end of which the acoustic sensor is arranged is. The diameter, length, volume, shape and/or material properties of the sound channel are adapted in order to dampen the device's natural modes. The device also includes a printed circuit board. The printed circuit board includes components and their connections for pre-processing analog or digital signals from the acoustic sensor. The components are designed for analog or digital signal processing and/or for implementing filter functions, phase reversal functions, compressor functions and/or amplifier functions. Furthermore, the printed circuit board includes the acoustic sensor on one side of the printed circuit board. For example, the acoustic sensor is arranged on the rear side of the printed circuit board in the air flow direction. In this case, the acoustic sensor has its sound entry opening on the component mounting side of the printed circuit board, and the printed circuit board includes a printed circuit board opening for the sound entry. Alternatively, the acoustic sensor is arranged on the front side of the printed circuit board in the air flow direction. In this case, the acoustic sensor has its sound entry opening on the side of the acoustic sensor opposite the component mounting side of the printed circuit board. The circuit board also includes a computing unit. The arithmetic unit is designed to generate a control signal for a detection unit as a function of signals from the acoustic sensor when it is detected that a target volume has been exceeded. The road vehicle is thus detected. Furthermore, the device includes an interface to provide the control signal of the detection unit.

Die Erfindung stellt eine Vorrichtung bereit, die die Lautstärke vorbeifahrender Stra-βenfahrzeuge erfasst und das Straßenfahrzeug bei Überschreitung eines Grenzwerts, ähnlich einer Geschwindigkeitsüberwachungsanlage, blitzen kann. Die Besonderheit der erfindungsgemäßen Vorrichtung ist die Funktionstüchtigkeit und Luftschallerfassung und dessen Wandlung unter schwierigen Umwelt- und Strömungsbedingungen, die im Straßenverkehr vorhanden sind. Diese Umgebungsbedingungen ergeben sich zusätzlich aus dem vorgesehenen Einsatz und/oder Installationsorten der Vorrichtung im Straßenverkehr, an denen relative Luftströmungen entstehen. Mittels der erfindungsgemäßen Vorrichtung ist Luftschall erfassbar und wandelbar in elektrische Signale in einem Temperaturbereich von -50°C bis +90°C, beispielsweise -30°C bis +70°C. Die erfindungsgemäße Vorrichtung zeichnet sich dadurch aus, dass die einzelnen Komponenten der Vorrichtung, beispielsweise der Akustiksensor, das Schutzgitter, die Öffnung für den Luftschalleinlass, das heißt die Schalleintrittsöffnung, der Strömungsbypass und der Schallkanal, unter Berücksichtigung von Luft- und/oder Körperschall, Aeroakustik, Strömungs- und Fluiddynamik, Elektronik und Mechanik aufeinander abgestimmt sind. Die erfindungsgemäße Vorrichtung stellt einen Wetterschutz für den Akustiksensor der Vorrichtung bereit. Damit können Geräusche im Straßenverkehr unter ungünstigen Wetterbedingungen, beispielsweise bei Niederschlag, gemessen werden. Mit der erfindungsgemäßen Vorrichtung werden mittels des Akustiksensors Geräuschmessungen einzelner Straßenfahrzeuge durchgeführt. Wird bei einer derartigen Messung eine Soll-Lautstärke überschritten, steuert die Vorrichtung eine Erfassungseinheit an, um das jeweilige Straßenfahrzeug zu erfassen, zum Beispiel zu fotografieren, vergleichbar mit einer Geschwindigkeitsmessanlage. Damit sind Tempolimits prinzipiell vermeidbar.The invention provides a device that detects the volume of passing road vehicles and the road vehicle can flash when a limit value is exceeded, similar to a speed monitoring system. The special feature of the device according to the invention is the functionality and airborne sound detection and its conversion under difficult environmental and flow conditions that exist in road traffic. These environmental conditions also result from the intended use and/or installation locations of the device in road traffic, where relative air currents arise. Using the device according to the invention, airborne noise can be detected and converted into electrical signals in a temperature range from -50°C to +90°C, for example -30°C to +70°C. The device according to the invention is characterized in that the individual components of the device, for example the acoustic sensor, Protective grille, the opening for the airborne sound inlet, i.e. the sound inlet opening, the flow bypass and the sound channel, are coordinated with one another, taking airborne and/or structure-borne noise, aeroacoustics, flow and fluid dynamics, electronics and mechanics into account. The device according to the invention provides weather protection for the acoustic sensor of the device. This allows noise in road traffic to be measured under unfavorable weather conditions, such as precipitation. With the device according to the invention, noise measurements of individual road vehicles are carried out by means of the acoustic sensor. If a target volume is exceeded during such a measurement, the device controls a detection unit in order to detect the respective road vehicle, for example to photograph it, comparable to a speed measuring system. In principle, speed limits can therefore be avoided.

Straßenfahrzeuge sind beispielsweise Personenkraftwagen, Nutzkraftwagen oder Traktoren. Straßenfahrzeuge sind motorbetrieben, beispielsweise mittels Verbrennungsmotoren, elektrischen Motoren oder hybridelektrisch betrieben. Abhängig von einer Geschwindigkeit entstehen durch den Motor, Haftreibung zwischen Reifen und Straßenbelag sowie durch Strömungswiderstand des Straßenfahrzeuges Geräusche. Beispielsweise stellt das vorsätzliche Anfahren mit quietschenden Reifen eine Lärmbelästigung dar. Die Lautstärke dieser Geräusche ist die Amplitude, Schalldruck oder Schalldruckpegel des Luftschalls, der von diesen Geräuschen ausgeht. Beispielsweise ist ein Grenzwert von 80 Dezibel eine Soll-Lautstärke.Road vehicles are, for example, passenger cars, commercial vehicles or tractors. Road vehicles are motor-driven, for example by means of internal combustion engines, electric motors or hybrid-electric. Depending on the speed, noise is caused by the engine, static friction between the tires and the road surface and the flow resistance of the road vehicle. For example, intentionally starting off with squealing tires constitutes noise pollution. The loudness of these noises is the amplitude, sound pressure or sound pressure level of the airborne noise emanating from these noises. For example, a threshold of 80 decibels is a target volume.

Die Vorrichtung stellt ein Gehäuse für den Akustiksensor dar. Der Begriff Akustiksensor bezeichnet sowohl den Akustiksensor als Komponente der Vorrichtung als auch die gesamte Vorrichtung.The device represents a housing for the acoustic sensor. The term acoustic sensor designates both the acoustic sensor as a component of the device and the entire device.

Ein Akustiksensor ist ein Sensor, der mechanische Schwingungen, beispielsweise verursacht durch Luftschallwellen, erfasst und in ein prozessierbares Signal, beispielsweise ein elektrisches Signal wie etwa eine elektrische Spannung, umformt. Das Signal, das der Akustiksensor ausgibt, korrespondiert zu der Lautstärke der Geräusche. Der Akustiksensor umfasst einen analogen und/oder digitalen Signalausgang. Die Umformung erfolgt in zwei Stufen. In einer ersten akustisch-mechanischen Umformungsstufe wird der Luftschall nach einem bestimmten Empfangsprinzip in die Bewegung eines Objektes umgeformt. In der zweiten mechanisch-elektrischen Umformungsstufe wird die Bewegung des Objektes nach einem bestimmten Wandlerprinzip in das elektrische Signal umgeformt. Beispiele für Akustiksensoren sind eine Anordnung eines Magneten und einer elektrischen Spule, Mikrofone, Beschleunigungsaufnehmer, Piezogeber oder Dehnungsmessstreifen. Ein mikro-elektromechanisches System, abgekürzt MEMS, umfassend eine Anordnung von Halbleiterelementen, die Schwingungen aufnehmen, ist auch als Akustiksensor einsetzbar.An acoustic sensor is a sensor that detects mechanical vibrations, for example caused by airborne sound waves, and converts them into a processable signal, for example an electrical signal such as an electrical voltage. The signal emitted by the acoustic sensor corresponds to the volume of the noise. The acoustic sensor includes an analog and/or digital signal output. The transformation takes place in two stages. In a first acoustic-mechanical In the transformation stage, the airborne sound is transformed into the movement of an object according to a specific reception principle. In the second mechanical-electrical conversion stage, the movement of the object is converted into an electrical signal according to a specific converter principle. Examples of acoustic sensors are an arrangement of a magnet and an electric coil, microphones, accelerometers, piezo sensors or strain gauges. A micro-electromechanical system, MEMS for short, comprising an arrangement of semiconductor elements that absorb vibrations, can also be used as an acoustic sensor.

