EP3911943A1 - Boroscope pour l'inspection optique de turbines à gaz - Google Patents

Boroscope pour l'inspection optique de turbines à gaz

Info

Publication number
EP3911943A1
EP3911943A1 EP20702735.0A EP20702735A EP3911943A1 EP 3911943 A1 EP3911943 A1 EP 3911943A1 EP 20702735 A EP20702735 A EP 20702735A EP 3911943 A1 EP3911943 A1 EP 3911943A1
Authority
EP
European Patent Office
Prior art keywords
sensors
image
borescope
image acquisition
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20702735.0A
Other languages
German (de)
English (en)
Inventor
Jan Oke Peters
Michael Thies
Sven Rasche
Tomas Domaschke
Thorsten SCHÜPPSTUHL
Werner Neddermeyer
Sönke Bahr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lufthansa Technik AG
Original Assignee
Lufthansa Technik AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lufthansa Technik AG filed Critical Lufthansa Technik AG
Publication of EP3911943A1 publication Critical patent/EP3911943A1/fr
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/14Testing gas-turbine engines or jet-propulsion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/08Testing mechanical properties
    • G01M11/081Testing mechanical properties by using a contact-less detection method, i.e. with a camera
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9515Objects of complex shape, e.g. examined with use of a surface follower device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/954Inspecting the inner surface of hollow bodies, e.g. bores
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports
    • G02B23/2484Arrangements in relation to a camera or imaging device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports
    • G02B23/2492Arrangements for use in a hostile environment, e.g. a very hot, cold or radioactive environment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/08Stereoscopic photography by simultaneous recording
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/83Testing, e.g. methods, components or tools therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/954Inspecting the inner surface of hollow bodies, e.g. bores
    • G01N2021/9542Inspecting the inner surface of hollow bodies, e.g. bores using a probe
    • G01N2021/9544Inspecting the inner surface of hollow bodies, e.g. bores using a probe with emitter and receiver on the probe

