EP3907453A1 - Dispositif de refroidissement pour installation de liquéfaction de gaz - Google Patents
Dispositif de refroidissement pour installation de liquéfaction de gaz Download PDFInfo
- Publication number
- EP3907453A1 EP3907453A1 EP20305455.6A EP20305455A EP3907453A1 EP 3907453 A1 EP3907453 A1 EP 3907453A1 EP 20305455 A EP20305455 A EP 20305455A EP 3907453 A1 EP3907453 A1 EP 3907453A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cooling circuit
- temperature cooling
- cooling device
- compressor
- condenser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 180
- 238000009434 installation Methods 0.000 title claims abstract description 16
- 238000000605 extraction Methods 0.000 claims abstract description 18
- 238000000926 separation method Methods 0.000 claims description 16
- 238000011144 upstream manufacturing Methods 0.000 claims description 15
- 239000003507 refrigerant Substances 0.000 description 20
- 239000007789 gas Substances 0.000 description 18
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0257—Construction and layout of liquefaction equipments, e.g. valves, machines
- F25J1/0259—Modularity and arrangement of parts of the liquefaction unit and in particular of the cold box, e.g. pre-fabrication, assembling and erection, dimensions, horizontal layout "plot"
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B45/00—Arrangements for charging or discharging refrigerant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B7/00—Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0203—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
- F25J1/0204—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0244—Operation; Control and regulation; Instrumentation
- F25J1/0256—Safety aspects of operation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0257—Construction and layout of liquefaction equipments, e.g. valves, machines
- F25J1/0262—Details of the cold heat exchange system
- F25J1/0264—Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
- F25J1/0265—Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
- F25J1/0268—Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using a dedicated refrigeration means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0298—Safety aspects and control of the refrigerant compression system, e.g. anti-surge control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B25/00—Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
- F25B25/005—Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/23—High amount of refrigerant in the system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/24—Low amount of refrigerant in the system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2523—Receiver valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B6/00—Compression machines, plants or systems, with several condenser circuits
- F25B6/04—Compression machines, plants or systems, with several condenser circuits arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/12—External refrigeration with liquid vaporising loop
Definitions
- the invention relates to a cooling device intended for a gas liquefaction installation, such as natural gas or biomethane, of the type comprising a gas liquefier into liquefied gas.
- Gas liquefaction installations such as natural gas or biomethane, make it possible to liquefy a gas at a temperature of the order of -160 ° C so that the transport of the gas thus liquefied takes place at a pressure of around 1.2 bar, i.e. slightly higher than atmospheric pressure.
- a liquefier of the installation such as, for example, the cooling device described in the document US6016665 .
- cooling devices are arranged so as to be located within the installation and in the vicinity of the liquefier thereof: this implies that these cooling devices are designed to meet the drastic requirements imposed for any device operating in zones. ATEX (EXplosive Atmosphere). This implies very high manufacturing costs and maintenance costs of the final installation. In addition, these cooling devices implement complex cycles to achieve liquefaction and therefore have non-optimized energy yields.
- An object of the invention is to provide a cooling device for a gas liquefaction installation which partly resolves the above technical problems, in particular which is economical to manufacture while being easy to maintain.
- a cooling device intended for a gas liquefaction installation, comprising a gas liquefier into liquefied gas in an ATEX zone, the device comprising a series of independent cooling circuits in cascade including at least one low-temperature cooling circuit and one high-temperature cooling circuit, each of the cooling circuits comprising an associated compressor and condenser, the cooling device being arranged so as to be located outside the ATEX zone, the low-temperature cooling circuit being arranged so as to be fluidly connected to the liquefier, and the high-temperature cooling circuit being thermally connected to the low-temperature cooling circuit via calorie extraction means so as to extract the calories therefrom during heating.
- a cooling device 1 intended for a gas liquefaction installation.
- the gas liquefaction installation is illustrated in the right-hand part of the figure and is simplified in the form of an ATEX zone 6 comprising a liquefier 7 at the inlet of which a non-liquefied gas 61 is introduced and at the outlet of which a liquefied gas 62 is extracted for storage.
- the liquefier 7 comprises an outlet 71 and an inlet 72.
- the outlet 71 and inlet 72 are intended to be fluidly connected to the cooling device 1 according to the invention.
- the cooling device 1 according to the invention is located outside the ATEX zone 6 of the gas liquefaction installation.
- the cooling device 1 according to the invention comprises a series of independent cooling circuits positioned in cascade comprising here a high temperature cooling circuit 2 and a low temperature cooling circuit 3.
- the basic principle of cooling device 1 according to the invention is that the low temperature cooling circuit 3 extracts the calories from the liquefier 7 by being fluidly connected to the outlet 71 and inlet 72 of the liquefier 7.
- the high temperature cooling circuit 2 extracts the heat. calories of the low-temperature cooling circuit 3.
- the two high-temperature 2 and low-temperature 3 cooling circuits are independent and are in parallel with each other, while being in cascade.
- the high temperature cooling circuit 2 comprises, in the direction of circulation of a first refrigerant illustrated by the arrows in the figure, an associated compressor 21, downstream of which a separator 23, here forming third means of separation, is positioned so as to separate any oil droplets resulting from the operation of the compressor 21 from the first refrigerant.
- the oil extracted by the separator 23 is returned to the compressor 21 via the pipe 231.
- the high-temperature cooling circuit 2 comprises a condenser 22, here in the form of a heat exchanger, which makes it possible to extract calories from high temperature cooling circuit 2 to the outside of the cooling device 1 according to the invention.
- the high-temperature cooling circuit 2 comprises an expansion valve 24.
- the high-temperature cooling circuit 2 comprises a bottle 25 positioned downstream of the condenser 22.
- the bottle 25 forms a reservoir for regulating the temperature. first refrigerant.
