EP3923427B1 - Gasmotorzündkerze - Google Patents

Gasmotorzündkerze Download PDF

Info

Publication number
EP3923427B1
EP3923427B1 EP20179017.7A EP20179017A EP3923427B1 EP 3923427 B1 EP3923427 B1 EP 3923427B1 EP 20179017 A EP20179017 A EP 20179017A EP 3923427 B1 EP3923427 B1 EP 3923427B1
Authority
EP
European Patent Office
Prior art keywords
spark plug
gas engine
wall
section
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20179017.7A
Other languages
English (en)
French (fr)
Other versions
EP3923427A1 (de
Inventor
Elias Russegger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to EP20179017.7A priority Critical patent/EP3923427B1/de
Publication of EP3923427A1 publication Critical patent/EP3923427A1/de
Application granted granted Critical
Publication of EP3923427B1 publication Critical patent/EP3923427B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/46Sparking plugs having two or more spark gaps
    • H01T13/467Sparking plugs having two or more spark gaps in parallel connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/32Sparking plugs characterised by features of the electrodes or insulation characterised by features of the earthed electrode

Definitions

  • the invention relates to a gas engine spark plug with the features of the preamble of claim 1.
  • Gas engine spark plugs of the type mentioned are known from the prior art, for example from AT 516 835 B1 .
  • the spark plug described therein provides, as a separating element, an electrode holder plate attached to the spark plug housing, which carries the ground electrode, with the center electrode lying opposite the ground electrode, separated by an ignition gap.
  • the ratio of the volumes of the prechamber space to the storage space is in the range of the compression ratio of the internal combustion engine.
  • this spark plug has a large number of individual components that have to be manufactured and assembled to produce the spark plug. Therefore, there is potential for optimization.
  • the invention is based on the object of providing a gas engine spark plug in which optimal ignition can be achieved using simple design means.
  • the gas engine spark plug has a spark plug housing, a center electrode and a ground electrode.
  • the ground electrode is annular or ring-section-shaped and surrounds the center electrode on the outside (for example radially) at least partially, preferably completely, the ground electrode being connected directly to the spark plug housing.
  • the spark plug housing itself serves as the ground electrode (directly and not via, for example, a spark plug housing). an intermediate ring) as a carrier body for the ground electrode.
  • improved heat dissipation can be achieved, which benefits the service life of the gas engine spark plug.
  • the proposed design enables a thermal conductivity of approx. 50 W/(m*K) (watts per meter and Kelvin) to be achieved on the spark plug housing.
  • the spark plug housing can be sleeve-shaped or hollow-cylindrical.
  • the spark plug housing has two axial ends, whereby the pre-chamber or combustion chamber end can be closed (closed end) and the connection-side end, from which an insulator can be inserted into the spark plug housing, can be open (open end).
  • An external thread (plug thread) can be formed on the outside of the spark plug housing (screw-in section).
  • the spark plug housing can accommodate a section of an insulator and a section of a rod electrode in its interior, the rod electrode being arranged radially inside the insulator.
  • the ground electrode is arranged at the closed end (prechamber side or combustion chamber side) of the spark plug housing.
  • the ground electrode and the center electrode are in particular arranged relative to one another in such a way that an ignition gap remains radially between these components.
  • the center electrode can be designed as a circular disk, for example.
  • the center electrode can be attached to the rod electrode be attached, e.g. the center electrode can be welded to the rod electrode.
  • the ground electrode can be designed in a ring shape, for example as a circular ring marker, or in the shape of a ring section, i.e. by one or more circular ring sections which are connected to one another in an electrically conductive manner.
  • the present object is a gas engine spark plug, i.e. a spark plug for a gas engine.
  • a gas engine is understood here to be an internal combustion engine that can be or is operated with fuel in the form of natural gas, landfill gas, biogas, sewage gas, pyrolytic gas and/or mine gas.
  • fuel in the form of natural gas, landfill gas, biogas, sewage gas, pyrolytic gas and/or mine gas.
  • an ignitable mixture of one or more of the aforementioned fuels and air (oxygen) is burned in a combustion chamber.
  • the spark plug housing has a sleeve-shaped housing section, from which a (front) wall extends inwards (for example radially) towards the center electrode, the wall being made of the same material as the sleeve-shaped housing section, and the ground electrode being arranged on the wall (and on this is attached).
  • the uniform material design promotes heat dissipation from the wall (area of the center electrode and ground electrode) via the sleeve-shaped housing section to the outside (e.g. to the motor housing).
  • the Wall forms the majority of the end face of the spark plug housing at the closed end (prechamber side or combustion chamber side).
  • the wall extends to the center electrode in such a way that an ignition gap (for example annular gap-shaped) remains between the radially inner end of the wall or the ground electrode and the center electrode.
  • the ground electrode is preferably arranged on the side of the wall facing away from the sleeve-shaped housing section (front arrangement).
  • the ground electrode can expediently be connected to the spark plug housing in a force-fitting, form-fitting and/or material-locking manner.
  • a sufficiently stable fastening of the ground electrode to the spark plug housing can be achieved.
  • a non-positive fastening can be achieved, for example, by pressing the ground electrode into a recess provided for this purpose and formed on the spark plug housing (press fit).
  • a positive fastening can be achieved by inserting the ground electrode into a recess provided for this purpose and formed on the spark plug housing and deforming sections of the spark plug housing adjacent to the ground electrode or the recess (underhand grip).
  • the ground electrode can be welded or soldered to the spark plug housing for a cohesive attachment. This makes it possible to achieve a structurally simple and reliable cohesive connection. This Connection promotes heat dissipation from the ground electrode to the spark plug housing, for example the (front) wall.
  • the wall can increase in cross-section from the center electrode outwards (e.g. radially), preferably with the wall having a trapezoidal cross-section. This allows sufficient stability to be achieved with comparatively little material. In addition, this contributes to good heat dissipation from the (front) wall to the sleeve-shaped housing section of the spark plug housing.
  • An insulator can be conveniently enclosed in the spark plug housing, with a storage space (cavity) being arranged between the end of the insulator facing the center electrode and the (front) wall.
  • the insulator is thus spaced apart from the front wall so that a fuel-air mixture can penetrate into the storage space through the ignition gap.
  • the inner surface of the wall facing the insulator and the front surface of the insulator facing the wall can be oriented parallel to one another in sections, which contributes to a uniform design of the storage space.
  • the storage space can have a volume of greater than 0 to 500 mm 3 (cubic millimeters), in particular between 50 and 500 mm 3 .
  • the storage space therefore has a certain minimum volume in which the fuel-air mixture can be stored can be absorbed, which has a positive effect on the ignition process.
  • the insulator can rest with a section on a shoulder of the spark plug housing in such a way that the section and the shoulder form a seal, the seal being carried out without a sealing element (e.g. without a sealing ring) between the insulator and the spark plug housing (design without a sealing element). Due to a reduced number of components, this contributes to easier production and assembly of the gas engine spark plug.