Das Schutzgitter ist ein Gitter mit mechanischer Schutzfunktion. Das Schutzgitter ist so konstruiert, dass gröbere Fremdkörper, das heißt Partikel mit Durchmessern von wenigstens 2 mm, beispielsweise Schmutzpartikel wie etwa Schlammpartikel, Staubpartikel, Rußpartikel, Salzkörner, Steine, Insekten, oder andere Partikel, die in der Luft enthalten sind, nicht in die Vorrichtung eindringen können.The protective grille is a grille with a mechanical protective function. The protective grille is constructed in such a way that coarser foreign bodies, i.e. particles with a diameter of at least 2 mm, for example dirt particles such as mud particles, dust particles, soot particles, grains of salt, stones, insects or other particles contained in the air, do not get into the Device can penetrate.

Die Öffnung für den Lufteinlass ist in dem Schutzgitter derart positioniert, dass in axialer Sensorrichtung kein direkter Strahl und/oder Partikelstrom auf die erste Membran einwirkt. Damit ist durch die Anordnung und/oder Geometrie der Öffnung die erste Membran mechanisch geschützt. Nach einem Aspekt der Erfindung sind die Öffnung oder die Öffnungen im Wesentlichen 2 mm breit und im Wesentlichen 5mm lang.The opening for the air inlet is positioned in the protective grille in such a way that no direct jet and/or particle stream acts on the first membrane in the axial direction of the sensor. The first membrane is thus mechanically protected by the arrangement and/or geometry of the opening. According to one aspect of the invention, the aperture or apertures are substantially 2mm wide and substantially 5mm long.

Der Strömungsbypass sorgt dafür, dass durch den Lufteinlass eingetretene Fluide, beispielsweise Wasser, Luft, und kleine Partikel, wie etwa Schmutz und/oder Staub, sich nicht an der akustisch permeablen Membran agglomerieren, sondern durch eine Öffnungen am Ausgang des Strömungsbypasses für einen Luftauslass wieder aus der Vorrichtung heraus befördert werden. In diesem Sinne ist der Strömungsbypass ein selbstreinigender Strömungsbypass. Der Strömungsbypass ist akustisch, strömungsakustisch und strömungsdynamisch ausgelegt, so dass die durch die Durchströmung generierte aeroakustische Schallentstehung gemindert wird und die wirkenden strömungsdynamischen Kräfte die nachfolgende Komponenten der Vorrichtung nicht negativ beeinflussen, beispielsweise schädigen oder degradieren.The flow bypass ensures that fluids that have entered through the air inlet, for example water, air, and small particles, such as dirt and/or dust, do not agglomerate on the acoustically permeable membrane, but rather through an opening at the outlet of the flow bypass for an air outlet again be transported out of the device. In this sense, the flow bypass is a self-cleaning flow bypass. The flow bypass is designed acoustically, flow-acoustically and flow-dynamically, so that the generation of aeroacoustic noise generated by the flow is reduced and the acting flow-dynamic forces do not negatively influence, for example damage or degrade, the subsequent components of the device.

Der Schallkanal dient der gezielten Schallführung der Luftschallwellen hin zu dem Akustiksensor. Der Schallkanal ist akustisch speziell dimensioniert, so dass sich möglichst keine oder nur wenige und schwache Eigenmoden im nutzbaren Frequenzbereich des Akustiksensors ausbilden. Diese gezielte Dimensionierung basiert im Wesentlichen auf geometrischen Größen, wie zum Beispiel Durchmesser, Länge, Volumen und Formgebung.The sound channel is used for the targeted sound guidance of the airborne sound waves to the acoustic sensor. The sound channel is acoustically specially dimensioned so that if possible no or only few and weak natural modes are formed in the usable frequency range of the acoustic sensor. This targeted dimensioning is essentially based on geometric parameters such as diameter, length, volume and shape.

Die Leiterplatte wird auch Platine oder printed circuit board genannt. Die Bauteile der Leiterplatte umfassen beispielsweise Logikbausteine wie etwa ASICS oder FPGAs. Beispielsweise realisiert ein Bauteil einen Hochpassfilter, der Luftschallwellen mit Frequenzen größer als 300 Hz passieren lässt. Mittels Kompressorfunktionen wird ein Dynamikumfang eines Signals eingeschränkt. Die Bauteile sind beispielsweise direkt auf der Oberfläche der Leiterplatte montiert, beispielsweise gelötet, und werden auch surface mounted devices, abgekürzt SMD, genannt. Die Leiterplattenöffnung entspricht einem Loch oder einer Durchgangsbohrung auf der Leiterplatte für einen Eintritt des Luftschalls in den Akustiksensor, der auf der in Luftströmungsrichtung hinteren Seite der Leiterplatte angeordnet ist. Die in Luftströmungsrichtung hintere Seite der Leiterplatte ist die Oberfläche der Leiterplatte, auf der die Bauteile und der Akustiksensor angeordnet sind.The printed circuit board is also called a board or printed circuit board. The components of the printed circuit board include, for example, logic modules such as ASICS or FPGAs. For example, one component implements a high-pass filter that allows airborne sound waves with frequencies greater than 300 Hz to pass. The dynamic range of a signal is limited by means of compressor functions. The components are, for example, mounted directly on the surface of the printed circuit board, for example soldered, and are also called surface mounted devices, or SMD for short. The circuit board opening corresponds to a hole or a through hole on the circuit board for entry of the airborne sound into the acoustic sensor, which is arranged on the rear side of the circuit board in the air flow direction. The rear side of the circuit board in the air flow direction is the surface of the circuit board on which the components and the acoustic sensor are arranged.

Eine Recheneinheit erhält Eingangswerte, berechnet aus diesen Eingangswerten nach einem bestimmten Prozess Ausgangswerte und gibt die Ausgangswerte aus. Beispielsweise ist eine Recheneinheit durch eine elektronische Schaltungseinheit realisiert. Logikbausteine, ASICs, FGPAs, CPUs und GPUs sind Recheneinheiten. Die Recheneinheit ist auf der Leiterplatte integriert, beispielsweise als ein surface mounted device, kurz SMD.A computing unit receives input values, calculates output values from these input values according to a specific process, and outputs the output values. For example, a computing unit is implemented by an electronic circuit unit. Logic components, ASICs, FGPAs, CPUs and GPUs are computing units. The processing unit is integrated on the printed circuit board, for example as a surface mounted device, or SMD for short.

Eine Erfassungseinheit ist beispielsweise ein optisches, bildgebendes System, das ein Foto des Straßenfahrzeuges generiert. Damit wird das Straßenfahrzeug, von dem die Soll-Lautstärke überschritten wird, das heißt von dem eine Lärmbelästigung ausgeht, identifiziert. Damit können dröhnende Straßenfahrzeuge von der Polizei aus dem Verkehr gezogen werden und im Falle einer Überschreitung der Soll-Lautstärke Strafen verhängt werden. Damit kann für Betroffene, die der Lärmbelästigung ausgesetzt sind, das Risiko von Herzkrankheiten und/oder Diabetes vermindert werden.A detection unit is, for example, an optical imaging system that generates a photo of the road vehicle. This identifies the road vehicle from which the target volume is exceeded, ie from which a noise nuisance emanates. This allows the police to stop roaring road vehicles and in the event that the target volume is exceeded penalties are imposed. This can reduce the risk of heart disease and/or diabetes for those affected who are exposed to noise pollution.

Die Schnittstelle ist kabelgebunden oder kabellos. Insbesondere ist die Schnittstelle für eine Signalübertragung mittels Funktechnologie ausgeführt.The interface is wired or wireless. In particular, the interface is designed for signal transmission using radio technology.

Nach einem Aspekt der Erfindung ist die Vorrichtung mit einer Geschwindigkeitsüberwachungsanlage gekoppelt. Das heißt, die Erfassungseinheit ist eine Kamera der Geschwindigkeitsüberwachungsanlage und die Schnittstelle ist eine Schnittstelle zu der Geschwindigkeitsüberwachungsanlage. Die Geschwindigkeitsüberwachungsanlage ist eine stationäre Anlage oder eine mobile Anlage, zum Beispiel montiert auf einem Anhänger.According to one aspect of the invention, the device is coupled to a speed enforcement system. This means that the detection unit is a camera of the speed surveillance system and the interface is an interface to the speed surveillance system. The speed enforcement system is a stationary system or a mobile system, for example mounted on a trailer.

Nach einem weiteren Aspekt der Erfindung umfasst der Akustiksensor ein Mikrofon. Das Mikrofon umfasst eine Mikrofonkapsel und einen Wandler. In der Mikrofonkapsel erfolgt die akustisch-mechanische Umformung. Die Mikrofonkapsel umfasst beispielsweise eine Membran, die durch Luftschall zu Schwingungen angeregt wird. In dem Wandler erfolgt die mechanisch-elektrische Umwandlung. Der Wandler ist beispielsweise ein elektrodynamischer Wandler, wie etwa bei einem Tauchspulenmikrofon, oder ein elektrostatischer Wandler, wie etwa bei einem Kondensatormikrofon.According to a further aspect of the invention, the acoustic sensor includes a microphone. The microphone includes a microphone capsule and a transducer. The acoustic-mechanical conversion takes place in the microphone capsule. The microphone capsule includes, for example, a membrane that is excited to vibrate by airborne noise. The mechanical-electrical conversion takes place in the converter. The transducer is, for example, an electrodynamic transducer, such as in a voice coil microphone, or an electrostatic transducer, such as in a condenser microphone.

