EP3948963B1 - Agencement de conducteurs de finition pour un fil supraconducteur nb3sn et procédé de fabrication d'un sous-élément pour un fil supraconducteur nb3sn - Google Patents

Agencement de conducteurs de finition pour un fil supraconducteur nb3sn et procédé de fabrication d'un sous-élément pour un fil supraconducteur nb3sn Download PDF

Info

Publication number
EP3948963B1
EP3948963B1 EP20717817.9A EP20717817A EP3948963B1 EP 3948963 B1 EP3948963 B1 EP 3948963B1 EP 20717817 A EP20717817 A EP 20717817A EP 3948963 B1 EP3948963 B1 EP 3948963B1
Authority
EP
European Patent Office
Prior art keywords
elements
section
conductor arrangement
subelements
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20717817.9A
Other languages
German (de)
English (en)
Other versions
EP3948963A1 (fr
Inventor
Matheus Wanior
Vital Abächerli
Carl Bühler
Bernd Sailer
Klaus Schlenga
Manfred THÖNER
Michael Field
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bruker EAS GmbH
Original Assignee
Bruker EAS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bruker EAS GmbH filed Critical Bruker EAS GmbH
Publication of EP3948963A1 publication Critical patent/EP3948963A1/fr
Application granted granted Critical
Publication of EP3948963B1 publication Critical patent/EP3948963B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0801Manufacture or treatment of filaments or composite wires
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0184Manufacture or treatment of devices comprising intermetallic compounds of type A-15, e.g. Nb3Sn
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor

Definitions

  • Such a prefabricated conductor arrangement has become known, for example, from US 7,585,377 B2 .
  • Superconductor materials can carry current with practically no ohmic losses and are used, for example, to build magnetic coils with which particularly large magnetic field strengths can be generated.
  • Nb3Sn An important superconductor material, especially for the construction of magnetic coils, is Nb3Sn. Since Nb3Sn cannot be plastically deformed, to produce an Nb3Sn superconductor wire, a precursor containing Nb and Sn is usually first produced, typically with Cu as the matrix material. The preliminary conductor is processed into a finished conductor through cross-sectional tapering forming and bundling. This finished conductor is usually subjected to another cross-sectional reshaping and then brought into a desired geometry, for example by winding a coil. The superconducting Nb3Sn phase is then produced in a reaction heat treatment, resulting in the finished Nb3Sn superconductor wire being created from the finished conductor.
  • Nb3Sn superconductor wire The production of an Nb3Sn superconductor wire is therefore a multi-step and overall difficult process.
  • Several routes have been developed that have significant differences in the procedure and in the reactions that take place that are relevant to the quality of the finished Nb3Sn superconductor wire.
  • the Sn which is supposed to react with the Nb of the precursor, is made available in the precursor via a bronze matrix.
  • the bronze route is comparatively easy to perform, but the Sn content of the bronze matrix limits the formation of the Nb3Sn phase.
  • a tin source is usually arranged centrally in the preliminary conductor, with the Sn from the core reacting through the Cu matrix with the Nb of the preliminary conductor in the reaction heat treatment.
  • Sn-containing powder is arranged in a tube made of Nb or an Nb alloy.
  • the filled Nb tube is placed in a Cu-containing casing, which can be made with a hexagonal outer cross section, whereby a PIT element is obtained.
  • the PIT elements which have a hexagonal external cross section, are pulled and bundled and can be surrounded with filling elements that are circular arc-shaped on the outside and profiled on the inside corresponding to the hexagonally profiled PIT elements, and arranged in a Cu stabilization cladding tube.
  • the Sn in the PIT core reacts directly with the surrounding Nb tube.
  • a typical PIT process is, for example, through the EP 3 062 359 B1 described.
  • a similar approach is described EP 2 779 258 B1 .
  • the "internal tin” route can also be done according to the "Restack Rod Process” (abbreviated RRP, "Rebundling the Rods Process”) principle.
  • RRP Raster Rod Process
  • a large number of hexagonal Nb filaments also called Nb-containing rod elements
  • typically each containing an Nb rod and a surrounding Cu filament sheath are bundled like a ring and surrounded inside and outside by a Cu matrix.
  • a center containing Sn is arranged inside, and a diffusion barrier and a round Cu shell are arranged outside.
  • Sub-elements designed in this way are drawn onto a hexagonal outer cross section, bundled and surrounded by a copper matrix to form a wire, cf US 7,585,377 B2 .
  • a bundling of round RRP sub-elements in a casing pipe is also possible DE 10 2012 218 222 A1 known.
  • RRP process particularly large superconducting current carrying capacities of a finished Nb3Sn superconducting wire can usually be achieved.
  • the copper matrix for the wire (or finished conductor) is manufactured with a round outer shape and a hexagonal inner shape, and accordingly in a hexagonal one Sub-elements bundled in shape are inserted into this inner shape. If the finished conductor is subjected to another cross-sectional reshaping, there is sometimes considerable deformation of outer sub-elements, particularly near the corners of the hexagonal inner shape. Such deformations are described, for example, in E.
  • the interior of the sub-element is deformed unevenly.
  • Nb material of the Nb filaments can be displaced radially outwards towards the hexagon corners, so that during the reaction heat treatment it is no longer supplied with Sn sufficiently or with a delay due to the greater distance to the Sn source located in the center of the subelement, and the expensive Nb can no longer contribute anything to the superconducting current carrying capacity.
  • the non-uniform deformations e.g.
  • a thinning of a diffusion barrier can also lead to Sn from the subelement being able to penetrate into undesirable areas during the reaction heat treatment, for example into the area of the own Cu shell (also called Cu shell structure) or Cu Shells of neighboring subelements, which in turn increases the ohmic resistance there and thus impairs the protective function.
  • the uneven deformation can also lead to the precursor material intended for the formation of Nb3Sn (rod elements and possibly barriers) coming into contact after forming (filament bridging) or being too close to one another. This makes it more difficult for Sn to diffuse uniformly into the previously isolated Nb precursor material and/or locally changes the composition of the conductor.
  • a more special variant of a finished conductor for an Nb3Sn superconductor wire involves bundling NbCu rods and Cu rods with NaCl filling in a Cu sheath. The NaCl is rinsed out with water and replaced by Sn, cf. US 5,534,219 A .
  • the finished conductor according to the invention it is possible to obtain an Nb3Sn-containing superconductor wire according to the RRP principle with a particularly high Nb3Sn content and thus a particularly large current-carrying capacity (for the cross-sectional area of the Nb3Sn superconductor wire).
  • Sn contamination of the outer structure, in particular of the outer tube, and also of the outer matrices of the subelements can be avoided with high reliability.
  • one or more filling elements are applied to the outside of the adjacent sub-elements.
  • This forms a circular outer profile, which can be applied to the inside of the outer tube, which is circular in cross-section, directly or indirectly (via one or more intermediate structures, which are usually also circular in cross-section on the inside and outside).
  • the filling elements form a jagged, but overall approximately circular inner profile radially inwards; The adjacent hexagonal sub-elements are placed on this inner profile.
  • the filling elements provided according to the invention and the approximately circular arrangement of the sub-elements according to the invention, it is possible to reduce or minimize non-uniform deformations on the sub-elements when the finished conductor is reshaped to reduce the cross-section.
  • all sub-elements can reduce their cross-section largely uniformly, in particular while approximately maintaining all wall thickness ratios over their respective entire circumference. There are no local, particularly deformed sub-elements, for example pronounced corners. Accordingly, the diffusion lengths intended for reaction annealing are retained and any diffusion barriers that have been set up are not damaged.
  • the reaction annealing after the cross-section-reducing forming of the finished conductor can proceed smoothly, achieving a high current-carrying capacity and avoiding Sn contamination in the areas of the Nb3Sn superconductor wire that are highly conductive in the normally conducting state (with a protective function in the event of quenching).
  • the approximately circular outer profile of the entirety of the adjacent sub-elements or the corresponding approximately circular inner profile of the entirety of the shaped elements preferably at least 40, particularly preferably at least 60 sub-elements, and most preferably at least 80 sub-elements are combined in the finished conductor.
  • An approximately circular outer profile of the entirety of the adjacent sub-elements is present in particular when the smallest possible circumference, which contains the radially most protruding tips of the entirety of the adjacent sub-elements, has no further sub-elements between the circumference and the outside of the entirety of the adjacent sub-elements of the same size could accommodate more completely.
  • the outer tube which is circular on the inside and outside, is particularly inexpensive and easy to manufacture.
  • the filling element or elements are also comparatively inexpensive to produce, especially if they only cover a small part of the circumference of the round profile of the entirety of the filling elements, for example a partial circumferential angle of 45° or less;
  • the filling elements can, for example, be milled from solid material and/or profile rolled to long lengths.
  • the prefabricated conductor arrangement preferably has at least two, particularly preferably at least 6, very particularly preferably at least 12 filling elements.
  • the prefabricated conductor arrangement comprises a plurality of filling elements, and that the radially most protruding tips of the entirety of the adjacent sub-elements and the round profiles of the filling elements complement each other to form a circular contour, the filling elements being designed in this way are that the circular contour has a minimum radius.
  • This enables a particularly large degree of filling (area in the cross section) of the finished conductor arrangement with subelements, and thus a particularly large degree of filling of the later, finished Nb3Sn superconductor wire with Nb3Sn.
  • the most protruding tips of the adjacent sub-elements separate filling elements that converge there from one another in the circumferential direction.
  • the filling element or elements form a circumferential filling element ring, within which the entirety of the adjacent sub-elements is arranged, in particular whereby the following applies for a minimum radial wall thickness WS min of the filling element ring: WS min ⁇ 0.3 ⁇ KL sub , with KL sub : edge length of a hexagonal subelement.
  • the surrounding ring of filling elements makes it possible to take on functional or structural tasks; a corresponding separate intermediate structure for the same task can be omitted.