  • the seal (between the storage space and the rear part of the gas engine spark plug) is intended to prevent a loss of pressure in the cylinder of the internal combustion engine when the gas engine spark plug is installed.
  • the outer diameter of the insulator tapers, in particular conically (conically tapering section).
  • the inner diameter of the spark plug housing tapers at the shoulder, in particular conically (counter-cone).
  • the insulator and the spark plug housing each have a contact surface, whereby the insulator and spark plug housing lie flat against each other.
  • the spark plug housing can have an increased wall thickness between the shoulder and the front end where the center electrode is located (thickened cross-section in a part of the sleeve-shaped housing section, in particular a part of the screw-in section). This contributes to a high level of stability. It also promotes heat dissipation.
  • the wall thickness in the area in question can be approximately doubled compared to the part of the sleeve-shaped section or the screw-in section facing away from the front end in relation to the shoulder (150 to 250 percent of the wall thickness of the screw-in section in the part of the shoulder facing away from the front end).
  • the center electrode and/or the ground electrode can expediently be made of precious metal or have a precious metal coating. This contributes to a high level of stability of the gas engine spark plug.
  • the precious metal can be a rhodium-iridium alloy.
  • the (front) wall can have a central passage (relative to the central axis) in which the center electrode is arranged.
  • This contributes to a structurally simple and central arrangement of the center electrode.
  • the center electrode can be attached to the rod electrode (seated in the insulator), for example welded.
  • the (front) wall can have several eccentric openings (relative to the central axis), which are preferably arranged at equal angular distances from one another. This creates a flow connection from the ignition gap through the storage space into the openings. This contributes to optimal ignition, since ignition can create ignition flares that spread out from the openings.
  • the openings can have a circular cross-section (in axial sections).
  • the openings can be designed as bores, for example.
  • the openings can have sections at the end, i.e. at the inner end and/or the outer end, that widen towards the respective end, e.g. conically widening sections. This contributes to positive flow properties, so that the ignition flares can spread out as unhindered as possible. 2, 3, 4, 5, 6, 7 or 8 openings can be formed on the (front) wall. This means that a sufficient number of ignition flares can be provided.
  • the openings can each have an opening cross-section of 3 mm 2 to 80 mm 2 (square millimeters). This provides a sufficiently large opening cross-section so that even lean mixtures can be reliably ignited.
  • a separate antechamber housing that can be connected to the gas engine spark plug, in particular screwed, can be provided.
  • the gas engine spark plug and the prechamber housing can form an assembly.
  • Figure 1 shows a gas engine spark plug, which is designated overall by the reference number 10.
  • the gas engine spark plug 10 extends along a central axis 12 and has a rear (connection side) end 14 and a front (prechamber side or combustion chamber side) end 16.
  • the gas engine spark plug 10 has a spark plug housing 18 into which an insulator 20 is inserted.
  • a rod electrode 22 is accommodated within the insulator 20 (cf. Fig.2 ), to which a connecting bolt 24 is attached (cf. Fig. 1 ).
  • the spark plug housing 18 has a tool engagement section 26, a sealing collar 28 with a sealing surface 30 and a screw-in section 32 with an external thread 34.
  • the gas engine spark plug 10 also has a center electrode 36 and a ground electrode 38 (cf. Fig.1 and 2 ).
  • the center electrode 36 is designed in the shape of a circular disk and is connected to the rod electrode 22, for example. welded (cf. Fig.2 ).
  • the ground electrode 38 is annular and surrounds the center electrode 36 radially outwards (cf. Fig.2 ).
  • the ground electrode 38 is directly connected to the spark plug housing 18 (cf. Fig.2 ).
  • the spark plug housing 18 itself serves (directly and not via, for example, an intermediate ring) as a carrier body for the ground electrode 38.
  • the spark plug housing 18 has a sleeve-shaped housing section 40, from which, in the example, a wall 42 extends radially inwards to the center electrode 36 (cf. Fig.2 ).
  • the wall 42 is made of the same material as the sleeve-shaped housing section 40.
  • the ground electrode 38 is arranged on the wall 42 and attached to it.
  • the wall 42 forms the majority of an end face 44 at the front end 16 of the spark plug housing 18.
  • the wall 42 extends in particular to the center electrode 36 in such a way that an (e.g. annular gap-shaped) ignition gap 46 remains between the radially inner end of the wall 42 or the ground electrode 38 and the center electrode 36.
  • the ground electrode 38 is arranged on the side of the wall 42 facing away from the sleeve-shaped housing section 40 (front arrangement).
  • the ground electrode 38 can be connected to the Spark plug housing 18.
  • the ground electrode 38 is integrally connected to the spark plug housing 18 by welding.
  • the wall 42 increases in cross section from the center electrode 36 outwards (for example radially), with the wall 42 having a trapezoidal cross section (cf. Fig.2 ).
  • the insulator 20 is enclosed in the spark plug housing 18, with a storage space 48 (cavity 48) being arranged between the end of the insulator 20 facing the center electrode 36 and the (front) wall 42.
  • the insulator 20 is spaced apart from the wall 42 so that a fuel-air mixture can penetrate into the storage space 48 through the ignition gap 46.
  • the inner surface of the wall 42 facing the insulator 20 and the end surface of the insulator 20 facing the wall can be oriented parallel to one another in sections, as described above.
  • the storage space can have a volume of greater than 0 to 500 mm 3 , in particular between 50 and 500 mm 3 .
  • the insulator 20 rests with a section 50 on a shoulder 52 of the spark plug housing 18 in such a way that the section 50 and the shoulder 52 form a seal, wherein the seal is carried out without a sealing element between the insulator 20 and the spark plug housing 18.
  • the outer diameter of the insulator 20 tapers conically in the example.
  • the inner diameter of the spark plug housing 18 also tapers conically in the example (counter-cone).
  • the insulator 20 and the spark plug housing 18 each have a contact surface (without reference symbol), with which they lie flat against one another at the seal.
  • the spark plug housing 18 has an increased wall thickness between the shoulder 52 and the front end 16, on which the center electrode 36 is located (thickened cross section 54 in a part of the sleeve-shaped housing section 40).
  • the wall thickness can be approximately doubled in the thickened cross section 54 compared to the part of the screw-in section 26 facing away from the front end 16 in relation to the shoulder 52, as described above.
  • the center electrode 36 and/or the ground electrode 38 can be made of precious metal or have a precious metal coating, for example a rhodium-iridium alloy.
  • the wall 42 has a central passage 56 (relative to the central axis 12) in which the center electrode 36 is arranged.
  • the (front) wall 42 has a plurality of (relative to the central axis 12) eccentric openings 58, which are arranged at preferably equal angular distances from one another.
  • the wall 42 has four eccentric openings 58 (cf. Fig.1 ).
  • the openings 58 can each have a circular cross-section 60 (axially sectionally) (cf. Fig.2 ).
  • the openings 58 can be designed as bores, for example.
  • the openings 58 have sections 62, 64 at the ends, ie at the inner and outer ends, which widen towards the respective end and, for example, widen conically.
  • the openings 58 can each have an opening cross-section of 3 mm 2 to 80 mm 2 , as described above.
  • a pre-chamber housing connectable to the gas engine spark plug 10 can be provided, as described above (not shown).

