EP3913187A1 - Schraubenspindelpumpe - Google Patents

Schraubenspindelpumpe Download PDF

Info

Publication number
EP3913187A1
EP3913187A1 EP21168615.9A EP21168615A EP3913187A1 EP 3913187 A1 EP3913187 A1 EP 3913187A1 EP 21168615 A EP21168615 A EP 21168615A EP 3913187 A1 EP3913187 A1 EP 3913187A1
Authority
EP
European Patent Office
Prior art keywords
bore
symmetry
axis
spindle
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP21168615.9A
Other languages
English (en)
French (fr)
Other versions
EP3913187B1 (de
Inventor
Oliver Troßmann
Roland Maurischat
Philipp ROSSOW
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leistritz Pumpen GmbH
Original Assignee
Leistritz Pumpen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leistritz Pumpen GmbH filed Critical Leistritz Pumpen GmbH
Publication of EP3913187A1 publication Critical patent/EP3913187A1/de
Application granted granted Critical
Publication of EP3913187B1 publication Critical patent/EP3913187B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C2/14Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C2/16Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/082Details specially related to intermeshing engagement type machines or pumps
    • F04C2/086Carter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/10Manufacture by removing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/60Assembly methods
    • F04C2230/602Gap; Clearance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/81Sensor, e.g. electronic sensor for control or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/30Geometry of the stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/17Tolerance; Play; Gap