- the low-temperature cooling circuit 3 comprises, still in the direction of circulation of a second refrigerant, which is associated with it, illustrated by the arrows in the figure, an associated compressor 31 followed by a separator 33, here forming first separation means, which makes it possible to separate the oil possibly present in the second refrigerant coming from the compressor 31 and to return the oil thus extracted to the compressor 31 via the pipe 331.
- the low-temperature cooling circuit 3 comprises a first pre-cooler 35 making it possible to extract part of the calories from the low-temperature cooling circuit 3 to the outside.
- the first pre-cooler 35 is for example a heat exchanger.
- the low temperature cooling circuit 3 comprises a condenser 32 followed by an expansion valve 34.
- the condenser 32 is here a heat exchanger, the second part of which forms an evaporator for the high temperature cooling circuit. 2 in which it is integrated downstream of the expansion valve 24 and upstream of the compressor 21 of the high temperature cooling circuit 2.
- the condenser / evaporator 32 forms, here in this embodiment of the cooling device 1 according to the invention, calorie extraction means thermally connecting the low temperature cooling circuit 3 to the high temperature cooling circuit 2.
- the low-temperature cooling circuit 3 comprises, downstream of the expansion valve 34, an outlet pipe 38 which is fluidly connected to the inlet 72 of the liquefier 7 and this through a wall which delimits the ATEX zone 6.
- the cooling circuit low temperature 3 comprises an inlet pipe 37 upstream of the compressor 31 which is fluidly connected to the outlet 71 of the liquefier 7 in the same way, that is to say through the wall which delimits the ATEX zone 6.
- the low-temperature cooling circuit 3 comprises a first expansion vessel 36 which is fluidly connected downstream of the compressor 31, in particular between the compressor 31 and the separator 33.
- the part of the pipe connecting the outlet of the compressor 31 to the first expansion vessel 36 comprises a discharge valve 362 as well as a non-return valve 361.
- the first expansion vessel 36 is, here, also fluidly connected upstream of the compressor 31, the part of the pipe connecting the first expansion vessel 36 to the inlet of the compressor 31 comprises a discharge valve 364 as well as a non-return valve 363.
- the first expansion vessel 36 is itself independently fluidly connected to an injection valve 365 then upstream of the compressor 31.
- the role of the first expansion vessel 36 is to avoid overpressures due to the evaporation of the second refrigerant circulating within the low temperature cooling circuit. re 3 and thus protect the operation of said low-temperature cooling circuit 3.
- the first expansion tank 36 makes it possible to reduce the quantity of refrigerant within the associated cooling circuit (here, the low-temperature cooling circuit 3).
- the first expansion vessel 36 makes it possible to regulate the quantity of refrigerant within the associated cooling circuit: in fact, when the pressure increases at the outlet of the compressor 31, the excess refrigerant is sent to the refrigerant.
- first expansion vessel 36 through the relief valve 362 and, conversely, in the event of a drop in pressure within the cooling circuit, an injection of refrigerant is carried out from the first expansion vessel 36 through the valve injection 365.
- the presence of separation means in the form of the separator 33 is mandatory in the low temperature cooling circuit 3 because the oil usually used in compressors, such as compressor 31, has a freezing temperature of the order of -57 ° C. Therefore, during normal operation of the low temperature cooling circuit 3, very small quantities of oil, of the order of a few ppm, leave the compressor 31 and mix with the second refrigerant circulating in the low cooling circuit. temperature 3. These oil droplets, once in the condenser 32, freeze on the plates or walls of the exchanger. The accumulation of frozen oil then leads to the obstruction of the condenser 32, consequently degrading the operation of the low-temperature cooling circuit 3. The presence of the separation means 33 makes it possible to resolve this problem.
- the cooling device 10 differs from the previous embodiment of the cooling device 1 according to the invention, in that a third cooling circuit is interposed between the high temperature cooling circuit 2 and the cooling circuit. low temperature cooling 3.
- This third cooling circuit is here called medium temperature cooling circuit 4.
- the medium temperature cooling circuit 4 has a structure similar to the low temperature cooling circuit 3 described above. In fact, it comprises, in the direction of circulation of a third refrigerant which is associated with it illustrated by the arrows in the figure, an associated compressor 41 which is followed downstream by a separator 43, forming second separation means. , making it possible to separate the oil that may be present in the third refrigerant coming from the compressor 41 and to return the oil thus extracted to the compressor 41 via the pipe 431.
- the medium temperature cooling circuit 4 Downstream from the separator 43, the medium temperature cooling circuit 4 comprises a second pre-cooler 45 similar in operation to first pre-cooler 35 of the low-temperature cooling circuit 3. Then, downstream of the second pre-cooler 45, the medium-temperature cooling circuit 4 comprises a condenser 42, followed by an expansion valve 44.
- the condenser 42 is here a heat exchanger, associated with an evaporator which then forms part of the high temperature cooling circuit 2 located between the expansion valve 24 and the compressor 21 in the direction of circulation of the refrigerant.
- the condenser 32 of the low-temperature cooling circuit 3 is a heat exchanger comprising an evaporator for the medium-temperature cooling circuit 4 and is therefore positioned, in the direction of circulation of the refrigerant, between the expansion valve 44 and the compressor inlet 41.
- the medium temperature cooling circuit 4 comprises a second expansion vessel 46 which is fluidly connected on either side of the compressor 41, in the same way as the first expansion vessel 36.
- the pipe fluidly connecting the second expansion vessel 46 at the outlet of the compressor 41 comprises a discharge valve 462 and a non-return valve 461.
- the pipe fluidly connecting the second expansion vessel 46 to the inlet of the compressor 41 comprises of similarly a safety relief valve 464 and a non-return valve 463.
- an injection valve 465 is fluidly connected to the second expansion vessel 46 and upstream of the compressor 41.
- the role of the second expansion vessel 46 is similar to the role of the first expansion vessel 36 previously described.
- the medium temperature cooling circuit 4 forms the heat extraction means thermally connecting the high temperature cooling circuit 2 to the low temperature cooling circuit 3.
