EP3925046A1 - Réseau électrique - Google Patents

Réseau électrique

Info

Publication number
EP3925046A1
EP3925046A1 EP19778836.7A EP19778836A EP3925046A1 EP 3925046 A1 EP3925046 A1 EP 3925046A1 EP 19778836 A EP19778836 A EP 19778836A EP 3925046 A1 EP3925046 A1 EP 3925046A1
Authority
EP
European Patent Office
Prior art keywords
groups
consumers
group
electrical network
fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19778836.7A
Other languages
German (de)
English (en)
Inventor
Shivansh BATRA
Thomas Beckert
Michael Hein
Yi Zhu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2019/080553 external-priority patent/WO2020198985A1/fr
Priority claimed from PCT/CN2019/080554 external-priority patent/WO2020198986A1/fr
Priority claimed from PCT/CN2019/080558 external-priority patent/WO2020198987A1/fr
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3925046A1 publication Critical patent/EP3925046A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H33/596Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle for interrupting dc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/125Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for rectifiers
    • H02H7/1252Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for rectifiers responsive to overvoltage in input or output, e.g. by load dump
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/125Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for rectifiers
    • H02H7/1257Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for rectifiers responsive to short circuit or wrong polarity in output circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/268Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured for dc systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/001Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/12Parallel operation of dc generators with converters, e.g. with mercury-arc rectifier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • H01H2009/544Contacts shunted by static switch means the static switching means being an insulated gate bipolar transistor, e.g. IGBT, Darlington configuration of FET and bipolar transistor