Definitions

  • the invention relates to a screw spindle pump, comprising a housing with a barrel bore consisting of at least two intersecting bores, in each of which a spindle is received, the spindles having intermeshing screw profiles in sections and bending in a defined bending direction due to hydraulic bending pressure.
  • Such screw pumps are used to convey a wide variety of fluid media. They comprise a housing with a barrel bore which is formed by at least two intersecting bores. A spindle is received in each of these boreholes, one spindle usually being a drive spindle and the other being a running spindle driven by the other spindle. Sometimes two running spindles, which are arranged on both sides of a central engagement spindle, are also provided, in which case the running bore consists of three intersecting bores.
  • the spindles have corresponding screw profiles by means of which they mesh with one another, with cavities being formed via the toothing engagement which form the conveying spaces for the fluid to be conveyed. This makes it possible to convey the fluid supplied on one side from this suction side to the pressure side, where the fluid is released.
  • the structure and function of such a screw pump is basically known.
  • the screw pump sucks in the fluid to be conveyed on the suction side and conveys it to the pressure side with constant compression.
  • This hydraulic bending pressure results in a bending of the spindles in a defined bending direction, i.e.
  • the spindles which are usually mounted in plain bearings in the area of their two spindle ends, experience a slight deflection, that is to say are deformed. Since the spindles are arranged in the respective bores of the housing, which can either be a single housing or an insert that is inserted into an outer housing, and rotate in the corresponding bore, the relative position of the spindle changes accordingly to the bore wall, that is, the given ring segment-like gap increases slightly in width on one side due to the bending, while it becomes slightly narrower on the other side, whereby this change in width, of course, seen over the spindle length, varies slightly due to the bending geometry.
  • the bore diameter is selected with a corresponding oversize, so that ideally, despite the bending, there is still a corresponding distance even in the maximum bending area given is.
  • the spindle de-axisized in the central bore that is to say to arrange its spindle axis slightly offset from the center against the bending direction. This design is made in such a way that, in the area of maximum bending, the distance between the spindle and the bore wall is almost the same in and opposite to the bending direction.
  • the invention is thus based on the problem of specifying a screw pump which is improved in comparison.
  • each bore has an elongated hole a longer first axis of symmetry and a shorter, orthogonal to it, shorter second axis of symmetry, the longer first axis of symmetry running in the bending direction.
  • the screw pump according to the invention therefore has no centric, i.e. circular bores, as was previously the case in the prior art, but elongated bores, i.e. bores that do not have a clear radius, but are defined by two different, orthogonal axes of symmetry.
  • the elongated hole has a first, longer axis of symmetry and a second, shorter axis of symmetry that is orthogonal thereto.
  • the longer axis of symmetry runs in the bending direction, the shorter axis of symmetry runs orthogonally to it.
  • This configuration has the advantage that, on the one hand, a deflection of the spindle is easily possible because, after the deflection takes place along the longer axis of symmetry, there is sufficient space within the bore to ensure that the spindle or its screw profile does not run against the inner wall of the bore .
  • the elongated design it is possible due to the elongated design to reduce the distance between the opposing wall surfaces of the bore, so that overall a smaller gap width results in the direction of the second axis of symmetry than in the direction of the first Axis of symmetry.
  • the entire cross-sectional area of the gap can be reduced considerably, since due to the slot-like design with a longer and shorter axis of symmetry, there is no round gap surrounding the respective spindle with a constant width around the circumference, but a gap with a gap width that varies around the circumference .
  • there is a correspondingly strong reduction in the gap width which in turn is reflected in a correspondingly large reduction in the overall gap cross-section.
  • the screw spindle pump according to the invention or the bore geometry provided according to the invention thus enables problem-free and low-wear pump operation on the one hand, since a spindle bending resulting from the hydraulic bending pressure is possible without problems and there is always a sufficient distance to the adjacent bore walls in the direction of the longer axis of symmetry, as well as at the same time due to The reduced gap diameter in the direction of the shorter axis of symmetry results in a considerable reduction in the entire gap cross-section and thus in the leakage volume. This results on the one hand in extremely low-wear sales and, on the other hand, in a significantly more efficient production operation compared to the previous circular bore geometry.
  • the spindles or their spindle axes in the unloaded state to be arranged offset to the center of the first axis of symmetry, i.e. also to be positioned quasi eccentrically here.
  • the location of the same distance ultimately relates to the area of the greatest spindle deflection, this area usually being in the central spindle area.
  • the arrangement is expediently such that the spindles are positioned so that at a defined differential pressure between a suction side and a pressure side of the pump or within a defined differential pressure interval, the width of the gap between the screw profiles and the inner wall of the bore in the direction of the first axis of symmetry is greater than is the width of the gap in the direction of the second axis of symmetry. It means that the arrangement of the spindles is such that, in the event of bending, the distance between the screw profile and the inner wall of the bore in the direction of the first axis of symmetry in both axial directions is always greater than the distance or the gap width in the orthogonal second axis of symmetry.
  • the gap In the direction of the second axis of symmetry, the gap is consequently always narrower in operation than in the direction of the first axis of symmetry. In this way, symmetrical relationships in the direction of both axes of symmetry can ultimately be set in this bending area.
  • each hole is designed as a slot-like hole with two different lengths of orthogonal axes of symmetry.
  • a bore can be formed, for example, by means of a milling tool which makes it possible not only to introduce a cylindrical bore, but also to lengthen it slightly in the direction of the first axis of symmetry to form a slot-like shape.
  • lengthening the bore like a slot by grinding a cylindrical bore. A simple cylindrical bore is first made, which is then ground out in a defined manner to form the longer axis of symmetry.
  • a further alternative possibility of forming a bore provides that each bore is formed from two separate, intersecting individual bores, the bore axes of which are offset from one another in the bending direction.
  • Each hole therefore consists of two individual holes that intersect with one another. These are minimally offset from one another in the bending direction, that is, their bore axes are minimally spaced in the bending direction, namely by the distance of the expected maximum deflection, which is in the range of 0.1-0.3 mm, for example.
  • the formation of the bore using two separate individual bores has the advantage, on the one hand, that the bore as such can be easily introduced, since the formation of the bores only requires a simple linear movement of the drilling tool.
  • a drilling tool can be used that has a smaller diameter than a drilling tool that is used to produce a circular, central bore, as has been customary in the prior art up to now (this also applies to the use of a milling cutter, this can also be selected with a smaller diameter). All that needs to be ensured is that the diameter of the two individual bores is sufficiently large that the spindle, viewed in the direction of the second axis of symmetry, is still sufficient, although it is spaced from the wall of the bore via a significantly narrower gap, after there is sufficient space for in the direction of the first axis of symmetry the bend is taken up.
  • the housing can be a complete housing or a central housing block that is only closed by two covers.
  • the housing can also be an insert that is inserted into a corresponding outer housing.
  • each bore consists of two axially adjoining bore sections, the central axes of each bore section being set against one another.
  • each bore is consequently composed of two separate bore sections, each bore section in turn being formed from two separate individual bores as described above.
  • the bore sections naturally merge into one another, but are not in an axial arrangement or are not axially aligned with one another, but are marginally angled to one another. The employment is chosen in such a way that this approximates the bending geometry of the spindle.
  • each bore section which begins on one side of the housing and runs towards the center of the housing, runs minimally at an angle, so that, viewed in cross-section, there is virtually a minimal V-shape, with the tip of the V pointing in the bending direction.
  • This bore geometry therefore takes on the spindle bending geometry, so that the bore geometry adapts even better to the actual conditions and in particular the gap resulting from the elongated hole-like shape and adapted to the bend is even better adapted to the spindle bend, seen in the axial direction.
  • the screw pump is preferably a double-flow pump, that is, each screw spindle has two axially adjacent screw profiles rising in opposite directions, which are preferably provided approximately in the region of the longitudinal center of the respective screw spindles or approximately symmetrically to the longitudinal center.
  • this double-flow pump form corresponding, oppositely running screw profiles are provided which extend from the area of the spindle center in the direction of the spindle ends where the spindle is mounted.
  • it can also be a single-flow pump in which each spindle only has a screw profile that increases in one direction.
  • the screw pump itself is either a pure liquid pump. Alternatively, however, it can also be a multiphase pump which, in addition to a pure liquid, can also convey a liquid-gas mixture.
  • the invention also relates to a housing for a screw pump of the type described.
  • the housing has a barrel bore consisting of at least two intersecting bores for receiving one spindle each, the spindles having intermeshing screw profiles in sections and during operation of the Bend the screw pump in a defined bending direction using hydraulic bending pressure.
  • This housing which can be the actual pump housing, or an insert in one Outer housing is characterized according to the invention in that each bore is designed like a slot with a longer first axis of symmetry and a shorter, second axis of symmetry orthogonally to it, the longer first axis of symmetry running in the bending direction.
  • each bore is preferably formed from two separate, intersecting individual bores, the bore axes of which are offset from one another in the bending direction.
  • the elongated hole can also be designed as a milled hole, i.e. the milling tool is guided accordingly to lengthen the hole while forming the longer axis of symmetry.
  • the slot-like bore is ground from a cylindrical bore, i.e. that material is specifically removed locally by grinding in order to form the longer axis of symmetry.
  • each of the two individual bores can extend over the entire length of the housing, that is to say that the entire bore consists of these two axially extending individual bores.
  • each bore consists of two axially adjoining bore sections, the central axes of each bore section and thus the central axes of the individual bores of a bore section being set against one another with respect to those of the other bore section.
  • each bore section is thus formed from two separate individual bores, the bore axes of which are slightly adjusted to one another, that is to say they assume an angle not equal to 180 ° to one another and are not aligned with one another. This makes it possible to tilt the entire bore geometry minimally following the bending line.
  • the invention further relates to a method for producing a housing for a screw pump of the type described above, comprising a barrel bore formed from at least two intersecting bores.
  • This method is characterized in that, in order to form each bore, at least two separate, intersecting individual bores, the bore axes of which are offset from one another, in one Housing body to be drilled.
  • the two individual bores or their bore axes are offset from one another in a previously defined bending direction.
  • each bore can also consist of two axially adjoining bore sections, the central axes of each bore section being positioned against one another, with two separate individual bores being drilled on each of the two opposite sides of the housing body to form the bore sections.
  • the bore sections or the individual bores meet in the center of the housing, where the area of the maximum spindle bending is.
  • Fig. 1 shows, in the form of a partially cut-away perspective view, a double-entry screw pump 1 according to the invention, comprising an outer housing 2 with an inner housing 3 designed as an insert, in which, see Fig. 2 , two spindles 4, 5 are arranged, which are used to suck in, convey and dispense a fluid or a liquid-gas mixture.
  • an inlet is provided on the housing side, as shown by the arrow P1, through which the fluid is sucked in.
  • the fluid is released under pressure via an outlet (not shown in greater detail), which is arranged at 90 degrees in the example shown, as shown by the arrow P2.
  • the two spindles 4, 5 each have two screw profiles 6, 7 and 8, 9, the respective screw profile pairs 6, 7 and 8, 9 having opposing slopes. This means that it is a double-entry screw pump 1.
  • the screw profiles 6 and 8 would come together in a manner known per se, as would the screw profiles 7 and 9.
  • the two screw spindles 4, 5 are supported and rotatably supported in the region of their respective ends via corresponding bearing means 10, 11 and 12, 13, the bearing means 10-13 generally being slide bearings.
  • a barrel bore 14 which has the shape of a "lying 8" and which is shown as a schematic diagram in FIG Fig. 3 shown is.
  • Fig. 3 shows an end view of the housing 3 with a view of the barrel bore 14, which extends axially in a straight line through the housing 3.
  • the barrel bore 14 consists of two separate bores 15, 16 which intersect one another so that two central shoulders 17 result.
  • a spindle 4, 5 is received in each bore 15, 16 and rotates therein, one spindle being the drive spindle coupled to a drive motor, while the other spindle is the running spindle.
  • the spindle 5 is the drive spindle
  • the spindle 4 is the following running spindle.
  • the spindles 4, 5 are received in the running bore 14 or the bores 15, 16 at a distance from the adjacent inner wall of the bore, so that they can rotate without contact. As a result, a gap is formed which runs around both spindles 4, 5 and which also has the shape of a "lying 8".
  • each of the bores 15, 16 is designed in the manner of a slot, that is to say that each bore 15, 16 is not a circular bore, but rather has a longer and a shorter axis of symmetry.
  • the two bores 15, 16 intersect, but each bore has to be assigned a defined, specific elongated hole geometry.
  • Fig. 4 shows a schematic diagram in this regard.
  • the two bores 15, 16 are shown.
  • Each bore 15, 16 consists of two intersecting individual bores 18, 19 in the case of the bore 15 and 20, 21 in the case of the bore 16.
  • the two pairs of individual bores 18, 19 and 20, 21 respectively have Bore or central axes Z1 and Z2, which, however, are spaced from one another in a bending direction R here.
  • This bending direction R is the direction in which the respective spindle 4, 5 bends due to the hydraulic bending pressure given in the housing 3, resulting from the pressure difference between the suction side and the pressure side. This bending is minimal, but it is a result of the quasi end-side support of the spindles 4, 5 via the bearing means 10-13.
  • Fig. 4 the respective individual bores 18, 19 or 20, 21, for reasons of clarity alone, are clearly spaced from one another by the distance a with their central axes Z1.
  • the distance a is, for example, only 0.1-0.3 mm, so it is minimal, but nevertheless measurable.
  • This offset of the individual bores 18, 19 in the bending direction R now means that the resulting bore 15, 16 has a slot-like geometry, i.e. no longer a circular bore shape or inner wall shape, but a slightly elongated bore shape.
  • Each individual bore 15, 16 therefore has a longer first axis of symmetry S1, which extends in the bending direction R, and a second, shorter axis of symmetry S2 that is orthogonal thereto.
  • the axes of symmetry S1, S2 are shown for the bore 15; the geometry of the bore 16 is identical.
  • the difference in length between the axes of symmetry S1 and S2 ultimately corresponds to the distance a between the two central axes Z1, Z2, and is therefore also approximately 0.1-0.3 mm.
  • Fig. 4 a pure principle illustration with respective individual bores 18, 19 and 20, 21, which are spaced apart from one another in an exaggerated manner.
  • the result is in Fig. 4 a shoulder on the right-hand side of the bore 15 or on the left-hand side of the bore 16.
  • this is actually only marginally pronounced with the given minimum axial offset a, it has a height of a few micrometers and consequently does not hinder the spindle movement or bending and also has no influence on the pump operation.
  • FIG. 5 shows in the form of a schematic representation of a slot-like bore 15, which is shown here closed for descriptive and illustrative reasons (the following description, which explains the basic principle, of course also applies to the second slot-like bore 16, which is 8-shaped with the bore 15 Barrel bore 14 supplemented).
  • the spindle 4 or the outer circumference of the screw profile 6 is also shown as a schematic diagram Fig.
  • FIG. 5 shows, between the inner wall 22 of the slot-like bore 15 and the outer circumference 23 of the screw profile 6, in the example shown, a ring-shaped circumferential gap space 24, in which the fluid collects during operation for conveying (the running bore is that of the respective bore 15, 16
  • the gap to be assigned only like a ring segment, the two ring segments complementing each other to form an "8" shape).
  • the longer first axis of symmetry S1 and the shorter, second axis of symmetry S2 are also shown.
  • the diameter D of the spindle 4 and its longitudinal or central axis ZS This can be seen at a distance b from the longitudinal center or the central axis Z of the bore 15, namely against the bending direction R. That means that it, seen in Fig. 5 , is offset slightly upwards from the center of the bore 15.
  • the distance dimension b ultimately corresponds to the distance dimension a by which the two individual bores 18, 19 are offset, via which the bore 15 is formed.
  • the width B2 of the gap space 24 is significantly narrower.
  • the gap width consequently changes around the circumference or constricts from the upper and lower axis point on the first axis of symmetry S1 to the lateral axis points on the second axis of symmetry S2, which is also given in the case of a barrel bore.
  • the diameter of such a central bore would correspond to the length of the longer first axis of symmetry S1. Viewed in the direction of the shorter, second axis of symmetry S2, the comparison in FIG Fig. 6 It is clear that the width B2 of the gap 24 is significantly smaller compared to the situation in the case of a central bore 25. This shows how Fig. 6 also clearly shows that the total cross-sectional area of the gap space 24 with the design of an elongated hole 15 compared to the cross-sectional area with the formation of a central hole 25 is significantly smaller, which in turn means that any leakage volume can be significantly reduced and consequently the delivery volume as well as the Efficiency of the screw pump can be improved.
  • the Figures 7 and 8 show, for comparison, the arrangement of the spindle 4 in a central bore 25, that is to say a bore with a constant diameter which corresponds to the length of the first axis of symmetry S1.
  • the central axis ZS of the spindle 4 is de-axisized to the central axis Z of the circular central bore 25;
  • FIG Fig. 8 If the spindle 4 is now loaded during operation, it bends slightly, as in FIG Fig. 8 is shown. As can be seen, the spindle 4 is then quasi-centric in the central bore 25. This results in an annular circumferential gap space 24 which has almost the same width B1 around the entire circumference, i.e. the gap width as it is only in the upper and lower areas in the embodiment according to the invention Axis point is given. It can be seen in Fig. 8 resulting Cross-sectional area of the annular gap space 24 is significantly larger than the area of the gap space 24 according to FIG Fig. 6 .
  • the respective bore 15, 16 is formed via two individual bores 18, 19 or 20, 21, which are introduced one after the other and intersect, there is basically also the possibility of opening the respective bore 15, 16 by means of a milling cutter to form, which on the one hand introduces a hole, but on the other hand can also be moved slightly in the bending direction in order to produce the elongated hole geometry.
  • This also has a diameter which is smaller than the diameter of a drill which forms a central bore as is customary in the prior art.
  • each bore 15, 16 extends linearly through the housing 3 angled configuration of the bore sections to accommodate the shape of the resulting spindle bend.
  • a schematic representation of such an arrangement is in Fig. 9 shown.
  • the housing 3 and the bore 15 are shown there by way of example.
  • This consists of two bore sections 15a, 15b, each bore section in turn consisting of two separate, mutually intersecting individual bores 18a, 19a or 18b, 19b that intersect, as above for the first Alternative invention described. That means that too here the individual bores 18a, 19a or 18b, 19b are minimally offset by the distance a in the bending direction.
  • the bore sections 15a, 15b are not aligned with one another, but are at an angle ⁇ ⁇ 180 ° to one another, that is to say they are tilted or set in the middle in the bending direction R, as it were.
  • the Fig. 9 also shows schematically the course of the central axis ZS of the spindle 4, which is inevitably also slightly bent due to the spindle bending.
  • the angled inclination of the bore sections 15a 15b now approximately takes up this bending line or curved axis course, so that ultimately the overall resulting, quasi-angled or kinked bore 15 is better adapted to the spindle geometry resulting from hydraulic loading.
  • the invention is of course not limited to this. Rather, it can also be a single-flow screw spindle pump, where only one screw profile is provided on each spindle.
  • more than two spindles can also be provided, which means that a central work spindle and two parallel running spindles are provided.
  • the elongated hole-like configuration of the respective spindle bore according to the invention can be used wherever spindle bending is given and compensated for during operation due to the given hydraulic pressure conditions.