- the separation means 43 are similar to the separation means 33. previously described.
- the cooling device 100 differs from the cooling device 10 previously described by the insertion of a fourth cooling circuit 5. between the medium temperature cooling circuit 4 and the low temperature cooling circuit 3.
- This fourth cooling circuit 5 is similar to the low temperature cooling circuit 3 as well as to the medium temperature cooling circuit 4 previously described. In fact, it comprises, in the direction of circulation of a fourth refrigerant which is specific to it illustrated by the arrows in the figure, an associated compressor 51 which is followed downstream by a separator 53 forming separation means making it possible to separate the oil possibly present in the fourth refrigerant coming from the compressor 51 and to return the oil thus extracted to the compressor 51 via the pipe 531.
- the fourth cooling circuit 5 Downstream from the separator 53, the fourth cooling circuit 5 comprises a third similar precooler 55 in its operation at the first 35 and second 45 pre-coolers, low temperature 3 and medium temperature cooling circuits 4. Then, downstream of the third pre-cooler 55, the fourth cooling circuit 5 comprises a condenser 52 followed by a expansion valve 54.
- the condenser 52 is here a heat exchanger comprising an evaporator which then forms part of the cooling circuit.
- medium temperature ent 4 located between the expansion valve 44 and the compressor 41 in the direction of circulation of the refrigerant.
- the condenser 32 of the low temperature cooling circuit 3 is a heat exchanger comprising an evaporator for the fourth cooling circuit 5 and is therefore positioned, in the direction of circulation of the refrigerant, between the expansion valve 54 and the compressor inlet 51.
- the fourth cooling circuit 5 comprises a third expansion vessel 56 which is fluidly connected on either side of the compressor 51 in the same manner as the first 36 and second 46 expansion vessels.
- the pipe fluidly connecting the third expansion vessel 56 to the outlet of the compressor 51 comprises a relief valve 562 and a non-return valve 561.
- the pipe fluidly connecting the third expansion vessel 56 to the inlet of the compressor. compressor 51 similarly has a relief valve 564 and a non-return valve 563.
- an injection valve 565 is fluidly connected to the compressor.
- the role of the third expansion vessel 56 is similar to the role of the first 36 and second 46 expansion vessels described above.
- the fourth cooling circuit 5 forms the heat extraction means thermally connecting the medium temperature cooling circuit 4 to the low temperature cooling circuit 3.
- the separation means 53 are similar to the separation means 33, 43 previously described.
- cooling circuits which may alternatively be more than four in number
- the use of such a cooling device 1,10,100 according to the invention allows it to be completely separated from the liquefier 7 and thus not to impose drastic requirements and ATEX standards on all the cooling circuits of the cooling device. according to the invention.
- the cooling device 10 according to the invention makes it possible to obtain high energy yields with a COP of the order of 0.7. This allows a considerable reduction in electrical and energy consumption generally due to the fact that the cooling device according to the invention must operate 24 hours a day, 7 days a week.
- the simplicity of the cascade formed by the different circuits cooling device of the cooling device according to the invention allows simple control thereof and this also facilitates the start-up and change of production flow rate as well as the configuration of the cooling device according to the invention to adapt it to the production of liquefied gas produced by the liquefaction installation thus equipped.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Description
- L'invention concerne un dispositif de refroidissement destiné à une installation de liquéfaction de gaz, comme du gaz naturel ou biométhane, du type comprenant un liquéfacteur de gaz en gaz liquéfié.
- Les installations de liquéfaction de gaz, comme le gaz naturel ou le biométhane, permettent de liquéfier un gaz à une température de l'ordre de -160°C de sorte que le transport du gaz ainsi liquéfié s'effectue à une pression de l'ordre de 1,2 bar, soit légèrement supérieure à la pression atmosphérique. Actuellement, plusieurs technologies de dispositifs de refroidissement connectés à un tel liquéfacteur de l'installation existent, comme par exemple, le dispositif de refroidissement décrit dans le document
US6016665 . - Toutefois, ces dispositifs de refroidissement sont agencés de sorte à être implantés au sein de l'installation et au voisinage du liquéfacteur de celle-ci : cela implique que ces dispositifs de refroidissement soient conçus pour remplir les exigences drastiques imposées pour tout appareil fonctionnant en zones ATEX (ATmosphère EXplosive). Cela implique des coûts de fabrication et des coûts de maintenance très importants de l'installation finale. De plus, ces dispositifs de refroidissement mettent en œuvre des cycles complexes pour réaliser la liquéfaction et présentent des rendements énergétiques non optimisés de ce fait.
- Un but de l'invention est de fournir un dispositif de refroidissement pour une installation de liquéfaction de gaz qui résolve en partie les problèmes techniques précédents, en particulier qui soit économique à fabriquer tout en étant facile à entretenir.
- A cette fin, il est prévu, selon l'invention, un dispositif de refroidissement destiné à une installation de liquéfaction de gaz, comportant un liquéfacteur de gaz en gaz liquéfié dans une zone ATEX, le dispositif comprenant une série de circuits de refroidissement indépendants en cascade dont au moins un circuit de refroidissement basse température et un circuit de refroidissement haute température, chacun des circuits de refroidissement comportant un compresseur et un condenseur associés, le dispositif de refroidissement étant agencé de sorte à être situé en dehors de la zone ATEX, le circuit de refroidissement basse température étant agencé de sorte à être connecté fluidiquement au liquéfacteur, et le circuit de refroidissement haute température étant thermiquement connecté au circuit de refroidissement basse température via des moyens d'extraction de calories de sorte à en extraire les calories lors d'un fonctionnement.