  • the filling elements can mediate during the plastic deformation between the outer structure (or a part thereof) and the sub-elements lying against one another, or form a circumferentially available ohmic current path (for which they can be made of elementary Cu) or also serve as a diffusion barrier (for which they can be made of Nb, Ta or V, for example).
  • the filling element ring comprises a plurality of filling elements, and that joints between filling elements adjacent in the circumferential direction in the filling element ring run at least partially, preferably completely, obliquely to the radial direction, in particular for a smallest length VL min of all Course lengths of the The following applies to the respective joints: VL min ⁇ 2 ⁇ WS min , with WS min : minimum radial wall thickness of the filling element ring.
  • VL min ⁇ 4 ⁇ WS min also preferably applies.
  • joints running in the radial direction can also be provided, which are particularly easy to manufacture.
  • the one or more filling elements contain Cu.
  • Copper in the filling elements enables good forming properties and is comparatively inexpensive.
  • Cu can serve as electrical stabilization in the event of quenching and accordingly offer a protective function.
  • 50% by weight of Cu or more is usually contained in the filler elements, and in particular the filler elements can consist of elemental Cu.
  • the filling elements of the ring of filling elements are made of a material that is suitable for preventing the diffusion of Sn from the sub-elements into the outer tube during a reaction heat treatment in which the Nb and Sn from the subelements react to Nb3Sn, blocking or hindering, in particular, the filling elements contain Nb, Ta and/or V. This protects the outer structure of the finished conductor arrangement from contamination with Sn, and a high RRR value and thus a good protective function in the event of quenching can be ensured for the outer structure, in particular the outer ring.
  • the filling elements for this contain at least 50% by weight of Nb, Ta and/or V in order to block the diffusion of Sn. Otherwise, a material can be considered as blocking or hindering the diffusion of Sn if the diffusion rate of Sn through this material is a maximum of 1/10 of the diffusion rate through the material of the outer tube, based on a temperature range from room temperature to 800 ° C (which corresponds to the maximum range of a typical reaction heat treatment).
  • the prefabricated conductor arrangement comprises several filling elements with different geometries, in particular, there are a total of twelve filling elements with two different geometries.
  • the filling elements By using different geometries (shapes) of the filling elements, a greater degree of filling of the finished conductor with sub-elements can usually be achieved. In practice, 2, 3 or 4 different geometries are usually sufficient.
  • an intermediate structure in particular an intermediate tube, is present radially between the inside of the outer tube and the round profiles of the filling element or elements.
  • the intermediate structure can be used to address a structural or functional task, for example a mediation between the plastic deformation properties of the outer tube and the adjacent sub-elements, or the provision of a circumferential, ohmic current path, or even the provision of a diffusion barrier.
  • the intermediate structure is made of a material that is suitable for preventing the diffusion of Sn from the subelements into the outer tube during a reaction heat treatment in which the Nb and Sn from the subelements react to form Nb3Sn. to block or hinder, in particular wherein the intermediate structure contains Nb, Ta and/or V.
  • the intermediate structure contains at least 50% by weight of Nb, Ta and/or V in order to block the diffusion of Sn.
  • a material can be considered as blocking or hindering the diffusion of Sn if the diffusion rate of Sn through this material is a maximum of 1/10 of the diffusion rate through the material of the outer tube, based on a temperature range from room temperature to 800 ° C (which corresponds to the maximum range of a typical reaction heat treatment).
  • Sn can be prevented from penetrating into its own cladding structure or into the cladding structure of an adjacent sub-element, and finally also into the area of the filling elements or the outer structure of the finished conductor arrangement. There is then no need for a diffusion barrier in the area of the external structure (but this can be provided for additional security).
  • a central structure is present in the prefabricated conductor arrangement, which is surrounded by the adjacent sub-elements, the central structure containing Cu, in particular wherein the central structure contains one or more central elements which are hexagonal in the external cross section .
  • the forming behavior can be improved with the Cu-containing central structure.
  • Central elements that are hexagonal in cross section can be bundled together with the sub-elements particularly easily.
  • the sub-elements are formed with a shell structure that contains Cu and to which the outer matrix is applied directly or indirectly radially on the inside, that in order to produce a respective sub-element for the finished conductor arrangement, the shell structure is manufactured separately with a round inner cross section and a hexagonal outer cross section , and the remaining parts of the sub-element are then inserted into the round inner cross section of the enveloping structure, and that the respective sub-elements are subjected to a cross-section-reducing forming and are bundled into a finished conductor arrangement according to the invention, described above.
  • the separately manufactured enveloping structure with a hexagonal outer cross-section and a round inner cross-section ensures that the cross-section-reducing forming of the sub-element does not produce any uneven deformations on the sub-element, and correspondingly uniformly deformed sub-elements can be obtained which have a high area proportion of Nb3Sn after reaction annealing, and in which a radial outward diffusion of Sn (for example due to damaged diffusion barriers or locally reduced wall thicknesses) is minimized (see below for the further method according to the invention, including its variants).
  • “filament bridging” can be reduced, which further improves the maximum achievable superconducting current carrying capacity and the forming properties.
  • the present invention provides, when producing RRP sub-elements, to produce an (outer) shell structure with a hexagonal external cross-section and a round internal cross-section, and then to insert the remaining parts of the sub-element into the round internal cross-section, so that in a cross-section-reducing forming process the hexagonal external shape can be easily maintained.
  • the invention provides for the sub-element to be originally equipped (before the first cross-section-reducing forming) with a shell structure which has a hexagonal outer cross-section.
  • the remaining parts of the sub-element are inserted into this enveloping structure in a round internal cross section.
  • the external hexagonal shape can be maintained.
  • the cross-section-reducing forming process then proceeds very evenly. All wall thickness ratios can be approximately maintained, especially over their entire circumference. There are no locally deformed areas of a subelement to different degrees, for example at the hexagon corners in relation to the hexagon flat sides (which also reduces the susceptibility to inhomogeneities).
  • the diffusion lengths intended for reaction annealing are maintained everywhere, and any diffusion barriers that have been set up are not damaged.
  • the reaction annealing after the cross-section-reducing forming of the finished conductor containing the sub-elements can take place without any problems, with a high current-carrying capacity is achieved and Sn contamination in (normally conductive) highly conductive areas is avoided.
  • the more uniform deformation of the sub-element as part of a cross-section-reducing forming process also ensures that the Nb-containing rod elements present in the sub-element as part of the RRP process according to the invention are deformed radially more uniformly overall, and in particular are not deformed to different degrees relative to one another at different locations in the circumferential direction.
  • filament bridging bridging/connection between filaments
  • this "filament bridging" can be significantly reduced, since the subelement components intended for Nb3Sn formation can remain isolated over long distances, thereby increasing the current carrying capacity, which is significantly achieved through the effect of a larger usable Nb3Sn surface area in the Ready-made ladder arrangement goes beyond.
  • the forming properties can be improved by avoiding connected Nb rod elements; the risk of tearing is reduced.
  • the Nb-containing rod elements each preferably have a (typically Nb-free) filament sheath, the minimum radial wall thickness of which is preferably at least 0.025 times, preferably at least 0.075 times, the diameter of an Nb-containing core filament; Then “filament bridging” can be contained particularly efficiently.
  • the inner matrix, the area of Nb-containing rod elements lying against one another and the outer matrix are first joined together to form a common insert part and this common insert part is inserted into the round inner cross section of the enveloping structure.
  • a variant is advantageous in which the sub-element is manufactured with a diffusion barrier which radially surrounds the outer matrix and which is applied directly or indirectly radially on the inside of the enveloping structure.
  • the diffusion barrier which is typically tubular, a radial escape of Sn from the Sn-containing core into its own shell structure or even into the shell structures or outer matrices of neighboring subelements can be prevented or minimized.
  • the diffusion barrier can, for example, be made of Nb, Ta or V, in particular with at least 50% by weight of Nb, Ta and/or V.
