EP3922155B1 - Saugroboter - Google Patents

Saugroboter Download PDF

Info

Publication number
EP3922155B1
EP3922155B1 EP21174086.5A EP21174086A EP3922155B1 EP 3922155 B1 EP3922155 B1 EP 3922155B1 EP 21174086 A EP21174086 A EP 21174086A EP 3922155 B1 EP3922155 B1 EP 3922155B1
Authority
EP
European Patent Office
Prior art keywords
bristle roller
roller body
bristles
bristle
vacuum robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21174086.5A
Other languages
English (en)
French (fr)
Other versions
EP3922155C0 (de
EP3922155A1 (de
Inventor
Philipp Gabriel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miele und Cie KG
Original Assignee
Miele und Cie KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miele und Cie KG filed Critical Miele und Cie KG
Publication of EP3922155A1 publication Critical patent/EP3922155A1/de
Application granted granted Critical
Publication of EP3922155C0 publication Critical patent/EP3922155C0/de
Publication of EP3922155B1 publication Critical patent/EP3922155B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/02Nozzles
    • A47L9/04Nozzles with driven brushes or agitators
    • A47L9/0461Dust-loosening tools, e.g. agitators, brushes
    • A47L9/0466Rotating tools
    • A47L9/0477Rolls
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation

Definitions

  • the invention relates to a vacuum robot.
  • the invention relates to a vacuum robot with a housing which has a suction mouth on an underside for sucking in air and dirt particles and a suction chamber with a suction channel extending from the suction chamber for removing air and dirt particles, and a rotatable bristle roller arranged in the suction chamber for picking up Dirt particles that can be transported to the suction channel.
  • Such a vacuum robot has a cleaning roller that has grooves in the end areas for collecting dirt particles, a nozzle for bringing the dirt particles to the grooves and another collecting area around which dirt particles can wind.
  • the cleaning roller does not have good cleaning behavior on textile floor coverings, and the transport behavior of the cleaning roller of dirt particles to the grooves and the collection area is unfavorable.
  • the US 2010 1313912 A1 discloses a vacuum robot with a brush roller, which has a brush body with bristles and elastic slats.
  • the invention therefore presents the problem of providing a vacuum robot with a brush roller, which is designed to collect elongated dirt particles in a collection area and has a favorable transport behavior of the elongated dirt particles to and/or into the collection area.
  • the advantages that can be achieved with the invention, in addition to preventing or at least reducing the entanglement of elongated dirt particles in the bristles of the brush roller, are that the elongated dirt particles can be removed in a simple manner by means of manual or automated cleaning of the brush roller from wrapped elongated dirt particles. Very stiff bristles and therefore bristle tips are not necessary and a scratchy brushing noise on a surface to be cleaned such as a hard floor can be avoided, which reduces the noise level of the vacuum robot during a cleaning process. The stiffening effect is not reflected in the axial direction Bristle roller, which promotes the transport of the elongated dirt particles to and/or into the collection area.
  • the elongated dirt particles picked up by the brush roller during the cleaning process do not get caught firmly in the bristles due to the arrangement of bristles and elastic lamellae. Rather, the elongated dirt particles on the bristle roller are transported in the axial direction of the bristle roller towards the collecting area due to the transverse force component acting on the elongated dirt particles through the slats. Manual or automated cleaning of the elongated dirt particles can then take place in this collection area. This is accompanied by the aspect that cleaning performance usually improves with stiffer bristles, which is achieved here due to the supporting effect of the adjacently arranged slats.
  • the elongated dirt particles are in particular fibers such as hair.
  • the bristle roller body is cylindrical, preferably designed as a hollow cylinder, which has a roller axis that represents an axis of rotation.
  • the transverse force component is a force component that acts transversely to the roller axis of the bristle roller body.
  • the collecting area can be designed to be segmented, that is to say have several partial areas spaced apart from one another. Furthermore, the collection area can have a cleaning point, which allows cleaning of the elongated Allows dirt particles from the collection area.
  • the collection area is designed in such a way that the elongated dirt particles that are collected in it during the cleaning process of the vacuum robot can wind around it.
  • the suction chamber is designed to build up a negative pressure, which is generated during operation by means of a fan of the vacuum robot.
  • the suction chamber is open on one underside and has an elongated opening, namely the suction mouth.
  • the vacuum robot also has a collecting container for collecting dust and dirt particles.
  • the cleaning point can have a cutting wheel which is designed to perform a rolling cutting function on elongated dirt particles located in the collection area when it is rotated. As a result, the elongated dirt particles in the collection area are cut into small pieces and can then be transported away through the suction channel.
  • the cutting wheel can, for example, be in contact with the brush roller body in such a way that it is set in rotation by rotation of the brush roller body. Alternatively or additionally, the cutting wheel can be arranged and designed in such a way that it can be actuated by a user and/or an external device.
  • a cleaning station to which the vacuum robot docks for emptying and/or energy supply can have the cutting wheel, which is designed to release an elongated dirt particle located in the collection area during docking and/or emptying Perform rotary cutting function when it is rotated.
  • an angular distance along the circumferential direction between the bristles and outermost points of action of the slats is ⁇ 45°, preferably ⁇ 30°, more preferably ⁇ 20°, even more preferably ⁇ 10°, based on imaginary connecting lines of the outermost points of action to a roller axis bristle roller body.
  • the imaginary connecting lines can be the bristles.
  • Both axes preferably run through the roller axis. Alternatively, both axes preferably do not run through the roller axis. This creates an inclination of the slats towards the bristles.
  • the outermost effective points of the slats are preferably the outer edges of the slats.
  • the outermost effective points of the bristles are preferably the outer edges of the bristles.
  • the slats preferably have an effective slat diameter which is defined by the outermost effective points of the slats and which is smaller or equally preferably smaller than a bristle effective diameter of the bristles, which is defined by the outermost effective points of the bristles. This still makes it possible to pick up elongated dirt particles from a surface to be vacuumed, such as a floor, when the vacuum robot is in operation.
  • the effective lamella diameter is preferably in the range from 34 mm to 44 mm.
  • the bristle effective diameter is preferably in the range from 37 mm to 47 mm.
  • An outer diameter of the bristle roller body is preferably in the range from 13.5 to 23.5 mm.
  • a helix of the bristles and a further helix of the slats positioned behind them have a rotation about the axis of rotation of the bristle roller body, which on one or more sections is ⁇ 90°, preferably ⁇ 120°, more preferably ⁇ 150°, even more preferably equal to 180 ° is.
  • the helix of ⁇ 90° runs on a section of the bristle roller body, which is preferably less than or equal to a distance between the ends of the bristle roller body and the cleaning point or, if no cleaning point is provided, to a plane in which one direction of the helix is reversed .
  • the bristle roller body preferably has an axial section in which a direction of rotation of the rotation is reversed.
  • This axis section is preferably the collection area, regardless of whether it has a cleaning point or not.
  • the collecting area is preferably formed equidistant from the ends of the bristle roller body.
  • the collecting area is preferably arranged at a distance from one of the two ends of the brush roller body, which is different from a further distance at which the collecting area is arranged from the other end of the brush roller body.
  • the collecting area can also be formed at one or both of the two ends of the bristle roller body.
  • the bristle roller body outer diameter of the bristle roller body varies at the corresponding end at which the collecting region is formed.
  • the collection area can be designed to be segmented. This means that it can have several separate areas. For example, a partial area can be formed equidistant from both ends of the brush roller body and further partial areas can be formed at one or both ends of the brush roller body, whereby three different collecting area partial areas are formed.
  • a lateral surface of the bristle roller body in the collecting area is preferably made of a glass fiber-free plastic.
  • a glass fiber-free plastic is a two-component injection molded component made of a material such as PP (polypropylene), PC (polycarbonate), POM (polyoxymethylene or polyacetal), PVC (polyvinyl chloride), PE (polyethylene) and/or ABS (acrylonitrile-butadiene-styrene copolymer).
  • the bristle roller body can be made of a glass fiber-free plastic.
  • the collection point is designed to be free of bristles and slats. This enables good manual or automatic cleaning.
  • the collecting area is preferably formed by a region of the bristle roller body to which no lamellae or bristles are attached and which is arranged axially adjacent to a further region of the brush roller body which has lamellae and bristles.
  • a body is preferably arranged in the suction mouth adjacent to the brush roller and designed to cause the elongated dirt particles to be tightened in the collecting area around a jacket of the brush roller body.
  • the body can, for example, be designed as an elastomer part, for example in the suction mouth.
  • the body can also be designed as a correspondingly predetermined shape of a plastic envelope surface delimiting the suction mouth with a contour that almost fills the collecting area.
  • the body can be designed as an inner surface of the housing in the area of the suction mouth, which includes the bristle roller, with a structure which rubs against tips of the bristles during operation.
  • the structure can be designed as a non-smooth inner surface.
  • the body can be formed as an inner surface of the housing in the area of the suction mouth, which includes the bristle roller, with a material which rubs against the tips of the bristles.
  • the material can be, for example, a fabric, a rubber lamella, finer bristle elements than the bristles and/or a thread lifter.
  • Each lamella is preferably part of a 2-component injection molded part with a hard component and an elastic component representing the lamella, the hard component being firmly mounted on the brush roller body and the elastic component as a lamella in the brush roller cross section based on the direction of rotation of the brush roller during operation of the vacuum robot positioned behind the bristles.
  • the 2-component injection molded part is preferably mounted on the brush roller body using screws.
  • a height of the slat is preferably greater than or equal to a height of the hard component firmly connected to the slat.
  • the hard component is located, based on a direction of rotation of the brush roller during operation of the vacuum robot, preferably on a rear side of the respective slat connected to it.
  • a diameter of the collecting area is preferably smaller than the effective diameter of the lamellae and smaller than a diameter of the hard components. The diameter of the collecting area preferably corresponds to the outer diameter of the bristle roller body.
  • a relatively small distance in the cylinder cross section from the bristles to the slats can be achieved and the hard components directly adjacent to them and connected to the slats can be achieved.
  • the process can also be used to create a bristle roller that has slats in a 180° helix.
  • Each 2-component injection molded part contains a hard component, which is intended for fixed mounting on the bristle roller body and on which an elastic component is provided.
  • the elastic component preferably TPE (thermoplastic elastomer) or TPU (thermoplastic polyurethane)
  • TPE thermoplastic elastomer
  • TPU thermoplastic polyurethane
  • Each 2-component injection molded part can be positioned directly against the bristles.
  • the hard component has a hardness of Shore A50 - Shore A80 and/or a thickness in the range of 0.4mm to 1.5mm.
  • the 2-component injection molded part is preferably mounted on the brush roller body using screws.
  • the 2-component injection molded part is preferably designed such that a height of each lamella is greater than or equal to a height of the hard component firmly connected to the lamella.
  • the height of each slat is at least twice greater than the height of the hard component firmly connected to the slat.
  • the hard component is preferably arranged on the rear side of the respective slat connected to it, based on a direction of rotation of the brush roller during operation of the vacuum robot.
  • the slats are integrated into the elastic component. Due to the elasticity of the slats, subsequent bristling near the slats is possible.
  • the slats are fundamentally flexible and can also contain geometric features that promote deflection of the slat due to its deformation during the injection process of the bristles, for example using a cone-shaped tool. This means that bristles can be placed as close as possible to the slats.
  • the bristle roller body is preferably provided as a 2-component bristle roller body.
  • Fig. 1 shows a top view of a vacuum robot with a brush roller according to the invention.
  • the vacuum robot has a housing 11, which has a suction mouth (not shown) on an underside for sucking in air and dirt particles.
  • the vacuum robot also has a suction chamber 15 with a suction channel 17 extending from the suction chamber 15 for transporting away air and dirt particles and a rotatable bristle roller 14 arranged in the suction chamber 15 for picking up dirt particles which can be transported away to the suction channel 17.
  • the suction chamber 15 is designed to build up a negative pressure, which is generated during operation by means of a fan 12 of the vacuum robot.
  • the suction chamber 15 is open on one underside and has an elongated opening, namely the suction mouth.
  • the vacuum robot has a collecting container 23 for collecting the dirt particles.
  • the bristle roller 14 has a bristle roller body 1, slats 2 arranged thereon, bristles 3 arranged thereon and a collecting area 4 which is designed to be brush-free and slat-free and is designed to collect elongated dirt particles (not shown) by moving around make him squirm.
  • the vacuum robot is self-propelled using wheels 16.
  • the blower 12 When the vacuum robot is in operation, the blower 12 generates a suction flow which flows first through the suction mouth, then through the suction chamber 15, then through the suction channel 17 and then through the collecting container 23.
  • the bristle roller 14 rotates to support cleaning of a surface (not shown).
  • Fig. 2 shows a cross-sectional view of a vacuum robot according to a first embodiment.
  • the cutting wheel 19 is arranged in the suction chamber 15 at a distance from the bristle roller 14.
  • the in Fig. 2 Robot vacuum shown corresponds to the one in Fig. 1 shown vacuum robot, wherein it further has a cutting wheel 19, which is accommodated in a cutting wheel housing 20 and is held by a movable holder 21.
  • the cutting wheel 19 is arranged in the suction chamber 15 above the bristle roller 14 in such a way that it is located above the collecting area 4.
  • the accumulation of dirt particles in the collection area 4 results in contact with the cutting wheel.
  • Figure 2 shows the vacuum robot with a cutting wheel in an inactive state, i.e. it does not carry out a cleaning process on the bristle roller.
  • the cutting wheel 19 is arranged at a predetermined distance from the bristle roller 14.
  • Fig. 3 shows a cross-sectional view of the in Fig. 2 shown vacuum robot in a second embodiment.
  • the in Fig. 3 Robot vacuum shown corresponds to the one in Fig. 1 shown vacuum robot with the difference that it is shown in an active state, ie it leads a cleaning process on the brush roller and is in operation.
  • the cutting wheel 19 is moved in the direction of the brush roller 14 by means of the movement element 22, so that it is set in rotation by means of the rotation of the brush roller 14.
  • the cutting wheel exerts a cutting force defined by a spring on the dirt particles in the collection area.
  • the cutting wheel 19 is arranged at a further predetermined distance from the bristle roller 14, which is smaller than that in Fig. 2 is the predetermined distance shown. This allows elongated dirt particles (not shown) that are located in the collection area 4 to be cut.
  • the elongated dirt particles, cut into smaller pieces can be transported via the suction channel 17 into the collecting container 23 in order to be collected there together with other dirt particles.
  • Fig. 4 shows a top view of a bristle roller of a vacuum robot according to the invention.
  • the bristling roller has a bristling roller body 1 and a plurality of bristles 3, which are firmly connected to the bristling roller body 1.
  • the bristle roller has a collecting area 4, which is designed to be segmented, ie has partial areas. Each portion of the collecting area 4 is designed in such a way that, during operation, elongated dirt particles (not shown) can collect on and/or in it, in particular winding around it.
  • the bristle roller has elastic lamellae 2, which are firmly connected to the bristles roller body 1 and which are positioned in the bristles roller cross section in the circumferential direction based on the direction of roller rotation at a predetermined distance behind the bristles 3.
  • the elastic slats 2 have a transverse force component acting on the elongated dirt particles in an axial direction of the brush roller body, which is sufficient to transport the elongated dirt particles into one of the partial areas of the collecting area 4.
  • the bristle roller has - purely as an example - three sections. Two of the sub-regions are arranged at ends of the bristle roller body 1, while one of the sub-regions is arranged in the middle.
  • the centrally arranged partial area has a center which is symbolically represented by a dash-dot line and which is equidistant from the two ends of the bristle roller body 1 at a distance a.
  • the collecting area 4 is designed to be free of slats 2 and 3 bristles.
  • the bristle roller is point-symmetrical.
  • Fig. 5 shows a top view of a bristle roller of a vacuum robot according to the invention.
  • the third embodiment shown corresponds to that in Fig. 4 shown embodiment with the difference that the center of the one centrally arranged portion 4 is not equidistant from the ends of the bristle roller body, but is spaced from one end by the distance a and from the other end by a further distance Distance b is spaced apart, which is smaller than the distance a.
  • the bristle roller is designed asymmetrically.
  • Fig. 6 shows a top view of the in Fig. 4 Bristled roller shown with elongated dirt particles on the bristles. Long dirt particles 5 in the form of hair have wound loosely around the bristles 3 and the slats 2.
  • Fig. 7 shows a top view of the in Fig. 4 Shown bristle roller with elongated dirt particles in the collection area.
  • the elongated dirt particles 5 are located in the centrally arranged sub-area of the collecting area 4. There they accumulate because they wind tightly around the sub-area.
  • elongated dirt particles 5 shown have been picked up by a surface to be vacuumed during operation of the vacuum robot and are transported in an axial direction of the bristle roller body into the partial area of the collecting area 4 in the further course of the cleaning process of the vacuum robot due to the transverse force component acting on the elongated dirt particles 5 to gather in it, as in Fig. 7 is shown.
  • Fig. 8 shows a top view of the in Fig. 4 Shown bristle roller with elongated dirt particles in the collection area.
  • the top view shown corresponds to that in Fig. 7 shown top view with the difference that the elongated dirt particles 5 are located in one of the two partial areas of the collecting area 4, which is formed at the end of the bristle roller body 1.
  • Fig. 9 shows a cross-sectional view of the in Fig. 8 shown bristle roller along line VI-VI.
  • the bristle roller body 1 has a lateral surface made of a glass fiber-free plastic.
  • Fig. 10 shows another cross-sectional view of the in Fig. 8 shown bristle roller along line VII-VII.
  • the bristle roller has the bristle roller body 1, which is rotated in the direction of the arrow when the vacuum robot is in operation.
  • the slats 2 are arranged behind the bristles 3 in the direction of rotation.
  • the bristles 3 have an effective bristle diameter d4, which is defined by the outermost effective points of the bristles 3.
  • An angular distance ⁇ along the circumferential direction between the bristles 3 and an outermost effective point of the slats 2 is ⁇ 45°, based on imaginary connecting lines 7 of the effective points to an axis 6 of the cylindrical bristle roller body 1.
  • Fig. 11 shows another cross-sectional view of the in Fig. 8 shown bristle roller along line VII-VII.
  • Fig. 8 equals to Fig. 10 with the difference that a slat effective diameter d3 of the slats 2 is shown, which is defined by the outermost effective points of the slats 2.
  • the effective lamella diameter d3 is smaller than the effective bristle diameter d4.
  • Fig. 12 shows a top view of a bristle roller of a vacuum robot according to a fourth embodiment.
  • the fourth embodiment shown corresponds to that in Fig. 4 shown second embodiment with the difference that the slats 2 are each connected to a hard component 9, which is attached to the bristle roller body 1 by means of screws 8.
  • Fig. 13 shows a cross-sectional view of the in Fig. 12 brush roller shown along line XX.
  • the hard component 9 is firmly mounted on the bristle roller body 1 using the screws (8).
  • An elastic component in the form of the lamella 2 is molded onto the hard component 9 and is thereby chemically bonded to it.
  • the hard component 9 and the lamella 2 therefore form a 2-component injection molded part.
  • Each hard component 9, together with the lamella 2 is positioned directly against the bristles 3.
  • a height h 1 of the slat 2 is twice as large as a height h 2 of the hard component 9, which is located on a rear side of the slat 2 in relation to a direction of rotation (not shown) of the brush roller when the vacuum robot is in operation.
  • Fig. 14 shows another cross-sectional view of the in Fig. 12 brush roller shown along line XX.
  • the bristle roller shown corresponds to the one in Fig. 13 shown brush roller, where instead of the heights, the direction of rotation of the brush roller when the vacuum robot is in operation, a brush roller body external diameter d 1 of the brush roller body 1 of 18.5 mm, a hard component external diameter d 2 of the mounting element 9 of 26 mm, a lamella effective diameter d 3 the slats 2 of 39 mm and a bristle effective diameter d 4 of the bristles 3 of 42 mm are shown.
  • Fig. 15 shows a top view of a bristle roller of a vacuum robot according to an alternative embodiment.
  • This bristle roller does not form a collection area.
  • the vacuum robot is cleaning, the dirt particles collect in a central area of the brush roller. This area can be cleaned manually by a user using scissors, a knife or a cleaning tool.
  • Fig. 16 shows a partial top view of a vacuum robot according to a further embodiment.
  • the bristle roller shown corresponds to the one in Fig. 4
  • the brush roller shown but the vacuum robot still has a body 10 in the suction mouth adjacent to the brush roller.
  • the body 10 is arranged and designed to tighten the elongated dirt particles 5 in the collecting area 4 in order to create a coat of the brush roller body 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nozzles For Electric Vacuum Cleaners (AREA)