Abstract

Schraubenspindelpumpe, umfassend ein Gehäuse (3) mit einer Laufbohrung (14) bestehend aus wenigstens zwei einander schneidenden Bohrungen (15, 16), in denen jeweils eine Spindel (4, 5) aufgenommen ist, wobei die Spindeln (4, 5) abschnittsweise miteinander kämmende Schneckenprofile (6, 7, 8, 9) aufweisen und sich im Betrieb durch einen hydraulischen Biegedruck in eine definierte Biegerichtung (R) verbiegen, wobei jede Bohrung (15, 16) langlochartig mit einer längeren ersten Symmetrieachse (S1) und einer orthogonal dazu stehenden kürzeren zweiten Symmetrieachse (S2) ausgeführt ist, wobei die längere erste Symmetrieachse (S1) in der Biegerichtung (R) verläuft.

Description

  • Die Erfindung betrifft eine Schraubenspindelpumpe, umfassend ein Gehäuse mit einer Laufbohrung bestehend aus wenigstens zwei einander schneidenden Bohrungen, in denen jeweils eine Spindel aufgenommen ist, wobei die Spindeln abschnittsweise miteinander kämmende Schneckenprofil aufweisen und sich im Betrieb durch einen hydraulischen Biegedruck in eine definierte Biegerichtung verbiegen.
  • Derartige Schraubenspindelpumpen dienen der Förderung unterschiedlichster fluider Medien. Sie umfassen ein Gehäuse mit einer Laufbohrung, die über wenigstens zwei einander schneidende Bohrungen gebildet ist. In jeder dieser Bohrung ist eine Spindel aufgenommen, wobei üblicherweise eine Spindel eine Antriebsspindel und die andere eine über die andere Spindel angetriebene Laufspindel ist. Mitunter sind auch zwei Laufspindeln, die beidseits einer mittigen Angriffsspindel angeordnet sind, vorgesehen, wobei in diesem Fall die Laufbohrung aus drei einander schneidenden Bohrungen besteht. Die Spindeln weisen entsprechende Schneckenprofile auf, über die sie miteinander kämmen, wobei über den Verzahnungseingriff Hohlräume gebildet werden, die die Förderräume für das zu fördernde Fluid bilden. Hierüber ist es möglich, das an einer Seite zugeführte Fluid von dieser Saugseite zur Druckseite, wo das Fluid abgegeben wird, zu fördern. Der Aufbau und die Funktion einer solchen Schraubenspindelpumpe ist dem Grunde nach bekannt.
  • Die Schraubenspindelpumpe saugt, wie beschrieben, das zu fördernde Fluid an der Saugseite an und fördert es unter stetiger Komprimierung zur Druckseite. Hieraus ergibt sich ein entsprechender Differenzdruck zwischen der Saug- und der Druckseite, der je nach Auslegung der Schraubenspindelpumpe wenige bar bis hin zu weit über 100 bar betragen kann. Das heißt, dass, insbesondere je höher der Differenzdruck ist, ein entsprechender hydraulischer Biegedruck auf den Spindeln lastet, der, da der Fluidweg innerhalb der Pumpe definiert ist, stets in eine definierte Richtung gerichtet ist. Aus diesem hydraulischen Biegedruck resultiert eine Verbiegung der Spindeln in eine definierte Biegerichtung, das heißt, dass die Spindeln, die im Bereich ihrer beiden Spindelenden üblicherweise in Gleitlagern gelagert sind, eine geringe Durchbiegung erfahren, also deformiert werden. Da sich die Spindeln in den jeweiligen Bohrungen des Gehäuses, bei dem es sich entweder um ein Einzelgehäuse handeln kann, oder um einen Einsatz, der in ein Außengehäuse eingesetzt wird, angeordnet sind und in der entsprechenden Bohrung rotieren, ändert sich demzufolge die Relativposition der Spindel zur Bohrungswand, das heißt, dass der gegebene ringsegmentartige Spalt sich biegungsbedingt an einer Seite etwas in seiner Breite vergrößert, während er an der anderen Seite etwas schmäler wird, wobei diese Breitenänderung natürlich, gesehen über die Spindellänge, aufgrund der Biegegeometrie leicht variiert. Um zu vermeiden, dass es infolge dieser Verbiegung zu einem Anlaufen der Spindel respektive des Schneckenprofils an die Bohrungsinnenwand kommt, was extrem verschleißfördernd wäre, ist der Bohrungsdurchmesser mit einem entsprechenden Übermaß gewählt, so dass trotz Verbiegung idealerweise immer noch ein entsprechender Abstand auch im maximalen Biegebereich gegeben ist. Darüber hinaus ist es bekannt, die Spindel deachsiert in der zentrischen Bohrung anzuordnen, also mit ihrer Spindelachse geringfügig aus der Mitte entgegen der Biegerichtung versetzt anzuordnen. Diese Auslegung wird dabei so getroffen, dass im Bereich der maximalen Biegung der Abstand der Spindel von der Bohrungswand in und entgegengesetzt der Biegerichtung nahezu gleich ist. Dies führt dazu, dass in diesem Bereich ein Spalt mit nahezu konstanter Spaltbreite zwischen Spindel und Bohrungsinnenwand gegeben ist. Die Größe des um alle Spindeln umlaufenden Spalts, der bei einer aus zwei Bohrungen bestehenden Laufbohrung genähert die Form einer "8" aufweist, geht in die Berechnung der Fördermenge ein. Denn über diesen Spalt ist eine gewisse Leckage gegeben, also eine gewisse Fluidmenge, die nicht gefördert wird. Je größer der Spalt respektive der umlaufende Spaltquerschnitt, desto größer dieser Leckage-Anteil.
  • Der Erfindung liegt damit das Problem zugrunde, eine demgegenüber verbesserte Schraubenspindelpumpe anzugeben.
  • Zur Lösung dieses Problems ist bei einer Schraubenspindelpumpe der eingangs genannten Art erfindungsgemäß vorgesehen, dass jede Bohrung langlochartig mit einer längeren ersten Symmetrieachse und einer orthogonal dazu stehenden kürzeren zweiten Symmetrieachse ausgeführt ist, wobei die längere erste Symmetrieachse in der Biegerichtung verläuft.
  • Die erfindungsgemäße Schraubenspindelpumpe weist demzufolge keine zentrischen, also kreisrunden Bohrungen auf, wie bisher im Stand der Technik üblich, sondern langlochartige Bohrungen, also Bohrungen, die keinen eindeutigen Radius besitzen, sondern die über zwei unterschiedliche, orthogonal zueinander stehende Symmetrieachsen definiert werden. Die langlochartige Bohrung weist eine erste längere Symmetrieachse sowie eine orthogonal dazu stehende zweite, kürzere Symmetrieachse auf. Die längere Symmetrieachse verläuft in der Biegerichtung, die kürzere Symmetrieachse verläuft orthogonal dazu. Diese Ausgestaltung hat den Vorteil, dass einerseits eine Durchbiegung der Spindel ohne weiteres möglich ist, da, nachdem die Durchbiegung entlang der längeren Symmetrieachse erfolgt, ausreichend Raum innerhalb der Bohrung gegeben ist, der sicherstellt, dass die Spindel respektive deren Schneckenprofil nicht gegen die Bohrungsinnenwand läuft. In der orthogonalen Richtung dazu aber, in der keine Deformation erfolgt, ist es aufgrund der langlochartigen Ausgestaltung möglich, den Abstand der gegenüberliegenden Wandflächen der Bohrung zu reduzieren, so dass sich insgesamt eine kleinere Spaltbreite gesehen in Richtung der zweiten Symmetrieachse ergibt als in Richtung der ersten Symmetrieachse. Aufgrund dieser langlochartigen Bohrungsgeometrie kann daher die gesamte Spaltquerschnittsfläche beachtlich verringert werden, da aufgrund der langlochartigen Ausführung mit längerer und kürzerer Symmetrieachse kein die jeweilige Spindel umgebender runder, um den Umfang eine konstante Breite aufweisender Spalt gegeben ist, sondern ein Spalt mit um den Umfang variierender Spaltbreite. Je nachdem, wie nahe die gegenüberliegenden Bohrungsinnenwandbereiche in der kurzen Symmetrieachse an die Spindel rücken, ergibt sich eine entsprechend starke Reduktion der Spaltbreite, die sich wiederum in einer entsprechend großen Reduktion des gesamten Spaltquerschnitts niederschlägt.
  • Durch die Reduzierung dieses Spaltquerschnitts ergibt sich damit zwangsläufig auch eine beachtliche Reduzierung des Leckage-Volumens über den Bereich des Differenzdruckintervalls, wobei Versuche gezeigt haben, dass eine Reduktion von bis zu 25 % oder mehr ohne weiteres möglich ist.
  • Damit ermöglicht die erfindungsgemäße Schraubenspindelpumpe respektive die erfindungsgemäß vorgesehene Bohrungsgeometrie einerseits einen problemlosen und verschleißarmen Pumpenbetrieb, da eine aus dem hydraulischen Biegedruck resultierende Spindelverbiegung ohne Probleme möglich ist und stets ein hinreichender Abstand zu den in Richtung der längeren Symmetrieachse benachbarten Bohrungswänden gegeben ist, wie auch gleichzeitig aufgrund des reduzierten Spaltdurchmessers in Richtung der kürzeren Symmetrieachse eine beachtliche Reduktion des gesamten Spaltquerschnitts und damit des Leckage-Volumens gegeben ist. Hieraus resultiert einerseits ein extrem verschleißarmer Vertrieb, andererseits aber auch ein im Vergleich zur bisherigen kreisrunden Bohrungsgeometrie deutlich effizienterer Förderbetrieb.