Landscapes

  • Spark Plugs (AREA)

Description

  • Die Erfindung betrifft eine Gasmotorzündkerze mit den Merkmalen des Oberbegriffs von Anspruch 1.
  • Gasmotorzündkerzen der eingangs genannten Art sind aus dem Stand der Technik bekannt, bspw. aus AT 516 835 B1 . Die darin beschriebene Zündkerze sieht als Trennelement eine am Zündkerzengehäuse befestigte Elektrodenhalterplatte vor, die die Masseelektrode trägt, wobei der Masseelektrode, getrennt durch einen Zündspalt, die Mittelelektrode gegenüberliegt. Das Verhältnis der Volumina des Vorkammerraums zum Speicherraums liegt im Bereich des Verdichtungsverhältnisses der Verbrennungskraftmaschine.
  • Somit soll auch bei mageren Verbrennungsgasgemischen eine gute Zündung erreicht werden. Allerdings weist diese Zündkerze eine große Anzahl einzelner Komponenten auf, die zur Herstellung der Zündkerze zu fertigen und zu montieren sind. Daher besteht Optimierungspotenzial.
  • DE 10 2015 102 745 A1 , US 2019 / 170 090 A1 und US 2018 / 123 324 A1 offenbaren jeweils eine Gasmotorzündkerze mit Merkmalen des Anspruchs 1.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Gasmotorzündkerze bereitzustellen, bei der mit einfachen konstruktiven Mitteln eine optimale Zündung erreicht werden kann.
  • Die Erfindung löst diese Aufgabe durch eine Gasmotorzündkerze mit den Merkmalen des Anspruchs 1. Demnach weist die Gasmotorzündkerze ein Zündkerzengehäuse, eine Mittelelektrode und eine Masseelektrode auf. Die Masseelektrode ist ringförmig oder ringabschnittförmig ausgebildet und umgibt die Mittelelektrode nach (bspw. radial) außen zumindest teilweise, vorzugsweise vollständig, wobei die Masseelektrode unmittelbar mit dem Zündkerzengehäuse verbunden ist.
  • Somit kann eine konstruktiv einfache Ausgestaltung mit wenigen Komponenten und wenigen Fügestellen erreicht werden (eine Schweißverbindung weniger), da ein separater Trägerkörper für die Masseelektrode entfällt. So dient das Zündkerzengehäuse selbst (unmittelbar und nicht über bspw. einen Zwischenring) als Trägerkörper für die Masseelektrode. Neben einem reduzierten Herstellungsaufwand kann eine verbesserte Wärmeabfuhr erreicht werden, was die Standzeit der Gasmotorzündkerze begünstigt. Durch die vorgeschlagene Ausgestaltung kann am Zündkerzengehäuse eine Wärmeleitfähigkeit von ca. 50 W/(m*K) (Watt pro Meter und Kelvin) erreicht werden.
  • Das Zündkerzengehäuse kann hülsenförmig oder hohlzylindrisch ausgebildet sein. Das Zündkerzengehäuse weist zwei axiale Enden auf, wobei das vorkammerseitige bzw. brennraumseitige Ende geschlossen ausgebildet sein kann (geschlossenes Ende) und das anschlussseitige Ende, von dem ausgehend ein Isolator in das Zündkerzengehäuse eingeführt werden kann, offen (offenes Ende). An der Außenseite des Zündkerzengehäuses kann ein Außengewinde (Kerzengewinde) ausgebildet sein (Einschraubabschnitt).
  • Das Zündkerzengehäuse kann in seinem Inneren einen Abschnitt eines Isolators und einen Abschnitt einer Stabelektrode aufnehmen, wobei die Stabelektrode radial innerhalb des Isolators angeordnet ist. Die Masseelektrode ist am geschlossenen Ende (vorkammerseitiges bzw. brennraumseitige Ende) des Zündkerzengehäuses angeordnet. Die Masseelektrode und die Mittenelektrode sind insbesondere derart zueinander angeordnet, dass radial zwischen diesen Komponenten ein Zündspalt verbleibt.
  • Die Mittelelektrode kann bspw. als Kreisscheibe ausgebildet sein. Die Mittelelektrode kann an der Stabelektrode befestigt sein, bspw. kann die Mittelelektrode an der Stabelektrode verschweißt sein.
  • Wie bereits angedeutet kann die Masseelektrode ringförmig ausgebildet sein, bspw. als Kreisringschreibe, oder ringabschnittsförmig, d.h. durch einen oder mehrere Kreisringabschnitte, die elektrisch leitend miteinander verbunden sind.
  • Beim vorliegenden Gegenstand handelt es sich um eine Gasmotorzündkerze, d.h. um eine Zündkerze für einen Gasmotor. Unter einem Gasmotor wird vorliegend ein Verbrennungsmotor verstanden, der mit Kraftstoff in Form von Erdgas, Deponiegas, Biogas, Klärgas, pyrolytisches Gas und/oder Grubengas betrieben werden kann bzw. betrieben wird. Dazu wird in einem Brennraum ein zündfähiges Gemisch aus einem oder mehreren der genannten Kraftstoffe und Luft (Sauerstoff) verbrannt.