Description

  • Die Erfindung betrifft einen Saugroboter. Insbesondere betrifft die Erfindung einen Saugroboter mit einem Gehäuse, welches an einer Unterseite einen Saugmund zum Einsaugen von Luft und Schmutzpartikeln und einen Saugraum mit einem aus dem Saugraum abgehenden Saugkanal zum Abtransportieren von Luft und Schmutzpartikeln aufweist, und einer im Saugraum angeordneten drehbaren Borstwalze zum Aufnehmen von Schmutzpartikeln, die zum Saugkanal abtransportierbar sind.
  • Aus der US 2020/0046183 A1 ist ein derartiger Saugroboter bekannt. Er weist eine Reinigungswalze auf, die in Endbereichen Rillen zum Sammeln von Schmutzpartikel, eine Düse zum Bringen der Schmutzpartikel zu den Rillen und einen weiteren Sammelbereich aufweist, um den sich Schmutzpartikel winden können. Die Reinigungswalze weist auf textilen Bodenbelägen kein gutes Reinigungsverhalten auf, zudem ist das Transportverhalten der Reinigungswalze von Schmutzpartikel zu den Rillen und dem Sammelbereich ungünstig.
  • Die US 2010 1313912 A1 offenbart einen Saugroboter mit einer Bürstenwalze, welche einen Bürstenköper mit Borsten und elastischen Lamellen aufweist.
  • Der Erfindung stellt sich somit das Problem, einen Saugroboter mit einer Borstwalze bereitzustellen, der ausgebildet ist, langestreckte Schmutzpartikel in einem Sammelbereich zu sammeln und ein günstiges Transportverhalten der langgestreckten Schmutzpartikel zu undloder in den Sammelbereich aufweist.
  • Erfindungsgemäß wird dieses Problem durch einen Saugroboter mit den Merkmalen des Patentanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung ergeben sich aus den nachfolgenden Unteransprüchen.
  • Die mit der Erfindung erreichbaren Vorteile bestehen neben einem Verhindern oder zumindest Reduzieren eines Verfangens von langgestreckten Schmutzpartikeln in den Borsten der Borstwalze darin, dass ein Entfernen der langgestreckten Schmutzpartikel auf einfache Weise mittels manueller oder automatisierter Abreinigung der Borstwalze von umwickelten langgestreckten Schmutzpartikeln ermöglicht wird. Dabei sind sehr steife Borsten und somit auch Borstspitzen nicht notwendig und ein kratzendes Bürstgeräusch dieser auf einem zu reinigenden Untergrund wie einem Hartboden kann vermieden werden, wodurch wird ein Geräuschpegel des Saugroboters während eines Reinigungsvorgangs gesenkt wird. Die versteifende Wirkung spiegelt sich nicht in der axialen Richtung der Borstwalze wider, wodurch der Transport der langgestreckten Schmutzpartikel zu undloder in in den Sammelbereich begünstigt wird.
  • Die Erfindung betrifft einen Saugroboter mit einem Gehäuse, welches an einer Unterseite einen Saugmund zum Einsaugen von Luft und Schmutzpartikeln und einen Saugraum mit einem aus dem Saugraum abgehenden Saugkanal zum Abtransportieren von Luft und Schmutzpartikeln aufweist, und einer im Saugraum angeordneten drehbaren Borstwalze zum Aufnehmen von Schmutzpartikeln, die zum Saugkanal abtransportierbar sind, wobei die Borstwalze aufweist:
    • einen Borstwalzenkörper,
    • einen Sammelbereich, welcher derart ausgebildet ist, dass sich bei Betrieb langgestreckte Schmutzpartikel an undloder in ihm ansammeln,
    • mehrere Borsten, welche mit dem Borstwalzenkörper fest verbunden sind, und
    • elastische Lamellen, welche mit dem Borstwalzenkörper fest verbunden sind, welche im Borstwalzenquerschnitt in Umfangrichtung bezogen auf die Walzendrehrichtung in einem vorbestimmten Abstand hinter den Borsten positioniert sind und welche eine auf die langgestreckten Schmutzpartikel einwirkende Querkraftkomponente in eine axiale Richtung des Borstwalzenkörpers aufweisen, die ausreichend ist, die langestreckten Schmutzpartikel zu undloder in den Sammelbereich zu transportieren.
  • Die während des Reinigungsvorgangs von der Borstwalze aufgenommenen langgestreckten Schmutzpartikel verfangen durch die Anordnung von Borsten und elastischen Lamellen nicht fest in den Borsten. Vielmehr werden die langgestreckten Schmutzpartikel auf der Borstwalze aufgrund der durch die Lamellen auf die langgestreckten Schmutzpartikel einwirkende Querkraftkomponente in axialer Richtung der Borstwalze in Richtung zu dem Sammelbereich transportiert. In diesem Sammelbereich kann anschließend eine manuelle oder automatisierte Abreinigung der langgestreckten Schmutzpartikel erfolgen. Einhergehend ist der Aspekt, dass sich eine Reinigungsleistung üblicherweise bei steiferen Borsten verbessert, was hier aufgrund der stützenden Wirkung der angrenzend angeordneten Lamellen erzielt wird.
  • Bei den langestreckten Schmutzpartikeln handelt es sich insbesondere um Fasern wie beispielsweise Haare. Der Borstwalzenkörper ist zylinderförmig, bevorzugt als Hohlzylinder, ausgebildet, welcher eine Walzenachse aufweist, die eine Drehachse darstellt. Die Querkraftkomponente ist eine Kraftkomponente, die quer zu der Walzenachse des Borstwalzenkörpers wirkt. Der Sammelbereich kann segmentiert ausgebildet sein, d.h. mehrere voneinander beabstandete Teilbereiche aufweisen. Ferner kann der Sammelbereich eine Abreinigungsstelle aufweisen, welche ein Abreinigen der langgestreckten Schmutzpartikel von dem Sammelbereich ermöglicht. Der Sammelbereich ist derart ausgebildet, dass sich die langgestreckten Schmutzpartikel, die während des Reinigungsvorgangs des Saugroboters in ihm gesammelt werden, sich um ihn winden können. Der Saugraum ist zum Aufbauen eines Unterdruckes ausgebildet, der bei Betrieb mittels eines Gebläses des Saugroboters erzeugt wird. Der Saugraum ist an einer Unterseite offen und weist eine längliche Öffnung auf, nämlich den Saugmund. Ferner weist der Saugroboter einen Sammelbehälter zum Sammeln von Staub- und Schmutzpartikeln auf.
  • Die Abreinigungsstelle kann ein Schneidrad aufweisen, das ausgebildet ist, auf sich im Sammelbereich befindende langgestreckte Schmutzpartikel eine Rollschneidfunktion auszuüben, wenn es in Drehung versetzt wird. Dadurch werden die sich im Sammelbereich befindenden langgestreckten Schmutzpartikel klein geschnitten und können dann derart durch den Saugkanal abtransportiert werden. Das Schneidrad kann beispielsweise derart in Kontakt mit dem Borstwalzenkörper sein, dass es durch Drehung des Borstwalzenkörpers in Drehung versetzt wird. Alternativ oder zusätzlich kann das Schneidrad derart angeordnet und ausgebildet sein, dass es von einem Nutzer undloder einer externen Vorrichtung betätigbar ist.
  • Wenn der Sammelbereich Abreinigungsstellen-frei d.h. Schneidrad-frei ausgebildet ist, kann eine Reinigungsstation, an die der Saugroboter zur Entleerung undloder Energieversorgung andockt, das Schneidrad aufweisen, das ausgebildet ist, während des Andockens undloder der Entleerung eine auf sich im Sammelbereich befindende langgestreckte Schmutzpartikel eine Rollschneidfunktion auszuüben, wenn es in Drehung versetzt wird.
  • In einer bevorzugten Ausführungsform ist ein Winkelabstand entlang der Umfangrichtung zwischen den Borsten und äußersten Wirkpunkten der Lamellen < 45°, bevorzugt < 30°, bevorzugter < 20°, noch bevorzugter < 10° ist, bezogen auf gedachte Verbindungslinien der äußersten Wirkpunkte zu einer Walzenachse des Borstwalzenkörpers. Bei den gedachten Verbindungslinien kann es sich um der Borsten handeln. Bevorzugt verlaufen beide Achsen durch die Walzenachse. Alternativ bevorzugt verlaufen nicht beide Achsen durch die Walzenachse. Dadurch wird eine Neigung der Lamellen zu den Borsten erzielt. Die äußersten Wirkpunkte der Lamellen sind bevorzugt Außenkanten der Lamellen. Die äußersten Wirkpunkte der Borsten sind bevorzugt Außenkanten der Borsten.