  • Um auch hier zu ermöglichen, dass in Richtung der ersten, längeren Symmetrieachse der Abstand der Spindel respektive des Schneckenprofils in Richtung der ersten längeren Symmetrieachse auch hier zu beiden Seiten hin nahezu gleich ist, ist es zweckmäßig, die Spindeln bzw. deren Spindelachsen im unbelasteten Zustand versetzt zur Mitte der ersten Symmetrieachse anzuordnen, also auch hier quasi außermittig zu positionieren. Dabei bezieht sich wie ausgeführt der Ort des gleichen Abstands letztlich auf den Bereich der größten Spindeldurchbiegung, wobei dieser Bereich üblicherweise im mittleren Spindelbereich liegt.
  • Dabei ist die Anordnung zweckmäßigerweise derart, dass die Spindeln so positioniert sind, dass sich bei einem definierten Differenzdruck zwischen einer Saugseite und einer Druckseite der Pumpe oder innerhalb eines definierten Differenzdruckintervalls die Breite des Spalts zwischen den Schneckenprofilen und der Bohrungsinnenwand in Richtung der ersten Symmetrieachse größer als die Breite des Spalts in Richtung der zweiten Symmetrieachse ist. Das heißt, dass die Anordnung der Spindeln derart getroffen ist, dass im Biegefall der Abstand des Schneckenprofils von der Bohrungsinnenwand in Richtung der ersten Symmetrieachse zu beiden Achsrichtungen stets größer ist als der Abstand respektive die Spaltbreite in der orthogonalen zweiten Symmetrieachse. In Richtung der zweiten Symmetrieachse ist demzufolge in Betrieb der Spalt stets schmäler als in Richtung der ersten Symmetrieachse. Hiermit lassen sich letztlich in diesem Biegebereich symmetrische Verhältnisse in Richtung beider Symmetrieachsen einstellen.
  • Wie beschrieben ist jede Bohrung als langlochartige Bohrung mit zwei unterschiedlich langen, orthogonal zueinanderstehenden Symmetrieachsen ausgeführt. Eine solche Bohrung kann beispielsweise mittels eines Fräswerkzeugs gebildet werden, das es ermöglicht, nicht nur eine zylindrische Bohrung einzubringen, sondern diese auch geringfügig in Richtung der ersten Symmetrieachse zu einer langlochartigen Form zu verlängern. Ferner besteht die alternative Möglichkeit, die Bohrung durch Schleifen einer zylindrischen Bohrung langlochartig zu verlängern. Es wird also zunächst eine einfache zylindrische Bohrung eingebracht, die dann zur Bildung der längeren Symmetrieachse definiert ausgeschliffen wird. Eine weitere alternative Möglichkeit der Bohrungsausbildung sieht demgegenüber vor, dass jede Bohrung aus zwei separaten, einander schneidenden Einzelbohrungen, deren Bohrungsachsen in Biegerichtung versetzt zueinander sind, gebildet sind. Jede Bohrung besteht demzufolge aus zwei miteinander schneidenden Einzelbohrungen. Diese sind in Biegerichtung minimal versetzt zueinander, das heißt, dass ihre Bohrungsachsen in Biegerichtung minimal beabstandet sind, und zwar um den Abstand der erwarteten maximalen Durchbiegung, die beispielsweise im Bereich von 0,1 - 0,3 mm liegt. Die Ausbildung der Bohrung über zwei separate Einzelbohrungen hat einerseits den Vorteil, dass die Bohrung als solche einfach einzubringen ist, da die Ausbildung der Bohrungen lediglich eine einfache Linearbewegung des Bohrwerkzeugs erfordert. Darüber hinaus kann ein Bohrwerkzeug verwendet werden, das einen kleineren Durchmesser aufweist als ein Bohrwerkzeug, das zur Herstellung einer kreisrunden, zentrischen Bohrung, wie bisher im Stand der Technik üblich, verwendet wird (dies gilt gleichermaßen auch bei Verwendung eines Fräsers, auch dieser kann mit kleinerem Durchmesser gewählt werden). Denn es ist lediglich sicherzustellen, dass der Durchmesser der beiden Einzelbohrungen ausreichend groß ist, dass die Spindel, gesehen in Richtung der zweiten Symmetrieachse, noch ausreichend, wenngleich über einen deutlich schmäleren Spalt beabstandet zur Bohrungswand ist, nachdem in Richtung der ersten Symmetrieachse ausreichend Raum für die Aufnahme der Biegung gegeben ist. Bei Ausbildung zweier sich schneidender Einzelbohrungen verbleibt im Schnittbereich, also in Richtung der zweiten Symmetrieachse, geometriebedingt ein minimaler, sich aufgrund des nur minimalen Versatzes der Bohrungsachsen nur um wenige Mikrometer nach innen in die Bohrung erstreckender Steg respektive eine Schulter. Dies verschmälert zwar den Spalt marginal, ihre Höhe ist jedoch derart gering, dass sie sich in keinem Fall nachteilig auf die Spindelbewegung in und gegen die Biegerichtung auswirkt, zumal in Richtung der zweiten Symmetrieachse ohnehin keine Spindeldeformation gegeben ist.
  • Die beiden Einzelbohrungen erstrecken sich zweckmäßigerweise über die gesamte Länge des Gehäuses, was deren Ausbildung vereinfacht. Bei dem Gehäuse kann es sich, wie beschrieben, um ein komplettes Gehäuse respektive einen zentralen Gehäuseblock handeln, der lediglich noch über zwei Deckel geschlossen wird. Alternativ kann es sich bei dem Gehäuse auch um einen Einsatz handeln, der in ein entsprechendes Außengehäuse eingesetzt wird.
  • Alternativ zu der Ausgestaltung, bei der sich die beiden Einzelbohrungen jeder Bohrung über die gesamte Gehäuselänge erstrecken, kann es gemäß einer Erfindungsvariante auch möglich sein, dass jede Bohrung aus zwei axial aneinander anschließenden Bohrungsabschnitten besteht, wobei die Zentralachsen jedes Bohrungsabschnitts gegeneinander angestellt sind. Bei dieser Erfindungsausgestaltung setzt sich demzufolge jede Bohrung aus zwei separaten Bohrungsabschnitten zusammen, wobei jeder Bohrungsabschnitt wiederum aus zwei separaten Einzelbohrungen wie vorstehend beschrieben gebildet ist. Die Bohrungsabschnitte gehen natürlich ineinander über, stehen aber nicht in axialer Anordnung respektive fluchten nicht axial miteinander, sondern sind marginal zueinander gewinkelt. Die Anstellung ist derart gewählt, dass hierüber näherungsweise die Biegegeometrie der Spindel abgebildet wird. Das heißt, dass jeder Bohrungsabschnitt, der an einer Gehäuseseite beginnt und zur Gehäusemitte läuft, minimal schräg verläuft, sodass sich, querschnittlich gesehen, quasi eine minimale V-Form ergibt, wobei die Spitze des V in die Biegerichtung zeigt. Diese Bohrungsgeometrie nimmt daher die Spindelbiegegeometrie auf, sodass die Bohrungsgeometrie sich noch besser den tatsächlichen Verhältnissen anpasst und insbesondere der aus der langlochartigen Form resultierende, der Biegung angepasste Spalt noch besser an die Spindelbiegung, in axialer Richtung gesehen, adaptiert ist.
  • Bevorzugt handelt es sich bei der Schraubenspindelpumpe um eine doppelflutige Pumpe, das heißt, dass jede Schraubenspindel zwei axial benachbarte, gegengleich steigende Schneckenprofile aufweist, die bevorzugt näherungsweise im Bereich der Längsmitte der jeweiligen Schraubenspindeln bzw. näherungsweise symmetrisch zur Längsmitte vorgesehen sind. Bei dieser doppelflutigen Pumpenform sind entsprechende, entgegengesetzt laufende Schneckenprofile vorgesehen, die sich aus dem Bereich der Spindelmitte in Richtung der Spindelenden, wo die Spindel gelagert ist, erstrecken. Alternativ kann es sich aber auch um eine einflutige Pumpe handeln, bei der jede Spindel nur ein in eine Richtung steigendes Schneckenprofil aufweist.
  • Die Schraubenspindelpumpe selbst ist entweder eine reine Flüssigkeitspumpe. Alternativ kann es sich aber auch um eine Mehrphasenpumpe handeln, die also neben einer reinen Flüssigkeit auch ein Flüssigkeits-Gas-Gemisch fördern kann.
  • Neben der Schraubenspindelpumpe selbst betrifft die Erfindung ferner ein Gehäuse für eine Schraubenspindelpumpe der beschriebenen Art. Das Gehäuse weist eine Laufbohrung, bestehend aus wenigstens zwei einander schneidenden Bohrungen zur Aufnahme jeweils einer Spindel auf, wobei die Spindeln abschnittsweise miteinander kämmende Schneckenprofile aufweisen und sich im Betrieb der Schraubenspindelpumpe durch einen hydraulischen Biegedruck in eine definierte Biegerichtung verbiegen. Dieses Gehäuse, bei dem es sich um das eigentliche Pumpengehäuse handeln kann, oder um einen Einsatz in einem Außengehäuse, zeichnet sich erfindungsgemäß dadurch aus, dass jede Bohrung langlochartig mit einer längeren ersten Symmetrieachse und einer orthogonal dazu stehenden kürzeren zweiten Symmetrieachse ausgeführt ist, wobei die längere erste Symmetrieachse in der Biegerichtung verläuft.
  • Dabei ist bevorzugt jede Bohrung aus zwei separaten, einander schneidenden Einzelbohrungen, deren Bohrungsachsen in Biegerichtung versetzt zueinander sind, gebildet. Alternativ kann die langlochartige Bohrung auch als eine gefräste Bohrung ausgeführt sein, d.h., dass das Fräswerkzeug zur Verlängerung der Bohrung unter Bildung der längeren Symmetrieachse entsprechend geführt wird. Eine weitere Alternative sieht vor, dass die langlochartige Bohrung aus einer zylindrischen Bohrung geschliffen wird, d.h., dass gezielt lokal Material durch Schleifen abgetragen wird, um die längere Symmetrieachse auszubilden.