  • Erfindungsgemäß weist das Zündkerzengehäuse einen hülsenförmigen Gehäuseabschnitt auf, von dem sich eine (stirnseitige) Wandung nach (bspw. radial) innen zur Mittenelektrode erstreckt, wobei die Wandung materialeinheitlich mit dem hülsenförmigen Gehäuseabschnitt ausgebildet ist, und wobei die Masseelektrode an der Wandung angeordnet (und an dieser befestigt) ist. Die materialeinheitliche Ausgestaltung begünstigt die Wärmeableitung von der Wandung (Bereich von Mittelelektrode und Masseelektrode) über den hülsenförmigen Gehäuseabschnitt nach außen (bspw. zum Motorgehäuse). Die Wandung bildet den überwiegenden Teil der Stirnseite des Zündkerzengehäuses am geschlossenen Ende (vorkammerseitige bzw. brennraumseitige Ende) aus. Die Wandung erstreckt sich so zur Mittenelektrode, dass zwischen dem radial inneren Ende der Wandung bzw. der Masseelektrode und der Mittelelektrode ein (bspw. ringspaltförmiger) Zündspalt verbleibt. Die Masseelektrode ist vorzugsweise an der vom hülsenförmigen Gehäuseabschnitt abgewandten Seite der Wandung angeordnet (stirnseitige Anordnung).
  • In zweckmäßiger Weise kann die Masseelektrode kraftschlüssig, formschlüssig und/oder stoffschlüssig mit dem Zündkerzengehäuse verbunden sein. Durch Ausgestaltung einer dieser Befestigungsarten oder durch Kombination mehrerer dieser Befestigungsarten kann eine hinreichend stabile Befestigung der Masseelektrode am Zündkerzengehäuse erreicht werden. Eine kraftschlüssige Befestigung lässt sich bspw. durch Einpressen der Masseelektrode in eine dafür vorgesehene und am Zündkerzengehäuse ausgebildete Ausnehmung erzielen (Presspassung). Eine formschlüssige Befestigung lässt sich durch Einbringen der Masseelektrode in eine dafür vorgesehene und am Zündkerzengehäuse ausgebildete Ausnehmung und Verformen von an die Masseelektrode bzw. die Ausnehmung angrenzenden Abschnitte des Zündkerzengehäuses erreichen (Hintergriff).
  • Im Konkreten kann für eine stoffschlüssige Befestigung die Masselelektrode mit dem Zündkerzengehäuse verschweißt oder verlötet sein. Hiermit lässt sich eine konstruktiv einfache und zuverlässige stoffschlüssige Verbindung erzielen. Diese Verbindung begünstigt die Wärmeableitung von der Masseelektrode auf das Zündkerzengehäuse, bspw. die (stirnseitige) Wandung.
  • In vorteilhafter Weise kann die Wandung im Querschnitt von der Mittelelektrode nach (bspw. radial) außen zunehmen, vorzugsweise wobei die Wandung einen trapezförmigen Querschnitt aufweist. Hiermit lässt sich mit vergleichsweise wenig Material eine hinreichende Stabilität erreichen. Zudem trägt dies zu einer guten Wärmeabführung von der (stirnseitigen) Wandung zum hülsenförmigen Gehäuseabschnitt des Zündkerzengehäuses bei.
  • In zweckmäßiger Weise kann im Zündkerzengehäuse ein Isolator eingefasst sein, wobei zwischen dem der Mittelelektrode zugewandten Ende des Isolators und der (stirnseitigen) Wandung ein Speicherraum (Hohlraum) angeordnet ist. Somit ist der Isolator von der stirnseitigen Wandung beabstandet, so dass durch den Zündspalt ein Kraftstoff-Luft-Gemisch in den Speicherraum eindringen kann. Die dem Isolator zugewandte Innenfläche der Wandung und die der Wandung zugewandte Stirnfläche des Isolators können abschnittsweise parallel zueinander orientiert sein, was zu einer gleichmäßigen Ausgestaltung des Speicherraums beiträgt.
  • Im Konkreten kann der Speicherraum ein Volumen von größer 0 bis 500 mm3 (Kubikmillimeter), insbesondere zwischen 50 und 500 mm3, aufweisen. Somit verfügt der Speicherraum über ein gewisses Mindestvolumen, in dem Kraftstoff-Luft-Gemisch aufgenommen werden kann, was sich positiv auf den Zündvorgang auswirkt.
  • In vorteilhafter Weise kann der Isolator mit einem Abschnitt derart auf einem Absatz des Zündkerzengehäuses aufliegen, dass der Abschnitt und der Absatz eine Abdichtung ausbilden, wobei die Abdichtung ohne Dichtelement (bspw. ohne Dichtring) zwischen Isolator und Zündkerzengehäuses ausgeführt ist (dichtelementfreie Ausgestaltung). Durch eine reduzierte Anzahl an Komponenten trägt dies zu einer einfacheren Fertigung und Montage der Gasmotorzündkerze bei. Die Abdichtung (zwischen Speicherraum und dem rückwärtigen Teil der Gasmotorzündkerze) soll im eingebauten Zustand der Gasmotorzündkerze einen Druckverlust im Zylinder des Verbrennungsmotors verhindern. In dem Abschnitt, mit dem der Isolator auf dem Absatz des Zündkerzengehäuses aufliegt, verjüngt sich der Außendurchmesser des Isolators, insbesondere konisch (sich konisch verjüngender Abschnitt). Am Absatz verjüngt sich der Innendurchmesser des Zündkerzengehäuses, insbesondere konisch (Gegenkonus). Der Isolator und das Zündkerzengehäuse weisen jeweils eine Auflagefläche auf, womit Isolator und Zündkerzengehäuse flächig aneinander anliegen.
  • Im Rahmen einer bevorzugten Ausgestaltung kann das Zündkerzengehäuse zwischen dem Absatz und dem stirnseitigen Ende, an dem sich die Mittelektrode befindet, eine vergrößerte Wandstärke aufweisen (verdickter Querschnitt in einem Teil des hülsenförmigen Gehäuseabschnitts, insbesondere einem Teil des Einschraubabschnitts). Dies trägt zu einer hohen Stabilität bei. Zudem wird die Wärmeableitung begünstigt. Die Wandstärke kann im betreffenden Bereich verglichen mit dem bezogen auf den Absatz vom vorderen Ende abgewandten Teil des hülsenförmigen Abschnitts bzw. des Einschraubabschnitts in etwa verdoppelt sein (150 bis 250 Prozent der Wandstärke des Einschraubabschnitts in dem vom vorderen Ende abgewandten Teil des Absatzes).
  • In zweckmäßiger Weise können die Mittelelektrode und/oder die Masseelektrode aus Edelmetall ausgebildet sein oder eine Edelmetallbeschichtung aufweisen. Dies trägt zu einer hohen Standfestigkeit der Gasmotorzündkerze bei. Bei dem Edelmetall kann es sich um eine Rhodium-Iridium-Legierung handeln.
  • In vorteilhafter Weise kann die (stirnseitige) Wandung einen (bezogen auf die Mittelachse) zentrischen Durchgang aufweisen, in der die Mittelelektrode angeordnet ist. Dies trägt zu einer konstruktiv einfachen und zentralen Anordnung der Mittelelektrode bei. Wie oben angedeutet, kann die Mittelelektrode an der (im Isolator sitzenden) Stabelektrode befestigt sein, bspw. verschweißt sein.
  • Im Rahmen einer bevorzugten Ausgestaltung kann die (stirnseitige) Wandung mehrere (bezogen auf die Mittelachse) exzentrische Öffnungen aufweisen, die in vorzugsweise gleichen Winkelabständen zueinander angeordnet sind. Somit ist eine Strömungsverbindung vom Zündspalt durch den Speicherraum in die Öffnungen geschaffen. Dies trägt zu einer optimalen Zündung bei, da bei einer Zündung Zündfackeln entstehen können, die sich von den Öffnungen ausbreiten. Die Öffnungen können (axial abschnittsweise) einen kreisrunden Querschnitt aufweisen. Die Öffnungen können bspw. als Bohrungen ausgebildet sein. Optional können die Öffnungen endseitig, d.h. am inneren Ende und/oder am äußeren Ende, sich zum jeweiligen Ende hin erweiternde Abschnitte aufweisen, bspw. sich konisch erweiternde Abschnitte. Dies trägt zu positiven Strömungseigenschaften bei, so dass sich die Zündfackeln möglichst ungehindert ausbreiten können. An der (stirnseitigen) Wandung können 2, 3, 4, 5, 6, 7 oder 8 Öffnungen ausgebildet sein. Somit lassen sich hinreichend viele Zündfackeln bereitstellen.
  • In vorteilhafter Weise können die Öffnungen jeweils einen Öffnungsquerschnitt von 3 mm2 bis 80 mm2 (Quadratmillimeter) aufweisen. Dadurch ist ein hinreichend großer Öffnungsquerschnitt bereitgestellt, so dass auch magere Gemische zuverlässig gezündet werden können.
  • Im Rahmen einer bevorzugten Ausgestaltung kann ein separates, mit der Gasmotorzündkerze verbindbares, insbesondere verschraubbares, Vorkammergehäuse vorgesehen sein. Die Gasmotorzündkerze und das Vorkammergehäuse können eine Baugruppe bilden.
  • Die Erfindung wird im Folgenden anhand der Figuren näher erläutert, wobei gleiche oder funktional gleiche Elemente mit identischen Bezugszeichen versehen sind, ggf. jedoch lediglich einmal. Es zeigen:
  • Fig.1
    eine Ausführungsform der Gasmotorzündkerze in einer perspektivischen Ansicht; und
    Fig.2
    die Gasmotorzündkerze aus Figur 1 in einem Teilschnitt gemäß Schnittachse A-A in Figur 1.
  • Figur 1 zeigt eine Gasmotorzündkerze, die insgesamt mit dem Bezugszeichen 10 bezeichnet ist. Die Gasmotorzündkerze 10 erstreckt sich entlang einer Mittelachse 12 und weist ein rückwärtiges (anschlussseitiges) Ende 14 und ein vorderes (vorkammerseitiges bzw. brennraumseitiges) Ende 16 auf.
  • Die Gasmotorzündkerze 10 weist ein Zündkerzengehäuse 18 auf, in das ein Isolator 20 eingebracht ist. Innerhalb des Isolators 20 ist eine Stabelektrode 22 aufgenommen (vgl. Fig.2), an der ein Anschlussbolzen 24 befestigt ist (vgl. Fig. 1).
  • Das Zündkerzengehäuse 18 weist einen Werkzeugangriffsabschnitt 26, einen Dichtbund 28 mit einer Dichtfläche 30 und einen Einschraubabschnitt 32 mit einem Außengewinde 34 auf.
  • Die Gasmotorzündkerze 10 weist zudem eine Mittelelektrode 36 und eine Masseelektrode 38 auf (vgl.Fig.1 und 2). Die Mittelelektrode 36 ist im Beispiel kreisscheibenförmig ausgebildet und mit der Stabelektrode 22 verbunden, bspw. verschweißt (vgl. Fig.2). Die Masseelektrode 38 ist im Beispiel ringförmig ausgebildet und umgibt die Mittelelektrode 36 nach radial außen (vgl. Fig.2).
  • Die Masseelektrode 38 ist unmittelbar mit dem Zündkerzengehäuse 18 verbunden (vgl. Fig.2). Das Zündkerzengehäuse 18 selbst dient (unmittelbar und nicht über bspw. einen Zwischenring) als Trägerkörper für die Masseelektrode 38.
  • Das Zündkerzengehäuse 18 weist einen hülsenförmigen Gehäuseabschnitt 40 auf, von dem sich im Beispiel eine Wandung 42 nach radial innen zur Mittenelektrode 36 erstreckt (vgl. Fig.2). Die Wandung 42 ist materialeinheitlich mit dem hülsenförmigen Gehäuseabschnitt 40 ausgebildet. Die Masseelektrode 38 ist an der Wandung 42 angeordnet und an dieser befestigt. Die Wandung 42 bildet den überwiegenden Teil einer Stirnseite 44 am vorderen Ende 16 des Zündkerzengehäuses 18 aus.
  • Die Wandung 42 erstreckt sich insbesondere so zur Mittenelektrode 36, dass zwischen dem radial inneren Ende der Wandung 42 bzw. der Masseelektrode 38 und der Mittelelektrode 36 ein (bspw. ringspaltförmiger) Zündspalt 46 verbleibt. Die Masseelektrode 38 ist im Beispiel an der vom hülsenförmigen Gehäuseabschnitt 40 abgewandten Seite der Wandung 42 angeordnet (stirnseitige Anordnung).
  • Grundsätzlich kann die Masseelektrode 38 kraftschlüssig, formschlüssig und/oder stoffschlüssig mit dem Zündkerzengehäuse 18 verbunden sein. Im Beispiel ist die Masseelektrode 38 stoffschlüssig mit dem Zündkerzengehäuse 18 verbunden, und zwar durch Verschweißen.
  • Im Beispiel nimmt die Wandung 42 im Querschnitt von der Mittelelektrode 36 nach (bspw. radial) außen zu, wobei die Wandung 42 einen trapezförmigen Querschnitt aufweist (vgl. Fig.2).
  • Wie bereits angedeutet, ist im Zündkerzengehäuse 18 der Isolator 20 eingefasst, wobei zwischen dem der Mittelelektrode 36 zugewandten Ende des Isolators 20 und der (stirnseitigen) Wandung 42 ein Speicherraum 48 (Hohlraum 48) angeordnet ist. Der Isolator 20 ist von der Wandung 42 beabstandet, so dass durch den Zündspalt 46 ein Kraftstoff-Luft-Gemisch in den Speicherraum 48 eindringen kann.
  • Die dem Isolator 20 zugewandte Innenfläche der Wandung 42 und die der Wandung zugewandte Stirnfläche des Isolators 20 können abschnittsweise parallel zueinander orientiert sein, wie oben beschrieben. Der Speicherraum kann ein Volumen von größer 0 bis 500 mm3, insbesondere zwischen 50 und 500 mm3, aufweisen.
  • Der Isolator 20 liegt mit einem Abschnitt 50 derart auf einem Absatz 52 des Zündkerzengehäuses 18 auf, dass der Abschnitt 50 und der Absatz 52 eine Abdichtung ausbilden, wobei die Abdichtung ohne Dichtelement zwischen Isolator 20 und Zündkerzengehäuse 18 ausgeführt ist. In dem Abschnitt 50 verjüngt sich der Außendurchmesser des Isolators 20 im Beispiel konisch. Am Absatz 52 verjüngt sich der Innendurchmesser des Zündkerzengehäuses 18 im Beispiel ebenfalls konisch (Gegenkonus). Der Isolator 20 und das Zündkerzengehäuse 18 weisen jeweils eine Auflagefläche auf (ohne Bezugszeichen), womit diese an der Abdichtung flächig aneinander anliegen.
  • Das Zündkerzengehäuse 18 weist im Beispiel zwischen dem Absatz 52 und dem stirnseitigen Ende 16, an dem sich die Mittelektrode 36 befindet, eine vergrößerte Wandstärke auf (verdickter Querschnitt 54 in einem Teil des hülsenförmigen Gehäuseabschnitts 40). Die Wandstärke kann im verdickten Querschnitt 54 verglichen mit dem bezogen auf den Absatz 52 von vorderen Ende 16 abgewandten Teils des Einschraubabschnitts 26 in etwa verdoppelt sein, wie oben beschrieben.
  • Die Mittelelektrode 36 und/oder die Masseelektrode 38 können aus Edelmetall ausgebildet sein oder eine Edelmetallbeschichtung aufweisen, bspw. eine Rhodium-Iridium-Legierung. Die Wandung 42 weist einen (bezogen auf die Mittelachse 12) zentrischen Durchgang 56 auf, in dem die Mittelelektrode 36 angeordnet ist.
  • Die (stirnseitige) Wandung 42 weist mehrere (bezogen auf die Mittelachse 12) exzentrische Öffnungen 58 auf, die in vorzugsweise gleichen Winkelabständen zueinander angeordnet sind. Im Beispiel verfügt die Wandung 42 über vier exzentrische Öffnungen 58 (vgl. Fig.1).
  • Die Öffnungen 58 können (axial abschnittsweise) jeweils einen kreisrunden Querschnitt 60 aufweisen (vgl. Fig.2). Die Öffnungen 58 können bspw. als Bohrungen ausgebildet sein. Im Beispiel weisen die Öffnungen 58 endseitig, d.h. am inneren und äußeren Ende, sich zum jeweiligen Ende hin erweiternde Abschnitte 62, 64 auf, die sich bspw. konisch erweitern. Die Öffnungen 58 können jeweils einen Öffnungsquerschnitt von 3 mm2 bis 80 mm2 aufweisen, wie oben beschrieben.
  • Optional kann ein mit der Gasmotorzündkerze 10 verbindbares Vorkammergehäuse vorgesehen sein, wie oben beschrieben (nicht dargestellt).