Definitions

  • the invention relates to an electrical network.
  • Direct current networks also DC (Direct Current) networks, consist of feeders and consumers.
  • DC Direct Current
  • FIG. 1 such a DC network is shown in FIG. 1 with feeds 1010; 1011; 1012; 1013 and consumers 1050; 1051; 1052; 1053.
  • Such direct current networks are enjoying increasing popularity, since conversion losses can be minimized.
  • the energy efficiency is increased by the fact that a conversion from alternating current to direct current is only necessary once for all motors, instead of converting each motor in this way.
  • feed-ins Any type of feed can be used on a typical DC network.
  • renewable energy sources such as photovoltaics or wind turbines or batteries or backup resources can also be used as feed-ins
  • direct current intermediate circuit capacitors are typically used directly after the converters on the direct current side. So typically every converter is usually connected to a direct current intermediate circuit capacitor, such a system is referred to as a direct current intermediate circuit (DC link).
  • DC link direct current intermediate circuit
  • the AC / DC converter in a DC network can be built either unidirectional (rectifier) or bidirectional (for example in Active Front End technology).
  • uncontrolled rectifiers in unidirectional mode consist of diodes and active front ends (AFE), which consist of IGBTs and diodes so that a current cannot flow from the direct current to the alternating current side when the active front end (AFE) is switched off. which is prevented by free-wheeling diodes. That current can flow from the alternating current to the direct current side is not prevented by the diode arrangement if the direct current side has a lower voltage than the alternating current side.
  • AFE Active Front End
  • the infeeds are connected to a busbar 200, as shown in FIG. 1.
  • the loads are supplied with power from the infeeds via a common busbar.
  • capacitors are present in a direct current network, both on the feed, but also on the consumer side.
  • these capacitors must be precharged to the distribution voltage of the network, otherwise high currents flow like with short circuits.
  • a resistor is typically used to limit the current, which in turn means an increase in the charging time.
  • the capacitors act as a filter and do not cause any problems. But as soon as a fault occurs in the DC voltage network, the capacitors are discharged and discharge their entire energy in a period of ms (milliseconds). The resulting current in the order of hundreds of kA (kilo ampere) can therefore damage the direct current network.
  • LCR oscillations caused by inductive, capacitive and ohmic elements in the network.
  • the voltage typically drops suddenly and the current rises sharply, but due to the LCR oscillations, a negative voltage is observed in the DC system for a short time.
  • the vibrations are caused by leakage inductances in the cables.
  • Inductance and ohmic resistance are typically introduced into the system via cables and capacitances, typically via direct current intermediate circuit capacitors (DC link).
  • DC link direct current intermediate circuit capacitors
  • This Protective devices can be a combination of fuses or electrical switches. In the case of direct current networks with different sources, a typical
  • the protective device does not trigger quickly enough.
  • the capacitors discharge despite conventional fuses and electrical switches. This typically damages the converter diodes.
  • the electrical network according to claim 1 is equipped with feeds, consumers and a distribution network arranged between them, as well as with at least one semiconductor switch and with at least one electromechanical switch for disconnecting a feed or a consumer in the event of a fault, with feeds and consumers being arranged in groups, which are connected to each other by means of a busbar and assigned semiconductor switches, with the respective feeds and loads being able to be disconnected from the network in the event of a fault by means of an electromechanical switch and the individual ones to avoid cross currents on the busbar in the event of a fault Groups of infeeds and consumers can be separated from one another using the semiconductor switch.
  • the advantage here is that the individual groups of feeders and consumers enable a system with a very high level of reliability. In the event of a fault, this fault can be isolated from the network and the rest of the network can continue to operate. This also prevents the DC link capacitor (DC link) from discharging from other infeeds. Likewise, the use of relatively fewer semiconductor switches, which are arranged on the busbar, causes lower costs. In the case of reloading the capacitors of the separated groups, the semiconductor switches can serve as Strombe limiter. The semiconductor switches can be operated briefly in the active area as a regulated resistor or pulsed.
  • one of the groups of infeeds and consumers consists of a infeed and a consumer.
  • one of the groups of infeeds and consumers consists of two infeeds and two consumers.
  • the group in which the error occurred and the electromechanical switch was triggered is reloaded by a group without an error by switching a semiconductor switch located between these two groups.
  • the semiconductor switch which is arranged between these two groups, is used as a current limiter when loading is repeated.
  • the semiconductor switch can briefly act as a regulated resistor in the active area or operated in pulsed mode.
  • a resistor is placed between these two groups when reloading as a current limiter.
  • the infeeds and consumers are distributed among the groups in such a way that each group can provide enough energy for its consumers through its infeeds.
  • the infeeds and consumers are distributed among the groups in such a way that each group can provide sufficient energy for supplying neighboring groups through its infeeds.
  • the infeeds and consumers are distributed among the groups in such a way that high-availability consumers are arranged in groups that have two adjacent groups.
  • the infeeds and consumers are distributed among the groups in such a way that sensitive consumers are arranged in an additional group, which in turn is designed as a subgroup in another group.
  • this additional group is electrically connected to the other group by means of a semiconductor switch as a subgroup.
  • Figure 1 conventional electrical DC network with feeders and consumers
  • FIG. 2 DC network with feeds and consumers and semiconductor switches
  • Figure 3 inventive electrical network with a
  • feeds and consumers whereby the feeds and consumers are arranged in groups.
  • the electrical network 1000 includes feeds 1010; 1011; 1012; 1013, consumer 1050; 1051; 1052; 1053 and a distribution network 2000 arranged in between.
  • the distribution network 2000 further comprises electromechanical switches 2020; 2021; 2022; 2023; 2024; 2025; 2026; 2027.
  • the electromagnetic switches 2020; 2021; 2022; 2023; 2024; 2025; 2026; 2027 are arranged so that the feeds 1010; 1011; 1012; 1013 or consumers 1050; 1051; 1052; 1053 can be separated from a busbar 200 in the event of a fault.
  • the various feeds 1010; 1011; 1012; 1013 and consumer 1050; 1051; 1052; 1053 electrically connected to each other.
  • the feeds 1010; 1011; 1012; 1013 and consumer 1050; 1051; 1052; 1053 are arranged in groups, for example a group 1 is formed by the feed 1010 and the consumer 1050.