- Avantageusement, mais facultativement, le dispositif de refroidissement selon l'invention présente au moins l'une des caractéristiques techniques suivantes :
- les moyens d'extraction de calories comportent un échangeur thermique formant condenseur du circuit de refroidissement basse température et évaporateur du circuit de refroidissement haute température ;
- les moyens d'extraction de calories comprennent un circuit de refroidissement moyenne température, comportant un compresseur et un condenseur associés, intercalé entre les circuits de refroidissement haute température et basse température ;
- les moyens d'extraction de calories comportent un échangeur thermique formant condenseur du circuit de refroidissement basse température et évaporateur du circuit de refroidissement moyenne température ;
- les moyens d'extraction de calories comportent un échangeur thermique formant condenseur du circuit de refroidissement moyenne température et évaporateur du circuit de refroidissement haute température ;
- le circuit de refroidissement moyenne température comporte un deuxième pré-refroidisseur en amont du condenseur associé ;
- le circuit de refroidissement moyenne température comporte un deuxième vase d'expansion fluidiquement connecté en aval du compresseur associé ;
- le deuxième vase d'expansion est fluidiquement connecté en amont du compresseur associé ;
- le circuit de refroidissement moyenne température comporte des deuxièmes moyens de séparation d'huile en aval du compresseur associé ;
- le circuit de refroidissement basse température comporte un premier pré-refroidisseur en amont du condenseur associé ;
- le circuit de refroidissement basse température comporte un premier vase d'expansion fluidiquement connecté en aval du compresseur associé ;
- le premier vase d'expansion est fluidiquement connecté en amont du compresseur associé ;
- le circuit de refroidissement basse température comporte des premiers moyens de séparation d'huile en aval du compresseur associé ; et,
- le circuit de refroidissement haute température comporte des troisièmes moyens de séparation d'huile en aval du compresseur associé.
- D'autres caractéristiques et avantages de l'invention ressortiront à la lecture de la description qui suit de trois modes de réalisation de l'invention. Aux dessins annexés :
- la
figure 1 est un schéma d'un premier mode de réalisation d'un dispositif de refroidissement selon l'invention ; - la
figure 2 est un schéma d'un deuxième mode de réalisation d'un dispositif de refroidissement selon l'invention ; et, - la
figure 3 est un schéma d'un troisième mode de réalisation d'un dispositif de refroidissement selon l'invention. - Pour plus de clarté, les éléments identiques ou similaires sont repérés par des signes de référence identiques sur l'ensemble des figures.
- En référence à la
figure 1 , nous allons décrire un premier mode de réalisation d'un dispositif de refroidissement 1 selon l'invention destiné à une installation de liquéfaction de gaz. L'installation de liquéfaction de gaz est illustrée dans la partie droite de la figure et est simplifiée sous la forme d'une zone ATEX 6 comprenant un liquéfacteur 7 à l'entrée duquel un gaz non liquéfié 61 est introduit et à la sortie duquel un gaz liquéfié 62 est extrait pour stockage. D'autre part, le liquéfacteur 7 comporte une sortie 71 et une entrée 72. Les sortie 71 et entrée 72 sont destinées à être fluidiquement connectées au dispositif de refroidissement 1 selon l'invention. - Comme illustré sur la
figure 1 , le dispositif de refroidissement 1 selon l'invention est situé en dehors de la zone ATEX 6 de l'installation de liquéfaction de gaz. Selon ce premier mode de réalisation, le dispositif de refroidissement 1 selon l'invention comporte une série de circuits de refroidissement indépendants positionnés en cascade comprenant ici un circuit de refroidissement haute température 2 et un circuit de refroidissement basse température 3. Le principe de base du dispositif de refroidissement 1 selon l'invention est que le circuit de refroidissement basse température 3 extrait les calories du liquéfacteur 7 en étant connecté fluidiquement aux sortie 71 et entrée 72 du liquéfacteur 7. De son côté, le circuit de refroidissement haute température 2 extrait les calories du circuit de refroidissement basse température 3. Ainsi, les deux circuits de refroidissement haute température 2 et basse température 3 sont indépendants et sont en parallèle l'un par rapport à l'autre, tout en étant en cascade. - De manière connue en soi, le circuit de refroidissement haute température 2 comporte dans le sens de circulation d'un premier fluide frigorigène illustré par les flèches sur la figure, un compresseur associé 21 en aval duquel un séparateur 23, formant ici des troisièmes moyens de séparation, est positionné de sorte à séparer les éventuelles gouttelettes d'huile issues du fonctionnement du compresseur 21 du premier fluide frigorigène. L'huile extraite par le séparateur 23 est renvoyée au compresseur 21 via la conduite 231. En aval du séparateur 23, le circuit de refroidissement haute température 2 comporte un condenseur 22, ici sous la forme d'un échangeur thermique, qui permet d'extraire les calories du circuit de refroidissement haute température 2 vers l'extérieur du dispositif de refroidissement 1 selon l'invention. En aval du condenseur 22, le circuit de refroidissement haute température 2 comporte un détendeur 24. D'autre part, le circuit de refroidissement haute température 2 comporte une bouteille 25 positionnée en aval du condenseur 22. La bouteille 25 forme un réservoir de régulation du premier fluide frigorigène.
- De son côté, le circuit de refroidissement basse température 3 comporte, toujours dans le sens de circulation d'un deuxième fluide frigorigène, qui lui est associé, illustré par les flèches sur la figure, un compresseur associé 31 suivi d'un séparateur 33, formant ici des premiers moyens de séparation, qui permet de séparer l'huile éventuellement présente dans le deuxième fluide frigorigène issu du compresseur 31 et de renvoyer l'huile ainsi extraite au compresseur 31 via la conduite 331. En aval du séparateur 33, ici, le circuit de refroidissement basse température 3 comporte un premier pré-refroidisseur 35 permettant d'extraire une partie des calories du circuit de refroidissement basse température 3 vers l'extérieur. Le premier pré-refroidisseur 35 est par exemple un échangeur thermique. Ensuite en aval du premier pré-refroidisseur 35, le circuit de refroidissement basse température 3 comporte un condenseur 32 suivi d'un détendeur 34. Le condenseur 32 est ici un échangeur thermique dont la deuxième partie forme un évaporateur pour le circuit de refroidissement haute température 2 dans lequel il est intégré en aval du détendeur 24 et en amont du compresseur 21 du circuit de refroidissement haute température 2. Ainsi, le condenseur/évaporateur 32 forme, ici dans ce mode de réalisation du dispositif de refroidissement 1 selon l'invention, des moyens d'extraction de calories connectant thermiquement le circuit de refroidissement basse température 3 au circuit de refroidissement haute température 2.