Nach einem weiteren Aspekt der Erfindung ist der Akustiksensor als ein MEMS-Mikrofon realisiert. MEMS-Mikrofone sind miniaturisierte Mikrofone, die beispielsweise in SMD-Technik ausgeführt sind zum direkten Einsatz auf der Leiterplatte. MEMS-Mikrofone besitzen kleine Abmessungen und sind einfach industriell zu verarbeiten, beispielsweise können MEMS-Mikrofone in einem Reflow-Lötprozess bestückt werden. Im Vergleich zu anderen Mikrofonen sind MEMS-Mikrofone unempfindlicher gegenüber hohen Temperaturen und damit für automobile Anwendungen besonders gut geeignet. Alternativ ist der Akustiksensor ein Elektret-Kondensatormikrofon.According to a further aspect of the invention, the acoustic sensor is implemented as a MEMS microphone. MEMS microphones are miniaturized microphones that are designed, for example, in SMD technology for direct use on the printed circuit board. MEMS microphones have small dimensions and are easy to process industrially, for example MEMS microphones can be assembled in a reflow soldering process. Compared to other microphones, MEMS microphones are less sensitive to high temperatures and are therefore particularly well suited for automotive applications. Alternatively, the acoustic sensor is an electret condenser microphone.

Nach einem weiteren Aspekt der Erfindung umfasst die Vorrichtung eine akustisch permeable, hydrophobe und/oder lipophobe erste Membran. Die erste Membran ist in Luftströmungsrichtung hinter dem Schutzgitter an dem ersten Ende des Schallkanals angeordnet. Der Strömungsbypass verläuft zwischen dem Schutzgitter und der ersten Membran.According to a further aspect of the invention, the device comprises an acoustically permeable, hydrophobic and/or lipophobic first membrane. The first membrane is downstream of the protective grille at the first end of the sound duct arranged. The flow bypass runs between the protective grid and the first membrane.

Die erste Membran ist permeabel für Luftschallwellen. Durch das hydrophobe und/oder lipophobe Verhalten ist der Schallkanal gegen Immission durch beispielsweise Feuchtigkeit und Partikeln geschützt. Die erste Membran ist nach einem weiteren Aspekt der Erfindung eine mikroporöse Membran. Mikroporös ist beispielsweise eine Membran mit 1,3 × 109 Poren/cm2. Eine derartige Membran ist besonders wasserdicht und ermöglicht einen Schutz wenigstens nach IPX4K. Nach einem Aspekt der Erfindung ist die erste Membran ausgeführt, einen Schutz nach IP69K zu ermöglichen. Die Ziffer 6 in IP69K bedeutet völlige Dichtheit und damit den Schutz gegen Eindringen von Festkörpern und Staub. 9K bezeichnet den Schutz gegen Eindringen von Wasser bei Hochdruck-oder Dampfstrahlreinigung. Dies ist besonders vorteilhaft für einen Schutz in automobilen Anwendungen.The first membrane is permeable to airborne sound waves. Due to the hydrophobic and/or lipophobic behavior, the sound channel is protected against emissions from moisture and particles, for example. According to a further aspect of the invention, the first membrane is a microporous membrane. For example, a membrane with 1.3×10 9 pores/cm 2 is microporous. Such a membrane is particularly waterproof and allows protection at least according to IPX4K. According to one aspect of the invention, the first membrane is designed to enable protection according to IP69K. The number 6 in IP69K means complete tightness and thus protection against the ingress of solid objects and dust. 9K designates protection against the ingress of water during high-pressure or steam jet cleaning. This is particularly advantageous for protection in automotive applications.

Die Schutzart gibt die Eignung von Bauteilen für verschiedene Umgebungsbedingungen an. Die geschützten Systeme werden in entsprechende Schutzarten, sogenannte International Protection, abgekürzt IP-Codes, eingeteilt. Die Norm ISO 20653:2013 Straßenfahrzeuge - Schutzarten (IP-Code) - Schutz gegen fremde Objekte, Wasser und Kontakt - Elektrische Ausrüstungen beschreibt den Stand für Stra-βenfahrzeuge. IPX6K bietet Schutz gegen starkes Strahlwasser unter erhöhtem Druck, spezifisch für Straßenfahrzeuge.The degree of protection indicates the suitability of components for different environmental conditions. The protected systems are divided into corresponding types of protection, so-called International Protection, abbreviated IP codes. The ISO 20653:2013 standard Road vehicles - Degrees of protection (IP code) - Protection against foreign objects, water and contact - Electrical equipment describes the status for road vehicles. IPX6K provides protection against powerful jets of water under increased pressure, specific to road vehicles.

Nach einem weiteren Aspekt der Erfindung sind eine Formgebung und/oder Materialeigenschaften des Schutzgitters angepasst, um die erste Membran, den Schallkanal und/oder den Akustiksensor gegen strömungsdynamische und/oder statische Kräfte, die beispielsweise durch Fahrtwind oder Wetter entstehen, zu schützen. Das Schutzgitter und die Öffnungen des Schutzgitters sind beispielsweise rotationssymmetrisch ausgeführt. Das Schutzgitter ist beispielsweise aus einem Kunststoff gefertigt und ist derart geformt, das heißt besitzt eine derartige Geometrie, um einen Schutzumfang von wenigstens IPX6K zu bieten. Damit wird eine mechanische Schutzwirkung der Vorrichtung erzielt und der Akustiksensor gegen derartige Einwirkungen geschützt.According to a further aspect of the invention, the shape and/or material properties of the protective grille are adapted in order to protect the first membrane, the sound channel and/or the acoustic sensor against flow-dynamic and/or static forces that arise, for example, from the relative wind or weather. The protective grille and the openings of the protective grille are designed to be rotationally symmetrical, for example. The protective grille is made of plastic, for example, and is shaped in such a way, ie has such a geometry, as to offer a degree of protection of at least IPX6K. A mechanical protective effect of the device is thus achieved and the acoustic sensor is protected against such influences.

Beispielsweise umfasst das Schutzgitter ein offenporiges Material, beispielsweise ein Schaummaterial wie etwa ein offenporiges Polyurethanschaummaterial. Durch skalierbare Größe von Poren in dem Material kann eine Wind- und/oder Wasserabsorption eingestellt werden. Schaummaterialien zeichnen sich durch eine sehr niedrige Dichte und einfache Ver- und Bearbeitung aus. Schaumstoffe lassen sich besonders einfach aus Polyurethan herstellen. Offenporiger Polyurethanschaum wird auch Filterschaum genannt. Filterschaum eignet sich besonders gut für Windabsorption. Filterschaum wird nach Porengröße/Porenanzahl klassifiziert. Als Einheit dient die Anzahl von Poren pro Inch, abgekürzt PPI. Beispielsweise umfasst das Schutzgitter einen Filterschaum im Bereich 10 bis 80 PPI.For example, the protective screen comprises an open-cell material, for example a foam material such as an open-cell polyurethane foam material. Wind and/or water absorption can be adjusted by scalable size of pores in the material. Foam materials are characterized by a very low density and easy processing and processing. Foams are particularly easy to produce from polyurethane. Open-pored polyurethane foam is also called filter foam. Filter foam is particularly good for wind absorption. Filter foam is classified according to pore size/number of pores. The unit used is the number of pores per inch, abbreviated PPI. For example, the protective grille includes a filter foam in the range of 10 to 80 PPI.

Das Schutzgitter ist nach einem weiteren Aspekt der Erfindung ein auswechselbares Schutzgitter, um bei gröberer Verschmutzung ersetzt zu werden, ohne die komplette Vorrichtung ersetzen zu müssen.According to a further aspect of the invention, the protective grille is an exchangeable protective grille in order to be replaced in the event of coarse soiling without having to replace the entire device.