  • Jede der beiden Einzelbohrungen kann sich über die gesamte Länge des Gehäuses erstrecken, das heißt, dass die gesamte Bohrung aus diesen beiden axial verlaufenden Einzelbohrungen besteht. Alternativ dazu ist es denkbar, dass jede Bohrung aus zwei axial aneinander anschließenden Bohrungsabschnitten besteht, wobei die Zentralachsen jedes Bohrungsabschnitts und damit die Zentralachsen der Einzelbohrungen eines Bohrungsabschnitts zu denen des anderen Bohrungsabschnitts gegeneinander angestellt sind. Hier wird also jeder Bohrungsabschnitt aus zwei separaten Einzelbohrungen gebildet, wobei deren Bohrungsachsen geringfügig zueinander angestellt sind, also einen Winkel ungleich 180° zueinander einnehmen und nicht miteinander fluchten. Dies ermöglicht es, die gesamte Bohrungsgeometrie minimal der Biegelinie folgend zu verkippen.
  • Weiterhin betrifft die Erfindung ferner ein Verfahren zur Herstellung eines Gehäuses für eine Schraubenspindelpumpe der vorstehend beschriebenen Art, umfassend eine aus wenigstens zwei einander schneidenden Bohrungen gebildete Laufbohrung. Dieses Verfahren zeichnet sich dadurch aus, dass zur Ausbildung jeder Bohrung wenigstens zwei separate, einander schneidende Einzelbohrungen, deren Bohrungsachsen versetzt zueinander sind, in einen Gehäusekörper gebohrt werden. Die beiden Einzelbohrungen respektive deren Bohrungsachsen sind in einer vorab definierten Biegerichtung zueinander versetzt.
  • Weiterhin kann vorgesehen sein, dass sich die Einzelbohrungen über die gesamte Länge des Gehäusekörpers erstrecken. Alternativ kann jede Bohrung auch aus zwei axial aneinander anschließenden Bohrungsabschnitten bestehen, wobei die Zentralachsen jedes Bohrungsabschnitts gegeneinander angestellt sind, wobei zur Ausbildung der Bohrungsabschnitte an beiden einander gegenüberliegenden Seiten des Gehäusekörpers jeweils zwei separate Einzelbohrungen gebohrt werden. Die Bohrungsabschnitte respektive die Einzelbohrungen treffen sich in der Gehäusemitte, wo der Bereich der maximalen Spindelbiegung ist.
  • Weitere Vorteile und Einzelheiten der vorliegenden Erfindung ergeben sich aus den im Folgenden beschriebenen Ausführungsbeispielen sowie anhand der Zeichnungen. Dabei zeigen:
  • Fig. 1
    eine Perspektivansicht einer erfindungsgemäßen Schraubenspindelpumpe im teilweise aufgeschnittenen Zustand,
    Fig. 2
    das ausgeschnittene innere Gehäuse nebst zweier Spindeln der Schraubenspindelpumpe aus Fig. 1,
    Fig. 3
    eine Stirnseitenansicht des Gehäuses aus Fig. 2 unter Darstellung der Laufbohrung,
    Fig. 4
    eine Prinzipdarstellung zur Ausbildung der beiden die Laufbohrung bildenden Bohrungen, jeweils bestehend aus zwei einander schneidenden Einzelbohrungen,
    Fig. 5
    eine Prinzipdarstellung einer langlochartigen Bohrung nebst deachsiert darin angeordneter Spindel im unbelasteten Zustand,
    Fig. 6
    die Anordnung aus Fig. 5 mit belasteter Spindel,
    Fig. 7
    eine Prinzipdarstellung einer zentrischen Bohrung mit deachsiert angeordneter Spindel gemäß Stand der Technik,
    Fig. 8
    die Anordnung aus Fig. 7 mit belasteter Spindel, und
    Fig. 9
    eine Prinzipdarstellung einer Schraubenspindelpumpe respektive eines Gehäuses mit zwei unter einem Winkel zueinander angestellten Bohrungabschnitten.
  • Fig. 1 zeigt in Form einer teilweise aufgeschnittenen Perspektivansicht eine erfindungsgemäße doppelflutige Schraubenspindelpumpe 1, umfassend ein Außengehäuse 2 mit einem inneren, als Einsatz ausgeführten Gehäuse 3, in dem, siehe Fig. 2, zwei Spindeln 4, 5 angeordnet sind, die dem Ansaugen, Fördern und Abgeben eines Fluids oder eines Flüssigkeit-Gas-Gemisches dienen. Hierzu ist gehäuseseitig ein Einlass vorgesehen, wie durch den Pfeil P1 dargestellt, über den das Fluid angesaugt wird. Über einen im gezeigten Beispiel um 90 Grad angeordneten, nicht näher gezeigten Auslass, wie durch den Pfeil P2 dargestellt, wird das Fluid unter Druck abgegeben.
  • Die beiden Spindeln 4, 5 weisen jeweils zwei Schneckenprofile 6, 7 bzw. 8, 9 auf, wobei die jeweiligen Schneckenprofilpaare 6, 7 und 8, 9 gegenläufige Steigungen aufweisen. Das heißt, dass es sich um eine doppelflutige Schraubenspindelpumpe 1 handelt. Dabei kämen in an sich bekannter Weise die Schneckenprofile 6 und 8 miteinander, ebenso wie die Schneckenprofile 7 und 9.
  • Die beiden Schraubenspindeln 4, 5 sind im Bereich ihrer jeweiligen Enden über entsprechende Lagermittel 10, 11 bzw. 12, 13 abgestützt und drehgelagert, wobei es sich bei den Lagermitteln 10 - 13 in der Regel um Gleitlager handelt.
  • Die beiden Spindeln 4, 5 sind in einer Laufbohrung 14 aufgenommen, die die Form einer "liegenden 8" aufweist und die als Prinzipdarstellung in Fig. 3 gezeigt ist. Fig. 3 zeigt eine stirnseitige Ansicht des Gehäuses 3 mit Blick auf die Laufbohrung 14, die sich axial geradlinig durch das Gehäuse 3 erstreckt.
  • Die Laufbohrung 14 besteht aus zwei separaten Bohrungen 15, 16, die einander schneiden, sodass sich zwei mittige Schultern 17 ergeben. In jeweils einer Bohrung 15, 16 ist eine Spindel 4, 5 aufgenommen und rotiert in dieser, wobei eine Spindel die mit einem Antriebsmotor gekoppelte Antriebsspindel ist, während die andere Spindel die Laufspindel ist. Im gezeigten Beispiel ist exemplarisch die Spindel 5 die Antriebsspindel, während die Spindel 4 die folgende Laufspindel ist. Die Spindeln 4, 5 sind in der Laufbohrung 14 bzw. den Bohrungen 15, 16 mit Abstand zur benachbarten Bohrungsinnenwand aufgenommen, so dass die berührungsfrei rotieren können. Es bildet sich folglich ein beide Spindeln 4, 5 umlaufender Spalt an, der ebenfalls die Form einer "liegenden 8" aufweist.
  • Erfindungsgemäß ist jede der Bohrungen 15, 16 langlochartig ausgeführt, das heißt, dass jede Bohrung 15, 16 keine kreisrunde Bohrung ist, sondern eine längere und eine kürzere Symmetrieachse aufweist. Natürlich schneiden sich die beiden Bohrungen 15, 16, gleichwohl aber ist jeder Bohrung eine definierte, spezifische Langloch-Geometrie zuzuordnen.
  • Fig. 4 zeigt eine diesbezügliche Prinzipdarstellung. Gezeigt sind die beiden Bohrungen 15, 16. Jede Bohrung 15, 16 besteht aus zwei einander schneidenden Einzelbohrungen 18, 19 im Falle der Bohrung 15 sowie 20, 21 im Falle der Bohrung 16. Die beiden Einzelbohrungspaare 18, 19 respektive 20, 21 weisen jeweilige Bohrungs- oder Zentralachsen Z1 und Z2 auf, die hier jedoch in einer Biegerichtung R voneinander beabstandet sind. Diese Biegerichtung R ist die Richtung, in der sich die jeweilige Spindel 4, 5 aufgrund des im Gehäuse 3 gegebenen hydraulischen Biegedrucks, resultierend aus der Druckdifferenz zwischen der Saugseite und der Druckseite, verbiegt. Diese Biegung ist zwar minimal, jedoch gegeben, resultierend aus der quasi endseitigen Abstützung der Spindeln 4, 5 über die Lagermittel 10 - 13. Diese definierte, in der Biegerichtung R erfolgende Biegedeformation führt nun dazu, dass die Schneckenprofile 6, 7, 8, 9 ihre Position relativ zur Bohrungsinnenwand, verglichen mit dem unbelasteten Zustand, geringfügig ändern, sodass, worauf nachfolgend noch eingegangen wird, der entsprechende, die jeweilige Spindel 4, 5 respektive das jeweilige Schneckenprofil 6 - 9 umgebende Spalt in seiner Breite variiert.
  • In Fig. 4 sind die jeweiligen Einzelbohrungen 18, 19 bzw. 20, 21 allein zu Übersichtlichkeitsgründen deutlich weit um das Abstandsmaß a mit ihren Zentralachsen Z1 voneinander beabstandet. Tatsächlich beträgt das Abstandsmaß a beispielsweise nur 0,1 - 0,3 mm, ist also minimal, gleichwohl aber messbar.
  • Dieser Versatz der Einzelbohrungen 18, 19 in der Biegerichtung R führt nun dazu, dass die sich ergebende Bohrung 15, 16 eine langlochartige Geometrie hat, also nicht mehr eine kreisrunde Bohrungsform respektive Innenwandungsform, sondern eine geringfügig langgestreckte Bohrungsform. Jede Einzelbohrung 15, 16 weist daher eine längere erste Symmetrieachse S1 auf, die sich in Biegerichtung R erstreckt, sowie eine dazu orthogonal stehende zweite, kürzere Symmetrieachse S2. Für die Bohrung 15 sind die Symmetrieachsen S1, S2 dargestellt, die Geometrie der Bohrung 16 ist identisch. Der Längenunterschied der Symmetrieachsen S1 und S2 zueinander entspricht letztlich dem Abstandsmaß a der beiden Zentralachsen Z1, Z2, er beträgt also mithin ebenfalls ca. 0,1 - 0,3 mm.
  • Wie beschrieben handelt es sich bei Fig. 4 um eine reine Prinzipdarstellung mit jeweiligen Einzelbohrungen 18, 19 bzw. 20, 21, die übertrieben weit voneinander beabstandet sind. Hieraus resultierend ergibt sich in Fig. 4 jeweils an der rechten Seite der Bohrung 15 bzw. an der linken Seite der Bohrung 16 eine Schulter. Diese ist jedoch tatsächlich bei dem gegebenen minimalen Achsversatz a nur marginal ausgeprägt, sie hat eine Höhe von wenigen Mikrometern und behindert demzufolge die Spindelbewegung respektive- verbiegung nicht und hat ebenfalls auch keinen Einfluss auf den Pumpenbetrieb.