  • Bevorzugt weisen die Lamellen einen Lamellen-Wirkdurchmesser auf, welcher durch äußerste Wirkpunkte der Lamellen definiert ist und welcher kleiner oder gleich bevorzugter kleiner als ein Borsten-Wirkdurchmesser der Borsten ist, welcher durch äußerste Wirkpunkte der Borsten definiert ist. Somit wird eine Aufnahme langgestreckter Schmutzpartikel bei Betrieb des Saugroboters von einem zu saugenden Untergrund wie einem Boden weiterhin ermöglicht. Der Lamellen-Wirkdurchmesser liegt bevorzugt im Bereich von 34 mm bis 44 mm.
  • Der Borsten-Wirkdurchmesser liegt bevorzugt im Bereich von 37 mm bis 47 mm. Ein Außendurchmesser des Borstwalzenkörpers liegt bevorzugt im Bereich von 13,5 bis 23,5 mm.
  • In einer bevorzugten Ausführungsform weisen eine Helix der Borsten und eine weitere Helix der dahinter positionierten Lamellen eine Verdrehung um die Drehachse des Borstwalzenkörpers auf, welche auf einem oder mehreren Teilabschnitten ≥90°, bevorzugt ≥ 120°, bevorzugter ≥ 150°, noch bevorzugter gleich 180° ist. Die Helix von ≥90° verläuft je auf einem Teilabschnitt des Borstwalzenkörpers, welcher bevorzugt kleiner oder gleich zu einem Abstand der Enden des Borstwalzenkörpers zu der Abreinigungsstelle oder, wenn keine Abreinigungsstelle vorgesehen ist, zu einer Ebene ist, in welcher sich eine Richtung der Helix umkehrt.
  • Bevorzugt weist der Borstwalzenkörper einen Achsabschnitt auf, in welchem sich eine Verdreh-Richtung der Verdrehung umkehrt. Dieser Achsabschnitt ist vorzugsweise der Sammelbereich unabhängig davon ob er eine Abreinigungsstelle aufweist oder nicht.
  • Der Sammelbereich ist bevorzugt äquidistant zu den Enden des Borstwalzenkörpers ausgebildet. Alternativ bevorzugt ist der Sammelbereich zu einem der beiden Enden des Borstwalzenkörpers in einem Abstand angeordnet, der verschieden ist von einem weiteren Abstand, in dem der Sammelbereich zu dem anderen Ende des Borstwalzenkörpers angeordnet ist. Der Sammelbereich kann auch an einem oder beiden der beiden Enden des Borstwalzenkörpers ausgebildet sein. So können langgestreckte Schmutzpartikel, welche die seitlichen Lagerstellen des Borstwalzenkörpers beeinflussen gesammelt und ggf. abgereinigt werden. Bevorzugt variiert der Borstwalzenkörper-Außendurchmesser des Borstwalzenkörpers an dem entsprechenden Ende, an dem der Sammelbereich ausgebildet ist. Durch eine Erhöhung des Borstwalzenkörper-Außendurchmessers an dem Ende des Borstwalzenkörpers, an dem sich der Sammelbereich befindet, kann beispielsweise erwirkt werden, dass die langgestreckten Schmutzpartikel nicht weiter in die seitlichen Lagerstellen wandern.
  • Der Sammelbereich kann segmentiert ausgebildet sein. D.h., er kann mehrere voneinander getrennte Teilbereiche aufweisen. Beispielsweise können ein Teilbereich äquidistant zu beiden Enden des Borstwalzenkörpers und weitere Teilbereiche an einem oder beiden Enden des Borstwalzenkörpers ausgebildet sein, wodurch drei verschiedene Sammelbereich-Teilbereiche ausgebildet sind.
  • Bevorzugt ist eine Mantelfläche des Borstwalzenkörpers im Sammelbereich aus einem glasfaserfreien Kunststoff ausgebildet. Beispielsweise ist sie als Zwei-Komponenten-Spritzguss-Komponente aus einem Werkstoff wie PP (Polypropylen), PC (Polycarbonat), POM (Polyoxymethylen bzw. Polyacetal), PVC (Polyvinylchlorid), PE (Polyethylen) undloder ABS (Acrylnitril-Butadien-Styrol-Copolymer) gebildet. In einer bevorzugten Ausführungsform kann der Borstenwalzenkörper aus einem glasfaserfreien Kunststoff ausgeführt sein.
  • In einer bevorzugten Ausführungsform ist die Sammelstelle Borsten- und Lamellen-frei ausgebildet. Dadurch wird eine gute manuelle oder automatische Abreinigung ermöglicht. Der Sammelbereich ist bevorzugt durch einen Bereich des Borstwalzenkörpers ausgebildet, an dem keine Lamellen oder Borsten befestigt sind und der axial benachbart zu einem weiteren Bereich des Borstwalzenkörpers angeordnet ist, der Lamellen und Borsten aufweist.
  • Bevorzugt ist weiterhin ein Körper im Saugmund benachbart zu der Borstwalze angeordnet und ausgebildet, um ein Festziehen der langgestreckten Schmutzpartikel im Sammelbereich um einen Mantel des Borstwalzenkörpers zu bewirken. Dadurch wird eine Position der langgestreckten Schmutzpartikel weiterhin definierter im Sammelbereich gehalten. Der Körper kann beispielsweise als Elastomerteil z.B. im Saugmund ausgebildet sein. Der Körper kann auch als eine entsprechend vorbestimmte Form einer den Saugmund begrenzenden Kunststoff-Hüllfläche mit einer den Sammelbereich nahezu ausfüllenden Kontur ausgebildet sein. Weiterhin kann der Körper als eine Innenfläche des Gehäuses im Bereich des Saugmundes, welcher die Borstwalze umfasst, mit einer Struktur ausgebildet sein, welche an Spitzen der Borsten bei Betrieb reibt. Beispielsweise kann die Struktur als eine nicht-glatte Innenoberfläche ausgebildet sein. Ferner kann der Körper als eine Innenfläche des Gehäuses im Bereich des Saugmundes, welcher die Borstwalze umfasst, mit einem Material ausgebildet sein, welches an den Spitzen der Borsten reibt. Das Material kann z.B. ein Stoff, eine Gummilamelle, feinere Borstenelemente als die Borsten undloder ein Fadenheber sein.
  • Jede Lamelle ist bevorzugt jeweils Teil eines 2-Komponenten-Spritzgussteils mit einer Hartkomponente und einer die Lamelle darstellenden elastischen Komponente, wobei die Hartkomponente an den Borstwalzenkörper fest montiert ist und die elastische Komponente als Lamelle im Borstwalzenquerschnitt bezogen auf die Drehrichtung der Borstwalze bei Betrieb des Saugroboters hinter den Borsten positioniert ist. Die Montage des 2-Komponenten-Spritzgussteils auf dem Borstwalzenkörper ist vorzugsweise über Schrauben realisiert. Eine Höhe der Lamelle ist bevorzugt größer oder gleich einer Höhe der fest mit der Lamelle verbundenen Hartkomponente. Die Hartkomponente befindet sich, bezogen auf eine Drehrichtung der Borstwalze bei Betrieb des Saugroboters, bevorzugt an einer Hinterseite der jeweilig damit verbundenen Lamelle. Bevorzugt ist ein Durchmesser des Sammelbereichs kleiner als der Wirkdurchmesser der Lamellen und kleiner als ein Durchmesser der Hartkomponenten. Der Durchmesser des Sammelbereichs entspricht bevorzugt dem Außendurchmesser des Borstwalzenkörpers.
  • Die Erfindung betrifft ferner ein Verfahren zur Herstellung einer Borstwalze, aufweisend folgende Schritte
    • Bereitstellen eines Borstwalzenkörpers,
    • Beborsten des Borstwalzenkörpers, so dass Borsten mit dem Borstwalzenkörper fest verbunden sind, und
    • Anordnen mehrerer 2-Komponenten-Spritzgussteile mit einer Hartkomponente und einer elastischen Komponente, so dass die Hartkomponenten an den Borstwalzenkörper festmontiert werden und die elastischen Komponenten als Lamellen im Borstwalzenquerschnitt bezogen auf die Drehrichtung hinter den Borsten positioniert werden.
  • Mittels des Verfahrens kann ein im Zylinderquerschnitt relativ geringer Abstand von den Borsten zu den Lamellen erreicht werden und den daran direkt anliegenden und mit den Lamellen verbundenen Hartkomponenten erreicht werden. Zudem lässt sich mit dem Verfahren eine Borstwalze erreichen, welche Lamellen in einer 180° Helix aufweist.
  • Jedes 2-Komponenten-Spritzgussteil enthält eine Hartkomponente, welche zur festen Montage auf dem Borstwalzenkörper vorgesehen ist und an welcher eine elastische Komponente vorgesehen ist. Die elastische Komponente vorzugsweise TPE (Thermoplastisches Elastomer) oder TPU (Thermoplastisches Polyurethan) wird bevorzugt direkt an die Hartkomponente angespritzt, wodurch eine chemische Verbindung der zwei Komponenten entsteht. Jedes 2-Komponenten-Spritzgussteil kann direkt anliegend an die Borsten positioniert werden. Beispielsweise weist die Hartkomponente eine Härte Shore A50 - Shore A80 undloder eine Stärke im Bereich von 0,4mm bis 1,5mm auf.