Nach einem weiteren Aspekt der Erfindung sind eine Formgebung und/oder Materialeigenschaften des Strömungsbypasses angepasst, um die durch die Luftströmung durch den Strömungsbypass erzeugte aeroakustische Schallentstehung zu dämpfen und/oder die erste Membran gegen strömungsdynamische und/oder statische Kräfte zu schützen. Beispielsweise ist der Strömungsbypass derart geformt, dass in dem Strömungsbypass möglichst keine Kanten oder ähnliche Formen vorhanden sind, an denen Strömungsabrisse und/oder Strömungsverwirbelungen auftreten können. Strömungsabrisse und/oder Strömungsverwirbelungen generieren aeroakustische Schallentstehung. Strömungsabrisse und/oder Strömungsverwirbelungen generieren aeroakustische Schallentstehung. Durch gezielte Formgebung wird die Anfälligkeit für Strömungsabrisse und/oder Strömungsverwirbelungen stark gemindert und damit eine aeroakustische Schallentstehung ebenso. Dies ist insbesondere bei relativen Luftströmungen, beispielsweise während Bewegung der Vorrichtung bei Fahrt mit einem Straßenfahrzeug, vorteilhaft.According to a further aspect of the invention, the shape and/or material properties of the flow bypass are adapted in order to dampen the aeroacoustic noise generated by the air flow through the flow bypass and/or to protect the first membrane against flow-dynamic and/or static forces. For example, the flow bypass is shaped in such a way that there are as few edges or similar shapes in the flow bypass as possible where flow separation and/or flow turbulence can occur. Flow stalls and/or flow turbulence generate aeroacoustic noise. Flow stalls and/or flow turbulence generate aeroacoustic noise. Targeted shaping greatly reduces the susceptibility to stalls and/or flow turbulence and thus aeroacoustic noise generation as well. This is particularly advantageous in the case of relative air flows, for example during movement of the device when driving a road vehicle.

Nach einem weiteren Aspekt der Erfindung ist der Schallkanal an einem seiner beiden Enden offen und an dem anderen Ende mit einem Abschlusselement mit einem Reflexionsfaktor abgeschlossen. Offen bedeutet offen für einen Schalleintritt. In diesem Sinne ist der Schallkanal, an dessen Schalleintrittsöffnung eine akustisch permeable Membran angeordnet ist, an dieser Öffnung offen. In Abhängigkeit des Reflexionsfaktors ist eine Strömungsresistenz des Schallkanals einstellbar. Das Abschlusselement ist der Akustiksensor, beispielsweise das Mikrofon, oder die Leiterplatte.According to a further aspect of the invention, the sound channel is open at one of its two ends and at the other end with a closing element with a Reflection factor complete. Open means open to sound entry. In this sense, the sound channel, at the sound entry opening of which an acoustically permeable membrane is arranged, is open at this opening. Depending on the reflection factor, the flow resistance of the sound channel can be adjusted. The final element is the acoustic sensor, for example the microphone, or the printed circuit board.

Nach einem weiteren Aspekt der Erfindung besitzt der Schallkanal im Wesentlichen die Form eines Kegelstumpfes oder eines Hornteils und die erste Membran ist an dem ersten Ende des Schallkanals mit einer größeren ersten Fläche und der Akustiksensor an dem zweiten Ende des Schallkanals mit einer kleineren zweiten Fläche angeordnet. Ein Hornteil wie zum Beispiel in Fig.1 der DE 38 43 033 C2 offenbart ist ein robustes System zur hochempfindlichen Detektion von Luftschallwellen. Ein Schallkanal in Form eines Hornteils koppelt den Empfänger akustisch besonders gut an das Schallfeld an, so dass möglichst viel der extern eintretenden Schallenergie am Empfänger ankommt. Damit wird eine minimale akustische Dämpfung des Schallenergieflusses realisiert.According to a further aspect of the invention, the sound channel essentially has the shape of a truncated cone or a horn part and the first membrane is arranged at the first end of the sound channel with a larger first area and the acoustic sensor is arranged at the second end of the sound channel with a smaller second area. A horn part such as in Fig.1 the DE 38 43 033 C2 a robust system for the highly sensitive detection of airborne sound waves is disclosed. A sound channel in the form of a horn section acoustically couples the receiver particularly well to the sound field, so that as much of the external sound energy as possible arrives at the receiver. This achieves minimal acoustic damping of the flow of sound energy.

Nach einem weiteren Aspekt der Erfindung sind der Schallkanal und der Strömungsbypass durch ein Anströmbauteil realisiert. Das Anströmbauteil umfasst eine Ausbuchtung. Die Ausbuchtung umfasst einen in Axialachse durchgehenden Hohlraum, durch den der Schallkanal realisiert ist. Das Anströmbauteil ist mit dem Schutzgitter derart zusammengeführt, dass der Strömungsbypass durch einen Freiraum zwischen dem Anströmbauteil und dem Schutzgitter realisiert ist. Das Anströmbauteil und dessen Ausbuchtung sind derart geformt, dass die durch die Luftströmung durch den Strömungsbypass erzeugte aeroakustische Schallentstehung gedämpft wird. Beispielsweise umfassen das Anströmbauteil und dessen Ausbuchtung keine Strömungsabrisskanten im Strömungsbypass.According to a further aspect of the invention, the sound channel and the flow bypass are implemented by an inflow component. The inflow component includes a bulge. The bulge includes a hollow space that runs through the axial axis and through which the sound channel is realized. The inflow component is brought together with the protective grille in such a way that the flow bypass is realized by a free space between the inflow component and the protective grille. The inflow component and its bulge are shaped in such a way that the aeroacoustic noise generated by the air flow through the flow bypass is dampened. For example, the inflow component and its bulge do not include any flow separation edges in the flow bypass.

Nach einem weiteren Aspekt der Erfindung umfasst die Vorrichtung ein Gehäuse, in dem die Leiterplatte angeordnet ist. Das Gehäuse schützt die Leiterplatte und deren Bauteile vor mechanischen und/oder thermischen Einflüssen. Das Gehäuse umfasst Befestigungsmittel, beispielsweise Schrauben, um das Gehäuse und die Vorrichtung an einem Objekt einer Verkehrsinfrastruktur, beispielsweise einem Amplemast, einer Leitplanke oder einer Geschwindigkeitsüberprüfungsanlage, zu befestigen.According to a further aspect of the invention, the device comprises a housing in which the printed circuit board is arranged. The housing protects the printed circuit board and its components from mechanical and/or thermal influences. The housing includes fasteners, such as screws, around the housing and the device to be attached to an object of a traffic infrastructure, for example a traffic light mast, a crash barrier or a speed enforcement system.

Nach einem weiteren Aspekt der Erfindung ist die Leiterplatte senkrecht oder parallel zu der Axialachse der Vorrichtung angeordnet. Bei der parallelen Anordnung der Leiterplatte ist das zweite Ende des Schallkanals in radialer Verlängerung einer Mantelfläche des Schallkanals angeordnet. Bei senkrechter Anordnung der Leiterplatte ist der Akustiksensor, beispielsweise das Mikrofon und/oder die Mikrofonkapsel, parallel zu der Axialachse der Vorrichtung an den Schallkanal angekoppelt. Bei paralleler Anordnung der Leiterplatte ist der Akustiksensor senkrecht zu der Axialachse der Vorrichtung, das heißt tangential, an den Schallkanal angekoppelt. Mit der parallelen Anordnung werden besonders gute Signale des Akustiksensors erhalten.According to a further aspect of the invention, the printed circuit board is arranged perpendicularly or parallel to the axial axis of the device. With the parallel arrangement of the printed circuit board, the second end of the sound channel is arranged in the radial extension of a lateral surface of the sound channel. When the printed circuit board is arranged vertically, the acoustic sensor, for example the microphone and/or the microphone capsule, is coupled to the sound channel parallel to the axial axis of the device. If the printed circuit board is arranged in parallel, the acoustic sensor is coupled to the sound channel perpendicular to the axial axis of the device, that is to say tangentially. Particularly good signals from the acoustic sensor are obtained with the parallel arrangement.

Nach einem weiteren Aspekt der Erfindung umfasst die Vorrichtung ein elastisches Dichtungsbauteil zur Ankopplung des Akustiksensors an den Schallkanal und/oder an die Leiterplatte. Das Dichtungsbauteil gleicht geometrische Toleranzen beim Zusammenbau der Vorrichtung aus. Die Elastizität sorgt für eine definierte Entkopplung des Akustiksensors, unter anderem der Mikrofonkapsel, von Körperschall. Ferner sorgt die Elastizität für eine akustisch geschlossene Verbindung des Schallkanals zur Mikrofonkapsel.According to a further aspect of the invention, the device comprises an elastic sealing component for coupling the acoustic sensor to the sound channel and/or to the printed circuit board. The sealing component compensates for geometric tolerances when assembling the device. The elasticity ensures a defined decoupling of the acoustic sensor, including the microphone capsule, from structure-borne noise. Furthermore, the elasticity ensures an acoustically closed connection between the sound channel and the microphone capsule.