- Le circuit de refroidissement basse température 3 comporte en aval du détendeur 34 une conduite de sortie 38 qui est connectée fluidiquement à l'entrée 72 du liquéfacteur 7 et ce à travers une paroi qui délimite la zone ATEX 6. De même, le circuit de refroidissement basse température 3 comprend une conduite d'entrée 37 en amont du compresseur 31 qui est connectée fluidiquement à la sortie 71 du liquéfacteur 7 de la même manière, c'est-à-dire à travers la paroi qui délimite la zone ATEX 6.
- D'autre part, le circuit de refroidissement basse température 3 comporte un premier vase d'expansion 36 qui est connecté fluidiquement en aval du compresseur 31, en particulier entre le compresseur 31 et le séparateur 33. La partie de la conduite reliant la sortie du compresseur 31 au premier vase d'expansion 36 comporte une soupape de décharge 362 ainsi qu'un clapet anti-retour 361. Parallèlement, le premier vase d'expansion 36 est, ici, aussi connecté fluidiquement en amont du compresseur 31, la partie de la conduite reliant le premier vase d'expansion 36 à l'entrée du compresseur 31 comporte une soupape de décharge 364 ainsi qu'un clapet anti-retour 363. Enfin, le premier vase d'expansion 36 est lui-même indépendamment connecté fluidiquement à une vanne d'injection 365 puis en amont du compresseur 31. Le rôle du premier vase d'expansion 36 est d'éviter les surpressions dues à l'évaporation du deuxième fluide frigorigène circulant au sein du circuit de refroidissement basse température 3 et de protéger ainsi le fonctionnement dudit circuit de refroidissement basse température 3. En outre, le premier vase d'expansion 36 permet de réduire la quantité de fluide frigorigène au sein du circuit de refroidissement associé (ici, le circuit de refroidissement basse température 3). De plus, le premier vase d'expansion 36 permet de réguler la quantité de fluide frigorigène au sein du circuit de refroidissement associé : en effet, quand la pression augmente à la sortie du compresseur 31, l'excès de fluide frigorigène est envoyé dans le premier vase d'expansion 36 à travers la soupape de décharge 362 et, inversement, en cas de baisse de la pression au sein du circuit de refroidissement, une injection de fluide frigorigène est réalisée depuis le premier vase d'expansion 36 à travers la vanne d'injection 365.
- La présence du premier pré-refroidisseur 35 en amont du condenseur 32 permet d'augmenter considérablement le rendement du circuit de refroidissement basse température 3.
- La présence de moyens de séparation sous la forme du séparateur 33 est obligatoire dans le circuit de refroidissement basse température 3 du fait que l'huile habituellement utilisée dans les compresseurs, comme le compresseur 31, présente une température de figeage de l'ordre de -57°C. De ce fait, durant le fonctionnement normal du circuit de refroidissement basse température 3, de très petites quantités d'huile, de l'ordre de quelques ppm, quittent le compresseur 31 et se mélangent au deuxième fluide frigorigène circulant dans le circuit de refroidissement basse température 3. Ces gouttelettes d'huile, une fois dans le condenseur 32, se figent sur les plaques ou parois de l'échangeur. Le cumul d'huile figée entraine alors l'obstruction du condenseur 32 dégradant par conséquent le fonctionnement du circuit de refroidissement basse température 3. La présence des moyens de séparation 33 permet de résoudre cette problématique.
- Maintenant, en référence à la
figure 2 , nous allons décrire un deuxième mode de réalisation, qui est le mode préféré de réalisation de l'invention, d'un dispositif de refroidissement 10 selon l'invention. Nous allons simplement décrire les différences entre le dispositif de refroidissement 10 selon le deuxième mode de réalisation de l'invention avec le dispositif de refroidissement 1 du premier mode de réalisation précédemment décrit. - Le dispositif de refroidissement 10 selon l'invention se différencie du mode de réalisation précédent du dispositif de refroidissement 1 selon l'invention, par le fait qu'un troisième circuit de refroidissement est intercalé entre le circuit de refroidissement haute température 2 et le circuit de refroidissement basse température 3. Ce troisième circuit de refroidissement est ici appelé circuit de refroidissement moyenne température 4. Le circuit de refroidissement moyenne température 4 présente une structure similaire au circuit de refroidissement basse température 3 décrit ci-dessus. En effet, il comprend, dans le sens de circulation d'un troisième fluide frigorigène qui lui est associé illustré par les flèches sur la figure, un compresseur associé 41 qui est suivi en aval d'un séparateur 43, formant des deuxièmes moyens de séparation, permettant de séparer l'huile éventuellement présente dans le troisième fluide frigorigène issu du compresseur 41 et de renvoyer l'huile ainsi extraite au compresseur 41 via la conduite 431. En aval du séparateur 43, le circuit de refroidissement moyenne température 4 comporte un deuxième pré-refroidisseur 45 similaire dans son fonctionnement au premier pré-refroidisseur 35 du circuit de refroidissement basse température 3. Ensuite, en aval du deuxième pré-refroidisseur 45, le circuit de refroidissement moyenne température 4 comporte un condenseur 42, suivi d'un détendeur 44. Dans ce mode de réalisation, le condenseur 42 est ici un échangeur thermique, associé avec un évaporateur qui fait alors partie du circuit de refroidissement haute température 2 situé entre le détendeur 24 et le compresseur 21 dans le sens de circulation du fluide frigorigène. De même, comme précédemment, le condenseur 32 du circuit de refroidissement basse température 3 est un échangeur thermique comportant un évaporateur pour le circuit de refroidissement moyenne température 4 et est positionné dans ce fait, dans le sens de circulation du fluide frigorigène, entre le détendeur 44 et l'entrée du compresseur 41.