  • the feed 1010 is connected to the busbar 200 via the electromechanical switch 2020, and the consumer 1050 via the electromechanical switch 2021.
  • a second group is made up of the feeds 1011; 1012 and
  • Feed 1011 is electrically connected to the busbar 200 via the electromechanical switch 2022, feed 1012 via the electromechanical switch 2024 and consumer 1051 via the electromechanical switch 2023 and consumer 1052 via the electromechanical switch 2025.
  • Group 1 formed by feed 1010 and consumer 1050 is by means of semiconductor switch 2010 with group 2 of feeds 1011; 1012 and consumers 1051; 1052 connected.
  • a third group is shown, which consists of the feed 1013 and the consumer 1053.
  • Feed 1013 is connected to busbar 200 by means of electromechanical switch 2026, consumer 1053 via electromechanical switch 2027.
  • the third group of feed 1013 and consumer 1053 is electrically connected to group 2 from feed 1011; 1012 and consumers 1051; 1052 connected.
  • the electromechanical switches have the effect that, in the event of a fault, the respectively assigned feeds 1010; 1011; 1012; 1013 and consumer 1050; 1051; 1052; 1053 can be separated from the network 1000.
  • the individual groups of infeeds 1010; 1011; 1012; 1013 and consumers 1050; 1051; 1052; 1053 are separated from one another by means of the semiconductor switch 2010; 2011.
  • the semiconductor switch 2010 used in the electrical network 1000 according to the invention; 2011 can be based on silicon (Si), silicon carbide (SiC) or gallium nitride (GaN).
  • the electrical network 1000 can have groups of different numbers of feeders and consumers.
  • a group can consist of a feed and a consumer, such as, for example, in FIG. 3, group 1 of feed 1010 and consumer 1050 and group 3 of feed 1013 and consumer
  • groups can consist of two infeeds and two consumers, as shown in FIG. 3, for example, in group 2 of infeeds 1011; 1012 and consumers 1051; 1052.
  • the associated electromechanical switch is triggered.
  • the group is switched by means of the semiconductor switch 2010; 2011 separated from the other groups, so that on the one hand no cross currents flow on the busbar 200, and on the other hand the groups not affected by the fault can continue to be operated normally.
  • the group can go back online. To do this, the capacitors must be charged on the feed or consumer side. This can be done by a group without an error by switching the semiconductor switch 2010 on again; 2011, which is arranged between these two groups, happened.
  • This between these two groups arranged semiconductor switch 2010; 2011 serves as a current limiter when reloading.
  • the semiconductor switch can be operated briefly in the active area as a regulated resistor or pulsed.
  • the semiconductor switch 2010; 2011 a resistor to be arranged, which serves as a current limiter when reloading.
  • the infeeds and consumers should be distributed to the groups in such a way that each group can provide enough energy for its consumers through its infeeds.
  • the infeeds and consumers should be distributed to the groups in such a way that each group can provide enough energy through its infeeds to supply neighboring groups.
  • high-availability consumers that may not be disconnected from the network if possible, these should be distributed to the groups in such a way that the high-availability consumers are arranged in groups that have two adjacent groups. This means that high-availability consumers can be fed from different sources if necessary.
  • Sensitive consumers such as welding robots, can be arranged in an additional group, which in turn is designed as a subgroup in another group.
  • These additional groups can in turn by means of a semiconductor switch 2010; Be electrically connected to the other group as a subgroup in 2011.
  • Semiconductor switch 2010; 2011 divide the busbar 200 into three groups according to the illustration in FIG. Each cable connection via the busbar 200 is protected by means of an electromechanical switch, since these are more cost-effective than, for example, semiconductor switches.
  • the switching time or response time of the electromechanical switches is in the order of approximately 10 ms (milliseconds).
  • the direct current network is thus divided into small, independent groups that are activated by means of semiconductor switches 2010;
  • the electrical network 1000 makes it possible to generate groups of different protection. Each group is connected to another or to other groups via a semiconductor switch 2010; Joined in 2011. In the event of a fault in a group, semiconductor switches 2010; 2011 for a quick isolation within 10 ps (micro seconds) of this group from the rest of the electrical network 1000, so that Large parts of the electrical network 1000 can continue to be operated during the fault.
  • electromagnetic switches are used to isolate the fault. After the fault has been separated by means of the electromagnetic switch, the loads can be reconnected and the group with the fault can be reloaded using a power manager.
  • the semiconductor switch 2010; 2011 can be used as a current limiter or additional resistors as a current limiter.
  • the division of the groups should take place under the following conditions. Each group should provide enough energy from their feeds that at least their own consumers can be operated so that this group is independent of other feeds. Furthermore, the feeders should have enough reserve energy available to supply groups with faults after a fault has been isolated. Likewise, consumers should be prioritized according to their importance in the disconnected state. Consumers with low demand should be connected to feeds with a small direct current intermediate circuit capacitor (DC link). Highly available consumers should be arranged between two groups in order to have increased redundancy in the electrical network 1000 according to the invention. Sensitive consumers should be arranged in additional groups within a group, this additional group being connected to this group as a subgroup by means of a semiconductor switch
  • the electrical network 1000 also reduces LCR oscillations.
  • the busbar 200 should be connected directly to an AC / DC converter so that there is a low inductance in the event of a fault. This configuration also means that negative voltage can only occur in exceptional cases. The negative voltage can finally be prevented by connecting a resistor or an inductor in series while the capacitor is discharged, so that the diodes of the converter are protected. Further protection is possible by connecting surge diodes in parallel to the DC link capacitor (DC link).
  • the electrical network according to the invention enables high system availability due to the formation of groups which can be operated independently in the event of a fault. Likewise, a direct current intermediate circuit (DC link) discharge from other feeds is prevented, which enables the cables to be relieved in the event of a fault. This also prevents a discharge from the DC link (DC link) consumer from neighboring groups, since a discharge into a fault is no longer possible.
  • DC link DC link
  • the semiconductor switch 2010; 2011 serve as current limiters when reloading the capacitors of disconnected groups after a fault.
  • the semiconductor switch can be operated briefly in the active area as a regulated resistor or pulsed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