Nach einem weiteren Aspekt der Erfindung umfasst die Vorrichtung ein Entkopplungsbauteil zur Schwingungsdämpfung und/oder zur Körperschallentkopplung. Das Entkopplungsbauteil ist an einer Kopplungsstelle zwischen der Vorrichtung und einem Bauteil, in das die Vorrichtung einbaubar und/oder von diesem die Vorrichtung mechanisch haltbar ist, angeordnet. Das Entkopplungsbauteil ist aus einem Zweikomponenten-Werkstoff, der einen akustisch und/oder schwingungstechnisch wirkenden Impedanzsprung erzeugt, gefertigt. Der Zweikomponenten-Werkstoff umfasst einen relativ weichen Werkstoff mit relativ kleiner Impedanz und einen relativ harten Werkstoff mit relativ großer Impedanz. Der weiche Werkstoff ist in Luftströmungsrichtung vor dem harten Werkstoff angeordnet. Der Impedanzsprung ist über die gesamte Anlagefläche des Schutzgitters und des Entkopplungsbauteils durchgeführt. Das Entkopplungsbauteil ist beispielsweise ein Formteil. Beispielsweise sind das Schutzgitter und das Entkopplungsbauteil aus einem Spritzgussteil gebildet. Nach einem weiteren Aspekt der Erfindung ist das Entkopplungsbauteil aus vibrationsdämpfenden Materialien unterschiedlicher Dichte gefertigt, beispielsweise aus gemischtzelligen Polyurethan-Schaumstoffen. Das Entkopplungsbauteil besitzt beispielsweise eine hohe mechanische Belastbarkeit und/oder gute Dämmeigenschaften. Mittels des Entkopplungsbauteils ist die Vorrichtung unempfindlich gegen Erschütterungen haltbar.According to a further aspect of the invention, the device comprises a decoupling component for damping vibrations and/or for decoupling structure-borne noise. The decoupling component is arranged at a coupling point between the device and a component in which the device can be installed and/or by which the device can be mechanically held. The decoupling component is made of a two-component material that produces an impedance jump that has an acoustic and/or vibration-related effect. The two-component material includes a relatively soft, relatively low impedance material and a relatively hard, relatively high impedance material. The soft material is arranged in front of the hard material in the air flow direction. The impedance jump is carried out over the entire contact surface of the protective grid and the decoupling component. The decoupling component is a molded part, for example. For example, the protective grille and the decoupling component is formed from an injection molded part. According to a further aspect of the invention, the decoupling component is made from vibration-damping materials of different densities, for example from mixed-cell polyurethane foams. The decoupling component has, for example, high mechanical strength and/or good insulating properties. The device can be kept insensitive to vibrations by means of the decoupling component.

Nach einem weiteren Aspekt der Erfindung umfasst die Vorrichtung eine zweite Membran zur Entlüftung der Vorrichtung. Die zweite Membran stellt einen statischen Druckausgleich für die Vorrichtung bereit. Durch die zweite Membran wird der anteilige statische Druck ausgeglichen. Ferner verhindert die zweite Membran eine Kondensatbildung in der Vorrichtung.According to a further aspect of the invention, the device comprises a second membrane for venting the device. The second membrane provides static pressure balancing for the device. The proportional static pressure is compensated by the second membrane. Furthermore, the second membrane prevents the formation of condensate in the device.

Erfindungsgemäß ist die Vorrichtung als ein Nachrüstbauteil an Objekte der Verkehrsinfrastruktur nachrüstbar.According to the invention, the device can be retrofitted to objects in the traffic infrastructure as a retrofit component.

Nach einem weiteren Aspekt der Erfindung ist die Recheneinheit ausgeführt, einen künstlich intelligenten Algorithmus zu prozessieren. Der künstlich intelligente Algorithmus ist trainiert, in Abhängigkeit der Signale des Akustiksensors die Straßenfahrzeuge zu klassifizieren Die Soll-Lautstäke ist abhängig von dem klassifizierten Straßenfahrzeug. Der künstlich intelligente Algorithmus ist beispielsweise ein auf Klassifikation von Geräuschen von Straßenfahrzeugen trainiertes künstliches neuronales Netzwerk. Mittels des künstlich intelligenten Algorithmus erkennt die Vorrichtung, von welchem Typ von Straßenfahrzeug eine Lärmbelästigung ausgeht. Damit werden beispielsweise Geräusche und von diesen Geräuschen ausgehende Lärmbelästigungen von Traktoren oder Lastkraftwagen, die in der Regel lauter als Personenkraftwagen sind, von Geräuschen und von diesen Geräuschen ausgehende Lärmbelästigungen von Personenkraftwagen unterscheidbar. Damit erkennt die Vorrichtung, von welchem Typ Straßenfahrzeug F eine Lärmbelästigung ausgeht.According to a further aspect of the invention, the computing unit is designed to process an artificially intelligent algorithm. The artificially intelligent algorithm is trained to classify the road vehicles depending on the signals from the acoustic sensor. The target volume depends on the road vehicle classified. The artificially intelligent algorithm is, for example, an artificial neural network trained to classify noise from road vehicles. Using the artificially intelligent algorithm, the device recognizes which type of road vehicle is causing the noise pollution. This makes it possible to distinguish, for example, noise and noise pollution from tractors or trucks, which are usually louder than cars, from noise and noise pollution from cars. The device thus recognizes which type of road vehicle F is causing the noise pollution.

Das erfindungsgemäße System misst Lautstärken von Geräuschen eines Straßenfahrzeuges im Straßenverkehr. Das System umfasst eine erfindungsgemäße Vorrichtung und eine mit der Vorrichtung in Wirkverbindung stehende Erfassungseinheit. Die Erfassungseinheit ist in Fahrtrichtung des Straßenfahrzeuges hinter der Vorrichtung angeordnet. Die Erfassungseinheit erfasst in Abhängigkeit eines Ansteuerungssignals der Vorrichtung das Straßenfahrzeug. Misst beispielsweise die Vorrichtung, dass Geräusche, die von dem Straßenfahrzeug ausgehen, eine Soll-Lautstärke überschreiten, wird die Erfassungseinheit, die beispielsweise einige Meter hinter der Vorrichtung angeordnet ist, angesteuert und fotografiert das Straßenfahrzeug. Die Vorrichtung triggert die Erfassungseinheit vergleichbar einer Lichtschranke einer Geschwindigkeitsüberwachungsanlage.The system according to the invention measures the volume of noise from a road vehicle in traffic. The system includes a device according to the invention and a detection unit operatively connected to the device. The detection unit is arranged behind the device in the direction of travel of the road vehicle. The detection unit detects the road vehicle as a function of a control signal from the device. For example, if the device measures that noises emanating from the road vehicle exceed a target volume, the detection unit, which is arranged a few meters behind the device, for example, is activated and photographs the road vehicle. The device triggers the detection unit like a light barrier of a speed enforcement system.

Nach einem weiteren Aspekt der Erfindung umfasst die Erfassungseinheit eine Kamera. Damit wird das Straßenfahrzeug bei Überschreitung einer Soll-Lautstärke fotografiert. Zum Beispiel ist die Erfassungseinheit eine Geschwindigkeitsüberwachungsanlage, die eine Kamera umfasst.According to a further aspect of the invention, the detection unit comprises a camera. The road vehicle is thus photographed when a target volume is exceeded. For example, the detection unit is a speed enforcement system that includes a camera.

Nach einem weiteren Aspekt der Erfindung ist das System als ein mobiles System ausgeführt, zum Beispiel montiert auf einem Anhänger.According to a further aspect of the invention, the system is embodied as a mobile system, for example mounted on a trailer.

Die Erfindung wird beispielhaft in den folgenden Figuren erläutert. Es zeigen:

  • Fig. 1 eine 3D Ansicht eines Ausführungsbeispiels einer erfindungsgemäßen Vorrichtung,
  • Fig. 2 eine Ausführungsbeispiel eines erfindungsgemäßen Systems umfassend die Vorrichtung aus Fig. 1,
  • Fig. 3 eine isometrische Schnittansicht eines weiteren Ausführungsbeispiels einer erfindungsgemäßen Vorrichtung,
  • Fig. 4 eine seitliche Schnittansicht des Ausführungsbeispiels aus Fig. 3,
  • Fig. 5 eine Explosionsdarstellung des Ausführungsbeispiels aus Fig.3,
  • Fig. 6 eine Schnittansicht des Ausführungsbeispiels aus Fig. 1,
  • Fig. 7 eine seitliche Schnittansicht des Ausführungsbeispiels aus Fig. 1, und
  • Fig. 8 eine dreidimensionale Ansicht des Ausführungsbeispiels aus Fig. 1.
The invention is explained by way of example in the following figures. Show it:
  • 1 a 3D view of an embodiment of a device according to the invention,
  • 2 an embodiment of a system according to the invention comprising the device 1 ,
  • 3 an isometric sectional view of a further embodiment of a device according to the invention,
  • 4 a side sectional view of the embodiment 3 ,
  • figure 5 an exploded view of the embodiment Fig.3 ,
  • 6 a sectional view of the embodiment 1 ,
  • 7 a side sectional view of the embodiment 1 , and
  • 8 a three-dimensional view of the embodiment 1 .

In den Figuren bezeichnen gleiche Bezugsziffern gleiche oder funktionsähnliche Teile. Übersichtshalber sind in den einzelnen Figuren lediglich die für das jeweilige Verständnis relevanten Bezugsteile gekennzeichnet.In the figures, the same reference numbers designate parts that are the same or have a similar function. For the sake of clarity, only the reference parts relevant for the respective understanding are identified in the individual figures.

Fig. 1 zeigt ein Schutzgitter 2, eine Leiterplatte L, eine Recheneinheit 4 und eine Schnittstelle I eines Ausführungsbeispiels der erfindungsgemäßen Vorrichtung AKS. Detailansichten dieses Ausführungsbeispiels sind in den Fig. 6, 7 und 8 gezeigt. 1 shows a protective grid 2, a printed circuit board L, a computing unit 4 and an interface I of an exemplary embodiment of the device AKS according to the invention. Detailed views of this embodiment are in the Figures 6, 7 and 8 shown.

Die Recheneinheit 4 ist auf der Leiterplatte L montiert. Die Recheneinheit 4 prozessiert ein künstliches neuronales Netzwerk. Das künstliche neuronale Netzwerk umfasst konvolutionale Schichten und/oder vollständig verbundene Schichten. Das künstliche neuronale Netzwerk ist trainiert, Geräusche von Straßenfahrzeugen F in Abhängigkeit des Typs des Straßenfahrzeuges F zu klassifizieren. Mittels des künstlich neuronalen Netzwerks erkennt die Vorrichtung, von welchem Typ von Straßenfahrzeug F eine Lärmbelästigung ausgeht. Die Recheneinheit 4 bestimmt in Abhängigkeit von Signalen eines Akustiksensors 1 der Vorrichtung AKS bei Erkennung einer Überschreitung einer Soll-Lautstärke ein Ansteuerungssignal für eine Erfassungseinheit K, um das Straßenfahrzeug F zu erfassen. Die Schnittstelle I stellt das Ansteuerungssignal der Erfassungseinheit K bereit, siehe auch Fig. 2.The arithmetic unit 4 is mounted on the printed circuit board L. The computing unit 4 processes an artificial neural network. The artificial neural network includes convolutional layers and/or fully connected layers. The artificial neural network is trained to classify noises from road vehicles F depending on the type of road vehicle F. By means of the artificial neural network, the device recognizes which type of road vehicle F is causing the noise pollution. The arithmetic unit 4 determines a control signal for a detection unit K, in order to detect the road vehicle F, as a function of signals from an acoustic sensor 1 of the AKS device when it detects that a target volume has been exceeded. The interface I provides the control signal for the detection unit K, see also 2 .

Fig. 2 zeigt ein erfindungsgemäßes System. Das System umfasst die Vorrichtung AKS aus Fig. 1. Die Schnittstelle I der Vorrichtung AKS ist eine, beispielsweise drahtgebundene, Schnittstelle zu der Erfassungseinheit K. Die Erfassungseinheit K ist ein stationärer Verkehrsblitzer für Überwachung von Geschwindigkeitsüberschreitungen. Die Erfassungseinheit K umfasst eine Kamera CAM. Das Straßenfahrzeug F erzeugt bei Fahrt Geräusche. Die jeweiligen Luftschallwellen der Geräusche werden von der Vorrichtung AKS erfasst und ausgewertet. Erkennt die Recheneinheit 4 der Vorrichtung AKS eine Überschreitung der Soll-Lautstärke, wird über die Schnittstelle I der Vorrichtung AKS die Kamera CAM der Erfassungseinheit K angesteuert, um das Straßenfahrzeug zu erfassen und zu identifizieren. Das System ist beispielsweise auf einem Anhänger montiert, der an definierte Stellen, beispielsweise Stellen mit hoher Lärmbelästigung, gefahren werden kann. Damit ist das System mobil. 2 shows a system according to the invention. The system includes the AKS device 1 . The interface I of the AKS device is a wired interface, for example, to the detection unit K. The detection unit K is a stationary traffic speed camera for monitoring speeding. The detection unit K includes a camera CAM. The road vehicle F generates noise when driving. The respective airborne sound waves of the noises are recorded and evaluated by the AKS device. Recognizes the arithmetic unit 4 of If the device AKS exceeds the target volume, the camera CAM of the detection unit K is controlled via the interface I of the device AKS in order to detect and identify the road vehicle. The system is mounted on a trailer, for example, which can be driven to defined locations, such as locations with a high level of noise pollution. This makes the system mobile.

In den Fig. 3, 4 und 5 ist bei einer erfindungsgemäßen Vorrichtung AKS eine Leiterplatte L senkrecht zu einer Axialachse A der Vorrichtung AKS angeordnet. In den Fig. 1, 2, 6, 7 und 8 ist die Leiterplatte parallel zu der Axialachse A der Vorrichtung AKS angeordnet. Bei der parallelen Anordnung der Leiterplatte L ist ein zweites Ende E2 eines Schallkanals 7 in radialer Verlängerung einer Mantelfläche des Schallkanals 7 angeordnet. Die Beschreibungen zu den Fig. 3, 4 und 5 gelten, falls nicht anders angegeben, entsprechend für die Fig. 1, 2, 6, 7 und 8.In the 3 , 4 and 5 in a device AKS according to the invention, a printed circuit board L is arranged perpendicularly to an axial axis A of the device AKS. In the Figures 1, 2 , 6, 7 and 8 the circuit board is arranged parallel to the axial axis A of the device AKS. When the circuit board L is arranged in parallel, a second end E2 of a sound channel 7 is arranged in a radial extension of a lateral surface of the sound channel 7 . The descriptions of the 3 , 4 and 5 apply, unless otherwise stated, to the Figures 1, 2 , 6, 7 and 8 .

Die Vorrichtung AKS umfasst ein Bauteil B. Das Bauteil B hält die Vorrichtung AKS. Das Bauteil B ist beispielsweise ein Spritzgussformteil oder ein nach einem additiven Verfahren, beispielsweise 3D-Druck-Verfahren, hergestelltes Bauteil.The device AKS includes a component B. The component B holds the device AKS. The component B is, for example, an injection molded part or a component produced using an additive method, for example a 3D printing method.

Das Bauteil B umfasst eine kreisförmige Öffnung. Das Bauteil B ist lediglich in den Fig. 3, 4 und 5 gezeigt. In diese Öffnung ist ein erfindungsgemäßes Schutzgitter 2 eingesetzt. Das Schutzgitter 2 ist mittels eines erfindungsgemäßen Entkopplungsbauteils 11 mit dem Bauteil B gekoppelt, siehe Fig. 3, 4 und 5. Beispielsweise sind das Schutzgitter 2 und das Entkopplungsbauteil 11 aus einem Spritzgussteil gefertigt. In den Fig. 3, 4 und 5 umfasst das Schutzgitter 2 vier symmetrisch angeordnete schlitzförmige Öffnungen 3a, 3b, 3c und 3d. Die Öffnungen 3a, 3b, 3c und 3d sind Eintrittsöffnungen für Luftschallwellen in die Vorrichtung AKS, ebenso die Öffnungen 3a, 3b und 3c in Fig. 1, 2, 6, 7 und 8. Die Luftschallwellen treten in Luftströmungsrichtung R in die Vorrichtung AKS ein. Die Öffnungen 3a, 3b, 3c und 3d sind axial versetzt zu einer Axialachse A der Vorrichtung AKS angeordnet. Die Explosionsdarstellung in Fig. 5 zeigt die Öffnungen 3a, 3b, 3c und 3d, das Schutzgitter 2 und das Entkopplungsbauteil 11 in einem zusammengeführten Zustand.The component B includes a circular opening. The component B is only in the 3 , 4 and 5 shown. A protective grid 2 according to the invention is inserted into this opening. The protective grid 2 is coupled to the component B by means of a decoupling component 11 according to the invention, see FIG 3 , 4 and 5 . For example, the protective grille 2 and the decoupling component 11 are made from an injection molded part. In the 3 , 4 and 5 includes the protective grille 2 four symmetrically arranged slot-shaped openings 3a, 3b, 3c and 3d. The openings 3a, 3b, 3c and 3d are entry openings for airborne sound waves into the device AKS, as are the openings 3a, 3b and 3c in Figures 1, 2 , 6, 7 and 8 . The airborne sound waves enter the AKS device in the air flow direction R. The openings 3a, 3b, 3c and 3d are arranged axially offset to an axial axis A of the device AKS. The exploded view in figure 5 shows the openings 3a, 3b, 3c and 3d, the protective grid 2 and the decoupling component 11 in a combined state.

In das Entkopplungsbauteil 11 ist ein Anströmbauteil 8 erfindungsgemäß eingesetzt. Das Anströmbauteil 8 umfasst eine rotationssymmetrische Ausbuchtung 9. Das Anströmbauteil 8 ist derart eingesetzt, dass zwischen dem Anströmbauteil 8, dessen Ausbuchtung 9 und dem Schutzgitter 2 ein Freiraum vorhanden bleibt. Der Freiraum bildet einen erfindungsgemäßen Strömungsbypass 6. Der Strömungsbypass 6 umfasst Luftauslässe 6a. Durch die Luftauslässe wird die Luft aus der Vorrichtung AKS ausgelassen.According to the invention, an inflow component 8 is inserted into the decoupling component 11 . The inflow component 8 comprises a rotationally symmetrical bulge 9. The inflow component 8 is inserted in such a way that a free space remains between the inflow component 8, its bulge 9 and the protective grille 2. The free space forms a flow bypass 6 according to the invention. The flow bypass 6 includes air outlets 6a. The air is discharged from the AKS device through the air outlets.

Die Ausbuchtung 9 des Anströmbauteils 8 umfasst einen in Axialachse A durchgehenden Hohlraum H. Der Hohlraum H hat die Form eines Hornteils mit einer größeren ersten Fläche an einem ersten Ende E1 des Hohlraums H und einer kleineren zweiten Fläche an einem zweiten Ende E2. Die erste und die zweite Fläche sind jeweils Grund- oder Deckflächen des Hohlraums H und symmetrisch zur Axialachse A. Der Hohlraum H entsteht beispielsweise durch eine Bohrung in die Ausbuchtung.The bulge 9 of the inflow component 8 comprises a hollow space H running through the axial axis A. The hollow space H has the shape of a horn part with a larger first area at a first end E1 of the hollow space H and a smaller second area at a second end E2. The first and the second surface are each base or cover surfaces of the cavity H and are symmetrical to the axial axis A. The cavity H is created, for example, by drilling a hole in the bulge.

Der Hohlraum H bildet einen Schallkanal 7. Die Luftschallwellen werden durch den Schallkanal 7 zu dem Akustiksensor 1 geführt. Der Akustiksensor 1 ist auf der in Luftströmungsrichtung R hinteren Seite der Leiterplatte L, das ist mit den elektronischen Bauteilen bestückte Oberfläche der Leiterplatte L, angeordnet. An dem ersten Ende E1 des Schallkanals 7 ist eine erfindungsgemäße erste Membran 5 angeordnet. In Verlängerung des zweiten Endes E2 des Schallkanals 7 ist der Akustiksensor 1 angeordnet.The cavity H forms a sound channel 7. The airborne sound waves are guided through the sound channel 7 to the acoustic sensor 1. The acoustic sensor 1 is arranged on the rear side of the printed circuit board L in the direction of air flow R, that is, the surface of the printed circuit board L fitted with the electronic components. A first membrane 5 according to the invention is arranged at the first end E1 of the sound channel 7 . The acoustic sensor 1 is arranged as an extension of the second end E2 of the sound channel 7 .

Der Akustiksensor 1 ist ein elektroakustischer Sensor, beispielsweise ein Mikrofon. In den Ausführungsbeispielen ist der Akustiksensor 1 ein MEMS-Mikrofon. Der Akustiksensor 1 ist mittels eines Dichtungsbauteils 10 an den Schallkanal 7 und an eine Leiterplatte 7 angekoppelt.The acoustic sensor 1 is an electro-acoustic sensor, for example a microphone. In the exemplary embodiments, the acoustic sensor 1 is a MEMS microphone. The acoustic sensor 1 is coupled to the sound channel 7 and to a printed circuit board 7 by means of a sealing component 10 .

Die Leiterplatte L ist in einem Gehäuse G angeordnet. Das Gehäuse G ist ein Elektronikgehäuse. Die Leiterplatte L umfasst Bauteile und deren Verbindungen zur Vorverarbeitung von analogen oder digitalen Signalen des Akustiksensors 1. Ferner umfasst die Leiterplatte L Steckeranbindungen S, um die Leiterplatte L und damit die Vorrichtung AKS mit einem elektronischen Steuergerät signaltechnisch zu verbinden. Das Gehäuse G umfasst eine zweite Membran 12 ausgeführt als Entlüftungsmembran zum statischen Druckausgleich des Gehäuses G und zur Verhinderung einer Kondensatbildung in dem Gehäuse G. Das Gehäuse G umfasst auch Befestigungsmittel 13, beispielsweise Schrauben.The printed circuit board L is arranged in a housing G. The housing G is an electronics housing. The printed circuit board L includes components and their connections for preprocessing analog or digital signals from the acoustic sensor 1. The printed circuit board L also includes plug connections S in order to connect the printed circuit board L and thus the device AKS to an electronic control unit in terms of signals. The housing G includes a second membrane 12 designed as a venting membrane for static pressure equalization of the housing G and to prevent the formation of condensate in the housing G. The housing G also includes fastening means 13, for example screws.

BezugszeichenReference sign

11
Akustiksensoracoustic sensor
22
Schutzgitterprotective grid
3a3a
Öffnungopening
3b3b
Öffnungopening
3c3c
Öffnungopening
3d3d
Öffnungopening
44
Recheneinheitunit of account
55
erste Membranfirst membrane
66
Strömungsbypassflow bypass
6a6a
Luftauslassair outlet
77
Schallkanalsound channel
88th
Anströmbauteilinflow component
99
Ausbuchtungbulge
1010
Dichtungsbauteilsealing component
1111
Entkopplungsbauteildecoupling component
1313
Befestigungsmittelfasteners
E1E1
erstes Endefirst end
E2E2
zweites Endesecond end
AKSAKS
Vorrichtungcontraption
AA
Axialachseaxial axis
RR
Luftströmungsrichtungair flow direction
II
Schnittstelleinterface
KK
Erfassungseinheitregistration unit
HH
Hohlraumcavity
LL
Leiterplattecircuit board
SS
Steckeranbindungplug connection
GG
GehäuseHousing
BB
Bauteilcomponent
Ff
Straßenfahrzeugroad vehicle
CAMCAM
Kameracamera

Claims (9)

  1. Apparatus (AKS) for measuring volumes of sounds from a road vehicle (F) in road traffic, the apparatus (AKS) comprising
    • an acoustic sensor (1),
    • a protective grille (2) for protecting the apparatus (AKS) from the ingress of coarser foreign bodies, the protective grille (2) comprising at least one opening (3a, 3b, 3c, 3d) for admitting airborne sound to the apparatus (AKS), the opening (3a, 3b, 3c, 3d) being arranged in a manner axially offset from an axial axis (A) of the apparatus (AKS),
    • a printed circuit board (L), the printed circuit board (L) comprising
    ∘ elements and the connections therebetween for preprocessing analogue or digital signals from the acoustic sensor (1), the elements being designed for analogue or digital signal processing and/or to perform filter functions, phase inversion functions, compressor functions and/or amplifier functions,
    ∘ a computing unit (4) designed to take signals from the acoustic sensor (1) as a basis for generating a control signal for a capture unit (K) when it has been identified that a setpoint volume has been exceeded, in order to capture the road vehicle (F), and
    • an interface (I) in order to provide the control signal to the capture unit (K),
    characterized in that the apparatus further comprises:
    • a flow bypass, running between the protective grille and the acoustic sensor, in order to route fluids and/or foreign bodies that have entered the apparatus (AKS) by way of airflows away from the acoustic sensor out of the apparatus (AKS), and
    • a sound channel, at whose one first end (E1) in the airflow direction (R) the protective grille is arranged and at whose second end (E2) the acoustic sensor is arranged, the diameter, length, volume, shaping and/or material properties of the sound channel being adapted to damp eigenmodes of the apparatus (AKS),
    wherein the printed circuit board (L) further comprises a printed circuit board opening, on whose rear side of the printed circuit board (L) in the airflow direction (R) the acoustic sensor is arranged.
  2. Apparatus (AKS) according to Claim 1, wherein the acoustic sensor (1) comprises a microphone, the microphone comprising a microphone capsule and a transducer.
  3. Apparatus (AKS) according to Claim 1 or 2, comprising an acoustically permeable, hydrophobic and/or lipophobic first diaphragm (5) that is arranged downstream of the protective grille (2) in the airflow direction (R) at the first end (E1) of the sound channel (7), wherein the flow bypass (6) runs between the protective grille (2) and the first diaphragm (5).
  4. Apparatus (AKS) according to one of the preceding claims, comprising an elastic sealing member (10) for coupling the acoustic sensor (1) to the sound channel (7) and/or to the printed circuit board (L).
  5. Apparatus (AKS) according to one of the preceding claims, comprising a decoupling member (11) for damping vibration and/or for decoupling structure-borne sound, wherein the decoupling member (11) is arranged at a coupling point between the apparatus (AKS) and a member (B) in which the apparatus (AKS) is installable and/or by which the apparatus (AKS) is mechanically retainable.
  6. Apparatus (AKS) according to one of the preceding claims, wherein the computing unit (4) is designed to process an artificially intelligent algorithm that is trained to take the signals from the acoustic sensor (1) as a basis for classifying the road vehicles (F), the setpoint volume being dependent on the classified road vehicle (F).
  7. System for measuring volumes of sounds from a road vehicle (F) in road traffic, the system comprising an apparatus (AKS) according to one of the preceding claims and a capture unit (K) that is operatively connected to the apparatus (AKS), wherein the capture unit (K) is arranged downstream of the apparatus (AKS) in the direction of travel of the road vehicle (F) and captures the road vehicle on the basis of a control signal from the apparatus (AKS).
  8. System according to Claim 7,
    wherein the capture unit (K) comprises a camera (CAM).
  9. System according to Claim 7 or 8,
    wherein the system is embodied as a mobile system.
EP20720375.3A 2019-05-03 2020-04-08 Device and system for measuring the sound volumes of noises of a road vehicle in road traffic Active EP3963899B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019206329.2A DE102019206329B4 (en) 2019-05-03 2019-05-03 Device and system for measuring the volume of noise from a road vehicle in traffic
PCT/EP2020/059968 WO2020224903A1 (en) 2019-05-03 2020-04-08 Device and system for measuring the sound volumes of noises of a road vehicle in road traffic

Publications (2)

Publication Number Publication Date
EP3963899A1 EP3963899A1 (en) 2022-03-09
EP3963899B1 true EP3963899B1 (en) 2023-03-29

Family

ID=70333920

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20720375.3A Active EP3963899B1 (en) 2019-05-03 2020-04-08 Device and system for measuring the sound volumes of noises of a road vehicle in road traffic

Country Status (3)

Country Link
EP (1) EP3963899B1 (en)
DE (1) DE102019206329B4 (en)
WO (1) WO2020224903A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020213964B4 (en) * 2020-11-06 2023-03-02 Zf Friedrichshafen Ag Device for detecting airborne noise for automotive applications, method for its production and automated driving system comprising such a device
DE102021204327A1 (en) 2021-04-30 2022-11-03 Zf Friedrichshafen Ag Arrangement for detecting airborne noise for automotive applications and vehicles comprising at least one such arrangement
EP4175314A1 (en) * 2021-10-26 2023-05-03 Harman International Industries, Incorporated Microphone device with a closed housing and a membrane
DE102022205148B3 (en) 2022-05-24 2023-09-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Closed sound sensor with a sound-permeable interface
DE102023200511A1 (en) 2023-01-24 2024-07-25 Robert Bosch Gesellschaft mit beschränkter Haftung Acoustic device, housing body for an acoustic device and method for producing an acoustic device and a housing body
DE102023202141A1 (en) 2023-03-10 2024-09-12 Zf Friedrichshafen Ag Acoustic sensor housing for detecting airborne sound in the exterior of vehicles moving in air fluid and vehicle comprising one or more such acoustic sensor housings

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3661224A (en) * 1970-09-14 1972-05-09 Columbia Broadcasting Syst Inc Noise monitoring apparatus
US4857912A (en) 1988-07-27 1989-08-15 The United States Of America As Represented By The Secretary Of The Navy Intelligent security assessment system
DE3843033A1 (en) 1988-12-21 1990-06-28 Messerschmitt Boelkow Blohm High-sensitivity microphone
JPH03113700A (en) * 1989-09-28 1991-05-15 Omron Corp Abnormally noisy vehicle sensing device
WO1997008896A1 (en) 1995-08-23 1997-03-06 Scientific-Atlanta, Inc. Open area security system
DE19621152A1 (en) 1996-05-14 1997-11-20 Klaus Ebert Monitoring and alarm triggering for camera protected region
JP4199037B2 (en) 2003-04-03 2008-12-17 株式会社日立国際電気エンジニアリング Acoustic drainage structure
JP4414773B2 (en) 2004-01-15 2010-02-10 オリンパス株式会社 Waterproof drop structure for sound generation or sound collection member and electronic device having the same
DE102009034444A1 (en) 2009-07-23 2011-01-27 Siemens Aktiengesellschaft Method for monitoring an environment with multiple acoustic sensors
EP2566182A1 (en) * 2011-08-31 2013-03-06 GN Resound A/S Wind noise reduction filter
US8644530B2 (en) * 2011-09-29 2014-02-04 Nokia Corporation Dust protection of sound transducer
US8724840B2 (en) * 2012-03-22 2014-05-13 Robert Bosch Gmbh Offset acoustic channel for microphone systems
US9363589B2 (en) 2014-07-31 2016-06-07 Apple Inc. Liquid resistant acoustic device
US20160241818A1 (en) 2015-02-18 2016-08-18 Honeywell International Inc. Automatic alerts for video surveillance systems
CN109219836A (en) 2016-01-29 2019-01-15 麦墨艾斯有限责任公司 Pass in and out limited community's monitoring system
US10440471B2 (en) * 2017-09-13 2019-10-08 Cithaeron Inc Noise violation localization identifier
JP6594397B2 (en) 2017-10-31 2019-10-23 キヤノン株式会社 Microphone holding structure

Also Published As

Publication number Publication date
WO2020224903A1 (en) 2020-11-12
EP3963899A1 (en) 2022-03-09
DE102019206329A1 (en) 2020-11-05
DE102019206329B4 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
EP3963899B1 (en) Device and system for measuring the sound volumes of noises of a road vehicle in road traffic
DE102019206331B4 (en) Device for detecting airborne noise for automotive applications, in which air flows are present between the device and a sound source of the airborne noise, method for producing such a device and automated operable road vehicle comprising such a device
EP1097445A1 (en) Method and device for producing sounds corresponding to the operation of an internal combustion engine in the inner space of a motor vehicle
EP1671086A1 (en) Vehicle sensor for detecting acceleration and impact sound
WO2020127408A1 (en) Protective cap for a microphone which can be arranged on the exterior of a vehicle, corresponding microphone, sensor system, and vehicle
DE102011079707A1 (en) Method and device for detecting objects from the vehicle surroundings of a vehicle
DE102020213964B4 (en) Device for detecting airborne noise for automotive applications, method for its production and automated driving system comprising such a device
DE102018210489B4 (en) Method for mounting a housing for acoustic sensors of a vehicle for detecting sound waves of an acoustic signal outside the vehicle on a vehicle roof at a position of a roof antenna
US20150258942A1 (en) Vehicle sound collection structure, and sound collection device
EP1152132B1 (en) Ducting system with electromechanical converter producing a correction noise
WO2005095907A1 (en) Vehicle sensor for detecting impact sound
DE102019220204A1 (en) Sound pick-up for the detection of external noises for a vehicle
WO2020048807A1 (en) Sensor apparatus for detecting acoustic signals in the surroundings of a vehicle
DE102017201481A1 (en) Micromechanical module and method for detecting vibrations, in particular structure-borne noise
DE102018221449A1 (en) Sensor system for object detection
DE102021204327A1 (en) Arrangement for detecting airborne noise for automotive applications and vehicles comprising at least one such arrangement
DE102019211046A1 (en) Flow bypass for an acoustic sensor for detecting airborne sound in the outside area of vehicles moving in the air fluid, acoustic sensor and vehicle that can be operated automatically, comprising one or more acoustic sensors according to the invention
DE102007022513A1 (en) Air mass sensor
DE102021205466A1 (en) Device for detecting sound in the vicinity of an automobile
DE10226205B4 (en) Device for influencing the sound in the intake tract of a combustion engine
DE102023202141A1 (en) Acoustic sensor housing for detecting airborne sound in the exterior of vehicles moving in air fluid and vehicle comprising one or more such acoustic sensor housings
DE102019213816A1 (en) Method for detecting a blockage in an audio sensor of a vehicle
DE102019210930A1 (en) Fastening arrangement and method for installing an acoustic sensor in a body
DE102019207468B4 (en) Arrangement for pressure equalization for an external microphone arranged on an outer wall of a vehicle
DE102019215654A1 (en) System and method for voice communication with a vehicle owner and an automated road vehicle comprising such a system

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211029

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221114

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020002869

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1557482

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230629

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230630

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230731

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230408

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020002869

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

26N No opposition filed

Effective date: 20240103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230408

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240315

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230408

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240229

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240308

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240306

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240501

Year of fee payment: 5