  • the common insert part also includes the diffusion barrier.
  • the diffusion barrier can also be used initially only be inserted into the inner cross section, and then an insert part into the diffusion barrier arranged in the inner cross section.
  • the common insert also includes the Sn-containing core. This also further simplifies the process.
  • the insert part can first be inserted into the inner cross section, and then the Sn-containing core can be inserted into the insert part arranged in the inner cross section.
  • FIGS 1 to 7 schematically illustrate the entire production of an Nb3Sn superconductor wire within the scope of the invention, whereby both a) the sub-element according to the invention is composed of an externally hexagonal and internally round shell structure and the remaining parts of the sub-element, and b) in the finished conductor arrangement one or ( preferably) several filling elements are arranged between the entirety of the adjacent sub-elements and the inside of an outer tube.
  • the invention can be realized by using only one of aspects a) or b).
  • the Fig. 1 shows a schematic cross-sectional representation of the production according to the invention of a subelement 1 for an Nb3Sn superconductor wire according to the invention.
  • the sub-element 1 comprises an Sn-containing core 2, which contains, for example, a powder of elemental Sn and is typically circular.
  • the Sn-containing core 2 is enclosed by an inner matrix 3 which contains Cu.
  • a large number of Nb-containing rod elements 4 are arranged around the inner matrix 3.
  • the Nb-containing rod elements 4 each have a hexagonal outer cross section and are arranged adjacent to one another and surrounding the inner matrix 3 in a ring shape.
  • the Nb-containing rod elements 4 each have an Nb-containing core filament 5 (usually a round rod made of elemental Nb or an alloy with 50% by weight or more Nb) and a Cu-containing filament sheath 6 (usually made of elemental Cu or an alloy containing 50% by weight or more Cu), cf Fig. 2 .
  • the filament sheath 6 is preferably free of Nb, but can, for example, contain some Sn or other additives in order to improve or adjust the diffusion behavior during reaction annealing.
  • the Nb-containing rod elements 4 are in turn surrounded by an outer matrix 7 which contains Cu.
  • the outer matrix 7 has a round outer profile.
  • the outer matrix 7 is surrounded by a diffusion barrier 8, which is made of Nb, for example. This blocks any Sn from the core 2, which could penetrate into the outer matrix 7 during reaction annealing, in the radial direction.
  • the diffusion barrier 8 has a uniform wall thickness and is round on the outside.
  • the diffusion barrier 8 is in turn surrounded by a shell structure 9 which contains Cu and is typically made of elemental copper or an alloy with at least 50% by weight of Cu.
  • the enveloping structure 9 has a round inner cross section and a hexagonal outer cross section.
  • the enveloping structure 9 is manufactured separately and is already formed with a hexagonal outer cross section and a round inner cross section. The remaining parts of the sub-element 1 are inserted into the round inner cross section or the interior of the enveloping structure 9.
  • Fig. 1 shown at least the inner matrix 3, the Nb-containing rod elements 4 and the outer matrix 7 are first joined together to form a common insert part 10 and then the common insert part 10 is inserted into the enveloping structure 9.
  • the common insert part 10 also includes the Sn-containing core 2 and the diffusion barrier 8, so that all remaining parts of the sub-element 1 are inserted together into the enveloping structure 9.
  • the diffusion barrier 8 could first be inserted into the enveloping structure 9 alone, and then the insert part 10 into the diffusion barrier 8;
  • the Sn-containing powder core 2 could only be inserted into the insert part 10 after the insert part 10 has been inserted into the enveloping structure 9 (not shown in detail in each case).
  • the sub-element 1 produced in this way is now subjected to a cross-section-reducing forming process, as in Fig. 3 shown.
  • the external shape can be retained;
  • this redistribution occurs only radially, and in particular not azimuthally;
  • the main redistribution of material takes place in the axial direction (in the “tensile direction”, perpendicular to the plane of the cross sections shown).
  • the arrangement of the Nb-containing rod elements 4 is not forced into a hexagonal shape, and there is no thinning of the diffusion barrier 8 near the long sides of the hexagon 12.
  • the wall thickness ratios remain the same over the entire circumference.
  • the Nb-containing rod elements 4 retain their relative position in the sub-element 1/1a, and in particular are not locally flattened or pressed towards other Nb-containing rod elements 4.
  • drawn sub-elements 1a are then bundled, as in Fig. 4 shown on the left.
  • the drawn sub-elements 1a are shown for simplicity as hexagons with a hatched circle.
  • sub-elements 1a are arranged adjacent to one another, with a central structure 13 not being set up with sub-elements 1a, but here with seven hexagonal central elements 14.
  • the central elements 14 contain Cu (and are made, for example, from elemental Cu or a Cu alloy with at least 50% by weight of Cu).
  • the entirety 17 of the sub-elements 1a forms an approximately circular overall profile on the radial outside; In particular, within an imaginary circle 15 (shown in dotted lines), which runs through the tips 16 of the most radially protruding sub-elements 1a, no further sub-element can be added radially outside to the entirety 17 of the sub-elements 1a without this additional, added sub-element would be at least partially outside radius 15.
  • filling elements 18a, 18b are applied; In the variant shown there are two geometries (types) of filling elements 18a, 18b, with the two geometries 18a, 18b alternating in the circumferential direction. A total of twelve filling elements 18a, 18b are used here.
  • the filling elements 18a, 18b have a round profile 24 towards the radial outside and a serrated profile 25 towards the radial inside.
  • the serrated profile 25 corresponds to the locally adjacent outer contour of the entirety 17 of the sub-elements 1a.
  • the entirety 18 of the filling elements 18a, 18b forms a circumferential circular profile radially outwards. Radially inwards, the entirety 18 of the filling elements 18a-18b forms an approximately circular overall profile, corresponding to the outer overall profile of the entirety 17 of the sub-elements 1a.
  • An outer tube 19 is arranged around the filling elements 18a, 18b.
  • the filling elements 18a, 18b with their round profiles 24 lie directly on a round inside of the outer tube 19.
  • the outer tube 19 here forms the outer structure 21 of the prefabricated conductor arrangement 20.
  • the outer structure 21 contains Cu, preferably at least 50% by weight Cu;
  • the outer tube 19 is made of elementary Cu for this purpose.
  • the outer tube 19 is also round on the outside.
  • the entirety 18 of the filling elements 18a, 18b forms a closed, circumferential filling element ring 22, with the filling elements 18a, 18b adjoining one another and forming short, radially extending joints 23 there.
  • the filling elements 18a, 18b are made here from Cu or a Cu-containing alloy with at least 50% by weight of Cu, so that the filling elements 18a, 18b as well as the outer tube 19 act as ohmic bypass current paths in the event of a quench (sudden loss of superconductivity) for protection of Nb3Sn superconductor wire that will be created later.
  • An intermediate structure made of material that blocks the diffusion of Sn is not necessary here, since the individual subelements 1a are already equipped with diffusion barriers (cf. Fig. 1 , Bzz. 8th).
  • the finished conductor arrangement 20 is reshaped to reduce the cross-section, cf. Fig. 5 . This in turn only results in a proportional reduction in the cross section of the formed (e.g. drawn) prefabricated conductor arrangement 20a.
  • the filling elements 18a, 18b do not leave any noticeable free space, and the entirety 18 of the filling elements 18a, 18b and the entirety 17 of the sub-elements 1a are constructed essentially rotationally symmetrically, material redistribution in the cross-sectional plane takes place essentially uniformly radially, and in particular not azimuthally; The main redistribution of material takes place in the axial direction (in the “tensile direction”, perpendicular to the plane of the cross sections shown). In particular, no individual sub-elements 1a are particularly dented, but rather all sub-elements experience essentially the same, proportional reduction in their cross-sectional area.
  • the formed (e.g. drawn) finished conductor arrangement 20a obtained in this way can now be brought into a shape desired for the application, for example wound on a winding body 30 to form a coil 31, as in Fig. 6 shown. If desired, twisting and/or stranding of formed prefabricated conductor arrangements 20a can be carried out beforehand (not shown in more detail).
  • the finished conductor arrangement 20a here the coil 31, which has been brought into the desired shape, is then subjected to a reaction heat treatment (also called reaction annealing), for which it is typically arranged in an oven 32, see. Fig. 7 .
  • the reaction heat treatment typically provides for several heat treatment stages (temperature plateaus at which a constant temperature is maintained for some time, usually a few hours), such as a temperature plateau around 210°, another temperature plateau around 350°C-400°C and a temperature plateau around 650 -750°C.
  • Nb3Sn superconductor wire 33 is created from the finished conductor arrangement 20a which has been formed and brought into the desired shape.
  • Nb3Sn zones are formed which are predetermined by the sub-elements and the Nb-containing rod elements and which are completely or partially separated from one another in cross-section can each carry superconducting current along their longitudinal axis (direction of extension of the wire), and overall can superconductively carry a current of particularly high current intensity.