L'invention concerne un réseau électrique (1000) qui est équipé d'alimentations (1010...1013), de consommateurs (1050...1053) et d'un réseau de distribution (2000) disposé entre ceux-ci, ainsi que d'au moins un interrupteur à semi-conducteurs (2010, 2011) et d'au moins un interrupteur électromécanique (2020...2027) pour sectionner une alimentation ou un consommateur en cas de défaillance, les alimentations et les consommateurs étant disposés en groupes qui sont reliés ensemble au moyen d'une barre omnibus (200) et d'interrupteurs à semi-conducteurs associés, les alimentations et consommateurs respectifs pouvant être sectionnés respectivement du réseau au moyen d'un interrupteur électromécanique en cas de défaillance et, en cas de défaillance, pour éviter des flux transversaux sur la barre omnibus, les groupes individuels d'alimentations et de consommateurs peuvent être séparés les uns des autres au moyen des interrupteurs à semi-conducteur.
EP19778836.7A 2019-03-29 2019-09-13 Réseau électrique Pending EP3925046A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/080553 WO2020198985A1 (fr) 2019-03-29 2019-03-29 Disjoncteur hybride, système de coupe-circuit hybride et procédé de coupe-circuit
PCT/CN2019/080554 WO2020198986A1 (fr) 2019-03-29 2019-03-29 Disjoncteur à semi-conducteurs, procédé de fonctionnement correspondant et appareil de commande de disjoncteur à semi-conducteurs
PCT/CN2019/080558 WO2020198987A1 (fr) 2019-03-29 2019-03-29 Procédé et appareil de commande de disjoncteur à semi-conducteurs, et disjoncteur à semi-conducteurs
PCT/EP2019/074542 WO2020200494A1 (fr) 2019-03-29 2019-09-13 Réseau électrique