Claims (13)

  1. Gasmotorzündkerze (10), mit einem Zündkerzengehäuse (18), einer Mittelelektrode (36) und einer Masseelektrode (38), wobei die Masseelektrode (38) ringförmig oder ringabschnittförmig ausgebildet ist und die Mittelelektrode (36) nach außen zumindest teilweise umgibt, wobei die Masseelektrode (38) unmittelbar mit dem Zündkerzengehäuse (18) verbunden ist, dadurch gekennzeichnet, dass das Zündkerzengehäuse (18) einen hülsenförmigen Gehäuseabschnitt (40) aufweist, von dem sich eine Wandung (42) nach innen zur Mittelelektrode (36) erstreckt, wobei die Wandung (42) materialeinheitlich mit dem hülsenförmigen Gehäuseabschnitt (40) ausgebildet ist, und wobei die Masseelektrode (38) an der Wandung (42) angeordnet ist, wobei die Wandung (42) sich so zur Mittelelektrode (39) erstreckt, dass zwischen der Masseelektrode (38), die am radial inneren Ende der Wandung (42) angeordnet ist, und der Mittelelektrode (36) ein Zündspalt verbleibt.
  2. Gasmotorzündkerze (10) nach Anspruch 1, dadurch gekennzeichnet, dass die Masseelektrode (38), kraftschlüssig, formschlüssig und/oder stoffschlüssig mit dem Zündkerzengehäuse (18) verbunden ist.
  3. Gasmotorzündkerze (10) nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Masselelektrode (38) mit dem Zündkerzengehäuse (18) verschweißt oder verlötet ist.
  4. Gasmotorzündkerze (10) nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Wandung (42) im Querschnitt von der Mittelelektrode (36) nach außen zunimmt, vorzugsweise wobei die Wandung (42) einen trapezförmigen Querschnitt aufweist.
  5. Gasmotorzündkerze (10) nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass im Zündkerzengehäuse (18) ein Isolator (20) eingefasst ist, wobei zwischen dem der Mittelelektrode (36) zugewandten Ende des Isolators (20) und der Wandung (42) ein Speicherraum (48) angeordnet ist.
  6. Gasmotorzündkerze (10) nach Anspruch 5, dadurch gekennzeichnet, dass der Speicherraum (48) ein Volumen von größer 0 bis 500 mm3, insbesondere zwischen 50 und 500 mm3, aufweist.
  7. Gasmotorzündkerze (10) nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass der Isolator (20) mit einem Abschnitt (50) derart auf einem Absatz (52) des Zündkerzengehäuses (18) aufliegt, dass der Abschnitt (50) und der Absatz (52) eine Abdichtung ausbilden, wobei die Abdichtung ohne Dichtelement zwischen Isolator (20) und Zündkerzengehäuse (18) ausgeführt ist.
  8. Gasmotorzündkerze (10) nach Anspruch 7, dadurch gekennzeichnet, dass das Zündkerzengehäuse (18) zwischen dem Absatz (52) und dem Ende (16), an dem sich die Mittelektrode (36) befindet, eine vergrößerte Wandstärke (54) aufweist.
  9. Gasmotorzündkerze (10) nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Mittelelektrode (36) und/oder die Masseelektrode (38) aus Edelmetall ausgebildet sind oder eine Edelmetallbeschichtung aufweisen.
  10. Gasmotorzündkerze (10) nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Wandung (42) einen zentrischen Durchgang (56) aufweist, in der die Mittelelektrode (36) angeordnet ist.
  11. Gasmotorzündkerze (10) nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Wandung (42) mehrere exzentrische Öffnungen (58) aufweist, die in vorzugsweise gleichen Winkelabständen zueinander angeordnet sind.
  12. Gasmotorzündkerze (10) nach Anspruch 11, dadurch gekennzeichnet, dass die Öffnungen (58) jeweils einen Öffnungsquerschnitt von 3mm2 bis 80mm2 aufweisen.
  13. Gasmotorzündkerze (10) nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass ein separates, mit der Gasmotorzündkerze (10) verbindbares, insbesondere verschraubbares, Vorkammergehäuse vorgesehen ist.
EP20179017.7A 2020-06-09 2020-06-09 Gasmotorzündkerze Active EP3923427B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20179017.7A EP3923427B1 (de) 2020-06-09 2020-06-09 Gasmotorzündkerze

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20179017.7A EP3923427B1 (de) 2020-06-09 2020-06-09 Gasmotorzündkerze

Publications (2)

Publication Number Publication Date
EP3923427A1 EP3923427A1 (de) 2021-12-15
EP3923427B1 true EP3923427B1 (de) 2024-04-03

Family

ID=71083403

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20179017.7A Active EP3923427B1 (de) 2020-06-09 2020-06-09 Gasmotorzündkerze

Country Status (1)

Country Link
EP (1) EP3923427B1 (de)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015102745B4 (de) * 2015-02-26 2016-11-17 Federal-Mogul Ignition Gmbh Zündkerze für einen Vorkammer-Verbrennungsmotor
AT516835B1 (de) 2015-03-13 2016-09-15 Er-System Mechatronik Gmbh Zündkerze
DE102016120984B4 (de) * 2016-11-03 2018-10-18 Federal-Mogul Ignition Gmbh Vorkammerzündkerze für eine mit Gas betriebene Brennkraftmaschine und Verfahren zu deren Herstellung
DE102017129056B4 (de) * 2017-12-06 2019-12-19 Federal-Mogul Ignition Gmbh Zündkerze mit einem Zuführkanal für Brennstoff

Also Published As

Publication number Publication date
EP3923427A1 (de) 2021-12-15

Similar Documents

Publication Publication Date Title
DE102016120984B4 (de) Vorkammerzündkerze für eine mit Gas betriebene Brennkraftmaschine und Verfahren zu deren Herstellung
DE102013221963B4 (de) Vorkammerzündkerze
DE102017107679B4 (de) Vorkammerzündkerze für eine Brennkraftmaschine
EP3061962B1 (de) Zylinderkopf
EP3123575B1 (de) Vorkammerzündkerze zur zündung eines kraftstoff-luft-gemisches in einem verbrennungsmotor
DE102019111091B3 (de) In einer Bohrung einer Verbrennungskraftmaschine verschraubte modulare Vorkammerzündkerze
DE102018130539B4 (de) Vorkammer- Zündkerzenanordnung
AT516835B1 (de) Zündkerze
DE102014004943A1 (de) Vorkammerzündkerze
DE102018105181B4 (de) Kammerkerze mit lösbarer Elektrode
DE102012022872A1 (de) Zündeinrichtung für einen Verbrennungsmotor und Verbrennungsmotor
EP3956955A1 (de) Vorkammerzündkerze mit angepasster kappengeometrie
DE102014015707A1 (de) Vorkammerzündkerze
DE102023135834A1 (de) Vorkammerzündkerze und verfahren zu deren herstellung
DE10340043B4 (de) Zündkerze
EP3923427B1 (de) Gasmotorzündkerze
DE102009046092A1 (de) Stufenkerze
DE3305153C2 (de) Zündkerze für eine Brennkraftmaschine
DE102022209529B4 (de) Vorkammerelement, Zündvorrichtung und Verfahren zur Montage einer Zündvorrichtung
DE10340042B4 (de) Zündkerze
EP3261199A1 (de) Vorkammerzündkerze und verfahren zum betreiben einer vorkammerzündkerze
DE102020211357A1 (de) Vorkammerzündkerze, insbesondere für mobile Brennkraftmaschinen
WO2022242861A1 (de) Vorkammer-zündkerze
DE102020211351A1 (de) Vorkammerzündkerze mit verbesserter Masseelektrode
DE102022115508A1 (de) Zylinderkopfvorrichtung für eine Verbrennungskraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

B565 Issuance of search results under rule 164(2) epc

Effective date: 20201119

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220530

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01T 13/46 20060101ALI20231025BHEP

Ipc: H01T 13/32 20060101AFI20231025BHEP

INTG Intention to grant announced

Effective date: 20231109

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240228

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020007510

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240619

Year of fee payment: 5

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240624

Year of fee payment: 5

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20240403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240403

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240403

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240813

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240805