  • the Fig. 8 shows a variant of a prefabricated conductor arrangement 20 for the invention in a schematic cross section, with only a sector-shaped part of the prefabricated conductor arrangement 20 being shown (the latter also applies to Fig. 9 and Fig. 10 ).
  • the radially most protruding tips 16 of the sub-elements 1a and the outer, round profiles 24 of the filling elements 18a, 18b complement each other to form a circular arc-shaped contour 40; this is the circular arc-shaped contour 40 with the smallest possible radius, which runs through a maximum number of peaks 16 and at the same time includes all sub-elements 1a.
  • the filling elements 18a, 18b, which follow one another in the circumferential direction and which here have an alternating geometry, are each separated from one another by tips 16. This design is particularly compact and achieves a particularly high area proportion of Nb3Sn in the final Nb3Sn superconductor wire.
  • a tubular intermediate structure 41 is arranged between the outer tube 19 and the filling elements 18a, 18b.
  • This tubular intermediate structure 41 is made here from a material that blocks or at least hinders the diffusion of Sn from the inside to the outside towards the outer tube 19;
  • the intermediate structure is preferably made of Nb, Ta or V or an alloy based on these elements.
  • a finished conductor arrangement 20 for the invention has filling elements 18a, 18b, which form a circumferential filling element ring 22.
  • Sufficiently large, minimal wall thicknesses of the filler element ring 22 can ensure that it can take on a function in the finished conductor arrangement, such as an additional hindrance to the diffusion of Sn radially outwards (for which the filler element material must be selected accordingly), or also for a favorable, for example mediating, deformation behavior.
  • the joint 42 between the filling elements 18a, 18b is radially aligned, whereby the filling element ring 22 is particularly easy to manufacture.
  • a joint 43 running obliquely to the radial direction RR between filler elements 18a, 18b of a filler element ring 22 which are adjacent in the circumferential direction as in Fig. 10 shown.
  • the diffusion of Sn can generally occur faster at impacts than through solid material.
  • the length of the joint 43 can be increased and thus the diffusion along the joint 43 can be delayed.
  • FIG. 11 The assembly of a prefabricated ladder arrangement 20 according to the invention is illustrated, wherein the bundled, adjacent sub-elements 1a are inserted into a single, circumferential filling element 18c, which has a circumferential, round profile 24 on the outside and a jagged profile 25 on the inside corresponding to the outer contour of the entirety 17 of the subelements 1a.
  • the filling element 18c thus also forms a closed filling element ring 22.
  • the filling element 18c is arranged here directly on the inside of an outer tube 19 in order to obtain the finished conductor arrangement 20.
  • the production of the single filling element 18c is more difficult than the production of a set of filling elements which together enclose the entirety 17 of the filling elements 1a;
  • combining the sub-elements 1a and the filling element 18c is simplified since several filling elements do not have to be handled at the same time.
  • collisions between filling elements, which can form a rapid diffusion path for Sn, are avoided.
  • the Fig. 12 shows a sub-element 1 for the invention, in which the shell structure 9 rests directly on the inside on the outer matrix 7, which surrounds the Nb-containing rod elements 4.
  • a common insert made of Sn-containing core 2, inner matrix 3, Nb-containing rod elements 4 and outer matrix 7 was inserted into the enveloping structure 9, which is hexagonal on the outside and round on the inside.
  • This design has no diffusion barrier. This allows a higher area fraction of Nb3Sn to be obtained in the finished Nb3Sn superconducting wire; At the same time, however, the reaction annealing should be carried out in such a way that the diffusion of Sn from the Sn-containing core 2 then progresses as little as possible beyond the area of the Nb-containing rod elements 4.
  • good control over the shape of the sub-elements 1 can be achieved, both with a cross-section-reducing reshaping of the sub-elements 1 and with a cross-section-reducing reshaping of the finished conductor arrangement, so that the diffusion of Sn can be controlled via the reaction annealing process without Diffusion barriers are fundamentally possible.
  • diffusion barriers can be installed in the area of the outer structure of the finished conductor arrangement (e.g. an additional structure that hinders Sn diffusion, or a filler element ring that hinders Sn diffusion, cf. Fig. 4 and Fig. 8 and Fig. 9 ) can be provided, especially if the use of the Nb3Sn superconductor wire involves strong bending of the finished conductor arrangement (and thus uneven distortion of the wire cross-section) is required, for example when wiring or winding coils.
  • Prefabricated ladder arrangement 50 can be selected in which no filling elements are used, cf. Fig. 13 .
  • the bundled sub-elements 1a are inserted here directly into the outer tube 52 with a round internal cross-section, and free spaces (empty spaces) 51 remain around the sub-elements 1a.
  • the outer tube 52 here forms the outer structure 53 of the prefabricated conductor arrangement 50.
  • a simpler structure of a sub-element 60 can also be selected, see. Fig. 14 .
  • the Nb-containing rod elements 4 are here only surrounded by an externally round, outer matrix 61. During the cross-section-reducing forming, a hexagonal external shape is then impressed on the outer matrix 61, see the formed (drawn) sub-element 60a.
  • the Fig. 15 shows an example of a prefabricated conductor arrangement after a cross-section-reducing forming according to the prior art.
  • RRP sub-elements were inserted in a hexagonal arrangement into an external structure with a hexagonal internal cross section.
  • the RRP elements were previously formed from a round cross-section to a hexagonal cross-section during a cross-section-reducing forming process.
  • the Fig. 16 shows a finished conductor arrangement according to the invention after a cross-section-reducing forming process, with RRP sub-elements in an arrangement with an approximately circular overall profile being supplemented by filling elements and being inserted into an outer tube with a round inner cross-section.
  • the RRP elements were previously formed from a round cross-section to a hexagonal cross-section during a cross-section-reducing forming process.
  • the filling elements By using the filling elements, significantly less deformation of the edge and especially the corner RRP sub-elements is achieved compared to the prior art, which can be clearly seen both in the overview photo (top) and in the enlargement (bottom) of a typical corner sub-element is.
  • the Sn-containing core is only slightly distorted into an oval shape, as can be seen in the enlargement (below).
  • the individual Nb-containing rod elements are not noticeably deformed;
  • the Nb-containing rod elements have an estimated average aspect ratio of approximately 1.1 to 1.2, and individual Nb-containing rod elements also have an aspect ratio of up to approximately 1.5.
  • the "radial" thickness of the region of Nb-containing rod elements and the thickness of the diffusion barrier vary essentially according to the imposed hexagonal shape.
  • Fig. 17 finally shows a finished conductor arrangement according to the invention after a cross-section-reducing forming, with RRP sub-elements in an arrangement with an approximately circular overall profile being supplemented by filling elements and being inserted into an outer tube with a round inner cross-section, and in the RRP sub-elements into an outer hexagonal one and inside the round shell structure the remaining sub-element was previously inserted.
  • the filling elements By using the filling elements, significantly less deformation of the edge and especially the corner RRP sub-elements is achieved compared to the prior art, which is good both in the overview photo (top) and in the enlargement (bottom) of a typical corner sub-element can be recognized.
  • the Sn-containing core remains approximately circular.
  • the deformation of the Nb-containing rod elements can be minimized during the subsequent cross-section-reducing forming of the respective RRP sub-elements. Accordingly, the individual Nb-containing rod elements in the finished conductor are hardly deformed in cross section.
  • the “radial” thickness of the region of Nb-containing rod elements as well as the thickness of the diffusion barrier vary only slightly, corresponding to the small non-uniform deformation of the RRP subelement.
  • the invention proposes using a finished conductor arrangement (20; 50) in the production of an Nb3Sn superconductor wire (33) according to the RRP principle, in which hexagonal RRP sub-elements (1a; 60a) form a bundle that is approximately circular in cross-section are combined and arranged together with filling elements (18a-18c) in an inside and outside round outer tube (19; 52).
  • the filling elements (18a-18c) form a jagged profile (25) on the inside for contact with the hexagonal sub-elements (1a; 60a) and on the outside a round profile (24) for direct or indirect contact in the outer tube.
  • the invention proposes that they be hexagonal on the outside and hexagonal on the inside before a cross-section-reducing forming process to produce a round shell structure (9) into which the remaining parts of the sub-element (1; 60) are inserted, in particular an annular arrangement of hexagonal Nb-containing rod elements (4), which are surrounded on the outside by an outer matrix (7, 61) and on the inside are enclosed by an inner matrix (3).
  • Nb3Sn superconductor wire (33) with a high superconducting current-carrying capacity and a minimized risk of Sn contamination in normally conducting areas, and thus a good protective function in the event of quenching, can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Claims (20)