Definitions

  • the image capture sensors are preferably CCD sensors or CMOS sensors, preferably with global shutters.
  • the image capture sensors preferably have a resolution of at least 400 x 400 pixels (for example up to 2400 x 2400 pixels), an image refresh rate of up to 240 images per second and / or an image field opening angle of 35 ° to 65 °, 90 ° or 120 °, preferably from 40 °, 50 ° or 60 °, in each case ⁇ 5 °, preferably in each case ⁇ 3 °.
  • image acquisition sensors it is in particular also possible to continuously record image information which enables dynamic acquisition of components of a gas turbine, such as, for example, engine blades, which results, for example, from the rotation of one or more shafts of the gas turbine.
  • the shaft of the boroscope can be rigid or flexible. If the shaft is flexible, the borescope can be guided through a guide tube.
  • the guide tube can be part of the boroscope or a separate guide device.
  • the basic position of the boroscope or its image acquisition unit can then be determined via the guide tube, a fine adjustment of the position and orientation of the image acquisition unit being achieved by moving and rotating the shaft relative to the guide tube.
  • the position and orientation of the image acquisition unit inside a gas turbine can be read comparably from the part of the borescope protruding from the gas turbine.
  • the borescope according to the invention can be used for the automatic 3D detection of engine blades, in which the borescope is guided in a controlled manner along a rotating engine stage and thereby detects the engine blades in three dimensions.
  • Figure 1 is a schematic sectional view of an aircraft engine with two boroscopes according to the invention
  • FIG. 2 shows a schematic partial view of the aircraft engine from FIG. 1 with the first boroscope according to the invention
  • FIG. 3 a detailed view of the first boroscope according to the invention from FIGS. 1 and 2 introduced into the aircraft engine;
  • FIG. 5a-c schematic representations of different embodiment variants of the boroscope from FIG. 3;
  • Figure 6 schematic partial view of the second, in the
  • Aircraft engine introduced boroscope according to Figure 1.
  • FIG 1 a section through a two-shaft engine 1 is shown schematically, in which the fan 2 and the low-pressure compressor 3 are rotatably connected to the low-pressure door 5 via a first shaft 4, while the high-pressure compressor 6 is connected to the high-pressure turbine via a second shaft 7 8 is rotatably connected.
  • the combustion chamber 9 is arranged between the high pressure compressor 6 and the high pressure door 8.
  • the rigid borescope 10 is through a borescope opening in the
  • the first borescope 10 from FIGS. 1 and 2 is shown in FIG. 3.
  • the borescope 10 comprises an electronic image acquisition unit 12 as a borescope objective at one end of the shaft 13 provided for insertion into a borescope opening, which is rigid in the first borescope 10 and has a lateral opening in the region of the image acquisition unit 12.
  • a handle 14 is provided, which is also suitable for connection to a guide device 30 (see FIG. 1).
  • the shaft has an outside diameter of 7.6 mm.
  • the image acquisition unit 12 can be completely accommodated in the shaft 13, it comprises - as shown in FIG. 4a - a package 16 of several ones arranged one above the other and interconnects 17, 17 '.
  • the image capture sensors 18 are CMOS sensors with global shutter, which - due to the small size required - can only capture gray levels.
  • an additional color sensor 19 is provided.
  • the image capture sensors 18 have a resolution of 400 x 400 pixels, an image refresh rate of up to 240 images per second. For the color sensor 19, a lower resolution is often sufficient.
  • a global shutter can be dispensed with for the color sensor 19 and a rolling shutter can be used, whereby the size of the color sensor 19 can be significantly reduced when it is implemented as a CMOS sensor.
  • the two image capture sensors 18 and the color sensor 19 are designed such that they basically cover the same recording area 23.
  • the receiving area 23 - as will be explained in more detail below with reference to FIG. 5 - can be freely defined in wide areas by suitable design of the receiving cone of the sensors 18, 19.
  • lenses (not shown) can be provided directly on the sensors 18, 19.
  • FIGS. 5a-c outline various design variants of the borescope 10 from FIG.
  • the design variants have a fundamentally identical structure of the borescope 10 and differ from one another only by lenses glued onto the image acquisition sensors 18.
  • the illustration in FIGS. 5a-c is therefore limited to the area of the boroscope 10 in which the image acquisition unit 12 is arranged.
  • the lenses on the image acquisition sensors 18 are selected such that the axes 18 ′′ of the recording cone 18 ′ of the two image acquisition sensors 18 still run parallel to one another, but have a viewing angle of approximately 65 ° with respect to the axis of the shaft 13 in the insertion direction of the boroscope 10. In this way, areas lying in front of the borescope 10 in the insertion direction can be inspected, for example the blade root of the blades 6 'as shown in FIGS. 1 and 2.
  • the second borescope 11 from FIG. 1 will now be described in more detail.
  • the borescope 11 and the guide device 30 provided therefor are basically in accordance with
  • the free end of the guide tube 31 inserted into the engine 1 is shown in more detail in FIG.
  • the guide tube 31 is guided through the guide vanes of the high-pressure turbine 8.
  • the borescope 11 protrudes from the guide tube 31.
  • the flexible shaft 13 of the boroscope 11, which is pushed through the guide tube 31, is bent elastically at its insertion end in such a way that the area of the shaft 13 is angled with the image capturing unit 12 in the operating state, as shown, when the shaft 13 is retracted through the guide tube 31 but aligned coaxially with the guide tube 31.
  • the image capturing unit 12 comprises two image capturing sensors 18 for capturing images suitable for triangulation.
  • the image acquisition unit 12 can be configured in a manner comparable to the image acquisition unit 12 of the first boroscope 10, which is why reference is made to the above explanations for further explanation.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Astronomy & Astrophysics (AREA)
  • Optics & Photonics (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

L'invention concerne un boroscope (10, 11) pour l'inspection optique de turbines à gaz, notamment de réacteurs d'avion (1) Le boroscope (10, 11) comporte une unité de détection d'images électronique (12) en tant qu'objectif de boroscope à l'extrémité d'une tige (13) destinée à l'introduction dans une ouverture de boroscope et à un positionnement précis de l'objectif de boroscope par rapport à l'ouverture de boroscope, par laquelle sont guidées des lignes de données et d'alimentation (15) pour l'unité de détection d'images (12). L'unité de détection d'images (12) comporte deux capteurs de détection d'images (18) espacés l'un de l'autre dont les cônes d'enregistrement (18'') se chevauchent dans un plan d'enregistrement (22) pour former une zone d'enregistrement (23), de telle manière que par triangulation, les données d'image des deux capteurs de détection d'images (18) peuvent être transformées en données 3D.
EP20702735.0A 2019-01-14 2020-01-14 Boroscope pour l'inspection optique de turbines à gaz Pending EP3911943A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019100821.2A DE102019100821A1 (de) 2019-01-14 2019-01-14 Boroskop zur optischen Inspektion von Gasturbinen
PCT/EP2020/000008 WO2020148084A1 (fr) 2019-01-14 2020-01-14 Boroscope pour l'inspection optique de turbines à gaz

Publications (1)

Publication Number Publication Date
EP3911943A1 true EP3911943A1 (fr) 2021-11-24

Family

ID=69400519

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20702735.0A Pending EP3911943A1 (fr) 2019-01-14 2020-01-14 Boroscope pour l'inspection optique de turbines à gaz

Country Status (6)

Country Link
US (1) US11940351B2 (fr)
EP (1) EP3911943A1 (fr)
CN (1) CN113302479A (fr)
CA (1) CA3124778A1 (fr)
DE (1) DE102019100821A1 (fr)
WO (1) WO2020148084A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB202106108D0 (en) * 2021-04-30 2021-06-16 Rolls Royce Plc Turbine blade creep monitoring
GB202106109D0 (en) * 2021-04-29 2021-06-16 Rolls Royce Plc Turbine blade creep monitoring
DE102021118371A1 (de) 2021-07-15 2023-01-19 Lufthansa Technik Aktiengesellschaft Verfahren zur Unterstützung einer Bearbeitung einer Beschädigung an einer Beschaufelung einer Strömungsmaschine, insbesondere eines Strahltriebwerkes, Computerprogrammprodukt sowie System
US11913345B2 (en) * 2021-07-26 2024-02-27 General Electric Company System and method of using a tool assembly

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2880821B2 (ja) 1991-04-03 1999-04-12 富士写真フイルム株式会社 測距用光学モジュール
JP2002336188A (ja) * 2001-05-21 2002-11-26 Olympus Optical Co Ltd 計測用内視鏡装置
US20040183900A1 (en) * 2003-03-20 2004-09-23 Everest Vit Method and system for automatically detecting defects in remote video inspection applications
JP4869699B2 (ja) * 2005-12-13 2012-02-08 オリンパス株式会社 内視鏡装置
GB0613576D0 (en) * 2006-07-10 2006-08-16 Leuven K U Res & Dev Endoscopic vision system
DE102007008756A1 (de) * 2007-02-22 2008-08-28 Siemens Ag Messkopf für ein Endoskop und Endoskop
FR2920085B1 (fr) * 2007-08-24 2012-06-15 Univ Grenoble 1 Systeme d'imagerie pour l'observation tridimensionnelle d'un champ operatoire
US20100022824A1 (en) * 2008-07-22 2010-01-28 Cybulski James S Tissue modification devices and methods of using the same
DE102011114541A1 (de) * 2011-09-30 2013-04-04 Lufthansa Technik Ag Endoskopiesystem und korrespondierendesVerfahren zur Untersuchung von Gasturbinen
CA2859998A1 (fr) * 2011-11-15 2013-05-23 Naoki Suzuki Dispositif photographique et systeme photographique
US9778141B2 (en) * 2012-01-31 2017-10-03 Siemens Energy, Inc. Video inspection system with deformable, self-supporting deployment tether
JP2013218252A (ja) 2012-03-14 2013-10-24 Ricoh Co Ltd カメラ装置、及び測距装置
US8836937B2 (en) 2012-11-19 2014-09-16 General Electric Company Actuatable visual inspection device
US20140207406A1 (en) * 2013-01-22 2014-07-24 General Electric Company Self-directed inspection plan
DE202013004379U1 (de) * 2013-05-13 2013-05-31 Schölly Fiberoptic GmbH Endoskop
DE102013209956A1 (de) * 2013-05-28 2014-12-04 Xion Gmbh Videoendoskopische Vorrichtung
US20150062299A1 (en) * 2013-08-30 2015-03-05 The Regents Of The University Of California Quantitative 3d-endoscopy using stereo cmos-camera pairs
WO2016127173A1 (fr) 2015-02-06 2016-08-11 The University Of Akron Système d'imagerie optique et procédés associés
US9955088B2 (en) 2016-06-10 2018-04-24 The Boeing Company Hyperspectral borescope system
DE102016113000A1 (de) * 2016-07-14 2018-01-18 Aesculap Ag Endoskopische Vorrichtung und Verfahren zur endoskopischen Untersuchung
GB2554794B (en) 2016-08-08 2019-06-26 Google Llc Monochrome-color mapping using a monochromatic imager and a color map sensor.
US10666927B2 (en) * 2017-03-15 2020-05-26 Baker Hughes, A Ge Company, Llc Method and device for inspection of an asset
DE102017111306A1 (de) 2017-05-23 2018-11-29 Karl Storz Se & Co. Kg Endoskop
DE102017218426B3 (de) 2017-10-16 2019-01-17 Lufthansa Technik Ag Vorrichtung und Verfahren zur Boroskopinspektion von Strahltriebwerken

Also Published As

Publication number Publication date
WO2020148084A1 (fr) 2020-07-23
CA3124778A1 (fr) 2020-07-23
US20220082473A1 (en) 2022-03-17
US11940351B2 (en) 2024-03-26
JP2022518185A (ja) 2022-03-14
DE102019100821A1 (de) 2020-07-16
CN113302479A (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
EP3911943A1 (fr) Boroscope pour l'inspection optique de turbines à gaz
DE102017218426B3 (de) Vorrichtung und Verfahren zur Boroskopinspektion von Strahltriebwerken
EP0932816B1 (fr) Procede et dispositif pour mesurer le trace de surfaces reflechissantes
DE102007034689A1 (de) Verfahren und Vorrichtung zum optischen Inspizieren einer Oberfläche an einem Gegenstand
WO2020148036A1 (fr) Procédé et dispositif d'inspection de composants difficiles à atteindre
EP2165186A1 (fr) Dispositif pour représenter la surface intérieure d'un espace creux de préférence cylindrique
EP1645838A1 (fr) Dispositif et procédé pour surveiller des objets en motion
DE102006008840A1 (de) Beleuchtungsvorrichtung für zylindrische Objekte, damit durchgeführtes Oberflächenuntersuchungsverfahren und Computerprogrammprodukt
DE102016200877A1 (de) System zum Messen einer dreidimensionalen Position
DE19806261B4 (de) Verfahren zur gesteuerten Darstellung von Hohlraum-Oberflächen
DE102018125422B4 (de) Verfahren zum Prüfen oder Kalibrieren einer Stereo-Bilderfassungsvorrichtung
EP3222979B1 (fr) Réservoir d'huile
WO2021094533A2 (fr) Boroscope
EP3911944B1 (fr) Procédé et dispositif d'inspection au boroscope
DE102017111819B4 (de) Bohrungsinspektionsvorrichtung
DE4115841B4 (de) Vorrichtung zur optischen Kontrolle von Gegenständen
DE102017203391A1 (de) Verfahren und Koordinatenmessgerät zur metrologischen Vermessung von Werkstücken mit Hilfe eines Leuchttischs
DE102019130950B3 (de) Boroskop mit Musterprojektion
DE202009017510U1 (de) Vorrichtung zur Ermittlung einer Ausrichtung von zwei drehbar gelagerten Maschinenteilen oder einer Ausrichtung von zwei hohlzylinderförmigen Maschinenteilen
DE102009020980A1 (de) Verfahren zur Prüfung von bruchgetrennten Bauteilen
DE10393193T5 (de) Mehrquellen-Ausrichtungssensor mit verbesserter Optik
DE102012020922A1 (de) Laserscanner
DE4337707A1 (de) Anordnung zur Beleuchtung und Abbildung
WO2023156030A1 (fr) Appareil pour l'inspection par endoscope de dispositifs techniques
DE102016113503A1 (de) Bohrungsinspektionsvorrichtung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210721

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230516

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20231115