- De manière similaire, le circuit de refroidissement moyenne température 4 comporte un deuxième vase d'expansion 46 qui est connecté fluidiquement de part et d'autre du compresseur 41, de la même manière que le premier vase d'expansion 36. La conduite connectant fluidiquement le deuxième vase d'expansion 46 à la sortie du compresseur 41 comporte une soupape de décharge 462 et un clapet anti-retour 461. De même, la conduite connectant fluidiquement le deuxième vase d'expansion 46 à l'entrée du compresseur 41 comporte de manière similaire une soupape de décharge sécurité 464 et un clapet anti-retour 463. Comme précédemment, une vanne d'injection 465 est connectée fluidiquement au deuxième vase d'expansion 46 et en amont du compresseur 41. Le rôle du deuxième vase d'expansion 46 est similaire au rôle du premier vase d'expansion 36 précédemment décrit. Dans ce mode de réalisation, le circuit de refroidissement moyenne température 4 forme les moyens d'extraction de calories connectant thermiquement le circuit de refroidissement haute température 2 au circuit de refroidissement basse température 3. Les moyens de séparation 43 sont similaires aux moyens de séparation 33 précédemment décrits.
- En référence maintenant à la
figure 3 , nous allons brièvement décrire un troisième mode de réalisation d'un dispositif de refroidissement 100 selon l'invention. Dans ce troisième mode de réalisation, le dispositif de refroidissement 100 selon l'invention se différencie du dispositif de refroidissement 10 précédemment décrit par l'insertion d'un quatrième circuit de refroidissement 5 entre le circuit de refroidissement moyenne température 4 et le circuit de refroidissement basse température 3. Ce quatrième circuit de refroidissement 5 est similaire au circuit de refroidissement basse température 3 ainsi qu'au circuit de refroidissement moyenne température 4 précédemment décrits. En effet, il comprend, dans le sens de circulation d'un quatrième fluide frigorigène qui lui est propre illustré par les flèches sur la figure, un compresseur associé 51 qui est suivi en aval d'un séparateur 53 formant moyens de séparation permettant de séparer l'huile éventuellement présente dans le quatrième fluide frigorigène issu du compresseur 51 et de renvoyer l'huile ainsi extraite au compresseur 51 via la conduite 531. En aval du séparateur 53, le quatrième circuit de refroidissement 5 comporte un troisième pré-refroidisseur 55 similaire dans son fonctionnement aux premier 35 et deuxième 45 pré-refroidisseurs, des circuits de refroidissement basse température 3 et moyenne température 4. Ensuite, en aval du troisième pré-refroidisseur 55, le quatrième circuit de refroidissement 5 comporte un condenseur 52 suivi d'un détendeur 54. Dans ce mode de réalisation, le condenseur 52 est ici un échangeur thermique comprenant un évaporateur qui fait alors partie du circuit de refroidissement moyenne température 4 situé entre le détendeur 44 et le compresseur 41 dans le sens de circulation du fluide frigorigène. De même, comme précédemment, le condenseur 32 du circuit de refroidissement basse température 3 est un échangeur thermique comprenant un évaporateur pour le quatrième circuit de refroidissement 5 et est positionné dans ce fait, dans le sens de circulation du fluide frigorigène, entre le détendeur 54 et l'entrée du compresseur 51. - De manière similaire, le quatrième circuit de refroidissement 5 comporte un troisième vase d'expansion 56 qui est connecté fluidiquement de part et d'autre du compresseur 51 de la même manière que les premier 36 et deuxième 46 vases d'expansion. La conduite connectant fluidiquement le troisième vase d'expansion 56 à la sortie du compresseur 51 comporte une soupape de décharge 562 et un clapet anti-retour 561. De même, la conduite connectant fluidiquement le troisième vase d'expansion 56 à l'entrée du compresseur 51 comporte de manière similaire une soupape de décharge 564 et un clapet anti-retour 563. De manière similaire que précédemment, une vanne d'injection 565 est connectée fluidiquement au troisième vase d'expansion 56 et en amont du compresseur 51. Le rôle du troisième vase d'expansion 56 est similaire au rôle des premier 36 et deuxième 46 vases d'expansion précédemment décrits. Dans ce mode de réalisation, le quatrième circuit de refroidissement 5 forme les moyens d'extraction de calories connectant thermiquement le circuit de refroidissement moyenne température 4 au circuit de refroidissement basse température 3. Les moyens de séparation 53 sont similaires aux moyens de séparation 33,43 précédemment décrits.
- Il est possible ainsi sans sortir du cadre de l'invention d' « empiler» les circuits de refroidissement (qui peuvent être en variante au nombre de plus de quatre) de manière parallèle et en cascade comme cela a été décrit. Cela permet d'ajuster au mieux le dispositif de refroidissement selon l'invention en fonction du gaz à liquéfier ou de l'installation de liquéfaction de gaz à équiper ainsi d'un tel dispositif de refroidissement selon l'invention. L'utilisation d'un tel dispositif de refroidissement 1,10,100 selon l'invention permet de le séparer complètement du liquéfacteur 7 et ainsi de ne pas imposer les exigences drastiques et les normes ATEX à l'ensemble des circuits de refroidissement du dispositif de refroidissement selon l'invention. Au surplus, cela permet de positionner le dispositif de refroidissement 1,10,100 selon l'invention dans un endroit de l'installation qui est facile d'accès et qui simplifie de ce fait la maintenance dudit dispositif de refroidissement. D'autre part, du fait que le dispositif de refroidissement selon l'invention ne soit pas soumis aux normes ATEX, cela permet d'utiliser des composants de séries disponibles sur le marché, ce qui réduit énormément le coût de fabrication du dispositif de refroidissement selon l'invention.