  • Die Funktionsweise dieser langlochartigen Ausgestaltung der Bohrungen 15, 16 im Vergleich zu einer bisher im Stand der Technik üblichen, rein zentrischen Bohrung wird anhand der Fig. 5 und 6 im Vergleich zu den Fig. 7 und 8 deutlich. Die Fig. 5 zeigt in Form einer Prinzipdarstellung eine langlochartige Bohrung 15, die hier aus Beschreibungs- und Darstellungsgründen geschlossen dargestellt ist (die folgende, das grundlegende Prinzip darlegende Beschreibung gilt natürlich gleichermaßen auch für die zweite langlochartige Bohrung 16, die sich mit der Bohrung 15 zur 8er-förmigen Laufbohrung 14 ergänzt). Gezeigt ist des Weiteren als Prinzipdarstellung die Spindel 4 bzw. der Außenumfang des Schneckenprofils 6. Wie Fig. 5 zeigt, bildet sich zwischen der Innenwand 22 der langlochartigen Bohrung 15 und dem Außenumfang 23 des Schneckenprofils 6 ein im gezeigten Beispiel ringförmig umlaufender Spaltraum 24, in dem sich im Betrieb zur Förderung das Fluid sammelt (in der Laufbohrung ist der der jeweiligen Bohrung 15, 16 zuzuordnende Spalt nur ringsegmentartig, wobei sich die beiden Ringsegmente zur "8er"-Form ergänzen). Dargestellt ist des Weiteren die längere erste Symmetrieachse S1 sowie die kürzere zweite Symmetrieachse S2. Ebenfalls dargestellt ist der Durchmesser D der Spindel 4 sowie deren Längs- bzw. Zentralachse ZS. Diese ist ersichtlich um ein Abstandsmaß b von der Längsmitte bzw. der Zentralachse Z der Bohrung 15 beabstandet, und zwar entgegen der Biegerichtung R. Das heißt, dass sie, gesehen in Fig. 5, etwas nach oben aus der Mitte der Bohrung 15 versetzt ist. Das Abstandsmaß b entspricht letztlich dem Abstandsmaß a, um welches die beiden Einzelbohrungen 18, 19 versetzt sind, über die die Bohrung 15 gebildet ist.
  • Wirkt nun im Betrieb ein hydraulischer Biegedruck in Richtung der Biegerichtung R auf die Spindel 4, so biegt sich diese geringfügig. Fig. 6 zeigt diese Betriebssituation, wobei hier der Bereich der maximalen Spindelbiegung gezeigt ist. Ersichtlich fallen die Zentralachse ZS der Spindel 4 und die Zentralachse Z der Bohrung 15 exemplarisch zusammen. Die Spindel 4 biegt sich also in der Bohrung 15 etwas nach unten. Dies führt dazu, dass die Breite B1 des hier ringförmigen Spalts oder Spaltraums 24, gesehen in Richtung der ersten, längeren Symmetrieachse S1 und damit in Biegerichtung R, nahezu gleich ist, verglichen mit dem unbelasteten Zustand. Gesehen in Richtung der zweiten, kürzeren Symmetrieachse S2 jedoch ist die Breite B2 des Spaltraums 24 deutlich schmäler. Die Spaltraumbreite verändert sich folglich um den Umfang bzw. schnürt sich vom oberen und unteren Achspunkt auf der ersten Symmetrieachse S1 zu den seitlichen Achspunkten auf der zweiten Symmetrieachse S2 ein, was auch im Fall einer Laufbohrung gegeben ist. Dies resultiert aus dem Umstand, dass die beiden Einzelbohrungen 18, 19 jeweils einen Bohrungsdurchmesser d1 bzw. d2 aufweisen, der etwas kleiner ist als der Durchmesser, den eine rein zentrische Bohrung aufweisen würde. Eine solche zentrische Bohrung 25, wie sie im Stand der Technik vorgesehen wäre, ist in Fig. 6 gestrichelt eingezeichnet. Ersichtlich entspräche der Durchmesser einer solchen zentrischen Bohrung der Länge der längeren ersten Symmetrieachse S1. Gesehen in Richtung der kürzeren zweiten Symmetrieachse S2 zeigt der Vergleich in Fig. 6 deutlich, dass die breite B2 des Spaltraums 24 deutlich kleiner ist verglichen mit der Situation bei einer zentrischen Bohrung 25. Hieraus resultiert, wie Fig. 6 ferner deutlich zeigt, dass die gesamte Querschnittsfläche des Spaltraums 24 bei Ausgestaltung einer langlochförmigen Bohrung 15 gegenüber der Querschnittsfläche bei Ausbildung einer zentrischen Bohrung 25 deutlich kleiner ist, was wiederum dazu führt, dass ein etwaiges Leckagevolumen deutlich reduziert werden kann und demzufolge das Fördervolumen wie auch die Effizienz der Schraubenspindelpumpe verbessert werden kann.
  • Die Fig. 7 und 8 zeigen zum Vergleich die Anordnung der Spindel 4 in einer zentrischen Bohrung 25, also einer Bohrung mit einem konstanten Durchmesser, der der Länge der ersten Symmetrieachse S1 entspricht. Auch hier ist die Zentralachse ZS der Spindel 4 deachsiert zur Zentralachse Z der kreisrunden zentrischen Bohrung 25, es ist also auch hier eine Deachsierung entgegen der Biegerichtung R gegeben.
  • Wird nun im Betrieb die Spindel 4 belastet, so verbiegt sie sich geringförmig, wie in Fig. 8 gezeigt ist. Ersichtlich liegt dann die Spindel 4 quasi zentrisch in der zentrischen Bohrung 25. Es ergibt sich ein ringförmig umlaufender Spaltraum 24, der um den gesamten Umfang nahezu die gleiche Breite B1 aufweist, also die Spaltbreite, wie sie bei der erfindungsgemäßen Ausgestaltung lediglich im oberen und unteren Achspunkt gegeben ist. Ersichtlich ist die sich in Fig. 8 ergebende Querschnittsfläche des ringförmigen Spaltraums 24 deutlich größer als die Fläche des Spaltraums 24 gemäß Fig. 6.
  • Die erfindungsgemäße Reduzierung der Spaltraumfläche respektive des Abstands der Bohrungsinnenwand von der Spindel gesehen in der Ebene der kürzeren zweiten Symmetrieachse S2 resultiert aus der langlochartigen Ausgestaltung und dem Umstand, dass diese die Möglichkeit bietet, die jeweilige Bohrung aus zwei Einzelbohrungen herzustellen, deren jeweiliger einzelner Durchmesser d1, d2 kleiner ist als der Durchmesser d einer zylindrischen Bohrung, die in gleicher Weise geeignet wäre, die Spindelverbiegung aufzunehmen. Das heißt, dass d1, d2 < d ist.
  • Wenngleich vorstehend beschrieben ist, dass die jeweilige Bohrung 15, 16 über zwei Einzelbohrungen 18, 19 bzw. 20, 21, die nacheinander eingebracht werden und einander schneiden, gebildet ist, besteht grundsätzlich auch die Möglichkeit, die jeweilige Bohrung 15, 16 mittels eines Fräsers zu bilden, der einerseits eine Bohrung einbringt, andererseits aber auch geringfügig in Biegerichtung bewegt werden kann, um die Langlochgeometrie herzustellen. Auch dieser weist einen Durchmesser auf, der kleiner als der Durchmesser eines eine zentrische Bohrung wie im Stand der Technik üblich bildenden Bohrers auf.
  • Beim Ausführungsbeispiel der vorstehend beschriebenen Figuren erstreckt sich jede Bohrung 15, 16 linear durch das Gehäuse 3. Alternativ dazu besteht jedoch die Möglichkeit, die jeweilige Bohrung 15, 16 aus zwei aneinander anschließenden Bohrungsabschnitten auszubilden, deren Zentralachsen geringfügig gegeneinander angestellt sind, um über diese quasi gewinkelt zueinander stehende Ausgestaltung der Bohrungsabschnitte die Form der sich ergebenden Spindelbiegung aufzunehmen. Eine Prinzipdarstellung einer solchen Anordnung ist in Fig. 9 gezeigt. Dort ist exemplarisch das Gehäuse 3 gezeigt sowie die Bohrung 15. Diese besteht aus zwei Bohrungsabschnitten 15a, 15b, wobei jeder Bohrungsabschnitt wiederum aus zwei separaten, miteinander schneidenden Einzelbohrungen 18a, 19a bzw. 18b, 19b besteht, die einander schneiden, wie vorstehend zur ersten Erfindungsalternative beschrieben. Das heißt, dass auch hier die Einzelbohrungen 18a, 19a bzw. 18b, 19b minimal um das Abstandsmaß a in Biegerichtung versetzt sind. Ersichtlich fluchten die Bohrungsabschnitte 15a, 15b nicht miteinander, sondern stehen unter einem Winkel α ≠ 180° zueinander, sind also quasi mittig in der Biegerichtung R verkippt bzw. angestellt.
  • Die Fig. 9 zeigt des Weiteren schematisch den Verlauf der Zentralachse ZS der Spindel 4, die aufgrund der Spindelbiegung zwangsläufig ebenfalls geringfügig gebogen ist. Die gewinkelte Anstellung der Bohrungsabschnitte 15a 15b nimmt nun näherungsweise diesen Biegelinien- oder gebogenen Achsverlauf auf, sodass letztlich die sich insgesamt ergebende, quasi gewinkelte oder geknickte Bohrung 15 besser an den sich bei hydraulischer Belastung ergebenden Spindelgeometrie angepasst ist.
  • Auch hier gilt natürlich, dass die Biegung und gewinkelte Anstellung rein aus Darstellungsgründen deutlich übertrieben dargestellt ist. Tatsächlich beträgt der Winkel α nur wenige Minuten.
  • Wenngleich die beschriebenen Ausführungsbeispiele, insbesondere die Fig. 1 - 4, eine doppelflutige Schraubenspindelpumpe mit zwei Spindeln zeigt, ist die Erfindung hierauf natürlich nicht beschränkt. Vielmehr kann es sich auch um eine einflutige Schraubenspindelpumpe handeln, wo also an jeder Spindel nur ein Schneckenprofil vorgesehen ist. Daneben können auch mehr als zwei Spindel vorgesehen sein, das heißt, dass eine zentrale Arbeitsspindel und zwei parallele Laufspindeln vorgesehen sind. Grundsätzlich kann die erfindungsgemäße langlochartige Ausgestaltung der jeweiligen Spindelbohrung überall dort angewendet werden, wo im Betrieb aufgrund der gegebenen hydraulischen Druckverhältnisse eine Spindelbiegung gegeben und auszugleichen ist.

Claims (15)

  1. Schraubenspindelpumpe, umfassend ein Gehäuse (3) mit einer Laufbohrung (14) bestehend aus wenigstens zwei einander schneidenden Bohrungen (15, 16), in denen jeweils eine Spindel (4, 5) aufgenommen ist, wobei die Spindeln (4, 5) abschnittsweise miteinander kämmende Schneckenprofile (6, 7, 8, 9) aufweisen und sich im Betrieb durch einen hydraulischen Biegedruck in eine definierte Biegerichtung (R) verbiegen, dadurch gekennzeichnet, dass jede Bohrung (15, 16) langlochartig mit einer längeren ersten Symmetrieachse (S1) und einer orthogonal dazu stehenden kürzeren zweiten Symmetrieachse (S2) ausgeführt ist, wobei die längere erste Symmetrieachse (S1) in der Biegerichtung (R) verläuft.
  2. Schraubenspindelpumpe nach Anspruch 1, dadurch gekennzeichnet, dass die Spindeln (4, 5) im unbelasteten Zustand versetzt zur Mitte (Z) der ersten Symmetrieachse S (1) angeordnet sind.
  3. Schraubenspindelpumpe nach Anspruch 2, dadurch gekennzeichnet, dass die Spindeln (4, 5) derart positioniert sind, dass sich bei einem definierten Differenzdruck zwischen einer Saugseite und einer Druckseite der Pumpe oder innerhalb eines definierten Differenzdruckintervalls die Breite (B1) eines Spalts (24) zwischen den Schneckenprofilen (6, 7, 8, 9) und der Bohrungsinnenwand (22) in Richtung der ersten Symmetrieachse (S1) größer als die Breite (B2) des Spalts (24) in Richtung der zweiten Symmetrieachse (S2) ist.
  4. Schraubenspindelpumpe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass jede Bohrung (15, 16) aus zwei separaten, einander schneidenden Einzelbohrungen (18, 19, 20, 21), deren Bohrungsachsen (Z1, Z2) in Biegerichtung (R) versetzt zueinander sind, oder als eine gefräste Bohrung oder als eine aus einer zylindrischen Bohrung geschliffene Bohrung gebildet ist.
  5. Schraubenspindelpumpe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass sich die beiden Einzelbohrungen (18,19, 20, 21) über die gesamte Länge des Gehäuses (3) erstecken.
  6. Schraubenspindelpumpe nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass jede Bohrung (15, 16) aus zwei axial aneinander anschließenden Bohrungsabschnitten (15a, 15b) besteht, wobei die Zentralachsen jedes Bohrungsabschnitts (15a, 15b) gegeneinander angestellt sind.
  7. Schraubenspindelpumpe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass jede Spindel (4, 5) zwei axial benachbarte, gegengleich steigende Schneckenprofile (6, 7, 8, 9), die im Bereich der Längsmitte der jeweiligen Spindeln (4, 5) vorgesehen sind, aufweist.
  8. Schraubenspindelpumpe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass es eine Flüssigkeitspumpe oder eine Mehrphasenpumpe ist.
  9. Gehäuse für eine Schraubenspindelpumpe (1) nach einem der vorangehenden Ansprüche, mit einer Laufbohrung (14) bestehend aus wenigstens zwei einander schneidenden Bohrungen (15, 16) zur Aufnahme jeweils einer Spindel (4, 5), wobei die Spindeln (4, 5) abschnittsweise miteinander kämmende Schneckenprofile (6, 7, 8, 9) aufweisen und sich im Betrieb der Schraubenspindelpumpe (1) durch einen hydraulischen Biegedruck in eine definierte Biegerichtung (R) verbiegen, dadurch gekennzeichnet, dass jede Bohrung (15, 16) langlochartig mit einer längeren ersten Symmetrieachse (S1) und einer orthogonal dazu stehenden kürzeren zweiten Symmetrieachse (S2) ausgeführt ist, wobei die längere erste Symmetrieachse (S1) in der Biegerichtung (R) verläuft.
  10. Gehäuse nach Anspruch 9, dadurch gekennzeichnet, dass jede Bohrung (15, 16) aus zwei separaten, einander schneidenden Einzelbohrungen (18, 19, 20, 21), deren Bohrungsachsen (Z1, Z2) in Biegerichtung (R) versetzt zueinander sind, oder als eine gefräste Bohrung der als eine aus einer zylindrischen Bohrung geschliffene Bohrung gebildet ist.
  11. Gehäuse nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass sich die beiden Einzelbohrungen (18, 19, 20, 21) über die gesamte Länge des Gehäuses (3) erstecken.
  12. Gehäuse nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass jede Bohrung (15, 16) aus zwei axial aneinander anschließenden Bohrungsabschnitten (15a, 15b) besteht, wobei die Zentralachsen jedes Bohrungsabschnitts (15a, 15b) gegeneinander angestellt sind.
  13. Verfahren zur Herstellung eines Gehäuses für eine Schraubenspindelpumpe nach einem der Ansprüche 1 bis 8, umfassend eine aus zwei einander schneidenden Bohrungen (15, 16) gebildete Laufbohrung (14), dadurch gekennzeichnet, dass zur Ausbildung jeder Bohrung (15, 16) entweder wenigstens zwei separate, einander schneidende Einzelbohrungen (18, 19, 20, 21), deren Bohrungsachsen (Z1, Z2) versetzt zueinander sind, in einen Gehäusekörper gebohrt werden, oder jede Bohrung mit den beiden verschiedenen Symmetrieachsen gefräst wird, oder jede Bohrung durch Schleifen einer zylindrischen Bohrung mit den beiden verschiedenen Symmetrieachsen gebildet wird.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass sich die beiden Einzelbohrungen (18, 19, 20, 21) über die gesamte Länge des Gehäusekörpers erstecken.
  15. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass jede Bohrung aus zwei axial aneinander anschließenden Bohrungsabschnitten (15a, 15b) besteht, wobei die Zentralachsen jedes Bohrungsabschnitts (15a, 15b) gegeneinander angestellt sind, wobei zur Ausbildung der Bohrungsabschnitte (15a, 15b) an beiden einander gegenüberliegenden Seiten des Gehäusekörpers jeweils zwei separate Einzelbohrungen (18a, 19a, 18b, 19b) gebohrt werden.
EP21168615.9A 2020-05-18 2021-04-15 Schraubenspindelpumpe Active EP3913187B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102020113372.3A DE102020113372A1 (de) 2020-05-18 2020-05-18 Schraubenspindelpumpe

Publications (2)

Publication Number Publication Date
EP3913187A1 true EP3913187A1 (de) 2021-11-24
EP3913187B1 EP3913187B1 (de) 2022-10-26

Family

ID=75539193

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21168615.9A Active EP3913187B1 (de) 2020-05-18 2021-04-15 Schraubenspindelpumpe

Country Status (7)

Country Link
US (1) US11401931B2 (de)
EP (1) EP3913187B1 (de)
CN (1) CN113685348B (de)
BR (1) BR102021009059A2 (de)
DE (1) DE102020113372A1 (de)
ES (1) ES2934065T3 (de)
PL (1) PL3913187T3 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1435819A1 (ru) * 1986-12-18 1988-11-07 Всесоюзный научно-исследовательский институт по сбору, подготовке и транспорту нефти и нефтепродуктов Двухвинтовой насос
DE102011101648A1 (de) * 2011-05-16 2012-11-22 Leistritz Pumpen Gmbh Schraubenmaschine, insbesondere Schraubenspindelpumpe
US20190078566A1 (en) * 2017-09-11 2019-03-14 Denso Corporation Screw pump

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3546411A1 (de) 1985-12-31 1987-07-02 Leistritz Maschfabrik Paul Schraubenpumpe mit querkraftkompensierung
JPH06100082B2 (ja) * 1986-10-24 1994-12-12 株式会社日立製作所 スクリユ流体機械
CA2058325A1 (en) 1990-12-24 1992-06-25 Mark E. Baran Positive displacement pumps
DE19625992C1 (de) 1996-06-28 1997-10-02 Bornemann J H Gmbh & Co Verfahren und Einrichtung zur Tankentleerung
JP3086217B1 (ja) * 1999-05-07 2000-09-11 財団法人工業技術研究院 デュアルスクリュー回転子装置
TW515480U (en) * 2000-05-12 2002-12-21 Ind Tech Res Inst Non-symmetrical dual spiral rotors apparatus
DE10112028A1 (de) * 2001-03-06 2002-09-26 Berstorff Gmbh Schneckenpumpe und Doppelschneckenextruder mit einer solchen Schneckenpumpe
KR101210400B1 (ko) 2005-08-25 2012-12-10 아뜰리에 부쉬 에스.아. 펌프 케이싱 및, 펌프 케이싱을 포함하는 펌프
DE102010043806A1 (de) * 2010-11-12 2012-05-16 Aktiebolaget Skf Verfahren zur Montage eines Wälzlagerträgermoduls und Wälzlagerträgemodul
DE202012000894U1 (de) * 2012-01-31 2012-03-01 Jung & Co. Gerätebau GmbH Zweispindelige Schraubenspindelpumpe in einflutiger Bauweise
DE102012009103A1 (de) * 2012-05-08 2013-11-14 Ralf Steffens Spindelverdichter
WO2016164453A1 (en) * 2015-04-06 2016-10-13 Trane International Inc. Active clearance management in screw compressor
DE102017210770B4 (de) * 2017-06-27 2019-10-17 Continental Automotive Gmbh Schraubenspindelpumpe, Kraftstoffförderaggregat und Kraftstofffördereinheit
DE102017210767B4 (de) 2017-06-27 2019-10-17 Continental Automotive Gmbh Schraubenspindelpumpe, Kraftstoffförderaggregat und Kraftstofffördereinheit
CN208778218U (zh) * 2018-08-02 2019-04-23 天津华曼泵业集团有限公司 一种高粘度三螺杆泵

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1435819A1 (ru) * 1986-12-18 1988-11-07 Всесоюзный научно-исследовательский институт по сбору, подготовке и транспорту нефти и нефтепродуктов Двухвинтовой насос
DE102011101648A1 (de) * 2011-05-16 2012-11-22 Leistritz Pumpen Gmbh Schraubenmaschine, insbesondere Schraubenspindelpumpe
US20190078566A1 (en) * 2017-09-11 2019-03-14 Denso Corporation Screw pump

Also Published As

Publication number Publication date
US20210355938A1 (en) 2021-11-18
US11401931B2 (en) 2022-08-02
PL3913187T3 (pl) 2023-01-23
CN113685348A (zh) 2021-11-23
BR102021009059A2 (pt) 2021-11-23
DE102020113372A1 (de) 2021-11-18
EP3913187B1 (de) 2022-10-26
ES2934065T3 (es) 2023-02-16
CN113685348B (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
DE19613833B4 (de) Innenzahnradmaschine, insbesondere Innenzahnradpumpe
EP2916007B1 (de) Schraubenspindelpumpe
DE102013102030B3 (de) Schraubenspindelpumpe
EP2183071B1 (de) Bohrer
EP2063125B1 (de) Moineau-Pumpe
EP2461040B1 (de) Vakuumpumpe und Verbindung von Welle und Drehkolben
DE2033201C3 (de) Schraubenspindelmotor oder -pumpe
WO2012072492A2 (de) Innenzahnradpumpe
WO2010034410A1 (de) Werkzeug zur spanenden bearbeitung
EP1925219B1 (de) Kanalwandelement
EP3412865B1 (de) Modulares system zur herstellung einer schraubenspindelpumpe
DE60101752T2 (de) Verbundvakuumpumpen
EP1792682B1 (de) Zahnradradpumpe mit Pfeilverzahnung
EP3913187B1 (de) Schraubenspindelpumpe
DE102004021216B4 (de) Hochdruck-Innenzahnradmaschine mit mehrfacher hydrostatischer Lagerung pro Hohlrad
DE102020122460A1 (de) Verfahren und Schraubenspindelpumpe zur Förderung eines Gas-Flüssigkeitsgemischs
EP3440358B1 (de) Schraubenverdichter
EP2581209A1 (de) Vorrichtung zum Betreiben eines Presskolbens
DE2134241A1 (de) Mehrstufige außenachsige Drehkolben maschine fur elastische Arbeitsmedien
EP2153075B1 (de) Lager
CH638590A5 (de) Hydrostatische kolbenmaschine.
DE10335966B3 (de) Exzenterschneckenpumpe
WO2018019318A1 (de) Rotor-stator-system mit einem einlauftrichter für eine exzenterschneckenpumpe
EP1790854A1 (de) Zahnradpumpe
DE19629336C2 (de) Flügelzellenpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

B565 Issuance of search results under rule 164(2) epc

Effective date: 20210614

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220211

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F04C 2/16 20060101ALI20220616BHEP

Ipc: F04C 2/08 20060101ALI20220616BHEP

Ipc: F01C 21/10 20060101AFI20220616BHEP

INTG Intention to grant announced

Effective date: 20220707

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEISTRITZ PUMPEN GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1527162

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021000211

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2934065

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230227

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230126

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230226

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230315

Year of fee payment: 3

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502021000211

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230501

Year of fee payment: 3

Ref country code: FR

Payment date: 20230417

Year of fee payment: 3

Ref country code: ES

Payment date: 20230517

Year of fee payment: 3

Ref country code: DE

Payment date: 20230414

Year of fee payment: 3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230403

Year of fee payment: 3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230415

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230415