Publications (1)

Publication Number Publication Date
EP3925046A1 true EP3925046A1 (fr) 2021-12-22

Family

ID=68072316

Family Applications (5)

Application Number Title Priority Date Filing Date
EP19778834.2A Pending EP3925045A1 (fr) 2019-03-29 2019-09-13 Dispositif d'ouverture ou de fermeture d'un circuit à courant continu et procédé de fermeture automatique d'un circuit à courant continu
EP19778835.9A Pending EP3928405A1 (fr) 2019-03-29 2019-09-13 Procédé pour coordonner des dispositifs de protection dans un réseau de distribution
EP19778838.3A Pending EP3925048A1 (fr) 2019-03-29 2019-09-13 Réseau électrique
EP19778837.5A Pending EP3925047A1 (fr) 2019-03-29 2019-09-13 Réseau électrique et procédé d'exploitation d'un réseau électrique
EP19778836.7A Pending EP3925046A1 (fr) 2019-03-29 2019-09-13 Réseau électrique

Family Applications Before (4)

Application Number Title Priority Date Filing Date
EP19778834.2A Pending EP3925045A1 (fr) 2019-03-29 2019-09-13 Dispositif d'ouverture ou de fermeture d'un circuit à courant continu et procédé de fermeture automatique d'un circuit à courant continu
EP19778835.9A Pending EP3928405A1 (fr) 2019-03-29 2019-09-13 Procédé pour coordonner des dispositifs de protection dans un réseau de distribution
EP19778838.3A Pending EP3925048A1 (fr) 2019-03-29 2019-09-13 Réseau électrique
EP19778837.5A Pending EP3925047A1 (fr) 2019-03-29 2019-09-13 Réseau électrique et procédé d'exploitation d'un réseau électrique

Country Status (4)

Country Link
US (5) US20220172914A1 (fr)
EP (5) EP3925045A1 (fr)
CN (5) CN114207976A (fr)
WO (5) WO2020200495A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020200495A1 (fr) * 2019-03-29 2020-10-08 Siemens Aktiengesellschaft Réseau électrique et procédé d'exploitation d'un réseau électrique
CA3226863A1 (fr) * 2020-10-01 2022-04-07 S&C Electric Company Gestion de la restauration

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5654859A (en) * 1995-11-14 1997-08-05 The Boeing Company Fault tolerant power distribution system
AU2003247484A1 (en) * 2002-06-04 2003-12-19 Sure Power Corporation Load break dc power disconnect
US7345863B2 (en) * 2005-07-14 2008-03-18 Schweitzer Engineering Laboratories, Inc. Apparatus and method for identifying a loss of a current transformer signal in a power system
CA2707498A1 (fr) * 2007-12-12 2009-06-18 Alan Mcdonnell Procedes et appareil de distribution d'energie electrique
BRPI0922960A2 (pt) * 2008-12-12 2016-01-26 Abb Research Ltd sistema e aparelho para transferir energia para embarcações
GB2468652B (en) * 2009-03-16 2011-08-31 Ge Aviat Systems Ltd Electrical power distribution
US8916995B2 (en) * 2009-12-02 2014-12-23 General Electric Company Method and apparatus for switching electrical power
WO2012000545A1 (fr) * 2010-06-30 2012-01-05 Abb Technology Ag Système de transmission hvdc, poste hvdc et procédé de mise en oeuvre de poste hvdc
EP2503666A3 (fr) * 2011-02-01 2013-04-17 Siemens Aktiengesellschaft Système d'alimentation pour commande électrique d'un navire
CN103403991B (zh) * 2011-03-11 2017-02-01 Abb 技术有限公司 Dc电网和限制dc电网中故障的影响的方法
US9042146B2 (en) * 2011-11-14 2015-05-26 Rockwell Automation Technologies, Inc. DC pre-charge circuit
EP2634885B1 (fr) * 2012-02-29 2015-09-02 ABB Technology Ltd Système d'alimentation CC avec capacités de protection de système
GB2501057B (en) * 2012-03-05 2014-09-17 Alstom Technology Ltd Method of fault clearance
DK2654157T3 (da) * 2012-04-17 2022-09-12 Siemens Energy AS Fejlbeskyttelsessystem for et elektrisk system til et dynamisk positioneret fartøj
US8830647B2 (en) * 2012-05-24 2014-09-09 Mersen Usa Newburyport-Ma, Llc Fault current limiter
EP2750257B1 (fr) * 2012-09-17 2016-05-11 GE Energy Power Conversion Technology Ltd Disjoncteurs
WO2014055333A2 (fr) * 2012-10-01 2014-04-10 Abb Research Ltd Système de collecte à courant continu (cc) moyenne tension avec électronique de puissance
CN103457246B (zh) * 2013-09-10 2016-04-20 中国人民解放军海军工程大学 中压直流供电的直流区域配电网络保护方法
CN104518564B (zh) * 2013-09-26 2017-02-22 中国南方电网有限责任公司 一种具有区域自投功能的备自投装置及备自投方法
US9755433B2 (en) * 2013-11-20 2017-09-05 Abb Schweiz Ag Hybrid alternating current (AC)/direct current (DC) distribution for multiple-floor buildings
US9853536B2 (en) * 2013-12-23 2017-12-26 Abb Schweiz Ag Methods, systems, and computer readable media for managing the distribution of power from a photovoltaic source in a multiple-floor building
EP3140892A4 (fr) * 2014-05-04 2018-04-04 ABB Schweiz AG Protection contre les défauts dans les systèmes de distribution de courant continu basés sur des convertisseurs
US9698589B1 (en) * 2014-06-09 2017-07-04 Google Inc. DC power distribution architectures
CA2898926A1 (fr) * 2014-07-31 2016-01-31 General Electric Company Dispositif d'alimentation cc destine a un environnement maritime
CN104242229A (zh) * 2014-10-18 2014-12-24 国家电网公司 一种多断口混合直流断路器
JP6064982B2 (ja) * 2014-12-12 2017-01-25 株式会社明電舎 直流遮断装置
EP3248256A1 (fr) * 2015-01-23 2017-11-29 Siemens Aktiengesellschaft Distribution d'énergie électrique sur un navire
CN104638618B (zh) * 2015-02-11 2016-03-02 国网山东省电力公司潍坊供电公司 一种gis母线设备跳闸快速恢复供电方法
KR102021863B1 (ko) * 2015-05-13 2019-09-17 엘에스산전 주식회사 직류 차단기
EP3109964A1 (fr) * 2015-06-26 2016-12-28 Siemens Aktiengesellschaft Grille cc
EP3136526B8 (fr) * 2015-08-25 2022-12-21 GE Energy Power Conversion Technology Ltd Procédés de protection de défaut à la terre
CN105207178B (zh) * 2015-09-11 2016-06-29 国家电网公司 一种基于dg接入的配网故障定位及孤岛划分方法
CN105305372B (zh) * 2015-11-20 2018-05-04 中国船舶重工集团公司第七一二研究所 一种高压直流断路器及其控制方法
CN105762775A (zh) * 2016-03-31 2016-07-13 国电南瑞科技股份有限公司 110kV链式供电模式下的电网自愈系统及其自愈逻辑
CN105790236B (zh) * 2016-04-19 2018-03-13 南京南瑞继保电气有限公司 一种直流电流关断装置及其控制方法
GB201610901D0 (en) * 2016-06-22 2016-08-03 Eaton Ind Austria Gmbh Hybrid DC circuit breaker
US10236675B2 (en) * 2016-07-26 2019-03-19 Schweitzer Engineering Laboratories, Inc. Fault detection and protection during steady state using traveling waves
CN106099878B (zh) * 2016-08-04 2019-01-29 华中科技大学 一种电容充电型双向直流断路器及其应用
CN106253243B (zh) * 2016-08-09 2018-09-28 南京南瑞继保电气有限公司 一种高压直流断路器的合闸控制方法
DK3379674T3 (da) * 2017-03-21 2020-09-07 Siemens Ag Strømfordelingssystem
EP3534494B1 (fr) * 2018-02-28 2022-04-06 Delta Electronics (Thailand) Public Co., Ltd. Transfert de puissance élevée sans fil
CN109193661A (zh) * 2018-11-05 2019-01-11 武汉大学 一种基于多端柔性互联技术的交直流混合优质配电系统
CN109494695A (zh) * 2019-01-07 2019-03-19 南京南瑞继保电气有限公司 一种中压直流配电网故障隔离与故障恢复的方法和系统
WO2020200495A1 (fr) * 2019-03-29 2020-10-08 Siemens Aktiengesellschaft Réseau électrique et procédé d'exploitation d'un réseau électrique
US11529917B2 (en) * 2020-04-29 2022-12-20 Lear Corporation Switch arrangement and method for controlling a switch arrangement

Also Published As

Publication number Publication date
CN114128072A (zh) 2022-03-01
WO2020200496A1 (fr) 2020-10-08
EP3925048A1 (fr) 2021-12-22
CN114207975B (zh) 2024-05-31
CN113892219A (zh) 2022-01-04
EP3925047A1 (fr) 2021-12-22
WO2020200492A1 (fr) 2020-10-08
US20220200274A1 (en) 2022-06-23
WO2020200495A1 (fr) 2020-10-08
CN114175436A (zh) 2022-03-11
CN114207976A (zh) 2022-03-18
EP3928405A1 (fr) 2021-12-29
WO2020200494A1 (fr) 2020-10-08
US20220166214A1 (en) 2022-05-26
US20220200275A1 (en) 2022-06-23
CN114207975A (zh) 2022-03-18
US20220020544A1 (en) 2022-01-20
WO2020200493A1 (fr) 2020-10-08
US20220172914A1 (en) 2022-06-02
EP3925045A1 (fr) 2021-12-22

Similar Documents

Publication Publication Date Title
EP1318589B1 (fr) Système à énergie éolienne et procédé de fonctionnement d'un tel système
EP2764595B1 (fr) Procédé de protection d'un condensateur de circuit intermédiaire dans un circuit de conversion de courant
EP2847843B1 (fr) Installation photovoltaïque et procédé de fonctionnement d'une installation photovoltaïque pour l'alimentation en puissance électrique d'un réseau électrique moyenne tension
DE102013103753A1 (de) Photovolatische energieerzeugungsanlage und verfahren zum betreiben einer pv-anlage
EP2338214A1 (fr) Dispositif présentant un convertisseur de fréquence
DE102012109012B4 (de) Schaltungsanordnung für ein Solarkraftwerk mit einer Gleichspannungsquelle für eine Offsetspannung
DE102013200949A1 (de) Ladeeinrichtung zum Laden einer Anzahl N von Elektrofahrzeugen und Ladestation
DE102014214984A1 (de) Kurzschlussschutzvorrichtung
EP2092622A1 (fr) Convertisseur avec limitation du courant de court-circuit
WO2020200494A1 (fr) Réseau électrique
EP3783783A1 (fr) Agencement de régulation d'un flux de puissance dans un réseau à tension alternative et procédé de protection de l'agencement
EP3361593B1 (fr) Alimentation électrique sans interruption pour charges électriques
EP0706218B1 (fr) Procédé pour éliminer des erreurs dans un dispositif de ciruit rédresseur
EP2912741B1 (fr) Onduleur, procédé faire fonctionner un onduleur et installation d'alimentation en énergie comprenant un onduleur
DE102013111869A1 (de) Photovoltaikanlage und Vorrichtung zum Betreiben einer Photovoltaikanlage
EP4042537B1 (fr) Procédé de fonctionnement de système de production d'énergie et système de production d'énergie comprenant ledit procédé
EP4087087A2 (fr) Système d'alimentation électrique
EP2608384A1 (fr) Convertisseur de puissance modulaire avec détection des erreurs
DE102011000737A1 (de) Schutzeinrichtung für eine Photovoltaikanlage
EP3991195A1 (fr) Commutateur de puissance destiné à des courants continus
WO2000017981A1 (fr) Dispositif d'alimentation en energie pour appareils de protection d'installations de commutation
EP4088353A1 (fr) Réseau électrique
DE10041340A1 (de) Einrichtung zur Einspeisung elektrischer Energie aus einer Photovoltaikeinrichtung in ein elektrisches Energieversorgungsnetz
DE102013211094A1 (de) Energiespeichermodul für eine Energiespeichereinrichtung und Energiespeichereinrichtung mit solchem

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210916

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)