  • Die Montage des 2-Komponenten-Spritzgussteils auf dem Borstwalzenkörper wird vorzugsweise über Schrauben realisiert. Das 2-Kompnenten-Spritzgussteil wird bevorzugt derart ausgebildet, dass eine Höhe jeder Lamelle größer oder gleich einer Höhe der fest mit der Lamelle verbundenen Hartkomponente ist. Bevorzugt ist die Höhe jeder Lamelle mindestens zweimal größer zu der Höhe der fest mit der Lamelle verbundenen Hartkomponente. Die Hartkomponente wird bevorzugt, bezogen auf eine Drehrichtung der Borstwalze bei Betrieb des Saugroboters, an der Hinterseite der jeweilig damit verbundenen Lamelle angeordnet.
  • Die Erfindung betrifft ferner ein Verfahren zur Herstellung einer Borstwalze, aufweisend folgende Schritte
    • Bereitstellen eines Borstwalzenkörpers,
    • vollständiges Umspritzen des Borstwalzenkörpers mit einer elastischen Komponente unter Ausbildung von Lamellen, und
    • Beborsten des Borstwalzenkörpers, so dass Borsten mit dem Borstwalzenkörper fest verbunden sind, und die Lamellen im Borstwalzenquerschnitt bezogen auf die Drehrichtung der Borstwalze hinter den Borsten positioniert sind.
  • Mittels dieses Verfahrens kann ein im Zylinderquerschnitt relativ geringer Abstand von den Borsten zu den Lamellen erreicht werden. Die Lamellen sind in die elastische Komponente integriert. Aufgrund der Elastizität der Lamellen ist eine anschließende Beborstung nahe der Lamellen möglich. Die Lamellen sind von Grund auf flexibel und können weiterhin geometrische Merkmale beinhalten, welche ein Ausweichen der Lamelle durch dessen Deformation im Injektionsprozess der Borsten beispielsweise durch ein Konus-förmiges Werkzeug begünstigen. Somit kann eine Beborstung möglichst nahe der Lamellen erfolgen. Bevorzugt wird der Borstwalzenkörper als 2-Komponenten-Borstwalzenkörper bereitgestellt.
  • Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen rein schematisch dargestellt und wird nachfolgend näher beschrieben. Es zeigt
  • Fig. 1
    eine Draufsicht auf einen Saugroboter;
    Fig. 2
    eine Querschnittsansicht eines Saugroboters gemäß einer ersten Ausführungsform;
    Fig. 3
    eine Querschnittsansicht eines Saugroboters gemäß einer zweiten Ausführungsform;
    Fig. 4
    eine Draufsicht auf die Borstwalze des in Fig. 1 gezeigten Saugroboters;
    Fig. 5
    eine Draufsicht auf eine Borstwalze eines Saugroboters;
    Fig. 6
    eine Draufsicht auf die in Fig. 4 gezeigte Borstwalze mit langestreckten Schmutzpartikeln auf den Borsten;
    Fig. 7
    eine Draufsicht auf die in Fig. 4 gezeigte Borstwalze mit langgestreckten Schmutzpartikeln in einem Sammelbereich;
    Fig. 8
    eine Draufsicht auf die in Fig. 4 gezeigte Borstwalze mit langgestreckten Schmutzpartikeln in einem Sammelbereich;
    Fig. 9
    eine Querschnittsansicht der in Fig. 8 gezeigten Borstwalze;
    Fig. 10
    eine weitere Querschnittsansicht der in Fig. 8 gezeigten Borstwalze;
    Fig. 11
    eine weitere Querschnittansicht der in Fig. 8 gezeigten Borstwalze;
    Fig. 12
    eine Draufsicht auf eine Borstwalze eines Saugroboters;
    Fig. 13
    eine Querschnittsansicht der in Fig. 12 gezeigten Borstwalze;
    Fig. 14
    eine weitere Querschnittsansicht der in Fig. 12 gezeigten Borstwalze;
    Fig. 15
    eine weitere Draufsicht auf eine Borstwalze eines Saugroboters; und
    Fig. 16
    eine Teil-Draufsicht auf einen Saugroboter gemäß einer sechsten Ausführungsform.
  • Fig. 1 zeigt eine Draufsicht auf einen Saugroboter mit einer erfindungsgemäßen Borstwalze. Der Saugroboter weist ein Gehäuse 11 auf, welches an einer Unterseite einen Saugmund (nicht gezeigt) zum Einsaugen von Luft und Schmutzpartikeln aufweist. Der Saugroboter weist ferner einen Saugraum 15 mit einem aus dem Saugraum 15 abgehenden Saugkanal 17 zum Abtransportieren von Luft und Schmutzpartikeln und eine im Saugraum 15 angeordnete drehbare Borstwalze 14 zum Aufnehmen von Schmutzpartikeln auf, die zum Saugkanal 17 abtransportierbar sind. Der Saugraum 15 ist zum Aufbauen eines Unterdruckes ausgebildet, der bei Betrieb mittels eines Gebläses 12 des Saugroboters erzeugt wird. Der Saugraum 15 ist an einer Unterseite offen und weist eine längliche Öffnung auf, nämlich den Saugmund. Ferner weist der Saugroboter einen Sammelbehälter 23 zum Sammeln der Schmutzpartikel auf. Die Borstwalze 14 weist einen Borstwalzenkörper 1, darauf angeordnete Lamellen 2, darauf angeordnete Borsten 3 und einen Sammelbereich 4 auf, der Bosten-frei und Lamellen-frei ausgebildet ist und ausgebildet ist, langestreckte Schmutzpartikel (nicht gezeigt) zu sammeln, indem sie sich um ihn winden. Der Saugbroboter ist selbstfahrend mittels Rädern 16 ausgebildet.
  • Bei Betrieb des Saugroboters erzeugt das Gebläse 12 einen Saugstrom, der erst durch den Saugmund, dann durch den Saugraum 15, danach durch den Saugkanal 17 und anschließend durch den Sammelbehälter 23 strömt. Dabei rotiert die Borstwalze 14, um ein Reinigen eines Untergrunds (nicht gezeigt) zu unterstützen.
  • Fig. 2 zeigt eine Querschnittsansicht eines Saugroboters gemäß einer ersten Ausführungsform. In dieser ersten Ausführungsform ist das Schneidrad 19 beabstandet vom der Borstenwalze 14 im Saugraum 15 angeordnet. Der in Fig. 2 gezeigte Saugroboter entspricht dem in Fig. 1 gezeigten Saugroboter, wobei er weiterhin ein Schneidrad 19 aufweist, das in einem Schneidrad-Gehäuse 20 untergebracht ist und von einer bewegbaren Halterung 21 gehalten wird. Das Schneidrad 19 ist im Saugraum 15 derart über der Borstwalze 14 angeordnet, dass es sich oberhalb des Sammelbereichs 4 befindet. Durch das Ansammeln von Schmutzpartikeln im Sammelbereich 4, kommt es zu einem Kontakt mit dem Schneidrad. Figur 2 zeigt den Saugroboter mit einem Schneidrad in einem inaktiven Zustand, d.h. er führt keinen Reinigungsvorgang an der Borstwalze durch. Das Schneidrad 19 ist zu der Borstwalze 14 in einem vorbestimmten Abstand angeordnet.
  • Fig. 3 zeigt eine Querschnittsansicht des in Fig. 2 gezeigten Saugroboters in einer zweiten Ausführungsform. Der in Fig. 3 gezeigte Saugroboter entspricht dem in Fig. 1 gezeigten Saugroboter mit dem Unterschied, dass er in einem aktiven Zustand gezeigt ist, d.h. er führt einen Reinigungsvorgang an der Borstwalze aus und ist in Betrieb. Bei Betrieb des Saugroboters wird das Schneidrad 19 mittels des Bewegungselements 22 in Richtung zu der Borstwalze 14 bewegt, sodass es mittels der Drehung der Borstwalze 14 in Drehung versetzt wird. Dabei übt das Schneidrad mittels über eine Feder definierte Schnittkraft auf die Schmutzpartikel im Sammelbereich aus. Das Schneidrad 19 ist zu der Borstwalze 14 in einem weiteren vorbestimmten Abstand angeordnet, der kleiner als der in Fig. 2 gezeigte vorbestimmte Abstand ist. Dadurch können langestreckte Schmutzpartikel (nicht gezeigt), die sich im Sammelbereich 4 befinden, geschnitten werden. Die kleiner geschnittenen langgestreckten Schmutzpartikel können über den Saugkanal 17 in den Sammelbehälter 23 abtransportiert werden, um dort zusammen mit weiteren Schmutzpartikeln gesammelt zu werden.
  • Fig. 4 zeigt eine Draufsicht auf eine Borstwalze eines erfindungsgemäßen Saugroboters. Die Borstwalze weist einen Borstwalzenkörper 1 und mehrere Borsten 3 auf, welche mit dem Borstwalzenkörper 1 fest verbunden sind. Ferner weist die Borstwalze einen Sammelbereich 4 auf, welcher segmentiert ausgebildet ist, d.h. Teilbereiche aufweist. Jeder Teilbereich des Sammelbereichs 4 ist derart ausgebildet, dass sich bei Betrieb langgestreckte Schmutzpartikel (nicht gezeigt) an undloder in ihm sammeln insbesondere um ihn winden können. Weiterhin weist die Borstwalze elastische Lamellen 2 auf, welche mit dem Borstwalzenkörper 1 fest verbunden sind und welche im Borstwalzenquerschnitt in Umfangrichtung bezogen auf die Walzendrehrichtung in einem vorbestimmten Abstand hinter den Borsten 3 positioniert sind.
  • Die elastischen Lamellen 2 weisen eine auf die langgestreckten Schmutzpartikel einwirkende Querkraftkomponente in eine axiale Richtung des Borstwalzenkörpers auf, die ausreichend ist, die langestreckten Schmutzpartikel in einen der Teilbereiche des Sammelbereichs 4 zu transportieren. Die Borstwalze weist - rein beispielhaft - drei Teilbereiche auf. Zwei der Teilbereiche sind an Enden des Borstwalzenkörpers 1 angeordnet, während einer der Teilbereiche mittig angeordnet ist. Der mittig angeordnete Teilbereich weist eine Mitte auf, die symbolhaft durch eine Strich-Punkt-Linie dargestellt ist und die von den beiden Enden des Borstwalzenkörpers 1 jeweils mit einem Abstand a äquidistant entfernt ist. Der Sammelbereich 4 ist Lamellen 2- und Borsten 3-frei ausgebildet. Die Borstwalze ist punktsymmetrisch ausgebildet.
  • Fig. 5 zeigt eine Draufsicht auf eine Borstwalze eines erfindungsgemäßen Saugroboters. Die in Fig. 5 gezeigte dritte Ausführungsform entspricht der in Fig. 4 gezeigten Ausführungsform mit dem Unterschied, dass die Mitte des einen mittig angeordneten Teilbereichs 4 nicht äquidistant zu den Enden des Borstwalzenkörpers beabstandet ist, sondern zu dem einen Ende mit dem Abstand a beabstandet ist und zu dem anderen Ende mit einem weiteren Abstand b beabstandet ist, der kleiner als der Abstand a ist. Die Borstwalze ist unsymmetrisch ausgebildet.
  • Fig. 6 zeigt eine Draufsicht auf die in Fig. 4 gezeigte Borstwalze mit langestreckten Schmutzpartikeln auf den Borsten. Langgesteckte Schmutzpartikeln 5 in Form von Haaren haben sich locker um die Borsten 3 und die Lamellen 2 gewunden.
  • Fig. 7 zeigt eine Draufsicht auf die in Fig. 4 gezeigte Borstwalze mit langgestreckten Schmutzpartikeln in dem Sammelbereich. Die langestreckten Schmutzpartikel 5 befinden sich in dem mittig angeordneten Teilbereich des Sammelbereichs 4. Dort sammeln sie sich dadurch an, dass sie sich um den Teilbereich fest winden.
  • Die in Fig. 6 gezeigten langgestreckten Schmutzpartikel 5 sind bei Betrieb des Saugroboters von einem zu saugenden Untergrund aufgenommen worden und werden aufgrund der auf die langgestreckten Schmutzpartikel 5 einwirkende Querkraftkomponente in eine axiale Richtung des Borstwalzenkörpers in den Teilbereich des Sammelbereichs 4 im weiteren zeitlichen Verlauf des Reinigungsvorgangs des Saugroboters transportiert, um sich in ihm zu sammeln, wie in Fig. 7 gezeigt ist.
  • Fig. 8 zeigt eine Draufsicht auf die in Fig. 4 gezeigte Borstwalze mit langgestreckten Schmutzpartikeln in dem Sammelbereich. Die in Fig. 5 gezeigte Draufsicht entspricht der in Fig. 7 gezeigten Draufsicht mit dem Unterschied, dass sich die langgestreckten Schmutzpartikel 5 in einem der beiden Teilbereiche des Sammelbereichs 4 befinden, der am Ende des Borstwalzenkörpers 1 ausgebildet ist.
  • Fig. 9 zeigt eine Querschnittsansicht der in Fig. 8 gezeigten Borstwalze entlang der Linie VI-VI. Der Borstwalzenkörper 1 weist dabei eine Mantelfläche aus einem glasfaserfreien Kunststoff aus. In einer alternativen Ausführungsform ist es denkbar, den Borstenwalzenkörper als Hohlzylinder beispielsweise aus einem glasfaserfreien Kunststoff auszubilden.
  • Fig. 10 zeigt eine weitere Querschnittsansicht der in Fig. 8 gezeigten Borstwalze entlang der Linie VII-VII. Die Borstwalze weist den Borstwalzenkörper 1 auf, der bei Betrieb des Saugroboters in Pfeilrichtung gedreht wird. Die Lamellen 2 sind in Drehrichtung hinter den Borsten 3 angeordnet. Die Borsten 3 weisen einen Borsten-Wirkdurchmesser d4 auf, der durch die äußersten Wirkpunkte der Borsten 3 definiert ist. Ein Winkelabstand α entlang der Umfangrichtung zwischen den Borsten 3 und einem äußersten Wirkpunkt der Lamellen 2 ist < 45°, bezogen auf gedachte Verbindungslinien 7 der Wirkpunkte zu einer Achse 6 des zylinderförmigen Borstwalzenkörpers 1.
  • Fig. 11 zeigt eine weitere Querschnittansicht der in Fig. 8 gezeigten Borstwalze entlang der Linie VII-VII. Fig. 8 entspricht der Fig. 10 mit dem Unterschied, dass ein Lamellen-Wirkdurchmesser d3 der Lamellen 2 gezeigt ist, der durch die äußersten Wirkpunkte der Lamellen 2 definiert ist. Der Lamellen-Wirkdurchmesser d3 ist kleiner als der Borsten-Wirkdurchmesser d4.
  • Fig. 12 zeigt eine Draufsicht auf eine Borstwalze eines Saugroboters gemäß einer vierten Ausführungsform. Die in Fig. 9 gezeigte vierte Ausführungsform entspricht der in Fig. 4 gezeigten zweiten Ausführungsform mit dem Unterschied, dass die Lamellen 2 jeweils mit einer Hartkomponente 9 verbunden sind, die an dem Borstwalzenkörper 1 mittels Schrauben 8 befestigt ist.
  • Fig. 13 zeigt eine Querschnittsansicht der in Fig. 12 gezeigten Borstwalze entlang der Linie X-X. Die Hartkomponente 9 ist an dem Borstwalzenkörper 1 mittels der Schrauben (8) festmontiert. An der Hartkomponente 9 ist eine elastische Komponente in Form der Lamelle 2 angespritzt und mit ihm dadurch chemisch verbunden. Die Hartkomponente 9 und die Lamelle 2 bilden daher ein 2-Komponenten-Spritzgussteil. Jede Hartkomponente 9 ist samt Lamelle 2 direkt anliegend an die Borsten 3 positioniert. Eine Höhe h1 der Lamelle 2 ist doppelt so groß wie eine Höhe h2 der Hartkomponente 9, die sich bezogen auf eine Drehrichtung (nicht gezeigt) der Borstwalze bei Betrieb des Saugroboters an einer Hinterseite der Lamelle 2 befindet.
  • Fig. 14 zeigt eine weitere Querschnittsansicht der in Fig. 12 gezeigten Borstwalze entlang der Linie X-X. Die in Fig. 14 gezeigte Borstwalze entspricht der in Fig. 13 gezeigten Borstwalze, wobei anstelle der Höhen die Drehrichtung der Borstwalze bei Betrieb des Saugroboters, ein Borstwalzenkörper-Außendurchmesser d1 des Borstwalzenkörpers 1 von 18,5 mm, ein Hartkomponente-Außendurchmesser d2 des Montagelements 9 von 26 mm, ein Lamellen-Wirkdurchmesser d3 der Lamellen 2 von 39 mm und ein Borsten-Wirkdurchmesser d4 der Borsten 3 von 42 mm dargestellt sind.
  • Fig. 15 zeigt eine Draufsicht auf eine Borstwalze eines Saugroboters gemäß einer alternativen Ausführungsform. Diese Borstwalze bildet keinen Sammelbereich aus. Im Reinigungsbetrieb des Saugroboters sammeln sich die Schmutzpartikel in einem mittleren Bereich der Borstwalze. Diese Stelle kann durch einen Benutzer manuell mittels einer Schere, einem Messer oder einem Reinigungswerkzeug gereinigt werden.
  • Fig. 16 zeigt eine Teil-Draufsicht auf einen Saugroboter gemäß einer weiteren Ausführungsform. Die in Fig. 16 gezeigte Borstwalze entspricht der in Fig. 4 gezeigten Borstwalze, der Saugroboter weist aber weiterhin ein Körper 10 im Saugmund benachbart zu der Borstwalze auf. Der Körper 10 ist angeordnet und ausgebildet, um ein Festziehen der langgestreckten Schmutzpartikel 5 im Sammelbereich 4 um einen Mantel des Borstwalzenkörpers 1 zu bewirken.
  • Bezugszeichenliste
  • α
    Winkelabstand entlang der Umfangrichtung
    a
    Abstand
    b
    weiterer Abstand
    d1
    Borstwalzenkörper-Außendurchmesser
    d2
    Hartkomponente-Außendurchmesser
    d3
    Lamellen-Wirkdurchmesser
    d4
    Borsten-Wirkdurchmesser
    1
    Borstwalzenkörper
    2
    Lamelle
    3
    Borste
    4
    Sammelstelle
    5
    langgestrecktes Schmutzpartikel
    6
    Walzenachse
    7
    gedachte Verbindungslinie
    8
    Schraube
    9
    Hartkomponente
    10
    Körper
    11
    Gehäuse
    12
    Gebläse
    14
    Borstwalze
    15
    Saugraum
    16
    Rad
    17
    Saugkanal
    18
    Saugmund
    19
    Schneidrad
    20
    Schneidrad-Gehäuse
    21
    Halterung
    22
    Bewegungselement
    23
    Sammelbehälter