- D'autre part, il a été constaté lors d'essais, que le dispositif de refroidissement 10 selon l'invention permet d'obtenir des rendements énergétiques élevés avec un COP de l'ordre de 0.7. Ceci permet une réduction considérable de la consommation électrique et énergétique généralement du fait que le dispositif de refroidissement selon l'invention doit fonctionner 24 heures sur 24 et 7 jours sur 7. D'autre part, la simplicité de la cascade formée par les différents circuits de refroidissement du dispositif de refroidissement selon l'invention permet un contrôle simple de celui-ci et cela facilite également le démarrage et le changement de débit de production ainsi que la configuration du dispositif de refroidissement selon l'invention pour l'adapter à la production de gaz liquéfiés réalisée par l'installation de liquéfaction ainsi équipée.
- Bien entendu, il est possible d'apporter à l'invention de nombreuses modifications sans pour autant sortir du cadre de celle-ci.
Claims (14)
- Dispositif de refroidissement (1;10;100) destiné à une installation de liquéfaction de gaz, comportant un liquéfacteur de gaz (7) en gaz liquéfié dans une zone ATEX (6), le dispositif comprenant une série de circuits de refroidissement (2,3,4,5) indépendants en cascade dont au moins un circuit de refroidissement basse température (3) et un circuit de refroidissement haute température (2), chacun des circuits de refroidissement comportant un compresseur (21,31) et un condenseur associés (22,32), caractérisé en ce que le dispositif de refroidissement est agencé de sorte à être situé en dehors de la zone ATEX, le circuit de refroidissement basse température est agencé de sorte à être connecté fluidiquement au liquéfacteur, et le circuit de refroidissement haute température est thermiquement connecté au circuit de refroidissement basse température via des moyens d'extraction de calories (32 ;4;5) de sorte à en extraire les calories lors d'un fonctionnement.
- Dispositif de refroidissement selon la revendication 1, caractérisé en ce que les moyens d'extraction de calories comportent un échangeur thermique (32) formant condenseur du circuit de refroidissement basse température et évaporateur du circuit de refroidissement haute température.
- Dispositif de refroidissement selon la revendication 1, caractérisé en ce que les moyens d'extraction de calories comprennent un circuit de refroidissement moyenne température (4;5), comportant un compresseur (41;51) et un condenseur (42;52) associés, intercalé entre les circuits de refroidissement haute température et basse température.
- Dispositif de refroidissement selon la revendication 3, caractérisé en ce que les moyens d'extraction de calories comportent un échangeur thermique (32) formant condenseur du circuit de refroidissement basse température et évaporateur du circuit de refroidissement moyenne température.
- Dispositif de refroidissement selon la revendication 3 ou 4, caractérisé en ce que les moyens d'extraction de calories comportent un échangeur thermique (42) formant condenseur du circuit de refroidissement moyenne température et évaporateur du circuit de refroidissement haute température.
- Dispositif de refroidissement selon l'une des revendications 3 à 5, caractérisé en ce que le circuit de refroidissement moyenne température comporte un deuxième pré-refroidisseur (45;55) en amont du condenseur associé.
- Dispositif de refroidissement selon l'une des revendications 3 à 6, caractérisé en ce que le circuit de refroidissement moyenne température comporte un deuxième vase d'expansion (46;56) fluidiquement connecté en aval du compresseur associé.
- Dispositif de refroidissement selon la revendication 7, caractérisé en ce que le deuxième vase d'expansion est fluidiquement connecté en amont du compresseur associé.
- Dispositif de refroidissement selon l'une des revendications 3 à 8, caractérisé en ce que le circuit de refroidissement moyenne température comporte des deuxièmes moyens de séparation d'huile (43;53) en aval du compresseur associé.
- Dispositif de refroidissement selon l'une des revendications 1 à 9, caractérisé en ce que le circuit de refroidissement basse température comporte un premier pré-refroidisseur (35) en amont du condenseur associé.
- Dispositif de refroidissement selon l'une des revendications 1 à 10, caractérisé en ce que le circuit de refroidissement basse température comporte un premier vase d'expansion (36) fluidiquement connecté en aval du compresseur associé.
- Dispositif de refroidissement selon la revendication 11, caractérisé en ce que le premier vase d'expansion est fluidiquement connecté en amont du compresseur associé.
- Dispositif de refroidissement selon l'une des revendications 1 à 12, caractérisé en ce que le circuit de refroidissement basse température comporte des premiers moyens de séparation (33) d'huile en aval du compresseur associé.
