EP3925046A1 - Elektrisches netzwerk - Google Patents

Elektrisches netzwerk

Info

Publication number
EP3925046A1
EP3925046A1 EP19778836.7A EP19778836A EP3925046A1 EP 3925046 A1 EP3925046 A1 EP 3925046A1 EP 19778836 A EP19778836 A EP 19778836A EP 3925046 A1 EP3925046 A1 EP 3925046A1
Authority
EP
European Patent Office
Prior art keywords
groups
consumers
group
electrical network
fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19778836.7A
Other languages
English (en)
French (fr)
Inventor
Shivansh BATRA
Thomas Beckert
Michael Hein
Yi Zhu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2019/080553 external-priority patent/WO2020198985A1/en
Priority claimed from PCT/CN2019/080554 external-priority patent/WO2020198986A1/en
Priority claimed from PCT/CN2019/080558 external-priority patent/WO2020198987A1/en
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3925046A1 publication Critical patent/EP3925046A1/de
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H33/596Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle for interrupting dc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/125Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for rectifiers
    • H02H7/1252Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for rectifiers responsive to overvoltage in input or output, e.g. by load dump
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/125Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for rectifiers
    • H02H7/1257Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for rectifiers responsive to short circuit or wrong polarity in output circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/268Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured for dc systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/001Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/12Parallel operation of dc generators with converters, e.g. with mercury-arc rectifier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • H01H2009/544Contacts shunted by static switch means the static switching means being an insulated gate bipolar transistor, e.g. IGBT, Darlington configuration of FET and bipolar transistor

Definitions

  • the invention relates to an electrical network.
  • Direct current networks also DC (Direct Current) networks, consist of feeders and consumers.
  • DC Direct Current
  • FIG. 1 such a DC network is shown in FIG. 1 with feeds 1010; 1011; 1012; 1013 and consumers 1050; 1051; 1052; 1053.
  • Such direct current networks are enjoying increasing popularity, since conversion losses can be minimized.
  • the energy efficiency is increased by the fact that a conversion from alternating current to direct current is only necessary once for all motors, instead of converting each motor in this way.
  • feed-ins Any type of feed can be used on a typical DC network.
  • renewable energy sources such as photovoltaics or wind turbines or batteries or backup resources can also be used as feed-ins
  • direct current intermediate circuit capacitors are typically used directly after the converters on the direct current side. So typically every converter is usually connected to a direct current intermediate circuit capacitor, such a system is referred to as a direct current intermediate circuit (DC link).
  • DC link direct current intermediate circuit
  • the AC / DC converter in a DC network can be built either unidirectional (rectifier) or bidirectional (for example in Active Front End technology).
  • uncontrolled rectifiers in unidirectional mode consist of diodes and active front ends (AFE), which consist of IGBTs and diodes so that a current cannot flow from the direct current to the alternating current side when the active front end (AFE) is switched off. which is prevented by free-wheeling diodes. That current can flow from the alternating current to the direct current side is not prevented by the diode arrangement if the direct current side has a lower voltage than the alternating current side.
  • AFE Active Front End
  • the infeeds are connected to a busbar 200, as shown in FIG. 1.
  • the loads are supplied with power from the infeeds via a common busbar.
  • capacitors are present in a direct current network, both on the feed, but also on the consumer side.
  • these capacitors must be precharged to the distribution voltage of the network, otherwise high currents flow like with short circuits.
  • a resistor is typically used to limit the current, which in turn means an increase in the charging time.
  • the capacitors act as a filter and do not cause any problems. But as soon as a fault occurs in the DC voltage network, the capacitors are discharged and discharge their entire energy in a period of ms (milliseconds). The resulting current in the order of hundreds of kA (kilo ampere) can therefore damage the direct current network.
  • LCR oscillations caused by inductive, capacitive and ohmic elements in the network.
  • the voltage typically drops suddenly and the current rises sharply, but due to the LCR oscillations, a negative voltage is observed in the DC system for a short time.
  • the vibrations are caused by leakage inductances in the cables.
  • Inductance and ohmic resistance are typically introduced into the system via cables and capacitances, typically via direct current intermediate circuit capacitors (DC link).
  • DC link direct current intermediate circuit capacitors
  • This Protective devices can be a combination of fuses or electrical switches. In the case of direct current networks with different sources, a typical
  • the protective device does not trigger quickly enough.
  • the capacitors discharge despite conventional fuses and electrical switches. This typically damages the converter diodes.
  • the electrical network according to claim 1 is equipped with feeds, consumers and a distribution network arranged between them, as well as with at least one semiconductor switch and with at least one electromechanical switch for disconnecting a feed or a consumer in the event of a fault, with feeds and consumers being arranged in groups, which are connected to each other by means of a busbar and assigned semiconductor switches, with the respective feeds and loads being able to be disconnected from the network in the event of a fault by means of an electromechanical switch and the individual ones to avoid cross currents on the busbar in the event of a fault Groups of infeeds and consumers can be separated from one another using the semiconductor switch.
  • the advantage here is that the individual groups of feeders and consumers enable a system with a very high level of reliability. In the event of a fault, this fault can be isolated from the network and the rest of the network can continue to operate. This also prevents the DC link capacitor (DC link) from discharging from other infeeds. Likewise, the use of relatively fewer semiconductor switches, which are arranged on the busbar, causes lower costs. In the case of reloading the capacitors of the separated groups, the semiconductor switches can serve as Strombe limiter. The semiconductor switches can be operated briefly in the active area as a regulated resistor or pulsed.
  • one of the groups of infeeds and consumers consists of a infeed and a consumer.
  • one of the groups of infeeds and consumers consists of two infeeds and two consumers.
  • the group in which the error occurred and the electromechanical switch was triggered is reloaded by a group without an error by switching a semiconductor switch located between these two groups.
  • the semiconductor switch which is arranged between these two groups, is used as a current limiter when loading is repeated.
  • the semiconductor switch can briefly act as a regulated resistor in the active area or operated in pulsed mode.
  • a resistor is placed between these two groups when reloading as a current limiter.
  • the infeeds and consumers are distributed among the groups in such a way that each group can provide enough energy for its consumers through its infeeds.
  • the infeeds and consumers are distributed among the groups in such a way that each group can provide sufficient energy for supplying neighboring groups through its infeeds.
  • the infeeds and consumers are distributed among the groups in such a way that high-availability consumers are arranged in groups that have two adjacent groups.
  • the infeeds and consumers are distributed among the groups in such a way that sensitive consumers are arranged in an additional group, which in turn is designed as a subgroup in another group.
  • this additional group is electrically connected to the other group by means of a semiconductor switch as a subgroup.
  • Figure 1 conventional electrical DC network with feeders and consumers
  • FIG. 2 DC network with feeds and consumers and semiconductor switches
  • Figure 3 inventive electrical network with a
  • feeds and consumers whereby the feeds and consumers are arranged in groups.
  • the electrical network 1000 includes feeds 1010; 1011; 1012; 1013, consumer 1050; 1051; 1052; 1053 and a distribution network 2000 arranged in between.
  • the distribution network 2000 further comprises electromechanical switches 2020; 2021; 2022; 2023; 2024; 2025; 2026; 2027.
  • the electromagnetic switches 2020; 2021; 2022; 2023; 2024; 2025; 2026; 2027 are arranged so that the feeds 1010; 1011; 1012; 1013 or consumers 1050; 1051; 1052; 1053 can be separated from a busbar 200 in the event of a fault.
  • the various feeds 1010; 1011; 1012; 1013 and consumer 1050; 1051; 1052; 1053 electrically connected to each other.
  • the feeds 1010; 1011; 1012; 1013 and consumer 1050; 1051; 1052; 1053 are arranged in groups, for example a group 1 is formed by the feed 1010 and the consumer 1050.
  • the feed 1010 is connected to the busbar 200 via the electromechanical switch 2020, and the consumer 1050 via the electromechanical switch 2021.
  • a second group is made up of the feeds 1011; 1012 and
  • Feed 1011 is electrically connected to the busbar 200 via the electromechanical switch 2022, feed 1012 via the electromechanical switch 2024 and consumer 1051 via the electromechanical switch 2023 and consumer 1052 via the electromechanical switch 2025.
  • Group 1 formed by feed 1010 and consumer 1050 is by means of semiconductor switch 2010 with group 2 of feeds 1011; 1012 and consumers 1051; 1052 connected.
  • a third group is shown, which consists of the feed 1013 and the consumer 1053.
  • Feed 1013 is connected to busbar 200 by means of electromechanical switch 2026, consumer 1053 via electromechanical switch 2027.
  • the third group of feed 1013 and consumer 1053 is electrically connected to group 2 from feed 1011; 1012 and consumers 1051; 1052 connected.
  • the electromechanical switches have the effect that, in the event of a fault, the respectively assigned feeds 1010; 1011; 1012; 1013 and consumer 1050; 1051; 1052; 1053 can be separated from the network 1000.
  • the individual groups of infeeds 1010; 1011; 1012; 1013 and consumers 1050; 1051; 1052; 1053 are separated from one another by means of the semiconductor switch 2010; 2011.
  • the semiconductor switch 2010 used in the electrical network 1000 according to the invention; 2011 can be based on silicon (Si), silicon carbide (SiC) or gallium nitride (GaN).
  • the electrical network 1000 can have groups of different numbers of feeders and consumers.
  • a group can consist of a feed and a consumer, such as, for example, in FIG. 3, group 1 of feed 1010 and consumer 1050 and group 3 of feed 1013 and consumer
  • groups can consist of two infeeds and two consumers, as shown in FIG. 3, for example, in group 2 of infeeds 1011; 1012 and consumers 1051; 1052.
  • the associated electromechanical switch is triggered.
  • the group is switched by means of the semiconductor switch 2010; 2011 separated from the other groups, so that on the one hand no cross currents flow on the busbar 200, and on the other hand the groups not affected by the fault can continue to be operated normally.
  • the group can go back online. To do this, the capacitors must be charged on the feed or consumer side. This can be done by a group without an error by switching the semiconductor switch 2010 on again; 2011, which is arranged between these two groups, happened.
  • This between these two groups arranged semiconductor switch 2010; 2011 serves as a current limiter when reloading.
  • the semiconductor switch can be operated briefly in the active area as a regulated resistor or pulsed.
  • the semiconductor switch 2010; 2011 a resistor to be arranged, which serves as a current limiter when reloading.
  • the infeeds and consumers should be distributed to the groups in such a way that each group can provide enough energy for its consumers through its infeeds.
  • the infeeds and consumers should be distributed to the groups in such a way that each group can provide enough energy through its infeeds to supply neighboring groups.
  • high-availability consumers that may not be disconnected from the network if possible, these should be distributed to the groups in such a way that the high-availability consumers are arranged in groups that have two adjacent groups. This means that high-availability consumers can be fed from different sources if necessary.
  • Sensitive consumers such as welding robots, can be arranged in an additional group, which in turn is designed as a subgroup in another group.
  • These additional groups can in turn by means of a semiconductor switch 2010; Be electrically connected to the other group as a subgroup in 2011.
  • Semiconductor switch 2010; 2011 divide the busbar 200 into three groups according to the illustration in FIG. Each cable connection via the busbar 200 is protected by means of an electromechanical switch, since these are more cost-effective than, for example, semiconductor switches.
  • the switching time or response time of the electromechanical switches is in the order of approximately 10 ms (milliseconds).
  • the direct current network is thus divided into small, independent groups that are activated by means of semiconductor switches 2010;
  • the electrical network 1000 makes it possible to generate groups of different protection. Each group is connected to another or to other groups via a semiconductor switch 2010; Joined in 2011. In the event of a fault in a group, semiconductor switches 2010; 2011 for a quick isolation within 10 ps (micro seconds) of this group from the rest of the electrical network 1000, so that Large parts of the electrical network 1000 can continue to be operated during the fault.
  • electromagnetic switches are used to isolate the fault. After the fault has been separated by means of the electromagnetic switch, the loads can be reconnected and the group with the fault can be reloaded using a power manager.
  • the semiconductor switch 2010; 2011 can be used as a current limiter or additional resistors as a current limiter.
  • the division of the groups should take place under the following conditions. Each group should provide enough energy from their feeds that at least their own consumers can be operated so that this group is independent of other feeds. Furthermore, the feeders should have enough reserve energy available to supply groups with faults after a fault has been isolated. Likewise, consumers should be prioritized according to their importance in the disconnected state. Consumers with low demand should be connected to feeds with a small direct current intermediate circuit capacitor (DC link). Highly available consumers should be arranged between two groups in order to have increased redundancy in the electrical network 1000 according to the invention. Sensitive consumers should be arranged in additional groups within a group, this additional group being connected to this group as a subgroup by means of a semiconductor switch
  • the electrical network 1000 also reduces LCR oscillations.
  • the busbar 200 should be connected directly to an AC / DC converter so that there is a low inductance in the event of a fault. This configuration also means that negative voltage can only occur in exceptional cases. The negative voltage can finally be prevented by connecting a resistor or an inductor in series while the capacitor is discharged, so that the diodes of the converter are protected. Further protection is possible by connecting surge diodes in parallel to the DC link capacitor (DC link).
  • the electrical network according to the invention enables high system availability due to the formation of groups which can be operated independently in the event of a fault. Likewise, a direct current intermediate circuit (DC link) discharge from other feeds is prevented, which enables the cables to be relieved in the event of a fault. This also prevents a discharge from the DC link (DC link) consumer from neighboring groups, since a discharge into a fault is no longer possible.
  • DC link DC link
  • the semiconductor switch 2010; 2011 serve as current limiters when reloading the capacitors of disconnected groups after a fault.
  • the semiconductor switch can be operated briefly in the active area as a regulated resistor or pulsed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

Es wird ein elektrisches Netzwerk (1000) offenbart, das ausgestattet ist mit Einspeisungen (1010...1013), Verbrauchern (1050...1053) und einem dazwischen angeordnetem Verteilnetzwerk (2000) sowie mit mindestens einem Halbleiterschalter (2010, 2011) und mit mindestens einem elektromechanischen Schalter (2020...2027) zum Trennen einer Einspeisung oder eines Verbrauchers im Fehlerfall, wobei Einspeisungen und Verbraucher in Gruppen angeordnet sind, die mittels einer Sammelschiene (200) und zugeordneter Halbleiterschalter miteinander verbunden sind, wobei die jeweiligen Einspeisungen und Verbraucher jeweils mittels eines elektromechanischen Schalters im Fehlerfall vom Netzwerk abgetrennt werden können und im Fehlerfall zur Vermeidung von Querströmen auf der Sammelschiene die einzelnen Gruppen an Einspeisungen und Verbrauchern voneinander getrennt werden können mittels der Halbleiterschalter.

Description

Beschreibung
Elektrisches Netzwerk
Die Erfindung betrifft ein elektrisches Netzwerk.
Gleichstromnetzwerke, auch DC (Direct Current) - Netzwerke, bestehen aus Einspeisungen und Verbrauchern. Beispielsweise ist in der Figur 1 ein solches DC-Netzwerk dargestellt mit Einspeisungen 1010; 1011; 1012; 1013 und Verbrauchern 1050; 1051; 1052; 1053. Solche Gleichstromnetzwerke erfreuen sich einer immer höheren Popularität, da Umwandlungsverluste mini miert werden können. Die Energieeffizienz wird dadurch er höht, dass eine Konvertierung von Wechselstrom zu Gleichstrom nur einmal für alle Motoren notwendig ist, anstatt so eine Konvertierung für jeden Motor vorzunehmen.
Des Weiteren ist vorteilhaft, dass die Verluste in Gleich strom-Verteilnetzen sehr gering sind, da die Frequenz Null ist und keine Impedanzverluste sondern nur ohmsche Verluste vorliegen. Ein weiterer Vorteil von Gleichstromnetzen ist, dass kein Skin-Effekt aufgrund der Frequenz Null vorliegt, somit können beispielsweise Kabel mit kleineren Querschnitten verwendet werden bei geringeren Kosten.
An einem typischen Gleichstromnetz kann jede Art von Einspei sung verwendet werden. Beispielsweise können als Einspeisun gen auch erneuerbare Energiequellen wie Photovoltaik oder Windturbinen oder als Backup-Ressourcen Batterien oder
Schwungräder und Wechselstrom-Netz Verbindungen mit Wechsel strom-Gleichstromwandlern verwendet werden. Jede Einspeisung benutzt einen Wandler, entweder einen Wechselstrom- Gleichstrom oder Gleichstrom-Gleichstrom bei unterschiedli chen Gleichstromspannungen. Um einen nahezu konstanten
Gleichstrom ohne Fluktuationen zu erhalten, werden typischer weise Gleichstrom-Zwischenkreis-Kondensatoren direkt nach den Wandlern auf der Gleichstromseite verwendet. So wird typi- scherweise jeder Wandler mit einem Gleichstrom-Zwischenkreis- Kondensator verbunden, ein solches System wird als Gleich- strom-Zwischenkreis (DC-Link) bezeichnet.
Der Wechselstrom-Gleichstromwandler in einem Gleichstromnetz kann entweder unidirektional (Gleichrichter) oder bidirektio nal (beispielsweise in Active Front End Technologie) aufge baut werden. Typischerweise bestehen ungesteuerte Gleichrich ter im unidirektionalen Modus aus Dioden und Active Front Ends (AFE) , welche aus IGBTs und Dioden bestehen, sodass ein Strom nicht von der Gleichstrom- zur Wechselstromseite flie ßen kann, wenn das Active Front End (AFE) ausgeschaltet ist, was von Freilaufdioden verhindert wird. Dass Strom von der Wechselstrom- zur Gleichstromseite fließen kann wird durch die Diodenanordnung nicht verhindert, wenn die Gleichstrom seite eine geringere Spannung als die Wechselstromseite auf weist. Somit spricht im Falle eines Active Front Ends (AFE) im ausgeschalteten Zustand einem dreiphasigen unkontrollier tem Gleichrichter.
Typischerweise sind die Einspeisungen an eine Sammelschiene 200 angeschlossen, entsprechend der Darstellung in Figur 1. Die Verbraucher werden über eine gemeinsame Sammelschiene mit Leistung aus den Einspeisungen versorgt.
Als elektrische Verbraucher kommen generell elektrische Moto ren in Betracht, die eine Wechselstromversorgung benötigen, weshalb extra Gleichstrom-Wechselstromwandler für jeden Motor auf der Verbraucherseite benötigt werden. Jeder Wandler ist wiederum an einen Gleichstrom-Zwischenkreise-Kondensator an geschlossen, um eine konstante Spannung zu erhalten. Somit befinden sich weitere Kondensatoren vor den Gleichstrom- Wechselstromwandlern (Invertern) .
Wie dargelegt, sind in einem Gleichstromnetz viele Kondensa toren vorhanden, sowohl auf der Einspeise-, aber auch auf der Verbraucherseite angeordnet. Um ein Gleichstromnetz zu star- ten, müssen diese Kondensatoren vorgeladen werden auf die Verteilspannung des Netzwerks, da ansonsten hohe Ströme flie ßen wie bei Kurzschlüssen. Zum Laden der Kondensatoren wird typischerweise ein Widerstand verwendet zur Begrenzung des Stroms, was wiederum eine Erhöhung der Ladezeit bedeutet. Während des normalen Betriebs wirken die Kondensatoren als Filter und verursachen keine Probleme. Aber sobald ein Fehler im Gleichspannungsnetz auftritt, werden die Kondensatoren entladen, und entladen ihre komplette Energie in einer Zeit spanne von ms (Milli Sekunden) . Ein dadurch entstehender Strom in der Größenordnung von hunderten von kA (Kilo Ampere) kann daher zu Beschädigungen im Gleichstromnetzwerk führen.
Ein weiteres Problem sind sogenannte LCR-Schwingungen, be dingt durch induktive, kapazitive und ohmsche Elemente im Netzwerk. Im Fehlerfall fällt typischerweise unvermittelt die Spannung und der Strom steigt stark, aber aufgrund der LCR- Schwingungen wird eine negative Spannung im Gleichstromsystem für eine kurze Zeit beobachtet. Die Schwingungen werden be dingt durch Streuinduktivitäten der Kabel. Induktivität und ohmscher Widerstand werden typischerweise über Kabel und Ka pazitäten typischerweise über Gleichstrom-Zwischenkreise- Kondensatoren (DC-Link) ins System eingebracht. Im Fehlerfall werden die Kondensatoren entladen und die Spannung über den Kondensatoren wird negativ aufgrund der LCR-Schwingungen. So mit ergibt sich der Zustand, dass nach der Entladung der Kon densatoren an der Wechselstromseite der Wechselstrom- Gleichstromwandler ungefähr Null Volt anliegen und aufgrund der LCR-Schwingungen auf der Gleichstromseite eine negative Spannung. Daher fließt ein hoher Strom durch die Wandlerdio den zum Wiederladen der Kondensatoren, welches zu einer Zer störung dieser Dioden führen kann.
In der Figur 1 sind daher Schutzeinrichtungen 2020; 2021;
2022; 2023; 2024; 2025; 2026; 2027 an den Einspeisungen 1010; 1011; 1012; 1013 und Verbrauchern 1050; 1051; 1052; 1053 an geordnet zwischen diesen und der Sammelschiene 200. Diese Schutzeinrichtungen können eine Kombination von Sicherungen oder elektrischen Schaltern sein. Bei Gleichstromnetzen mit verschiedenen Quellen kann im Fehlerfall eine typische
Schutzeinrichtung nicht schnell genug auslösen. Die Kondensa toren entladen trotz konventioneller Sicherungen und elektri scher Schalter. Dadurch werden Dioden der Wandler typischer weise geschädigt.
Zusätzlich, falls der Fehler an einem kleinen Verbraucher mit Kabeln mit geringem Querschnitt vorliegt, kann ebenfalls die ses Kabel beschädigt werden. Das größte Problem ist aber, dass im Fehlerfall der Entladestrom von verschiedenen Konden satoren gleichzeitig kommt. Der hohe, summarische Strom führt dazu, dass Kabel permanent geschädigt werden.
Es ist daher Aufgabe der Erfindung, ein elektrisches Netzwerk zur Verfügung zu stellen, welches die bekannten Probleme von Gleichstromnetzwerken im Fehlerfall umgeht.
Diese Aufgabe wird erfindungsgemäß durch das elektrische Netzwerk gemäß Anspruch 1 gelöst. Vorteilhafte Ausgestaltun gen des erfindungsgemäßen elektrischen Netzwerks sind in den Unteransprüchen angegeben.
Das elektrische Netzwerk gemäß Anspruch 1 ist ausgestattet mit Einspeisungen, Verbrauchern und einem dazwischen angeord netem Verteilnetzwerk sowie mit mindestens einem Halbleiter schalter und mit mindestens einem elektromechanischen Schal ter zum Trennen einer Einspeisung oder eines Verbrauchers im Fehlerfall, wobei Einspeisungen und Verbraucher in Gruppen angeordnet sind, die mittels einer Sammelschiene und zugeord neter Halbleiterschalter miteinander verbunden sind, wobei die jeweiligen Einspeisungen und Verbraucher jeweils mittels eines elektromechanischen Schalters im Fehlerfall vom Netz werk abgetrennt werden können und im Fehlerfall zur Vermei dung von Querströmen auf der Sammelschiene die einzelnen Gruppen an Einspeisungen und Verbrauchern voneinander ge trennt werden können mittels der Halbleiterschalter.
Vorteilhaft hierbei ist, dass die einzelnen Gruppen an Ein speisungen und Verbrauchern ein System mit sehr hoher Zuver lässigkeit ermöglichen. Im Fehlerfall kann dieser Fehler vom Netzwerk isoliert werden und das restliche Netzwerk kann wei terhin betrieben werden. Ebenso wird verhindert, dass es zu einer Entladung des Gleichstrom-Zwischenkreis-Kondensator (DC-Links) anderer Einspeisungen kommen kann. Ebenso wird durch die Verwendung relativ weniger Halbleiterschalter, die an der Sammelschiene angeordnet sind, geringere Kosten verur sacht. Im Fall des Wiederladens der Kondensatoren der abge trennten Gruppen können die Halbleiterschalter als Strombe grenzer dienen. Dabei können die Halbleiterschalter kurzzei tig im aktiven Bereich als geregelter Widerstand oder gepulst betrieben werden.
In einer weiteren Ausgestaltung besteht eine der Gruppen an Einspeisungen und Verbrauchern aus einer Einspeisung und ei nem Verbraucher.
In einer weiteren Ausgestaltung bestehen eine der Gruppen an Einspeisungen und Verbrauchern aus zwei Einspeisungen und zwei Verbrauchern.
In einer Ausgestaltung wird im Fehlerfall nach Auslösung ei nes elektromechanischen Schalters die Gruppe, in der der Feh lerfall aufgetreten ist und der elektromechanische Schalter ausgelöst hat, wiedergeladen von einer Gruppe ohne Fehlerfall durch das Schalten eines Halbleiterschalters, der zwischen diesen beiden Gruppen angeordnet ist.
In einer weiteren Ausgestaltung dient der Halbleiterschalter, der zwischen diesen beiden Gruppen angeordnet ist, beim Wie derladen als Strombegrenzer. Dabei kann der Halbleiterschal ter kurzzeitig im aktiven Bereich als geregelter Widerstand oder gepulst betrieben werden. Alternativ dient ein Wider stand angeordnet zwischen diesen beiden Gruppen beim Wieder laden als Strombegrenzer.
In einer weiteren Ausgestaltung sind die Einspeisungen und Verbraucher so auf die Gruppen verteilt, dass jede Gruppe durch ihre Einspeisungen genügend Energie für ihre Verbrau cher zur Verfügung stellen kann.
In einer weiteren Ausgestaltung sind die Einspeisungen und Verbraucher so auf die Gruppen verteilt, dass jede Gruppe durch ihre Einspeisungen genügend Energie für die Versorgung benachbarter Gruppen zur Verfügung stellen kann.
In einer weiteren Ausgestaltung sind die Einspeisungen und Verbraucher so auf die Gruppen verteilt, dass hochverfügbare Verbraucher in Gruppen angeordnet sind, die zwei benachbarte Gruppen aufweisen.
In einer Ausgestaltung sind die Einspeisungen und Verbraucher so auf die Gruppen verteilt, dass empfindliche Verbraucher in einer Zusatz-Gruppe angeordnet sind, die wiederum in einer anderen Gruppe als Untergruppe ausgebildet ist.
In einer weiteren Ausgestaltung ist diese Zusatz-Gruppe mit tels eines Halbleiterschalters als Untergruppe an die andere Gruppe elektrisch angebunden.
Die oben beschriebenen Eigenschaften, Merkmale und Vorteile dieser Erfindung, sowie die Art und Weise, wie sie erreicht werden, werden klarer und deutlicher verständlich im Zusam menhang mit der folgenden Beschreibung der Ausführungsformen, die im Zusammenhang mit den Figuren näher erläutert werden.
Dabei zeigen: Figur 1: konventionelles elektrisches DC-Netzwerk mit Ein speisungen und Verbrauchern;
Figur 2: Gleichstrom-Netzwerk mit Einspeisungen und Verbrau chern und Halbleiterschaltern; und
Figur 3: erfindungsgemäßes elektrisches Netzwerk mit Ein
speisungen und Verbrauchern, wobei die Einspeisun gen und Verbraucher in Gruppen angeordnet sind.
In Figur 3 ist das erfindungsgemäße elektrische Netzwerk 1000 dargestellt. Das elektrische Netzwerk 1000 umfasst Einspei sungen 1010; 1011; 1012; 1013, Verbraucher 1050; 1051; 1052; 1053 und ein dazwischen angeordnetes Verteilnetzwerk 2000.
Das Verteilnetzwerk 2000 umfasst weiter elektromechanische Schalter 2020; 2021; 2022; 2023; 2024; 2025; 2026; 2027. Die elektromagnetischen Schalter 2020; 2021; 2022; 2023; 2024; 2025; 2026; 2027 sind so angeordnet, dass die Einspeisungen 1010; 1011; 1012; 1013 oder die Verbraucher 1050; 1051; 1052; 1053 im Fehlerfall von einer Sammelschiene 200 getrennt wer den können. Über die Sammelschiene 200 sind die verschiedenen Einspeisungen 1010; 1011; 1012; 1013 und Verbraucher 1050; 1051; 1052; 1053 miteinander elektrisch verbunden.
Die Einspeisungen 1010; 1011; 1012; 1013 und Verbraucher 1050; 1051; 1052; 1053 sind in Gruppen angeordnet, beispiels weise eine Gruppe 1 wird gebildet von der Einspeisung 1010 und dem Verbraucher 1050. Die Einspeisung 1010 ist über den elektromechanischen Schalter 2020 an die Sammelschiene 200 angeschlossen, der Verbraucher 1050 über den elektromechani schen Schalter 2021.
Eine zweite Gruppe wird von den Einspeisungen 1011; 1012 und
Verbrauchern 1051; 1052 gebildet. Einspeisung 1011 ist über den elektromechanischen Schalter 2022 an die Sammelschiene 200 elektrisch angebunden, Einspeisung 1012 über den elektro mechanischen Schalter 2024 und Verbraucher 1051 über den elektromechanischen Schalter 2023 und Verbraucher 1052 über den elektromechanischen Schalter 2025. Die Gruppe 1 gebildet von Einspeisung 1010 und Verbraucher 1050 ist mittels des Halbleiterschalters 2010 mit der Gruppe 2 aus Einspeisungen 1011; 1012 und Verbrauchern 1051; 1052 verbunden.
In Figur 3 ist eine dritte Gruppe dargestellt, welche aus der Einspeisung 1013 und dem Verbraucher 1053 besteht. Einspei sung 1013 ist mittels des elektromechanischen Schalters 2026 an die Sammelschiene 200 angeschlossen, Verbraucher 1053 über den elektromechanischen Schalter 2027. Die dritte Gruppe aus Einspeisung 1013 und Verbraucher 1053 ist mittels des Halb leiterschalters 2011 elektrisch mit der Gruppe 2 aus Einspei sungen 1011; 1012 und Verbrauchern 1051; 1052 verbunden.
Die elektromechanischen Schalter bewirken, dass im Fehlerfall die jeweils zugordneten Einspeisungen 1010; 1011; 1012; 1013 und Verbraucher 1050; 1051; 1052; 1053 vom Netzwerk 1000 ab getrennt werden können. Ebenso können im Fehlerfall zur Ver meidung von Querströmen auf der Sammelschiene 200 die einzel nen Gruppen an Einspeisungen 1010; 1011; 1012; 1013 und Ver brauchern 1050; 1051; 1052; 1053 voneinander getrennt werden mittels der Halbleiterschalter 2010; 2011.
Die im erfindungsgemäßen elektrischen Netzwerk 1000 verwende ten Halbleiterschalter 2010; 2011 können auf Silicium (Si)-, Siliciumcarbid (SiC) - oder Galliumnitrid (GaN) - Basis her gestellt sein.
Das erfindungsgemäße elektrische Netzwerk 1000 kann Gruppen unterschiedlicher Anzahl an Einspeisungen und Verbrauchern aufweisen. Beispielsweise kann eine Gruppe aus einer Einspei sung und einem Verbraucher bestehen, wie beispielsweise in der Figur 3 die Gruppe 1 aus Einspeisung 1010 und Verbraucher 1050 und die Gruppe 3 aus Einspeisung 1013 und Verbraucher Ebenso können Gruppen aus zwei Einspeisungen und zwei Ver brauchern bestehen, wie beispielsweise in der Figur 3 darge stellt in der Gruppe 2 aus Einspeisungen 1011; 1012 und Ver brauchern 1051; 1052.
Gruppen jeweils mehr als zwei Einspeisungen und Verbrauchern sowie aus einer unterschiedlichen Anzahl an Einspeisungen o- der Verbrauchern sind denkbar.
Im Fehlerfall auf Seiten der Einspeisungen oder der Verbrau cher löst der zugeordnete elektromechanische Schalter aus. Ebenso wird die Gruppe mittels des Halbleiterschalters 2010; 2011 getrennt von den anderen Gruppen, sodass zum einen keine Querströme auf der Sammelschiene 200 fließen, und zum anderen die nicht vom Fehlerfall betroffenen Gruppen weiterhin normal betrieben werden können. Ist nun der Fehler behoben, so kann die Gruppe wieder ans Netz gehen. Dazu müssen die Kondensato ren auf Einspeise- oder Verbraucherseite geladen werden. Dies kann von einer Gruppe ohne Fehlerfall durch das Wiederein schalten des Halbleiterschalters 2010; 2011, der zwischen diesen beiden Gruppen angeordnet ist, geschehen. Dieser zwi schen diesen beiden Gruppen angeordnete Halbleiterschalter 2010; 2011 dient beim Wiederladen als Strombegrenzer. Dabei kann der Halbleiterschalter kurzzeitig im aktiven Bereich als geregelter Widerstand oder gepulst betrieben werden. Zusätz lich kann am Halbleiterschalter 2010; 2011 ein Widerstand an geordnet sein, der beim Wiederladen als Strombegrenzer dient.
Damit das Konzept des Abtrennens oder Unterteilens in Gruppen von Einspeisungen und Verbrauchern im Fehlerfall autonome Gruppen bildet, sollten die Einspeisungen und Verbraucher so auf die Gruppen verteilt werden, dass jede Gruppe durch ihre Einspeisungen genügend Energie für ihre Verbraucher zur Ver fügung stellen kann.
Für das Wiederladen einer Gruppe, die im Fehlerfall mittels Halbleiterschalter 2010; 2011 vom Netzwerk getrennt wird, sollten die Einspeisungen und Verbraucher so auf die Gruppen verteilt werden, dass jede Gruppe durch ihre Einspeisungen genügend Energie für die Versorgung benachbarter Gruppen zur Verfügung stellen kann.
Bei hochverfügbaren Verbrauchern, die nach Möglichkeit nicht vom Netz getrennt werden dürfen, sollten diese so auf die Gruppen verteilt sein, dass die hochverfügbaren Verbraucher in Gruppen angeordnet sind, die zwei benachbarte Gruppen auf weisen. Somit können hochverfügbare Verbraucher von gegebe nenfalls unterschiedlichen Quellen gespeist werden.
Empfindliche Verbraucher, wie beispielsweise Schweißroboter, können in einer Zusatz-Gruppe angeordnet sein, die wiederum in einer anderen Gruppe als Untergruppe ausgebildet ist. Die se Zusatz-Gruppen können wiederum mittels eines Halbleiter schalters 2010; 2011 als Untergruppe an die andere Gruppe elektrisch angebunden sein.
Halbleiterschalter 2010; 2011 unterteilen die Sammelschiene 200 entsprechend der Darstellung in Figur 3 in drei Gruppen. Jede Kabelverbindung über die Sammelschiene 200 ist mittels eines elektromechanischen Schalters abgesichert, da diese kostengünstiger sind als beispielsweise Halbleiterschalter. Die Schaltzeit oder Reaktionszeit der elektromechanischen Schalter ist in der Ordnung von ungefähr 10 ms (Milli Sekun den) . Das Gleichstromnetzwerk ist somit unterteilt in kleine, unabhängige Gruppen, die mittels Halbleiterschalter 2010;
2011 miteinander verbunden sind.
Das erfindungsgemäße elektrische Netzwerk 1000 ermöglicht es, Gruppen unterschiedlichen Schutzes zu erzeugen. Jede Gruppe ist mit einer anderen oder mit anderen Gruppen über einen Halbleiterschalter 2010; 2011 verbunden. Im Fehlerfall in ei ner Gruppe sorgen Halbleiterschalter 2010; 2011 für eine schnelle Isolation innerhalb von 10 ps (Mikro Sekunden) die ser Gruppe vom restlichen elektrischen Netzwerk 1000, sodass große Teile des elektrischen Netzwerks 1000 weiter betrieben werden können während des Fehlerfalls.
Innerhalb einer Gruppe, in der der Fehlerfall aufgetreten ist, werden elektromagnetische Schalter verwendet, um den Fehler zu isolieren. Nachdem der Fehler mittels des elektro magnetischen Schalters abgetrennt ist, können die Verbraucher wieder verbunden werden und die Gruppe mit dem Fehlerfall wiedergeladen werden mittels eines Powermanagers. Zum Wieder laden der Kondensatoren können entweder die Halbleiterschal ter 2010; 2011 als Strombegrenzer oder zusätzliche Widerstän de als Strombegrenzer verwendet werden.
Die Einteilung der Gruppen sollte unter den folgenden Randbe dingungen geschehen. Jede Gruppe sollte von ihren Einspeisun gen her so viel Energie zur Verfügung stellen, dass zumindest die eigenen Verbraucher betrieben werden können, sodass diese Gruppe unabhängig von anderen Einspeisungen ist. Des Weiteren sollten die Einspeisungen genug Reserveenergie zur Verfügung haben, um Gruppen mit Fehlern zu versorgen, nachdem ein Feh ler isoliert wurde. Ebenso sollten Verbraucher priorisiert werden nach ihrer Wichtigkeit im getrennten Zustand. Verbrau cher mit geringem Bedarf sollten mit Einspeisungen mit klei nem Gleichstrom-Zwischenkreis-Kondensator (DC-Link) verbunden sein. Hochverfügbare Verbraucher sollten zwischen zwei Grup pen angeordnet sein, um eine erhöhte Redundanz im erfindungs gemäßen elektrischen Netzwerk 1000 zu haben. Empfindliche Verbraucher sollten in Zusatz-Gruppen innerhalb einer Gruppe angeordnet sein, wobei diese Zusatz-Gruppe mittels eines Halbleiterschalters als Untergruppe an diese Gruppe
elektrisch angebunden ist. Weitere Gruppen können wiederum mit weiteren Halbleiterschaltern angebunden werden.
Das erfindungsgemäße elektrische Netzwerk 1000 reduziert ebenso LCR-Schwingungen . Die Sammelschiene 200 sollte direkt mit einem Wechselstrom-Gleichstrom-Wandler verbunden sein, sodass eine geringe Induktivität im Fehlerfall vorliegt. Ebenso bedeutet diese Konfiguration, dass negative Spannung nur in Ausnahmefällen auftreten können. Die negative Spannung kann endgültig dadurch verhindert werden, dass ein Widerstand oder eine Induktivität in Serie geschaltet ist, während der Kondensator entladen wird, sodass die Dioden des Wandlers ge schützt sind. Ein weiterer Schutz ist möglich, in dem Surge- Dioden parallel zum Gleichstrom-Zwischenkreis-Kondensator (DC-Link) verbunden werden.
Das erfindungsgemäße elektrische Netzwerk ermöglicht eine ho he Systemverfügbarkeit aufgrund der Bildung von Gruppen, die im Fehlerfall unabhängig betrieben werden können. Ebenso wird eine Gleichstrom-Zwischenkreis (DC-Link) Entladung von ande ren Einspeisungen verhindert, was eine Entlastung der Kabel im Fehlerfall ermöglicht. Ebenso wird verhindert, dass vom Verbraucher Gleichstrom-Zwischenkreis (DC-Link) aus benach barten Gruppen eine Entladung vorkommt, da eine Entladung hinein in einen Fehler nicht mehr möglich ist. Im Betrieb des elektrischen Netzwerks 1000 ergibt sich ein geringer Energie verlust, da nur wenige Halbleiterschalter 2010; 2011 verwen det werden. Die Halbleiterschalter 2010; 2011 dienen als Strombegrenzer beim Wiederladen der Kondensatoren abgeschal teter Gruppen nach einem Fehlerfall. Dabei kann der Halb leiterschalter kurzzeitig im aktiven Bereich als geregelter Widerstand oder gepulst betrieben werden.

Claims

Patentansprüche
1. Elektrisches Netzwerk (1000) mit Einspeisungen (1010;
1011; 1012; 1013), Verbrauchern (1050; 1051; 1052; 1053) und einem dazwischen angeordneten Verteilnetzwerk (2000) sowie mit mindestens einem Halbleiterschalter (2010;
2011) und mit mindestens einem elektromechanischen Schal ter (2020; 2021; 2022; 2023; 2024; 2025; 2026; 2027) zum Trennen einer Einspeisung (1010; 1011; 1012; 1013) oder eines Verbrauchers (1050; 1051; 1052; 1053) im Fehler fall, wobei Einspeisungen (1010; 1011; 1012; 1013) und Verbraucher (1050; 1051; 1052; 1053) in Gruppen angeord net sind, die mittels einer Sammelschiene (200) und zuge ordneter Halbleiterschalter (2010; 2011) miteinander ver bunden sind,
d a d u r c h g e k e n n z e i c h n e t, d a s s die jeweiligen Einspeisungen (1010; 1011; 1012; 1013) und Verbraucher (1050; 1051; 1052; 1053) jeweils mittels ei nes elektromechanischen Schalters (2020; 2021; 2022;
2023; 2024; 2025; 2026; 2027) im Fehlerfall vom Netzwerk (1000) abgetrennt werden können und im Fehlerfall zur Vermeidung von Querströmen auf der Sammelschiene (200) die einzelnen Gruppen an Einspeisungen (1010; 1011; 1012; 1013) und Verbrauchern (1050; 1051; 1052; 1053) voneinan der getrennt werden können mittels der Halbleiterschalter (2010; 2011) .
2. Elektrisches Netzwerk (1000) gemäß Anspruch 1, bei dem eine der Gruppen an Einspeisungen (1010; 1011; 1012;
1013) und Verbrauchern (1050; 1051; 1052; 1053) aus einer Einspeisung (1010; 1013) und einem Verbraucher (1050;
1053) besteht.
3. Elektrisches Netzwerk (1000) gemäß einem der vorherigen Ansprüche, bei dem eine der Gruppen an Einspeisungen (1010; 1011; 1012; 1013) und Verbrauchern (1050; 1051; 1052; 1053) aus zwei Einspeisungen (1011; 1012) und zwei Verbrauchern (1051; 1052) bestehen.
4. Elektrisches Netzwerk (1000) gemäß einem der vorherigen Ansprüche, bei dem im Fehlerfall nach Auslösung eines elektromechanischen Schalters (2020; 2021; 2022; 2023; 2024; 2025; 2026; 2027) die Gruppe, in der der Fehlerfall aufgetreten ist und der elektromechanische Schalter
(2020; 2021; 2022; 2023; 2024; 2025; 2026; 2027) ausge löst hat, wiedergeladen wird von einer Gruppe ohne Feh lerfall durch das Schalten eines Halbleiterschalters (2010; 2011), der zwischen diesen beiden Gruppen angeord net ist.
5. Elektrisches Netzwerk (1000) gemäß Anspruch 4, bei dem der Halbleiterschalter (2010; 2011), der zwischen diesen beiden Gruppen angeordnet ist, beim Wiederladen als
Strombegrenzer dient.
6. Elektrisches Netzwerk (1000) gemäß Anspruch 5, wobei beim Halbleiterschalter (2010; 2011), der zwischen diesen bei den Gruppen angeordnet ist, ein Widerstand angeordnet ist, der beim Wiederladen als Strombegrenzer dient.
7. Elektrisches Netzwerk (1000) gemäß einem der vorherigen Ansprüche, bei dem die Einspeisungen (1010; 1011; 1012; 1013) und Verbraucher (1050; 1051; 1052; 1053) so auf die Gruppen verteilt sind, dass
- jede Gruppe durch ihre Einspeisungen (1010; 1011; 1012; 1013) genügend Energie für ihre Verbraucher (1050; 1051; 1052; 1053) zur Verfügung stellen kann.
8. Elektrisches Netzwerk (1000) gemäß einem der vorherigen Ansprüche, bei dem die Einspeisungen (1010; 1011; 1012; 1013) und Verbraucher (1050; 1051; 1052; 1053) so auf die Gruppen verteilt sind, dass
- jede Gruppe durch ihre Einspeisungen (1010; 1011; 1012; 1013) genügend Energie für die Versorgung benach barter Gruppen zur Verfügung stellen kann.
9. Elektrisches Netzwerk (1000) gemäß einem der vorherigen Ansprüche, bei dem die Einspeisungen (1010; 1011; 1012;
1013) und Verbraucher (1050; 1051; 1052; 1053) so auf die Gruppen verteilt sind, dass
- hochverfügbare Verbraucher (1050; 1051; 1052;
1053) in Gruppen angeordnet sind, die zwei benachbarte Gruppen aufweisen.
10. Elektrisches Netzwerk (1000) gemäß einem der vorherigen Ansprüche, bei dem die Einspeisungen (1010; 1011; 1012; 1013) und Verbraucher (1050; 1051; 1052; 1053) so auf die Gruppen verteilt sind, dass
- empfindliche Verbraucher (1050; 1051; 1052; 1053) in einer Zusatz-Gruppe angeordnet sind, die wiederum in einer anderen Gruppe als Untergruppe ausgebildet ist.
11. Elektrisches Netzwerk (1000) gemäß Anspruch 10, bei dem die Zusatz-Gruppe mittels eines Halbleiterschalters (2010; 2011) als Untergruppe an die andere Gruppe
elektrisch angebunden ist.
EP19778836.7A 2019-03-29 2019-09-13 Elektrisches netzwerk Pending EP3925046A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/080553 WO2020198985A1 (en) 2019-03-29 2019-03-29 Hybrid circuit breaker, hybrid circuit breaking system, and circuit breaking method
PCT/CN2019/080554 WO2020198986A1 (en) 2019-03-29 2019-03-29 Solid state circuit breaker, method for operating same, and control apparatus of solid state circuit breaker
PCT/CN2019/080558 WO2020198987A1 (en) 2019-03-29 2019-03-29 Method and apparatus for controlling solid state circuit breaker, and solid state circuit breaker
PCT/EP2019/074542 WO2020200494A1 (de) 2019-03-29 2019-09-13 Elektrisches netzwerk

Publications (1)

Publication Number Publication Date
EP3925046A1 true EP3925046A1 (de) 2021-12-22

Family

ID=68072316

Family Applications (5)

Application Number Title Priority Date Filing Date
EP19778834.2A Pending EP3925045A1 (de) 2019-03-29 2019-09-13 VORRICHTUNG ZUM ÖFFNEN ODER SCHLIEßEN EINES GLEICHSTROMKREISES UND VERFAHREN ZUM AUTOMATISCHEN SCHLIEßEN EINES GLEICHSTROMKREISES
EP19778835.9A Pending EP3928405A1 (de) 2019-03-29 2019-09-13 Verfahren zum koordinieren von schutzeinrichtungen in einem verteilnetz
EP19778838.3A Pending EP3925048A1 (de) 2019-03-29 2019-09-13 Elektrisches netzwerk
EP19778837.5A Pending EP3925047A1 (de) 2019-03-29 2019-09-13 Elektrisches netzwerk und verfahren zum betreiben eines elektrischen netzwerks
EP19778836.7A Pending EP3925046A1 (de) 2019-03-29 2019-09-13 Elektrisches netzwerk

Family Applications Before (4)

Application Number Title Priority Date Filing Date
EP19778834.2A Pending EP3925045A1 (de) 2019-03-29 2019-09-13 VORRICHTUNG ZUM ÖFFNEN ODER SCHLIEßEN EINES GLEICHSTROMKREISES UND VERFAHREN ZUM AUTOMATISCHEN SCHLIEßEN EINES GLEICHSTROMKREISES
EP19778835.9A Pending EP3928405A1 (de) 2019-03-29 2019-09-13 Verfahren zum koordinieren von schutzeinrichtungen in einem verteilnetz
EP19778838.3A Pending EP3925048A1 (de) 2019-03-29 2019-09-13 Elektrisches netzwerk
EP19778837.5A Pending EP3925047A1 (de) 2019-03-29 2019-09-13 Elektrisches netzwerk und verfahren zum betreiben eines elektrischen netzwerks

Country Status (4)

Country Link
US (5) US20220172914A1 (de)
EP (5) EP3925045A1 (de)
CN (5) CN114207976A (de)
WO (5) WO2020200495A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020200495A1 (de) * 2019-03-29 2020-10-08 Siemens Aktiengesellschaft Elektrisches netzwerk und verfahren zum betreiben eines elektrischen netzwerks
CA3226863A1 (en) * 2020-10-01 2022-04-07 S&C Electric Company Restoration management

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5654859A (en) * 1995-11-14 1997-08-05 The Boeing Company Fault tolerant power distribution system
AU2003247484A1 (en) * 2002-06-04 2003-12-19 Sure Power Corporation Load break dc power disconnect
US7345863B2 (en) * 2005-07-14 2008-03-18 Schweitzer Engineering Laboratories, Inc. Apparatus and method for identifying a loss of a current transformer signal in a power system
CA2707498A1 (en) * 2007-12-12 2009-06-18 Alan Mcdonnell Electric power distribution methods and apparatus
BRPI0922960A2 (pt) * 2008-12-12 2016-01-26 Abb Research Ltd sistema e aparelho para transferir energia para embarcações
GB2468652B (en) * 2009-03-16 2011-08-31 Ge Aviat Systems Ltd Electrical power distribution
US8916995B2 (en) * 2009-12-02 2014-12-23 General Electric Company Method and apparatus for switching electrical power
WO2012000545A1 (en) * 2010-06-30 2012-01-05 Abb Technology Ag An hvdc transmission system, an hvdc station and a method of operating an hvdc station
EP2503666A3 (de) * 2011-02-01 2013-04-17 Siemens Aktiengesellschaft Stromversorgungssystem für einen elektrischen Antrieb eines Seefahrzeugs
CN103403991B (zh) * 2011-03-11 2017-02-01 Abb 技术有限公司 Dc电网和限制dc电网中故障的影响的方法
US9042146B2 (en) * 2011-11-14 2015-05-26 Rockwell Automation Technologies, Inc. DC pre-charge circuit
EP2634885B1 (de) * 2012-02-29 2015-09-02 ABB Technology Ltd Gleichstromenergiesystem mit Systemschutzfunktionen
GB2501057B (en) * 2012-03-05 2014-09-17 Alstom Technology Ltd Method of fault clearance
DK2654157T3 (da) * 2012-04-17 2022-09-12 Siemens Energy AS Fejlbeskyttelsessystem for et elektrisk system til et dynamisk positioneret fartøj
US8830647B2 (en) * 2012-05-24 2014-09-09 Mersen Usa Newburyport-Ma, Llc Fault current limiter
EP2750257B1 (de) * 2012-09-17 2016-05-11 GE Energy Power Conversion Technology Ltd Schutzschalter
WO2014055333A2 (en) * 2012-10-01 2014-04-10 Abb Research Ltd Medium voltage dc collection system with power electronics
CN103457246B (zh) * 2013-09-10 2016-04-20 中国人民解放军海军工程大学 中压直流供电的直流区域配电网络保护方法
CN104518564B (zh) * 2013-09-26 2017-02-22 中国南方电网有限责任公司 一种具有区域自投功能的备自投装置及备自投方法
US9755433B2 (en) * 2013-11-20 2017-09-05 Abb Schweiz Ag Hybrid alternating current (AC)/direct current (DC) distribution for multiple-floor buildings
US9853536B2 (en) * 2013-12-23 2017-12-26 Abb Schweiz Ag Methods, systems, and computer readable media for managing the distribution of power from a photovoltaic source in a multiple-floor building
EP3140892A4 (de) * 2014-05-04 2018-04-04 ABB Schweiz AG Fehlerschutz in wechselstromverteilungssystemen auf umrichterbasis
US9698589B1 (en) * 2014-06-09 2017-07-04 Google Inc. DC power distribution architectures
CA2898926A1 (en) * 2014-07-31 2016-01-31 General Electric Company Dc power system for marine applications
CN104242229A (zh) * 2014-10-18 2014-12-24 国家电网公司 一种多断口混合直流断路器
JP6064982B2 (ja) * 2014-12-12 2017-01-25 株式会社明電舎 直流遮断装置
EP3248256A1 (de) * 2015-01-23 2017-11-29 Siemens Aktiengesellschaft Verteilung von elektrischer energie auf einem schiff
CN104638618B (zh) * 2015-02-11 2016-03-02 国网山东省电力公司潍坊供电公司 一种gis母线设备跳闸快速恢复供电方法
KR102021863B1 (ko) * 2015-05-13 2019-09-17 엘에스산전 주식회사 직류 차단기
EP3109964A1 (de) * 2015-06-26 2016-12-28 Siemens Aktiengesellschaft Gleichstromnetz
EP3136526B8 (de) * 2015-08-25 2022-12-21 GE Energy Power Conversion Technology Ltd Erdungsfehlerschutzverfahren
CN105207178B (zh) * 2015-09-11 2016-06-29 国家电网公司 一种基于dg接入的配网故障定位及孤岛划分方法
CN105305372B (zh) * 2015-11-20 2018-05-04 中国船舶重工集团公司第七一二研究所 一种高压直流断路器及其控制方法
CN105762775A (zh) * 2016-03-31 2016-07-13 国电南瑞科技股份有限公司 110kV链式供电模式下的电网自愈系统及其自愈逻辑
CN105790236B (zh) * 2016-04-19 2018-03-13 南京南瑞继保电气有限公司 一种直流电流关断装置及其控制方法
GB201610901D0 (en) * 2016-06-22 2016-08-03 Eaton Ind Austria Gmbh Hybrid DC circuit breaker
US10236675B2 (en) * 2016-07-26 2019-03-19 Schweitzer Engineering Laboratories, Inc. Fault detection and protection during steady state using traveling waves
CN106099878B (zh) * 2016-08-04 2019-01-29 华中科技大学 一种电容充电型双向直流断路器及其应用
CN106253243B (zh) * 2016-08-09 2018-09-28 南京南瑞继保电气有限公司 一种高压直流断路器的合闸控制方法
DK3379674T3 (da) * 2017-03-21 2020-09-07 Siemens Ag Strømfordelingssystem
EP3534494B1 (de) * 2018-02-28 2022-04-06 Delta Electronics (Thailand) Public Co., Ltd. Drahtlose übertragung grosser strommengen
CN109193661A (zh) * 2018-11-05 2019-01-11 武汉大学 一种基于多端柔性互联技术的交直流混合优质配电系统
CN109494695A (zh) * 2019-01-07 2019-03-19 南京南瑞继保电气有限公司 一种中压直流配电网故障隔离与故障恢复的方法和系统
WO2020200495A1 (de) * 2019-03-29 2020-10-08 Siemens Aktiengesellschaft Elektrisches netzwerk und verfahren zum betreiben eines elektrischen netzwerks
US11529917B2 (en) * 2020-04-29 2022-12-20 Lear Corporation Switch arrangement and method for controlling a switch arrangement

Also Published As

Publication number Publication date
CN114128072A (zh) 2022-03-01
WO2020200496A1 (de) 2020-10-08
EP3925048A1 (de) 2021-12-22
CN114207975B (zh) 2024-05-31
CN113892219A (zh) 2022-01-04
EP3925047A1 (de) 2021-12-22
WO2020200492A1 (de) 2020-10-08
US20220200274A1 (en) 2022-06-23
WO2020200495A1 (de) 2020-10-08
CN114175436A (zh) 2022-03-11
CN114207976A (zh) 2022-03-18
EP3928405A1 (de) 2021-12-29
WO2020200494A1 (de) 2020-10-08
US20220166214A1 (en) 2022-05-26
US20220200275A1 (en) 2022-06-23
CN114207975A (zh) 2022-03-18
US20220020544A1 (en) 2022-01-20
WO2020200493A1 (de) 2020-10-08
US20220172914A1 (en) 2022-06-02
EP3925045A1 (de) 2021-12-22

Similar Documents

Publication Publication Date Title
EP1318589B1 (de) Windenenergiesystem sowie Verfahren zum Betrieb eines solchen Windenenergiesystems
EP2764595B1 (de) Verfahren zum schützen eines zwischenkreiskondensators in einer stromrichterschaltung
EP2847843B1 (de) Photovoltaikanlage und verfahren zum betreiben einer photovoltaikanlage zur einspeisung von elektrischer leistung in ein mittelspannungsnetz
DE102013103753A1 (de) Photovolatische energieerzeugungsanlage und verfahren zum betreiben einer pv-anlage
EP2338214A1 (de) Vorrichtung mit einem umrichter
DE102012109012B4 (de) Schaltungsanordnung für ein Solarkraftwerk mit einer Gleichspannungsquelle für eine Offsetspannung
DE102013200949A1 (de) Ladeeinrichtung zum Laden einer Anzahl N von Elektrofahrzeugen und Ladestation
DE102014214984A1 (de) Kurzschlussschutzvorrichtung
EP2092622A1 (de) Stromrichter mit kurzschlussstrombegrenzung
WO2020200494A1 (de) Elektrisches netzwerk
EP3783783A1 (de) Anordnung zum regeln eines leistungsflusses in einem wechselspannungsnetz und verfahren zum schutz der anordnung
EP3361593B1 (de) Unterbrechungsfreie stromversorgung für lasten
EP0706218B1 (de) Verfahren zur Fehlerbehebung in einer Stromrichterschaltungsanordnung
EP2912741B1 (de) Wechselrichter, verfahren zum betreiben eines wechselrichters und energieversorgungsanlage mit einem wechselrichter
DE102013111869A1 (de) Photovoltaikanlage und Vorrichtung zum Betreiben einer Photovoltaikanlage
EP4042537B1 (de) Verfahren zum betrieb einer energieerzeugungsanlage und energieerzeugungsanlage mit dem verfahren
EP4087087A2 (de) Energieversorgungssystem
EP2608384A1 (de) Modularer Stromrichter mit Fehlererkennung
DE102011000737A1 (de) Schutzeinrichtung für eine Photovoltaikanlage
EP3991195A1 (de) Leistungsschalter für gleichströme
WO2000017981A1 (de) Energieversorgungseinrichtung für schutzgeräte von schaltanlagen
EP4088353A1 (de) Elektrisches netzwerk
DE10041340A1 (de) Einrichtung zur Einspeisung elektrischer Energie aus einer Photovoltaikeinrichtung in ein elektrisches Energieversorgungsnetz
DE102013211094A1 (de) Energiespeichermodul für eine Energiespeichereinrichtung und Energiespeichereinrichtung mit solchem

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210916

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)