Claims (11)

  1. Saugroboter mit einem Gehäuse (11), welches an einer Unterseite einen Saugmund (18) zum Einsaugen von Luft und Schmutzpartikeln und einen Saugraum (15) mit einem aus dem Saugraum (15) abgehenden Saugkanal (17) zum Abtransportieren von Luft und Schmutzpartikeln aufweist, und einer im Saugraum (15) angeordneten drehbaren Borstwalze (14) zum Aufnehmen von Schmutzpartikeln, die zum Saugkanal (17) abtransportierbar sind, wobei die Borstwalze (14) aufweist:
    - einen Borstwalzenkörper (1),
    - einen Sammelbereich (4), welcher derart ausgebildet ist, dass sich bei Betrieb langgestreckte Schmutzpartikel (5) an undloder in ihm ansammeln,
    - mehrere Borsten (3), welche mit dem Borstwalzenkörper (1) fest verbunden sind, und
    - elastische Lamellen (2), welche mit dem Borstwalzenkörper (1) fest verbunden sind, welche im Borstwalzenquerschnitt in Umfangrichtung bezogen auf die Walzendrehrichtung in einem vorbestimmten Abstand hinter den Borsten (3) positioniert sind und welche eine auf die langgestreckten Schmutzpartikel (5) einwirkende Querkraftkomponente in eine axiale Richtung des Borstwalzenkörpers (1) aufweisen, die ausreichend ist, die langestreckten Schmutzpartikel (5) zu undloder in den Sammelbereich (4) zu transportieren.
  2. Saugroboter nach Anspruch 1, dadurch gekennzeichnet, dass ein Winkelabstand (α) entlang der Umfangrichtung jeweils zwischen den Borsten (3) und äußersten Wirkpunkten der Lamellen (2) < 45°, bevorzugt < 30°, bevorzugter < 20°, noch bevorzugter ≤ 10° ist, bezogen auf gedachte Verbindungslinien der Wirkpunkte zu einer Achse des Borstwalzenkörpers (1).
  3. Saugroboter nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Lamellen (2) einen Lamellen-Wirkdurchmesser (d3) aufweisen, welcher durch äußerste Wirkpunkte der Lamellen (2) definiert ist und welcher kleiner als ein Borsten-Wirkdurchmesser (d4) der Borsten (3) ist, welcher durch äußerste Wirkpunkte der Borsten (3) definiert ist.
  4. Saugroboter nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass eine Helix der Borsten (3) und eine weitere Helix der dahinter positionierten Lamellen (2) eine Verdrehung um eine Drehachse des Borstwalzenkörpers (1) aufweisen, welche auf einem oder mehreren Teilabschnitten ≥90°, bevorzugt ≥ 120°, bevorzugter ≥ 150°, noch bevorzugter gleich 180° ist.
  5. Saugroboter nach Anspruch 4, dadurch gekennzeichnet, dass der Borstwalzenkörper (1) einen Achsabschnitt aufweist, in welchem sich eine Verdreh-Richtung der Verdrehung umkehrt.
  6. Saugroboter nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Sammelbereich (4) an einem Ende des Borstwalzenkörpers (1) angeordnet ist und ein Borstwalzen-Außendurchmesser (d1) des Borstwalzenkörpers (1) an dem Ende variiert.
  7. Saugroboter nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass eine Mantelfläche des Borstwalzenkörpers (1) im Sammelbereich (4) aus einem glasfaserfreien Kunststoff ausgebildet ist.
  8. Saugroboter nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Sammelstelle (4) Borsten- und Lamellen-frei ausgebildet ist.
  9. Saugroboter nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass weiterhin ein Körper (10) im Saugmund (15) benachbart zu der Borstwalze (14) angeordnet und ausgebildet ist, um ein Festziehen der langgestreckten Schmutzpartikel (5) im Sammelbereich (4) um einen Mantel des Borstwalzenkörpers (1) zu bewirken.
  10. Verfahren zur Herstellung einer Borstwalze (14), aufweisend folgende Schritte
    - Bereitstellen eines Borstwalzenkörpers (1),
    - Beborsten des Borstwalzenkörpers (1), so dass Borsten (3) mit dem Borstwalzenkörper (1) fest verbunden sind, und
    - Anordnen von 2-Komponenten-Spritzgussteilen mit einer Hartkomponente (9) und einer elastischen Komponente, so dass die Hartkomponenten (9) an den Borstwalzenkörper (1) fest montiert werden und die elastischen Komponenten als Lamellen (2) im Borstwalzenquerschnitt bezogen auf eine Drehrichtung bei Betrieb der Borstwalze hinter den Borsten (3) positioniert werden.
  11. Verfahren zur Herstellung einer Borstwalze (14), aufweisend folgende Schritte
    - Bereitstellen eines Borstwalzenkörpers (1),
    - vollständiges Umspritzen des bereitgestellten Borstwalzenkörpers (1) mit einer elastischen Komponente unter Ausbildung von Lamellen (2), und
    - Beborsten des Borstwalzenkörpers (1), so dass Borsten (3) mit dem Borstwalzenkörper (1) fest verbundenwerden, und die Lamellen (2) im Borstwalzenquerschnitt bezogen auf eine Drehrichtung der Borstwalze hinter den Borsten (3) positioniert sind.
EP21174086.5A 2020-06-09 2021-05-17 Saugroboter Active EP3922155B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102020115219.1A DE102020115219A1 (de) 2020-06-09 2020-06-09 Saugroboter

Publications (3)

Publication Number Publication Date
EP3922155A1 EP3922155A1 (de) 2021-12-15
EP3922155C0 EP3922155C0 (de) 2023-10-25
EP3922155B1 true EP3922155B1 (de) 2023-10-25

Family

ID=75936869

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21174086.5A Active EP3922155B1 (de) 2020-06-09 2021-05-17 Saugroboter

Country Status (2)

Country Link
EP (1) EP3922155B1 (de)
DE (1) DE102020115219A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218009532U (zh) * 2022-05-06 2022-12-13 深圳市巴爪科技有限公司 吸尘器地刷

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100132891A (ko) * 2009-06-10 2010-12-20 삼성광주전자 주식회사 청소장치 및 이를 이용한 먼지 포집 방법
CN105982623B (zh) * 2016-04-14 2019-08-02 北京小米移动软件有限公司 自动清洁设备的滚刷组件、风路结构和自动清洁设备
KR102546702B1 (ko) 2018-08-09 2023-06-22 삼성전자주식회사 진공청소기
GB2578571A (en) * 2018-10-30 2020-05-20 Black & Decker Inc A vacuum cleaner

Also Published As

Publication number Publication date
EP3922155C0 (de) 2023-10-25
EP3922155A1 (de) 2021-12-15
DE102020115219A1 (de) 2021-12-09

Similar Documents

Publication Publication Date Title
DE102010037672B4 (de) Rotierbare Kehrbürste sowie selbsttätig verfahrbares Bodengerät mit einer derartigen Kehrbürste
DE3526655C2 (de) Kehrwalze für eine Kehrmaschine
DE2917912C2 (de)
DE102017109595B4 (de) Staubsauger und Bodendüse für einen Staubsauger
EP0265466B1 (de) Florfaserbürste zur reinigung von textilgeweben
EP0611544A1 (de) Einteilige Staubsaugerdüse
EP3761840B1 (de) Reinigungsgerät
DE102019106501A1 (de) Saugwerk für einen Staubsauger und Staubsauger
EP3922155B1 (de) Saugroboter
DE102012104706B4 (de) Saugdüse mit zwei Saugmündern
EP1386573B1 (de) Reinigungsgerät mit einem Elektroantrieb
DE202016106335U1 (de) Bürstenkopf für einen Staubsauger oder einen Saugroboter
DE102011000454A1 (de) Saugdüse für einen elektromotorisch betriebenen Staubsauger
DE202009001640U1 (de) Bodenpflegegerät
EP3922154B1 (de) Saugroboter und reinigungsstation
DE102019102357B4 (de) Vorrichtung zur Absperrung oder Steuerung des Durchflusses von schmutzbeladener Luft, Reinigungsgerät und Behältnis zum Abtrennen und/oder Sammeln von Schmutz mit einer solchen Vorrichtung
EP3443882B1 (de) Saugroboter zur autonomen reinigung von bodenflächen
EP3808241B1 (de) Saugroboter zur autonomen reinigung von bodenflächen eines raums
DE102019112666A1 (de) Saugroboter mit Seitenbürste
EP3944801B1 (de) Selbstfahrendes bodenreinigungsgerät
EP2534991B1 (de) Bodendüse für einen Staubsauger und Staubsauger mit einer solchen Bodendüse
DE102018102028A1 (de) Saugdüse für einen Staubsauger zum Reinigen eines Teppichs
DE102009048852A1 (de) Saugdüse für ein Saugaggregat oder einstellbares Filtrierungselement
EP1924182B1 (de) Staubsaugerdüse
DE102007036156A1 (de) Saugbürstenvorrichtung für ein Staubsammelgerät, insbesondere für einen Staubsammelroboter, sowie ein eine solche Saugbürstenvorrichtung enthaltendes Staubsammelgerät, insbesondere Staubsammelroboter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

B565 Issuance of search results under rule 164(2) epc

Effective date: 20211022

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220615

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230817

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021001770

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20231025

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20231030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240225

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240126

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025