  1. Ensemble (20) de conducteurs finis, dévolu à un fil supraconducteur Nb3Sn (33) et comprenant
    - plusieurs sous-éléments (1a ; 60a) mutuellement en applique qui renferment, à chaque fois, du Nb et du Sn et présentent, respectivement, une réalisation à section transversale extérieure hexagonale, et
    - une structure externe (21) renfermant du Cu et entourant lesdits sous-éléments (1a ; 60a) mutuellement en applique, laquelle structure externe (21) présente une réalisation à section transversale extérieure ronde,
    lesdits sous-éléments (1a, 60a) comportant, à chaque fois,
    - un noyau (2) renfermant du Sn,
    - une matrice interne (3) qui renferme du Cu et entoure ledit noyau (2) renfermant du Sn,
    - une région constituée d'éléments longilignes (4) mutuellement en applique, renfermant du Nb et présentant, respectivement, une réalisation à section transversale extérieure hexagonale, sachant notamment que lesdits éléments longilignes (4), renfermant du Nb, sont respectivement munis d'un filament d'âme (5) renfermant du Nb et d'une gaine filamentaire (6) renfermant du Cu,
    - une matrice externe (7 ; 61) qui renferme du Cu et entoure ladite région constituée d'éléments longilignes (4) renfermant du Nb ;
    caractérisé par le fait
    que la structure externe (21) est pourvue d'un tube externe (19) présentant une réalisation à sections transversales extérieure et intérieure rondes ;
    qu'un ou plusieurs élément(s) de remplissage (18a-18c) interposé(s) entre le tube externe (19) et les sous-éléments (1a, 60a) mutuellement en applique est (sont) doté(s) d'un profil rond (24), vers l'extérieur dans le sens radial, en vue de la venue en contact directe ou indirecte avec une face intérieure dudit tube externe (19), et d'un profil dentelé (25), vers l'intérieur dans le sens radial, en vue de la venue en contact avec lesdits sous-éléments (1a ; 60a) mutuellement en applique,
    sachant que l'élément, ou la multiplicité d'éléments de remplissage (18a-18c) est mis(e) en place extérieurement contre les sous-éléments (1a, 60a) mutuellement en applique, et le tube externe (19) est directement ou indirectement mis en place contre le profil rond (24), radialement extérieur, dudit élément ou de ladite multiplicité d'éléments de remplissage (18a-18c) ;
    et que l'intégralité (18) desdits éléments de remplissage (18a-18c) donne naissance, vers l'intérieur dans le sens radial, à un profil global approximativement circulaire.
  2. Ensemble (20) de conducteurs finis, selon la revendication 1, caractérisé par le fait que ledit ensemble (20) de conducteurs finis inclut plusieurs éléments de remplissage (18a-18b) ; et par le fait que des pointes (16) faisant saillie au maximum, dans le sens radial, au-delà de l'intégralité (17) des sous-éléments (1a ; 60a) mutuellement en applique, et les profils ronds (24) desdits éléments de remplissage (18a-18b), se complètent pour former une configuration circulaire (40), lesdits éléments de remplissage (18a-18b) étant conçus de façon telle que ladite configuration circulaire (40) présente un rayon minimal.
  3. Ensemble (20) de conducteurs finis, selon la revendication 1, caractérisé par le fait que l'élément, ou les éléments de remplissage (18a-18c) donne(nt) naissance à un anneau périphérique (22) d'éléments de remplissage à l'intérieur duquel est disposée l'intégralité (17) des sous-éléments (1a ; 60a) mutuellement en applique,
    sachant notamment qu'une épaisseur de paroi radiale minimale WSmin dudit anneau (22) d'éléments de remplissage obéit à l'expression : WSmin ≥ 0,3KLsub, KLsub étant la longueur d'arête d'un sous-élément (1a ; 60a) hexagonal.
  4. Ensemble (20) de conducteurs finis, selon la revendication 3, caractérisé par le fait que l'anneau (22) d'éléments de remplissage inclut plusieurs éléments de remplissage (18a-18b) ;
    et par le fait que des zones de rencontre (43) entre des éléments de remplissage (18a-18b) circonférentiellement voisins dans ledit anneau (22) d'éléments de remplissage s'étendent au moins en partie, de préférence en totalité, à l'oblique par rapport à la direction radiale,
    sachant notamment qu'une longueur de tracé VLmin la plus petite, parmi toutes les longueurs de tracés des zones de rencontre (43) considérées, obéit à l'expression : VLmin ≥ 2 WSmin, WSmin étant l'épaisseur de paroi radiale minimale dudit anneau (22) d'éléments de remplissage.
  5. Ensemble (20) de conducteurs finis, selon l'une des revendications 1 à 4, caractérisé par le fait que l'élément, ou la multiplicité d'éléments de remplissage (18a-18c) renferme du Cu.
  6. Ensemble (20) de conducteurs finis, selon l'une des revendications 3 ou 4, caractérisé par le fait que les éléments de remplissage (18a-18c) de l'anneau (22) d'éléments de remplissage sont produits en un matériau propre à bloquer ou à gêner la diffusion de Sn dans le tube externe (19), à partir des sous-éléments (1a ; 60a), lors d'un traitement thermique de réaction au cours duquel le Nb et le Sn provenant desdits sous-éléments (1a ; 60a) entrent en réaction pour produire du Nb3Sn,
    sachant notamment que lesdits éléments de remplissage (18a-18c) renferment du Nb, du Ta et/ou du V.
  7. Ensemble (20) de conducteurs finis, selon l'une des revendications précédentes, caractérisé par le fait que ledit ensemble (20) de conducteurs finis inclut plusieurs éléments de remplissage (18a-18b) à géométries différentes,
    sachant notamment que douze éléments de remplissage (18a-18b), offrant deux géométries différentes, sont présents au total.
  8. Ensemble (20) de conducteurs finis, selon l'une des revendications précédentes, caractérisé par le fait qu'une structure intercalaire (41), un tube intercalaire en particulier, est présent(e) radialement entre la face intérieure du tube externe (19) et les profils ronds (24) de l'élément, ou des éléments de remplissage (18a-18c).
  9. Ensemble (20) de conducteurs finis, selon la revendication 8, caractérisé par le fait que la structure intercalaire (41) est produite en un matériau propre à bloquer ou à gêner la diffusion de Sn dans le tube externe (19), à partir des sous-éléments (1a ; 60a), lors d'un traitement thermique de réaction au cours duquel le Nb et le Sn provenant desdits sous-éléments (1a ; 60a) entrent en réaction pour produire du Nb3Sn,
    sachant notamment que ladite structure intercalaire (41) renferme du Nb, du Ta et/ou du V.
  10. Ensemble (20) de conducteurs finis, selon l'une des revendications précédentes, caractérisé par le fait que les sous-éléments (1a ; 60a) comportent, par ailleurs,
    - une barrière antidiffusion (8), qui entoure radialement la matrice externe (7 ; 61) et
    - une structure d'enveloppement (9), qui renferme du Cu et entoure radialement ladite barrière antidiffusion (8).
  11. Ensemble (20) de conducteurs finis, selon l'une des revendications précédentes, caractérisé par la présence, dans ledit ensemble (20) de conducteurs finis, d'une structure centrale (13) entourée par les sous-éléments (1a ; 60a) mutuellement en applique, laquelle structure centrale (13) renferme du Cu,
    sachant notamment que ladite structure centrale (13) contient un ou plusieurs élément(s) central (centraux) (14) présentant une réalisation à section transversale extérieure hexagonale.
  12. Procédé de fabrication d'un fil supraconducteur (33) à teneur Nb3Sn, incluant les étapes suivantes :
    - un ensemble (20) de conducteurs finis, conforme à l'une des revendications 1 à 11, est soumis à un remodelage diminuant la section transversale ;
    - l'ensemble remodelé (20a) de conducteurs finis est amené à une forme géométrique souhaitée, notamment enroulé en une bobine (31) ;
    - ledit ensemble (20a) de conducteurs finis, mis en forme, est soumis à un traitement thermique de réaction au cours duquel le Nb et le Sn, provenant des sous-éléments (1a ; 60a), entrent en réaction pour produire du Nb3Sn.
  13. Procédé selon la revendication 12, caractérisé par le fait que les sous-éléments (1) sont pourvus d'une structure d'enveloppement (9) qui renferme du Cu et contre laquelle la matrice externe (7) est directement ou indirectement mise en place, intérieurement dans le sens radial ;
    que, pour produire un sous-élément (1) considéré, dédié à l'ensemble (20) de conducteurs finis, ladite structure d'enveloppement (9) est produite séparément avec une section transversale intérieure ronde et une section transversale extérieure hexagonale, et les parties restantes dudit sous-élément (1) sont ensuite insérées dans ladite section transversale intérieure ronde de ladite structure d'enveloppement (9) ;
    et que les sous-éléments (1) respectifs sont soumis à un remodelage diminuant la section transversale et sont regroupés en un ensemble (20) de conducteurs finis, conforme à l'une des revendications 1 à 11.
  14. Procédé de fabrication d'un sous-élément (1) destiné à un fil supraconducteur Nb3Sn (33),
    lequel sous-élément (1) renferme du Nb et du Sn, et présente une réalisation à section transversale extérieure hexagonale,
    sachant que ledit sous-élément (1) comporte
    - un noyau (2) renfermant du Sn,
    - une matrice interne (3) qui renferme du Cu et entoure ledit noyau (2) renfermant du Sn,
    - une région constituée d'éléments longilignes (4) mutuellement en applique, renfermant du Nb et présentant, respectivement, une réalisation à section transversale extérieure hexagonale, sachant notamment que lesdits éléments longilignes (4), renfermant du Nb, sont respectivement munis d'un filament d'âme (5) renfermant du Nb et d'une gaine filamentaire (6) renfermant du Cu,
    - une matrice externe (7), qui renferme du Cu et entoure ladite région constituée d'éléments longilignes (4) renfermant du Nb,
    - une structure d'enveloppement (9), qui renferme du Cu et contre laquelle ladite matrice externe (7) est directement ou indirectement mise en place, intérieurement dans le sens radial ;
    caractérisé par le fait
    que la structure d'enveloppement (9) est produite séparément avec une section transversale intérieure ronde et une section transversale extérieure hexagonale ;
    et que les parties restantes du sous-élément (1) sont ensuite insérées dans ladite section transversale intérieure ronde de ladite structure d'enveloppement (9).
  15. Procédé selon la revendication 14, caractérisé par le fait qu'au moins la matrice interne (3), la région constituée d'éléments longilignes (4) mutuellement en applique et renfermant du Nb, et la matrice externe (7), sont tout d'abord assemblées en une pièce intégrée (10) commune, et cette pièce intégrée (10) commune est insérée dans la section transversale intérieure ronde de la structure d'enveloppement (9).
  16. Procédé selon l'une des revendications 14 ou 15, caractérisé par le fait que le sous-élément (1) est doté d'une barrière antidiffusion (8), qui entoure radialement la matrice externe (7) et est directement ou indirectement mise en place contre la structure d'enveloppement (9), intérieurement dans le sens radial.
  17. Procédé selon les revendications 15 et 16, caractérisé par le fait que la pièce intégrée (10) commune inclut également la barrière antidiffusion (8).
  18. Procédé selon l'une des revendications 15 à 17, caractérisé par le fait que la pièce intégrée (10) commune inclut également le noyau (2) renfermant du Sn.
  19. Procédé de fabrication d'un fil supraconducteur (33) à teneur Nb3Sn, incluant les étapes suivantes :
    - plusieurs sous-éléments (1) sont produits en conformité avec l'une des revendications 14 à 18 ;
    - les sous-éléments (1) produits sont soumis à un remodelage diminuant la section transversale ;
    - les sous-éléments (1a) remodelés sont regroupés en un ensemble (20 ; 50) de conducteurs finis, plusieurs sous-éléments (1a) remodelés étant placés mutuellement en applique, et étant ceinturés par une structure externe (21 ; 53) qui renferme du Cu ;
    - ledit ensemble (20, 50) de conducteurs finis est soumis à un remodelage diminuant la section transversale ;
    - l'ensemble remodelé (20a) de conducteurs finis est amené à une forme géométrique souhaitée, notamment enroulé en une bobine (31) ;
    - ledit ensemble (20a) de conducteurs finis, mis en forme, est soumis à un traitement thermique de réaction au cours duquel le Nb et le Sn, provenant desdits sous-éléments (1a), entrent en réaction pour produire du Nb3Sn.
  20. Procédé selon la revendication 19, caractérisé par le fait
    que, lors du regroupement visant à obtenir l'ensemble (20) de conducteurs finis, un ou plusieurs élément(s) de remplissage (18a-18c) est (sont) interposé(s) entre les sous-éléments (1a), mutuellement en applique, et la structure externe (21) pourvue d'un tube externe (19) présentant une section transversale intérieure ronde et une section transversale extérieure ronde,
    les éléments de remplissage (18a-18c) étant dotés d'un profil rond (24), vers l'extérieur dans le sens radial, en vue de la venue en contact directe ou indirecte avec une face intérieure dudit tube externe (19), et d'un profil dentelé (25), vers l'intérieur dans le sens radial, en vue de la venue en contact avec lesdits sous-éléments (1a) mutuellement en applique,
    sachant que l'intégralité (18) desdits éléments de remplissage (18a-18c) donne naissance, vers l'intérieur dans le sens radial, à un profil global approximativement circulaire.
EP20717817.9A 2019-04-05 2020-04-02 Agencement de conducteurs de finition pour un fil supraconducteur nb3sn et procédé de fabrication d'un sous-élément pour un fil supraconducteur nb3sn Active EP3948963B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019204926.5A DE102019204926A1 (de) 2019-04-05 2019-04-05 Fertigleiter-Anordnung für einen Nb3Sn-Supraleiterdraht und Verfahren zur Herstellung eines Subelements für einen Nb3Sn-Supraleiterdraht
PCT/EP2020/059382 WO2020201414A1 (fr) 2019-04-05 2020-04-02 Agencement de conducteurs de finition pour un fil supraconducteur nb3sn et procédé de fabrication d'un sous-élément pour un fil supraconducteur nb3sn

Publications (2)

Publication Number Publication Date
EP3948963A1 EP3948963A1 (fr) 2022-02-09
EP3948963B1 true EP3948963B1 (fr) 2023-09-13

Family

ID=70228021

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20717817.9A Active EP3948963B1 (fr) 2019-04-05 2020-04-02 Agencement de conducteurs de finition pour un fil supraconducteur nb3sn et procédé de fabrication d'un sous-élément pour un fil supraconducteur nb3sn

Country Status (8)

Country Link
US (1) US11515462B2 (fr)
EP (1) EP3948963B1 (fr)
JP (1) JP7129573B2 (fr)
KR (1) KR102362597B1 (fr)
CN (1) CN113454797A (fr)
DE (1) DE102019204926A1 (fr)
FI (1) FI3948963T3 (fr)
WO (1) WO2020201414A1 (fr)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5534219A (en) 1994-05-27 1996-07-09 Oxford Instruments Inc. Method for producing multifilamentary niobium-tin superconductor
US6981309B2 (en) * 2003-10-17 2006-01-03 Oxford Superconducting Technology Method for producing (Nb, Ti)3Sn wire by use of Ti source rods
WO2006038909A2 (fr) 2004-02-19 2006-04-13 Oxford Superconducting Technology Amelioration de la densite critique dans un fil supraconducteur en nb3sn
US7585377B2 (en) * 2004-02-19 2009-09-08 Oxford Superconducting Technology Critical current density in Nb3Sn superconducting wire
JP4791309B2 (ja) * 2006-09-25 2011-10-12 株式会社神戸製鋼所 Nb3Sn超電導線材およびそのための前駆体
JP2009211880A (ja) * 2008-03-03 2009-09-17 Kobe Steel Ltd 内部Sn法Nb3Sn超電導線材およびそのための前駆体
JP5588303B2 (ja) * 2010-10-28 2014-09-10 株式会社Shカッパープロダクツ Nb3Sn超電導線材の前駆体及びそれを用いたNb3Sn超電導線材
DE102012218222B4 (de) 2012-10-05 2020-10-15 Bruker Eas Gmbh Halbzeugdraht für einen Nb3Sn-Supraleiterdraht und Verfahren zur Herstellung eines Nb3Sn-Supraleiterdrahts
EP2779258B1 (fr) 2013-03-14 2015-09-16 Bruker EAS GmbH Monofilament pour la fabrication d'un fil supraconducteur Nb3Sn
DE102015203305A1 (de) 2015-02-24 2016-08-25 Bruker Eas Gmbh Halbzeugdraht mit PIT-Elementen für einen Nb3Sn-haltigen Supraleiterdraht und Verfahren zur Herstellung des Halbzeugdrahts
US10573435B2 (en) * 2016-01-29 2020-02-25 Bruker Ost Llc Method for producing a multifilament Nb3Sn superconducting wire
KR102205386B1 (ko) * 2016-09-06 2021-01-19 에이치. 씨. 스타아크 아이앤씨 금속성 초전도성 와이어에 대한 확산 배리어

Also Published As

Publication number Publication date
US20220029084A1 (en) 2022-01-27
FI3948963T3 (fi) 2023-11-15
JP7129573B2 (ja) 2022-09-01
US11515462B2 (en) 2022-11-29
KR102362597B1 (ko) 2022-02-15
WO2020201414A1 (fr) 2020-10-08
CN113454797A (zh) 2021-09-28
EP3948963A1 (fr) 2022-02-09
DE102019204926A1 (de) 2020-10-08
KR20210104917A (ko) 2021-08-25
JP2022519938A (ja) 2022-03-25

Similar Documents

Publication Publication Date Title
EP3062359B1 (fr) Fil precurseur pour un fil supraconducteur nb3sn et procede de fabrication du fil precurseur
EP1872377B1 (fr) Bobine enroulee en forme de selle comprenant des supraconducteurs et procede de production de cette bobine
DE2654924C2 (de) Supraleitendes Verbundkabel und Verfahren zu dessen Herstellung
EP2717340B1 (fr) Fil semi-fini pour un fil supraconducteur Nb3Sn
EP1738376B8 (fr) Cable supraconducteur et son procede de production
DE3203222C2 (de) Knüppel zur Herstellung eines drahtförmigen Supraleiters
DE2733511B2 (de) Mit Aluminium stabilisierter vieldrähtiger Supraleiter und Verfahren zu seiner Herstellung
DE102008049672B4 (de) Supraleiterverbund mit einem Kern oder mit mehreren Filamenten, die jeweils eine MgB2-Phase aufweisen, sowie Vorprodukt und Verfahren zur Herstellung eines Supraleiterverbundes
DE1640527B1 (de) Supraleiterzusammenbau
EP3644382B1 (fr) Monofilament destiné à la fabrication d'un fil superconducteur contenant du nb3sn, en particulier pour une oxydation interne
CH643969A5 (de) Supraleitender verbundleiter und verfahren zu dessen herstellung.
EP1983582A2 (fr) Supraconducteur multifilaments et son procédé de fabrication
EP3496166B1 (fr) Supraconducteur nbti ayant un poids réduit
EP2779258B1 (fr) Monofilament pour la fabrication d'un fil supraconducteur Nb3Sn
EP1983583B1 (fr) Supraconducteur multifilaments et son procédé de fabrication
EP0087691B1 (fr) Procédé de fabrication de supraconducteurs stabilisés utilisant une barrière de diffusion
EP3948963B1 (fr) Agencement de conducteurs de finition pour un fil supraconducteur nb3sn et procédé de fabrication d'un sous-élément pour un fil supraconducteur nb3sn
EP3864710B1 (fr) Sous-élément basé sur des barres contenant du nb avec un tube central rempli de poudre pour un fil supraconducteur contenant du nb3sn et procédé de fabrication associé
WO2017211562A1 (fr) Conducteur électrique à plusieurs filaments dans une matrice
DE69533195T2 (de) Supraleiter mit hohem kupfervolumen und dessen herstellungsmethode
EP2680333B1 (fr) Supraconducteur NbTi comprenant des blocs Al répartis sur la circonférence pour la réduction du poids
DE2835974B2 (de) Verfahren zur Herstellung eines zusammengesetzten vieladrigen Supraleiters
DE2826810C2 (fr)
EP2717275B1 (fr) Procédé de fabrication d'un fil supraconducteur, notamment en utilisant une brasure sans plomb
DE19622111A1 (de) Verfahren zur Herstellung eines Leiterstabs und Leiterstab

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211105

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BRUKER EAS GMBH

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502020005235

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01L0039240000

Ipc: H10N0060010000

Ref country code: DE

Ref legal event code: R079

Ipc: H10N0060010000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

RIC1 Information provided on ipc code assigned before grant

Ipc: H10N 60/01 20230101AFI20230206BHEP

INTG Intention to grant announced

Effective date: 20230310

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230425

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020005235

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231123

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240113

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240115

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240422

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913