- Dispositif de refroidissement selon l'une des revendications 1 à 13, caractérisé en ce que le circuit de refroidissement haute température comporte des troisièmes moyens de séparation d'huile (23) en aval du compresseur associé.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20305455.6A EP3907453A1 (fr) | 2020-05-07 | 2020-05-07 | Dispositif de refroidissement pour installation de liquéfaction de gaz |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20305455.6A EP3907453A1 (fr) | 2020-05-07 | 2020-05-07 | Dispositif de refroidissement pour installation de liquéfaction de gaz |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3907453A1 true EP3907453A1 (fr) | 2021-11-10 |
Family
ID=71103306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20305455.6A Pending EP3907453A1 (fr) | 2020-05-07 | 2020-05-07 | Dispositif de refroidissement pour installation de liquéfaction de gaz |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP3907453A1 (fr) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2500118A (en) * | 1945-08-18 | 1950-03-07 | Howell C Cooper | Natural gas liquefaction |
US6016665A (en) | 1997-06-20 | 2000-01-25 | Exxon Production Research Company | Cascade refrigeration process for liquefaction of natural gas |
EP1132698A1 (fr) * | 2000-03-09 | 2001-09-12 | Cryostar-France SA | Reliquéfaction de vapeur comprimée |
US6494054B1 (en) * | 2001-08-16 | 2002-12-17 | Praxair Technology, Inc. | Multicomponent refrigeration fluid refrigeration system with auxiliary ammonia cascade circuit |
US6530241B2 (en) * | 2000-01-26 | 2003-03-11 | Cryostar-France Sa | Apparatus for reliquefying compressed vapour |
KR20090015458A (ko) * | 2007-08-08 | 2009-02-12 | 신영중공업주식회사 | Lng 운반선의 bog 재액화 시스템 및 재액화 방법 |
CN106016967A (zh) * | 2016-05-30 | 2016-10-12 | 中国科学院理化技术研究所 | 一种回热式混合工质制冷气体液化循环系统 |
CN106196883A (zh) * | 2016-08-29 | 2016-12-07 | 中科赛德(北京)科技有限公司 | 一种气体液化装置 |
-
2020
- 2020-05-07 EP EP20305455.6A patent/EP3907453A1/fr active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2500118A (en) * | 1945-08-18 | 1950-03-07 | Howell C Cooper | Natural gas liquefaction |
US6016665A (en) | 1997-06-20 | 2000-01-25 | Exxon Production Research Company | Cascade refrigeration process for liquefaction of natural gas |
US6530241B2 (en) * | 2000-01-26 | 2003-03-11 | Cryostar-France Sa | Apparatus for reliquefying compressed vapour |
EP1132698A1 (fr) * | 2000-03-09 | 2001-09-12 | Cryostar-France SA | Reliquéfaction de vapeur comprimée |
US6494054B1 (en) * | 2001-08-16 | 2002-12-17 | Praxair Technology, Inc. | Multicomponent refrigeration fluid refrigeration system with auxiliary ammonia cascade circuit |
KR20090015458A (ko) * | 2007-08-08 | 2009-02-12 | 신영중공업주식회사 | Lng 운반선의 bog 재액화 시스템 및 재액화 방법 |
CN106016967A (zh) * | 2016-05-30 | 2016-10-12 | 中国科学院理化技术研究所 | 一种回热式混合工质制冷气体液化循环系统 |
CN106196883A (zh) * | 2016-08-29 | 2016-12-07 | 中科赛德(北京)科技有限公司 | 一种气体液化装置 |
Non-Patent Citations (1)
Title |
---|
HOWARD J L ET AL: "A Barge-Mounted Gas Liquefaction and Storage Plant", CHEMICAL ENGINEERING PROGRESS, AMERICAN INSTITUTE OF CHEMICAL ENGINEERS, NEW YORK, NY, US, vol. 75, no. 10, 1 October 1979 (1979-10-01), pages 76, XP001254003, ISSN: 0360-7275 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2129893A2 (fr) | Systeme de refroidissement et de regulation en temperature d'equipements d'un ensemble propulsif d'aeronef | |
WO2014013158A2 (fr) | Procédé de liquéfaction de gaz naturel avec changement de phase | |
EP4158170B1 (fr) | Dispositif de régulation de la pression d'un réservoir de carburant cryogénique d'un aéronef. | |
EP4158169A1 (fr) | Installation de réchauffement d'un carburant cryogénique | |
EP2933444A1 (fr) | Dispositif de contrôle d'un circuit fermé fonctionnant selon un cycle de Rankine et procédé utilisant un tel dispositif. | |
EP2827068B1 (fr) | Pompe à chaleur en cascade | |
EP4264114A1 (fr) | Système d'alimentation et de refroidissement pour ouvrage flottant | |
EP3907453A1 (fr) | Dispositif de refroidissement pour installation de liquéfaction de gaz | |
KR102299354B1 (ko) | 가스 처리 시스템 및 선박 | |
FR2642152A1 (fr) | Pompe a chaleur capable d'alimenter simultanement en fluides chauds et froids | |
EP3521589B1 (fr) | Système de refroidissement d'air moteur à deux étages de refroidissement et procédé correspondant | |
EP3077736B1 (fr) | Procédé de réfrigération, boîte froide et installation cryogénique correspondantes | |
EP3645934B1 (fr) | Station et procédé de remplissage de réservoirs de gaz sous pression | |
EP4187071A1 (fr) | Systeme de chauffage de dihydrogene et de refroidissement de fluide combines pour aeronef, et aeronef comprenant un tel systeme | |
WO2021209231A1 (fr) | Installation de stockage de gaz liquéfié | |
WO2011055045A1 (fr) | Système de vaporisation d'un fluide cryogénique avec des échangeurs centralisés | |
WO2000061997A1 (fr) | Turbo ventilateur mu par la detente d'un fluide frigorifique diphasique | |
EP3390938B1 (fr) | Procédé hybride de liquéfaction d'un gaz combustible et installation pour sa mise en oeuvre | |
WO2024217854A1 (fr) | Dispositif de refroidissement pour installation de liquefaction de gaz | |
WO2024094561A1 (fr) | Procédé de contrôle de la pression intérieure d'un réservoir cryogénique | |
JP2009180396A (ja) | 蒸気製造装置 | |
FR3079918A1 (fr) | Dispositif reversible de recuperation d'energie calorifique. | |
FR3127555A1 (fr) | Système de traitement d’un gaz naturel issu d’une cuve d’un ouvrage flottant configuré pour alimenter en gaz naturel en tant que carburant un appareil consommateur de gaz naturel | |
WO2021064319A1 (fr) | Système de traitement d'un gaz contenu dans une cuve de stockage et/ou de transport de gaz à l'état liquide et gazeux | |
WO2022069833A1 (fr) | Système d'alimentation en gaz pour appareils consommateurs de gaz à haute et basse pression |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
B565 | Issuance of search results under rule 164(2) epc |
Effective date: 20201002 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20220429 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |