EP3390938B1 - Procédé hybride de liquéfaction d'un gaz combustible et installation pour sa mise en oeuvre - Google Patents

Procédé hybride de liquéfaction d'un gaz combustible et installation pour sa mise en oeuvre Download PDF

Info

Publication number
EP3390938B1
EP3390938B1 EP16834023.0A EP16834023A EP3390938B1 EP 3390938 B1 EP3390938 B1 EP 3390938B1 EP 16834023 A EP16834023 A EP 16834023A EP 3390938 B1 EP3390938 B1 EP 3390938B1
Authority
EP
European Patent Office
Prior art keywords
heat exchange
flow
fuel gas
exchange region
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16834023.0A
Other languages
German (de)
English (en)
Other versions
EP3390938A1 (fr
EP3390938C0 (fr
Inventor
Laurent Benoit
Denis FAURE-BRAC
Anna TORRES-MANSILLA
Emeline DROUET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Engie SA
Original Assignee
Engie SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Engie SA filed Critical Engie SA
Publication of EP3390938A1 publication Critical patent/EP3390938A1/fr
Application granted granted Critical
Publication of EP3390938C0 publication Critical patent/EP3390938C0/fr
Publication of EP3390938B1 publication Critical patent/EP3390938B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/42Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/12Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop

Definitions

  • the present invention relates generally to a process and an installation for liquefying a combustible gas with a high methane content.
  • the overall problem that the present invention seeks to solve is to liquefy gas with a high methane content (at least 80 molar%), typically natural gas from the gas transport or distribution network, biomethane or even gas evaporations.
  • liquefied natural gas usually referred to by the acronym LNG.
  • Such an open cycle solution is known from the document FR1335277A which discloses a process for liquefying a combustible gas in which said combustible gas circulates in a circuit primary while a refrigerant consisting of nitrogen in the liquid or at least partially vaporized state circulates in an open secondary circuit from a liquid nitrogen tank to be released to the atmosphere.
  • the aim of the present invention therefore aims to overcome all or part of the disadvantages of the prior art, by setting up a hybrid process between on the one hand a process according to the Brayton cycle (or so-called expansion) and on the other hand a classic open cycle process. More precisely, instead of using a classic open cycle which uses the sole refrigerating power of the vaporization of the cold medium (typically liquid nitrogen) such as the process described in the French patent FR 1 335 277 , the method according to the invention proposes to first compress the cold medium then, initially, to use its vaporization as a cooling power, and finally in a second step, to relax it to generate additional cold.
  • a classic open cycle which uses the sole refrigerating power of the vaporization of the cold medium (typically liquid nitrogen) such as the process described in the French patent FR 1 335 277
  • the method according to the invention proposes to first compress the cold medium then, initially, to use its vaporization as a cooling power, and finally in a second step, to relax it to generate
  • the subject of the present invention is a process for liquefaction of a combustible gas according to claim 1, and an installation for liquefaction of a combustible gas for implementing the process according to the invention, according to claim 6.
  • nitrogen is meant, within the meaning of the present invention, a fluid comprising at least 97 mole% of nitrogen.
  • heat exchanger is meant, for the purposes of the present invention, a subassembly or part of a heat exchange zone integrating the entire heat exchange line of the phase considered of the process of the invention.
  • heat exchange zone is meant, within the meaning of the present invention, a set of heat exchangers in which all the heat exchanges of a given phase of the process of the invention take place, namely, the pre -cooling, liquefaction or subcooling.
  • heat exchange line is meant, within the meaning of the present invention, the succession of fluids exchanging heat with each other in the phase considered.
  • the liquid nitrogen coming from the liquid nitrogen tank can be pumped at a pressure of at least 1.2 MPa, depending on the nature of the combustible gas to be liquefied.
  • the flow of nitrogen at least partially vaporized at the outlet of the heat exchanger of the cooling heat exchange zone can be expanded, in the turbine (preferably an expansion turbine), at an equal pressure or less than 0.2 MPa (i.e. approximately 2 bars).
  • the gas to be liquefied may contain methane in a molar proportion of at least 80%.
  • the process according to the invention makes it possible to keep the advantages of a conventional open cycle by limiting its main disadvantage, namely its consumption of liquid nitrogen, and consequently the cost associated with this consumption.
  • sudden evaporation is meant, within the meaning of the present invention, a partial vaporization in the liquid line (during expansion), which occurs when the LNG under pressure (to facilitate its liquefaction) is expanded either using a valve.
  • Joule-Thomson either a liquid or even two-phase turbine.
  • CAEX costs are moderate: in the absence of cold to be created by intermediate cycles (as in the case of closed cycles), the number of rotating machines at implemented to operate the process according to the invention (compressor, turbine) is drastically reduced compared to conventional closed cycle processes, as well as the size of the exchange line.
  • OPEX operating costs
  • the OPX costs are moderate because the implementation of the method according to the invention requires only a small number of rotating machines such as compressors or turbines.
  • the associated maintenance costs are therefore “mechanically” reduced: the consumption of liquid nitrogen by the process according to the invention is reduced by approximately 10% compared to a conventional open cycle, hence a similar reduction in the associated OPEX. .
  • the installation according to the invention has the advantage of being very compact thanks to the reduction in the inventory of cooling fluids (that is to say the quantity and mass flow of refrigerant) and the size and the number of rotating machines; this compactness therefore allows its mobility (on truck, barge, boat, train, etc.).
  • FIG. 3 is a device according to the prior art allowing the implementation of a process for liquefying a combustible gas known from the prior art operating with an open liquid nitrogen cycle. This process serves as a point of comparison for the numerical simulations presented below in the examples.
  • FIG. 1 further shows that a turbine 22 (preferably expansion) is arranged, in the secondary circuit 34, connecting the outlet of the heat exchanger 20 of the cooling heat exchange zone 200 and the inlet of the exchanger thermal annex 31 of the heat exchange zone 300 of liquefaction, this turbine 33 makes it possible to relax and cool the vaporized nitrogen leaving the heat exchanger 20 of the heat exchange zone 200 of cooling, before its injection into the heat exchanger annex 31 of the liquefaction heat exchange zone 300.
  • a turbine 22 preferably expansion
  • FIG 2 shows the implementation of the method according to the invention on the installation according to the invention represented on the figure 1 .
  • the different phases of the process of the invention have been indicated at the level of the heat exchangers where they are carried out.
  • FIG. 2 shows in particular that the process according to the invention consists of liquefying a combustible gas comprising mainly methane, by circulating it in a primary circuit I open from a source of combustible gas to a tank for liquefied gas 2, while a mixture refrigerant consisting of liquid or at least partially vaporized nitrogen circulates in a secondary circuit 34 open from a nitrogen tank 3 to be released to the atmosphere.
  • a combustible gas comprising mainly methane
  • the initially completely liquid nitrogen, coming from the tank 3, is injected into the heat exchanger 40 of the subcooling heat exchange zone 400, in which it circulates countercurrent to the flow of combustible gas. Then, in subcooling zone 400, the nitrogen flow partially vaporizes. At the exit of zone 400, the partially vaporized nitrogen is injected into the exchanger 30 of the liquefaction heat exchange zone 300 to liquefy part of the fuel gas flow, between T 3 and T 2 .
  • This step makes it possible to best adjust the flow rate of combustible gas to be liquefied to optimize the process according to the invention, and facilitate its technical implementation because then at T 2 , the nitrogen is completely vaporized so that the exchangers involved ( exchangers 20 and 21) have purely monophasic inputs-outputs.
  • the completely vaporized nitrogen is, at the temperature T 2 , injected into the heat exchanger 20 of the cooling heat exchange zone 200, in which it circulates against the current of a part of the combustible gas which there is cooled between the pre-cooling temperature T1 up to the dew temperature T 2 .
  • the nitrogen At the outlet of the heat exchanger 20, the nitrogen, at a temperature close to T 1 , is completely vaporized, but still at high pressure.
  • the vaporized nitrogen is then expanded in the expansion turbine 22 (typically from a pressure of 1.2 MPa to less than 0.2 MPa, the precise values depending on the fuel gas to be cooled).
  • This makes it possible to obtain a flow of nitrogen that is certainly vaporized, but at a cryogenic temperature typically of the order of -160°C (here again the precise values depend on the case studied).
  • the nitrogen obtained is at a temperature well below T 3 (which is the bubble temperature of the gas to be liquefied).
  • T 3 which is the bubble temperature of the gas to be liquefied
  • the combustible gas (of initial flow rate m) is cooled from the ambient temperature T 0 to a pre-cooling temperature T 1 greater than the dew point temperature T 2 of the combustible gas, this pre-cooling phase being carried out by heat exchange with a flow of vaporized and low-pressure nitrogen circulating countercurrent to the flow of combustible gas in the heat exchanger 10 of the pre-cooling heat exchange zone 100.
  • the liquefied combustible gas, leaving the liquefaction heat exchange zone 300, is sub-cooled from the temperature T 3 to a sub-cooling temperature T 4 , this sub-cooling phase cooling 4000 being carried out in the subcooling heat exchange zone 400 comprising at least one heat exchanger 40 by heat exchange with the flow of initially completely liquid nitrogen circulating counter-current to the flow of combustible gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

  • La présente invention se rapporte de manière générale à un procédé et une installation de liquéfaction d'un gaz combustible à forte teneur en méthane.
  • Le problème global que cherche à résoudre la présente invention est de liquéfier du gaz à forte teneur en méthane (au moins 80% molaire), typiquement du gaz naturel issu du réseau gazier de transport ou de distribution, du biométhane ou encore des évaporations de gaz naturel liquéfié (usuellement désigné par l'acronyme GNL) .
  • Pour cela, on cherche à réduire les coûts de mise en œuvre du processus de liquéfaction du gaz combustible en particulier pour des installations de petite taille (notamment inférieures à 10 tonnes de GNL produites par heure), tout en conservant des coûts opérationnels modérés (notamment en termes de consommables).
  • Pour résoudre un tel problème, il est connu de l'homme de l'art différentes solutions, que l'on peut regrouper en trois catégories :
    1. 1. les procédés à cycle fermé avec changement de phase du réfrigérant, ce dernier pouvant être un corps pur ou un mélange réfrigérant afin d'améliorer l'efficacité. On les utilise principalement pour une production de GNL à grande échelle (dite "baseload"), soit plusieurs dizaines à plusieurs centaines de tonnes/heure (t/h) de GNL produit, en station fixe. il s'agit notamment des procédés industriels suivants : le procédé TEALARC de Technip et Air Liquide, les procédés de l'APCI et notamment le C3-MR et l'APX, le procédé à cascade optimisée (en anglais « optimized cascade ») de Conoco Phillips, le procédé MFC de Statoil-Linde, les procédés de Linde, le procédé PRICO de Black and Veatch, et le procédé OSMR de LNG limited. Toutefois, ce type de procédés est désormais aussi proposé à plus petite échelle (c'est-à-dire des procédés produisant seulement quelques dizaines voire quelques tonnes/heure (t/h) de de GNL produit. C'est notamment le cas pour les procédés industriels suivants : le procédé BOC du groupe industriel Linde) pour la liquéfaction du biogaz, les procédés SCMR et PCMR de Kryopak, le procédé MRC de GTI, le procédé NewMR de Waertsila, le procédé SGTS pour la liquéfaction du biogaz, le procédé d'Erié pour la liquéfaction du biogaz, et enfin le procédé MiniLNG de SINTEF pour la liquéfaction des évaporations de GNL ;
    2. 2. les procédés à cycle fermé de Brayton ou à détente, c'est à dire sans changement de phase mais avec détente du réfrigérant pour créer le froid. En raison de leur simplicité technique, ces procédés sont utilisés :
      • soit pour des productions de GNL de petite capacité. C'est le cas notamment pour le procédé d'Air Liquide pour la liquéfaction du biogaz, le procédé EXP de Kryopak, le procédé de Cryostar proposé à la fois pour la liquéfaction du biogaz et des évaporations de GNL,
      • soit pour des situations techniquement difficiles où simplicité et robustesse l'emportent sur la performance énergétique (production « offshore » notamment, ou pour la reliquéfaction des évaporations de GNL). C'est le cas notamment pour le procédé de Mustang, le procédé APX d'APCI, le procédé à plusieurs étapes de détente de SAIPEM et le procédé ZR-LNG de Gasconsult ;
    3. 3. les procédés à cycle ouvert, dans lequel le froid n'est pas créé mais apporté par un médium extérieur, typiquement de l'azote liquide, et où la liquéfaction du gaz naturel résulte d'un simple échange de chaleur (direct) avec le médium de froid qui se vaporise. Ce type de procédé est généralement utilisé en laboratoire ou pour des applications très ponctuelles ne nécessitant que très peu de performance et beaucoup de simplicité. C'est le cas notamment pour le procédé de Chart utilisant de l'azote liquide comme réfrigérant, actuellement utilisé en Asie du Sud-Est (notamment en Indonésie), et pour le procédé direct d'Hamworthy-Wärtsilä actuellement mis en oeuvre dans la petite installation de liquéfaction de Sköldvik en Finlande produisant 55 tonnes par jour de GNL.
  • Une telle solution à cycle ouvert est connue du document FR1335277A qui divulgue un procédé de liquéfaction d'un gaz combustible dans lequel ledit gaz combustible circule dans un circuit primaire tandis qu'un réfrigérant constitué d'azote à l'état liquide ou au moins partiellement vaporisé circule dans un circuit secondaire ouvert depuis un réservoir d'azote liquide pour être relâché vers l'atmosphère.
  • Toutefois, ces dispositifs connus de l'art antérieur présentent de nombreux inconvénients.
  • Ainsi, les procédés à cycle fermé complet avec changement de phase du réfrigérant présentent les inconvénients suivants :
    • des coûts de développement ou de fourniture des pièces non-consommables (coûts généralement désignés par l'acronyme CAPEX) élevés, en raison du nombre élevé d'équipements et de la complexité que nécessitent de tels procédés,
    • il en est de même pour les coûts d'exploitation (généralement désignés par l'acronyme OPEX),
    • la complexité de tels procédés et les risques encourus (le réfrigérant est généralement inflammable),
    • la taille et l'encombrement importants des équipements pour la mise en œuvre de tels procédés, qui les rendent difficilement compacts : en effet, en plus du fluide à refroidir (typiquement du gaz naturel), le procédé doit intégrer une grande quantité de fluides de refroidissement dans des cycles intermédiaires pour obtenir le refroidissement souhaité (au final, le débit massique total des mélanges réfrigérants utilisé étant d'environ 8 fois celui du fluide à refroidir), et
    • les émissions de CO2 liés à la consommation de gaz lorsque celui-ci est utilisé pour l'appoint en énergie du procédé.
  • Par ailleurs, les procédés à cycle fermé complet de Brayton ou à détente présentent également des inconvénients, en partie identique avec ceux mentionnés ci-dessus pour les procédés avec changement de phase :
    • des coûts élevés de développement ou de fourniture des pièces non-consommables (coûts CAPEX) et des coûts élevés d'exploitation (coûts OPEX),
    • une performance énergétique faible, en d'autres termes une consommation d'énergie importante,
    • la taille et l'encombrement importants des équipements pour la mise en œuvre de tels procédés, qui les rendent difficilement compacts : ici également, en plus du fluide à refroidir (typiquement du gaz naturel), le procédé doit intégrer une grande quantité de fluides de refroidissement dans des cycles intermédiaires pour obtenir le refroidissement souhaité. Compte-tenu de l'absence d'évaporation, la quantité de réfrigérant est encore plus grande que dans le cas précédent (relatif aux procédés à cycle fermé complet avec changement de phase du réfrigérant), le débit massique de réfrigérant équivaut cette fois à plusieurs dizaines de fois le débit massique de fluide à refroidir.
    • les émissions de CO2 liées à la consommation de gaz lorsque celui-ci est utilisé pour l'appoint en énergie du procédé.
  • Enfin, les procédés à cycle ouvert présentent des inconvénients liés principalement à leur rusticité et au cout d'approvisionnement du réfrigérant (qui est consommé du fait du cycle ouvert).
  • Le but de la présente invention vise donc à pallier tout ou partie des inconvénients de l'art antérieur, par la mise en place d'un procédé hybride entre d'une part un procédé selon le cycle de Brayton (ou dit à détente) et d'autre part un procédé à cycle ouvert classique. Plus précisément, au lieu d'utiliser un cycle ouvert classique qui utilise le seul pouvoir frigorifique de la vaporisation du médium de froid (typiquement l'azote liquide) tel que le procédé décrit dans le brevet français FR 1 335 277 , le procédé selon l'invention propose d'abord de comprimer le médium de froid puis, dans un premier temps, d'utiliser sa vaporisation comme pouvoir refroidissant, et enfin dans un deuxième temps, de le détendre pour générer du froid supplémentaire.
  • Plus particulièrement, la présente invention a pour objet un procédé de liquéfaction d'un gaz combustible selon la revendication 1, et une installation de liquéfaction d'un gaz combustible pour la mise en oeuvre du procédé selon l'invention, selon la revendication 6.
  • Par azote, on entend, au sens de la présente invention, un fluide comportant au moins 97% molaire d'azote.
  • Par échangeur thermique, on entend, au sens de la présente invention un sous-ensemble ou une partie d'une zone d'échange thermique intégrant la totalité de la ligne d'échange thermique de la phase considérée du procédé de l'invention.
  • Par zone d'échange thermique, on entend, au sens de la présente invention, un ensemble d'échangeurs thermiques dans laquelle se déroule l'ensemble des échanges thermiques d'une phase donnée du procédé de l'invention, à savoir, le pré-refroidissement, la liquéfaction ou le sous-refroidissement.
  • Par ligne d'échange thermique, on entend, au sens de la présente invention, la succession de fluides échangeant de la chaleur entre eux dans la phase considérée.
  • Le principe global du procédé selon l'invention est donc de tirer parti à la fois du refroidissement par évaporation de l'azote liquide et de sa détente. Par conséquent, cela signifie, d'un point de vue conceptuel, que le réfrigérant (c'est-à-dire l'azote liquide ou vaporisé va être utilisé deux fois sur une partie de la zone d'échange thermique (c'est-à-dire sur une même gamme de température). Mais l'azote ne sera pas dans le même état lors de ces deux passages :
    • une fois, il sera partiellement liquide et à haute pression,
    • l'autre fois, il sera vaporisé et à basse pression.
  • En outre, à chaque fois, seule une partie du gaz naturel à traiter sera refroidi.
  • De manière avantageuse, les deux phases de redistribution du gaz combustible pourront être réalisées dans les conditions suivantes :
    • le débit m1 du sous-flux de gaz combustible injecté dans l'échangeur thermique de la zone d'échange thermique de refroidissement représentant au moins 80%, et de préférence au moins 85% du débit initial m de gaz ; et
    • le débit m3 du sous-flux de gaz combustible injecté dans l'échangeur thermique de la zone d'échange thermique de liquéfaction représentant au moins 60% du débit initial m de gaz combustible, et au plus la valeur de m1.
  • De manière avantageuse, l'azote liquide provenant du réservoir d'azote liquide pourra être pompé à une pression d'au moins 1,2 MPa, en fonction de la nature du gaz combustible à liquéfier.
  • De manière avantageuse, le flux d'azote au moins partiellement vaporisé à la sortie de l'échangeur thermique de la zone d'échange thermique de refroidissement peut être détendu, dans la turbine (de préférence une turbine à détente), à une pression égale ou inférieure à 0,2 MPa (c'est à dire approximativement à 2 bars).
  • De manière avantageuse, dans le cadre de la présente invention le gaz à liquéfier pourra contenir du méthane en une proportion molaire d'au moins 80%.
  • Le procédé selon l'invention permet de garder les avantages d'un cycle ouvert classique en limitant son principal inconvénient, à savoir sa consommation de d'azote liquide, et par conséquent le coût associé à cette consommation.
  • Enfin, on observe, dans le procédé selon l'invention, une absence totale de phénomènes de type « évaporation brusque » (usuellement désignés en anglais par l'expression « flash gas ») lors de la détente finale du GNL car le GNL est sous-refroidi suffisamment pour qu'il ne génère pas de vapeur (« flash ») lors de cette détente finale. Cela permet de faire ainsi l'économie d'une recompression du gaz.
  • Par évaporation brusque, on entend, au sens de la présente invention une vaporisation partielle dans la ligne liquide (durant la détente), qui survient lorsque le GNL sous pression (pour faciliter sa liquéfaction) est détendu soit à l'aide d'une vanne Joule-Thomson, soit une turbine liquide ou même diphasique.
  • Par ailleurs, les coûts de développement ou de fourniture des pièces non-consommables (coûts CAPEX) sont modérés : en l'absence de froid à créer par des cycles intermédiaires (comme dans le cas de cycles fermés), le nombre de machines tournantes à mettre en œuvre pour faire fonctionner le procédé selon l'invention (compresseur, turbine) est drastiquement réduit par rapport aux procédés à cycle fermé classiques, ainsi que la taille de la ligne d'échange.
  • Il en est de même pour les coûts d'exploitation (généralement désignés par l'acronyme OPEX). Les coûts OPX sont modérés car la mise en oeuvre du procédé selon l'invention ne nécessite qu'un nombre peu élevé de machines tournantes de type compresseurs ou turbines. Les coûts de maintenance associés sont donc « mécaniquement » réduits : la consommation d'azote liquide par le procédé selon l'invention est réduite de 10% environ par rapport à un cycle ouvert classique, d'où une réduction similaire de l'OPEX associé.
  • L'installation selon l'invention présente l'avantage d'être très compacte grâce à la réduction de l'inventaire des fluides de refroidissement (c'est-à-dire la quantité et le débit massique de fluide réfrigérant) et de la taille et du nombre de machines tournantes ; cette compacité permettant donc sa mobilité (sur camion, barge, bateau, train, etc.).
  • D'autres avantages et particularités de la présente invention résulteront de la description qui va suivre, donnée à titre d'exemple non limitatif et faite en référence aux figures annexées :
    • la figure 1 représente un schéma de principe général d'un mode de réalisation préférentiel de l'installation selon l'invention, sur lequel on a représenté l'agencement des différents échangeurs thermiques et des zones de distribution du gaz combustibles ;
    • la figure 2 représente le même schéma de principe général que celui représenté sur la figure 1, montrant en particulier les différentes phases du procédé de l'invention,
    • la figure 3 représente un schéma de principe général d'une installation selon l'art antérieur comportant un cycle ouvert à l'azote liquide.
  • Les éléments identiques représentés sur les figures 1 et 2 sont identifiés par des références numériques identiques.
  • La figure 3 est un dispositif selon l'art antérieur permettant la mise en oeuvre d'un procédé de liquéfaction d'un gaz combustible connu de l'art antérieur fonctionnant avec un cycle ouvert à l'azote liquide. Ce procédé sert de point de comparaison pour les simulations numériques présentées ci-après dans les exemples.
  • Sur la figure 1, on a représente un schéma de principe général d'un mode de réalisation préférentiel de l'installation selon l'invention. Cette installation comprend : un circuit primaire 1 relié à une source 1 de gaz combustible et à un réservoir pour gaz liquéfié),
    • un circuit secondaire 34 ouvert relié à un réservoir d'azote liquide 3, et quatre zones d'échange thermiques 100, 200, 300, 400 disposées en cascade pour refroidir et liquéfier le gaz combustible circulant dans le circuit primaire 12, chacune des zones thermiques 100, 200, 300, 400 étant traversée par les circuits primaire 12 et secondaire 34 disposés de manière que le gaz combustible et l'azote y circulent à contre-courant.
  • Les zones d'échange thermique 100, 200, 300, 400 sont réparties selon la configuration suivante :
    • une zone d'échange thermique 100 de pré-refroidissement comprenant au moins un échangeur thermique 10, une zone d'échange thermique 200 de refroidissement comprenant un échangeur thermique 20 et un échangeur annexe 21, la zone d'échange thermique 200 de refroidissement étant reliée, dans le circuit primaire 12, à la zone d'échange thermique 100 de pré-refroidissement par une première zone de distribution intermédiaire 150 apte à distribuer, à la sortie de la zone d'échange thermique 100 de pré-refroidissement, le gaz combustible en deux sous-flux de débits respectifs m1 et m2=m-m1, et à les injecter respectivement dans l'échangeur thermique 20 et l'échangeur annexe 21 de la zone d'échange thermique 200 de refroidissement, une zone d'échange thermique 300 de liquéfaction comprenant au moins un échangeur thermique 30 et un échangeur thermique annexe 31, et une deuxième zone de distribution intermédiaire 250 reliant, dans le circuit primaire 12, les zones d'échange thermique 200 de refroidissement et 300 de liquéfaction. Cette deuxième zone de distribution intermédiaire 250 est apte à réunir en un seul flux les deux sous-flux de gaz combustible sortant des échangeurs thermiques 20, 21 de la zone d'échange thermique 200 de refroidissement et à les redistribuer en deux autres sous-flux de gaz combustible de débits respectifs m3 et m4=m-m3 pour les injecter respectivement dans l'échangeur thermique 30 et l'échangeur thermique annexe 31 de la zone d'échange thermique 300 de liquéfaction, l'azote détendu et refroidi provenant de la turbine 22 circulant dans l'échangeur thermique annexe 31 à contre-courant du sous-flux de gaz de débit m4.
  • La figure 1 montre en outre qu'une turbine 22 (de préférence à détente) est disposée, dans le circuit secondaire 34, reliant la sortie de l'échangeur thermique 20 de la zone d'échange thermique 200 de refroidissement et l'entrée de l'échangeur thermique annexe 31 de la zone d'échange thermique 300 de liquéfaction, cette turbine 33 permet de détendre et refroidir l'azote vaporisé sortant de l'échangeur thermique 20 de la zone d'échange thermique 200 de refroidissement, avant son injection dans l'échangeur thermique annexe 31 de la zone d'échange thermique 300 de liquéfaction.
  • La figure 2 montre la mise en oeuvre du procédé selon l'invention sur l'installation selon l'invention représentée sur la figure 1. Pour cela, on a indiqué les différentes phases du procédé de l'invention au niveau des échangeurs thermiques où elles sont réalisées.
  • La figure 2 montre en particulier que le procédé selon l'invention consiste à liquéfier un gaz combustible comprenant majoritairement du méthane, en le faisant circuler dans un circuit primaire I ouvert depuis une source de gaz combustible vers un réservoir pour gaz liquéfié 2, tandis qu' un mélange réfrigérant constitué d'azote liquide ou au moins partiellement vaporisé circule dans un circuit secondaire 34 ouvert depuis un réservoir d'azote 3 pour être relâché vers l'atmosphère.
  • Les différentes étapes du procédé selon l'invention sont détaillées ci-après, selon que l'on examine la circulation de l'azote dans le circuit secondaire 34 ou la circulation du gaz combustible à traiter dans le circuit primaire 12 :
  • A. Circulation de l'azote dans le circuit secondaire 34.
    • étape préliminaire (avant échange thermique) : on pompe l'azote liquide contenu dans le réservoir d'azote liquide 3 à une pression typiquement de 1,2 MPa (12 bars) (mais une pression plus élevée est possible, par exemple 20 voire 30 bars, en fonction de la nature du gaz naturel à liquéfier).
    Vaporisation de l'azote liquide :
  • L'azote initialement complètement liquide, en provenance du réservoir 3, est injecté dans l'échangeur thermique 40 de la zone d'échange thermique 400 de sous-refroidissement, dans lequel il circule à contre-courant du flux de gaz combustible. Puis, dans la zone 400 de sous-refroidissement, le flux d'azote se vaporise partiellement. A la sortie de la zone 400, l'azote partiellement vaporisé est injecté dans l'échangeur 30 de la zone d'échange thermique 300 de liquéfaction pour liquéfier une partie du flux de gaz combustible, entre T3 et T2. Cette étape permet d'ajuster au mieux le débit de gaz combustible à liquéfier pour optimiser le procédé selon l'invention, et faciliter sa mise en oeuvre technique car alors à T2, l'azote est totalement vaporisé si bien que les échangeurs impliqués (échangeurs 20 et 21) ont des entrées-sorties purement monophasiques.
  • Puis, l'azote complètement vaporisé est, à la température T2, injecté dans l'échangeur thermique 20 de la zone d'échange thermique de refroidissement 200, dans lequel il circule à contre-courant d'une partie du gaz combustible qui y est refroidi entre la température T1 de pré-refroidissement jusqu'à la température T2 de rosée. A la sortie de l'échangeur thermique 20, l'azote, à une température proche de T1, est totalement vaporisé, mais toujours à haute pression.
  • Détente de l'azote liquide vaporisé :
  • On détend ensuite l'azote vaporisé dans la turbine de détente 22 (typiquement d'une pression de 1,2 MPa à moins de 0,2 MPa, les valeurs précises dépendant du gaz combustible à refroidir). Cela permet d'obtenir un flux d'azote certes vaporisé, mais à une température cryogénique typiquement de l'ordre de -160°C (là encore les valeurs précises dépendent du cas étudié). Autrement dit, l'azote obtenu est à une température bien inférieure à T3 (qui est la température bulle du gaz à liquéfier) . Ainsi, on obtient de l'azote froid, complètement vaporisé et à basse pression, que l'on utilise pour liquéfier le reste du flux de combustible qui n'a pas été liquéfié. D'un point de vue conceptuel : c'est cette étape (qu'on peut qualifier de "soulagement" du seul refroidissement du gaz combustible par vaporisation d'azote liquide) qui permet d'économiser la quantité d'azote liquide globale.
  • B. Circulation du gaz combustible à traiter dans le circuit primaire 12. phase de pré-refroidissement 1000
  • Au cours de cette phase 1000 de pré-refroidissement, le gaz combustible (de débit initial m) est refroidi de la température ambiante T0 à une température de pré-refroidissement T1 supérieure à la température de rosée T2 du gaz combustible, cette phase de pré-refroidissement étant réalisée par échange thermique avec un flux d'azote vaporisé et à basse pression circulant à contre-courant du flux de gaz combustible dans l'échangeur thermique 10 de la zone d'échange thermique 100 de pré-refroidissement.
  • première phase de redistribution 1050
  • A la sortie de la zone d'échange thermique 10 de pré-refroidissement, le gaz combustible à liquéfier est réparti en deux sous-flux de débits respectifs m1 et m2=m-m1, cette première phase de redistribution 1050 étant réalisée dans une première zone de distribution intermédiaire 150.
  • phase de refroidissement 2000
  • Au cours de cette phase de refroidissement 2000, le gaz combustible, une fois réparti en deux sous-flux de débits m1 et m2, est refroidi depuis la température de pré-refroidissement T1 jusqu'à la température de rosée T2 du gaz combustible, cette phase de refroidissement étant réalisée dans la zone d'échange thermique 200 de refroidissement comprenant l'échangeur thermique 20 et l'échangeur annexe 21, selon les étapes suivantes :
    • o injection 2001 du sous-flux de gaz combustible de débit m1 dans l'échangeur thermique 20 et injection 2002 du sous-flux de gaz de débit m2 dans l'échangeur annexe 21, un flux vaporisé circulant à contre-courant du flux de gaz combustible dans chacun des échangeurs (20, 21) de la zone d'échange thermique (200) de refroidissement ;
    • o à la température de rosée T2 du gaz combustible, réunion 2003 en un seul flux de débit m des deux sous-flux de gaz combustible de débits respectifs m1 et m2 sortant respectivement de chacun des échangeurs 20, 21 de la zone d'échange thermique 200 de refroidissement.
    deuxième phase de redistribution 2050
  • Au cours de cette phase, le flux de gaz combustible de débit m sortant de la zone d'échange thermique 200 de refroidissement, est redistribué en deux sous-flux de débits respectifs m3 et m4=m-m3, cette deuxième phase de redistribution 2050 étant réalisée dans une deuxième zone de distribution intermédiaire 250.
  • phase de liquéfaction complète 3000
  • Au cours de cette phase de liquéfaction 3000, le gaz combustible réparti en deux sous-flux de débits respectifs m3 et m4 est complètement liquéfié par refroidissement jusqu'à une température T3 au moins aussi basse que la température bulle du gaz combustible. Cette phase de liquéfaction complète 3000 est réalisée dans la zone d'échange thermique 300 comme suit :
    • on injecte 3004 le sous-flux de débit m3 dans l'échangeur thermique 30 de la zone d'échange thermique 300 de liquéfaction pour le liquéfier complètement et le refroidir jusqu'à la température T3, en y faisant circuler à contre-courant le flux d'azote au moins partiellement vaporisé sortant de la zone d'échange thermique 400 de sous-refroidissement ;
    • on injecte 3005 le sous-flux de débit m4 dans l'échangeur thermique annexe 31 de la zone d'échange thermique 300 de liquéfaction pour le liquéfier complètement et le refroidir jusqu'à la température T3, en y faisant circuler, à contre-courant du gaz combustible, le flux d'azote sortant de la turbine 22 ; à la température T3 du gaz combustible ;
    • on réunit 3006 les deux sous-flux de gaz combustible de débits respectifs m3 et m4 sortant respectivement de chacun des échangeurs thermiques 30, 31 de la zone d'échange thermique 300 de liquéfaction, pour les réinjecter dans la zone d'échange thermique 400 de sous-refroidissement.
    Détente 2004 de l'azote liquide vaporisé :
  • Puis, on détend 2004 dans une turbine 22 le flux d'azote totalement vaporisé à la sortie de l'échangeur thermique 20 de la zone d'échange thermique 200 de refroidissement ; et on réinjecte l'azote vaporisé et détendu dans l'échangeur thermique annexe 31.
  • Phase de sous-refroidissement 4000
  • Au cours de cette phase 4000, le gaz combustible liquéfié, sortant de la zone d'échange thermique 300 de liquéfaction, est sous-refroidi de la température T3 jusqu'à une température de sous-refroidissement T4, cette phase de sous-refroidissement 4000 étant réalisée dans la zone d'échange thermique 400 de sous-refroidissement comprenant au moins un échangeur thermique 40 par échange thermique avec le flux d'azote initialement complètement liquide circulant à contre-courant du flux de gaz combustible.
  • Sur cette étape, tout le gaz combustible est, par définition déjà liquéfié, et on cherche à le sous - refroidir encore ; sur cette étape la totalité du flux de GNL est sous-refroidi par le flux d'azote liquide haute pression qui se vaporise partiellement pour réaliser sa tâche.
  • Au final, le procédé selon l'invention comporte 5 grands paramètres de pilotage du procédé :
    • le débit d'azote liquide mN2,
    • la pression de pompage de l'azote liquide PN2HP, la détente de l'azote totalement vaporisé et donc sa pression en fin de détente PN2BP, et les deux phases de répartition 1050 et 2050 du débit de gaz combustible d'une part entre les phases de pré-refroidissement et d'autre part entre les phases de refroidissement et de liquéfaction.
    EXEMPLES
  • Les exemples suivants illustrent l'invention sans toutefois en limiter la portée. Il s'agit de simulations numériques réalisée à l'aide de l'outil de simulation aspen hysys V7.3 sur la base du modèle thermodynamique SRK LK - 1 (Soave Redlich-Kwong Lee Kesler 1). Ces simulations ont permis de calculer les paramètres suivants :
    • la puissance mécanique utilisée par le procédé en kW ;
    • la consommation spécifique en kWh/t de GNL produit (ratio de la puissance mécanique et du débit massique de GNL produit) ;
    • le ratio massique d'azote liquide utilisé par rapport au GNL produit d'azote liquide ;
    • le gain de consommation d'énergie par rapport au procédé connu de l'art antérieur avec un cycle ouvert à l'azote liquide ;
    par comparaison avec les résultats que l'on obtiendrait avec un procédé connu selon l'art antérieur comportant un cycle ouvert à l'azote liquide tel qu'illustré à la figure 3 :
    Ces simulations numériques ont été réalisées dans les conditions suivantes :
    • Gaz d'entrée (gaz combustible à refroidir) :
      • o Pression : 48 bar
      • o Température : 30°C
      • o Débit massique : 10,18 t/h
      • o Composition (% molaire) :
        • ▪ N2 : 0,79%
        • ▪ C1 : 91,21%
        • ▪ C2 : 7,89%
        • ▪ C3 : 0,11%
        • ▪ C4+ :0
    • Température minimale de refroidissement du réfrigérant avec le milieu ambiant : 30°C
    • Hypothèses de rendement polytropique de compresseur : 85%
    • Température de sous-refroidissement du GNL : -158°C.
  • Les résultats des simulations sont présentés dans le tableau 1 ci-après : Tableau 1
    Procédé connu avec un cycle ouvert à l'azote liquide (tel qu'illustré sur la figure 2) Procédé selon l'invention
    consommation d'énergie mécanique en kW 0 0
    la consommation spécifique en kWh/t de GNL produit 0 0
    le ratio massique d'azote liquide utilisé par rapport au GNL produit d'azote liquide 2,05 1,85
    le gain en consommation d'énergie par rapport au procédé connue de l'art antérieur avec un cycle ouvert à l'azote liquide - -9,8 %
  • Ces résultats montrent que, par rapport à un procédé à cycle ouvert simple à l'azote liquide, le procédé selon l'invention permet de réduire la consommation d'azote liquide de presque 10%, ce qui constitue la principale source de coûts opérationnels d'un procédé à cycle ouvert.

Claims (7)

  1. Procédé de liquéfaction d'un gaz combustible comprenant majoritairement du méthane, dans lequel ledit gaz combustible circule dans un circuit primaire (12) depuis une source de gaz combustible (1) vers un réservoir pour gaz liquéfié (2), et un réfrigérant constitué d'azote se trouvant à l'état liquide ou au moins partiellement vaporisé circule dans un circuit secondaire (34) ouvert depuis un réservoir d'azote (3) liquide pour être relâché vers l'atmosphère (4), ledit procédé comprenant les phases suivantes :
    • une phase de pré-refroidissement (1000) au cours de laquelle le gaz combustible de débit initial m est refroidi de la température ambiante T0 à une température de pré-refroidissement T1 supérieure à la température de rosée T2 du gaz combustible, cette phase de pré-refroidissement étant réalisée par échange thermique avec un flux d'azote totalement vaporisé à une température proche à T1 à basse pression circulant à contre-courant du flux de gaz combustible dans au moins un échangeur thermique (10) d'une zone d'échange thermique (100) de pré-refroidissement ;
    • une première phase de redistribution (1050) du gaz combustible à la sortie de la zone d'échange thermique (100) de pré-refroidissement, en deux sous-flux de débits respectifs m1 et m2=m-m1, cette première phase de redistribution (1050) étant réalisée dans une première zone de distribution intermédiaire (150), puis
    • une phase de refroidissement (2000) au cours de laquelle le gaz combustible est refroidi depuis la température de pré-refroidissement T1 jusqu'à la température de rosée T2 du gaz combustible, cette phase de refroidissement étant réalisée dans une zone d'échange thermique (200) de refroidissement comprenant un échangeur thermique (20) et un échangeur annexe (21), selon les étapes suivantes :
    o injecter (2001) le sous-flux de débit m1 dans l'échangeur thermique (20) et injecter (2002) le sous-flux de gaz de débit m2 dans l'échangeur annexe (21),
    o un flux d'azote complètement vaporisé circulant à contre-courant du flux de gaz combustible dans l'échangeur thermique (20) de la zone d'échange thermique (200) de refroidissement, à la sortie de l'échangeur thermique (20) de la zone d'échange thermique (200) de refroidissement, l'azote forme un flux d'azote totalement vaporisé à une température proche à T1 à haute pression ;
    o un flux d'azote complètement vaporisé à une température proche à T2 et à basse pression circulant à contre-courant du flux de gaz combustible dans l'échangeur annexe (21) de la zone d'échange thermique (200) de refroidissement, à la sortie de l'échangeur annexe (21) de la zone d'échange thermique (200) de refroidissement, l'azote forme le flux d'azote totalement vaporisé à une température proche à T1 à basse pression ;
    o à la température de rosée T2 du gaz combustible, réunir (2003) en un seul flux de débit m les deux sous-flux de gaz combustible de débits respectifs m1 et m2 sortant respectivement de chacun des échangeurs (20, 21) de la zone d'échange thermique (200) de refroidissement ;
    • une phase de liquéfaction complète (3000) au cours de laquelle le flux unique de gaz combustible sortant de la zone d'échange thermique (200) de refroidissement est complètement liquéfié par refroidissement jusqu'à une température T3 au moins aussi basse que la température bulle du gaz combustible ; cette phase de liquéfaction complète (3000) étant réalisée dans une zone d'échange thermique (300) de liquéfaction comprenant au moins un échangeur thermique (30) ;
    • une phase de sous-refroidissement (4000) au cours de laquelle le gaz combustible liquéfié sortant de la zone d'échange thermique (300) de liquéfaction est sous-refroidi de la température T3 jusqu'à une température de sous-refroidissement T4, cette phase de sous-refroidissement (4000) étant réalisée dans une zone d'échange thermique (400) de sous-refroidissement comprenant au moins un échangeur thermique (40) par échange thermique avec l'azote initialement complètement liquide provenant du réservoir d'azote liquide (3) et circulant à contre-courant du flux de gaz combustible, l'azote se vaporise partiellement et forme un flux d'azote partiellement vaporisé ;
    ledit procédé comporte en outre, entre les phases de refroidissement (2000) et de liquéfaction complète (3000), une deuxième phase de redistribution (2050) du flux de gaz combustible de débit m sortant de la zone d'échange thermique (200) de refroidissement, en deux sous-flux de débits respectifs m3 et m4=m-m3 ; cette deuxième phase de redistribution (2050) étant réalisée dans une deuxième zone de distribution intermédiaire (250) ;
    et une étape supplémentaire consistant à détendre (2004) dans une turbine (22) le flux d'azote totalement vaporisé à une température proche à T1 à haute pression et l'azote forme un flux d'azote complètement vaporisé et à basse pression ; puis on injecte le flux d'azote complètement vaporisé et à basse pression dans l'échangeur thermique annexe (31) ;
    où la phase de liquéfaction complète (3000) comprend en outre des étapes intermédiaires supplémentaires (3004, 3005, 3006, 3007) entre la température de rosée T2 du gaz combustible et la température T3 :
    • on injecte (3004) le sous-flux de débit m3 dans l'échangeur thermique (30) de la zone d'échange thermique (300) de liquéfaction pour le liquéfier complètement et le refroidir jusqu'à la température T3, en y faisant circuler à contre-courant le flux d'azote partiellement vaporisé sortant de la zone d'échange thermique (400) de sous-refroidissement, l'azote est totalement vaporisé dans l'échangeur thermique (30) de la zone d'échange thermique (300) de liquéfaction et forme le flux d'azote complètement vaporisé ;
    • on injecte (3005) le sous-flux de débit m4 dans un échangeur thermique annexe (31) de la zone d'échange thermique (300) de liquéfaction pour le liquéfier complètement et le refroidir jusqu'à la température T3, en y faisant circuler, à contre-courant du gaz combustible, le flux d'azote complètement vaporisé et à basse pression sortant de la turbine (22), et l'azote à la sortie de l'échangeur thermique annexe (31) de la zone d'échange thermique (300) de liquéfaction forme le flux d'azote complètement vaporisé à une température proche à T2 et à basse pression ;
    • à la température T3 du gaz combustible, on réunit (3006) les deux sous-flux de gaz combustible de débits respectifs m3 et m4 sortant respectivement de chacun des échangeurs thermiques (30, 31) de la zone d'échange thermique (300) de liquéfaction, pour les réinjecter dans la zone d'échange thermique (400) de sous-refroidissement.
  2. Procédé selon la revendication 1, selon lequel :
    - le débit m1 du sous-flux de gaz combustible injecté dans l'échangeur thermique (20) de la zone d'échange thermique (200) de refroidissement représente au moins 80%, et de préférence au moins 85% du débit initial m de gaz combustible ; et
    - le débit m3 du sous-flux de gaz combustible injecté dans l'échangeur thermique (30) de la zone d'échange thermique (300) de liquéfaction représente au moins 60% du débit initial m de gaz combustible, et au plus la valeur de m1.
  3. Procédé selon les revendications 1 ou 2, selon lequel l'azote liquide provenant du réservoir d'azote liquide (3) est pompé à une pression d'au moins 1,2 MPa.
  4. Procédé selon la revendication 1, selon lequel l'azote au moins partiellement vaporisé à la sortie de l'échangeur thermique (20) de la zone d'échange thermique (200) de refroidissement est détendu, dans la turbine (22), à une pression égale ou inférieure à 0,2 MPa.
  5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel le gaz à liquéfier contient du méthane en une proportion molaire d'au moins 80%.
  6. Installation de liquéfaction d'un gaz combustible pour la mise en oeuvre du procédé tel que défini selon l'une quelconque des revendications 1, 2, 4 et 5, ladite installation comprenant un circuit primaire (12) relié à une source (1) de gaz combustible et à un réservoir pour gaz liquéfié (2), un circuit secondaire (34) ouvert relié à un réservoir d'azote liquide (3), et quatre zones d'échange thermiques (100, 200, 300, 400) disposées en cascade pour refroidir et liquéfier le gaz combustible circulant dans le circuit primaire (12), chacune desdites zones thermiques (100, 200, 300, 400) étant traversée par les circuits primaire (12) et secondaire (34) disposés de manière que le gaz combustible et l'azote y circulent à contre-courant selon la configuration suivante :
    - une zone d'échange thermique (100) de pré-refroidissement comprenant au moins un échangeur thermique (10),
    - une zone d'échange thermique (200) de refroidissement comprenant un échangeur thermique (20) et un échangeur annexe (21), la zone d'échange thermique (200) de refroidissement étant reliée, dans le circuit primaire (12), à la zone d'échange thermique (100) de pré-refroidissement par
    - une première zone de distribution intermédiaire (150) apte à distribuer, à la sortie de la zone d'échange thermique (100) de pré-refroidissement, le gaz combustible en deux sous-flux de débits respectifs m1 et m2=m-m1, et à les injecter respectivement dans l'échangeur thermique (20) et l'échangeur annexe (21) de la zone d'échange thermique (200) de refroidissement,
    - une zone d'échange thermique (300) de liquéfaction comprenant au moins un échangeur thermique (30), et
    - une zone d'échange thermique (400) de sous-refroidissement comprenant au moins un échangeur thermique (40), ladite installation comporte en outre :
    - un échangeur thermique annexe (31) dans la zone d'échange thermique (300) de liquéfaction,
    - une turbine (22) disposée, dans le circuit secondaire (34), entre la sortie de l'échangeur thermique (20) de la zone d'échange thermique (200) de refroidissement et l'entrée de l' échangeur thermique annexe (31) de la zone d'échange thermique (300) de liquéfaction, pour y détendre et refroidir l'azote au moins partiellement vaporisé sortant de l'échangeur thermique (20) de la zone d'échange thermique (200) de refroidissement avant de l'injecter dans l'échangeur thermique annexe (31) de la zone d'échange thermique (300) de liquéfaction,
    - une deuxième zone de distribution intermédiaire (250) reliant, dans le circuit primaire (12), les zones d'échange thermique (200) de refroidissement et (300) de liquéfaction, la deuxième zone de distribution intermédiaire (250) étant apte à réunir en un seul flux les deux sous-flux de gaz combustible sortant des échangeurs thermiques (20, 21) de la zone d'échange thermique (200) de refroidissement et à les redistribuer en deux autres sous-flux de gaz combustible de débits respectifs m3 et m4=m-m3 pour les injecter respectivement dans l'échangeur thermique (30) et l'échangeur thermique annexe (31) de la zone d'échange thermique (300) de liquéfaction, l'azote détendu et refroidi provenant de la turbine (22) circulant dans l'échangeur thermique annexe (31) à contre-courant du sous-flux de gaz de débit m4.
  7. Installation selon la revendication 6 pour la mise en oeuvre du procédé tel que défini selon la revendication 3, comprenant en outre une pompe configurée pour pomper à une pression d'au moins 1,2 MPa.
EP16834023.0A 2015-12-17 2016-12-16 Procédé hybride de liquéfaction d'un gaz combustible et installation pour sa mise en oeuvre Active EP3390938B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1562705A FR3045796A1 (fr) 2015-12-17 2015-12-17 Procede hybride de liquefaction d'un gaz combustible et installation pour sa mise en œuvre
FR1650632A FR3045794B1 (fr) 2015-12-17 2016-01-26 Procede hybride de liquefaction d'un gaz combustible et installation pour sa mise en œuvre
PCT/FR2016/053523 WO2017103535A1 (fr) 2015-12-17 2016-12-16 Procédé hybride de liquéfaction d'un gaz combustible et installation pour sa mise en œuvre

Publications (3)

Publication Number Publication Date
EP3390938A1 EP3390938A1 (fr) 2018-10-24
EP3390938C0 EP3390938C0 (fr) 2024-01-24
EP3390938B1 true EP3390938B1 (fr) 2024-01-24

Family

ID=55752512

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16834023.0A Active EP3390938B1 (fr) 2015-12-17 2016-12-16 Procédé hybride de liquéfaction d'un gaz combustible et installation pour sa mise en oeuvre

Country Status (4)

Country Link
EP (1) EP3390938B1 (fr)
ES (1) ES2972396T3 (fr)
FR (2) FR3045796A1 (fr)
WO (1) WO2017103535A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220290919A1 (en) * 2021-03-15 2022-09-15 Air Water Gas Solutions, Inc. System and method for precooling in hydrogen or helium liquefaction processing

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB918119A (en) * 1961-09-29 1963-02-13 Conch Int Methane Ltd Producing liquefied natural gas
NL287922A (fr) * 1962-02-12
DE1960515B1 (de) * 1969-12-02 1971-05-27 Linde Ag Verfahren und Vorrichtung zum Verfluessigen eines Gases
US9625208B2 (en) * 2007-07-12 2017-04-18 Shell Oil Company Method and apparatus for liquefying a gaseous hydrocarbon stream

Also Published As

Publication number Publication date
WO2017103535A4 (fr) 2017-08-10
FR3045796A1 (fr) 2017-06-23
FR3045794A1 (fr) 2017-06-23
EP3390938A1 (fr) 2018-10-24
ES2972396T3 (es) 2024-06-12
WO2017103535A1 (fr) 2017-06-22
EP3390938C0 (fr) 2024-01-24
FR3045794B1 (fr) 2020-01-24

Similar Documents

Publication Publication Date Title
EP2724100B1 (fr) Procédé de liquéfaction de gaz naturel a triple circuit ferme de gaz réfrigérant
EP1352203B1 (fr) Procede de refrigeration de gaz liquefie et installation mettant en oeuvre celui-ci
CA2744450C (fr) Procede de production d'un courant de gaz naturel liquefie sous-refroidi a partir d'un courant de charge de gaz naturel et installation associee
FR3053771B1 (fr) Procede de liquefaction de gaz naturel et de recuperation d'eventuels liquides du gaz naturel comprenant deux cycles refrigerant semi-ouverts au gaz naturel et un cycle refrigerant ferme au gaz refrigerant
EP2724099B1 (fr) Procede de liquefaction de gaz naturel avec un melange de gaz refrigerant
FR2993643A1 (fr) Procede de liquefaction de gaz naturel avec changement de phase
EP2344821B1 (fr) Procédé de production de courants d'azote liquide et gazeux, d'un courant gazeux riche en hélium et d'un courant d'hydrocarbures déazoté et installation associée
EP1118827B1 (fr) Procédé de liquéfaction partielle d'un fluide contenant des hydrocarbures tel que du gaz naturel
WO2003004951A1 (fr) Procede de liquefaction et de deazotation de gaz naturel, installation de mise en oeuvre
WO2009153427A2 (fr) Procede de liquefaction d'un gaz naturel avec pre-refroidissement du melange refrigerant
EP3390938B1 (fr) Procédé hybride de liquéfaction d'un gaz combustible et installation pour sa mise en oeuvre
FR3053770A1 (fr) Procede de liquefaction de gaz naturel et de recuperation d'eventuels liquides du gaz naturel comprenant un cycle refrigerant semi-ouvert au gaz naturel et deux cycles refrigerant fermes au gaz refrigerant
WO2017009341A1 (fr) Procédé de détente et de stockage d'un courant de gaz naturel liquéfié issu d'une installation de liquéfaction de gaz naturel, et installation associée
WO2011114012A2 (fr) Procédé de liquefaction d'un gaz naturel avec des melanges refrigerants contenant au moins un hydrocarbure insature
FR3045795A1 (fr) Procede hybride de liquefaction d'un gaz combustible et installation pour sa mise en œuvre
WO2022253847A1 (fr) Dispositif et procede de pre-refroidissement d'un flux d'un fluide cible a une temperature inferieure ou egale a 90 k
FR3117166A1 (fr) Système et procédé de stockage et de récupération d’énergie par gaz comprimé avec réchauffage de liquide
WO2022254132A1 (fr) Procede et installation de liquefaction de l'hydrogene
OA16683A (fr) Procédé de liquéfaction de gaz naturel à triple circuit fermé de gaz réfrigérant.
WO2022117398A1 (fr) Systeme et procede de stockage et de recuperation d'energie par gaz comprime avec recuperation de liquide
FR3133908A1 (fr) Procédé de liquéfaction d’un gaz d’alimentation riche en méthane, et installation correspondante
OA16795A (fr) Procédé de liquéfaction de gaz naturel avec un mélange de gaz réfrigérant.
FR3017009A1 (fr) Methode permettant le stockage, le transport et la restitution d'energie electrique
FR2944095A1 (fr) Procede de liquefaction de gaz naturel utilisant des turbines a gaz a basse temperature d'echappement
FR3068771A1 (fr) Dispositif et procede de liquefaction d’un gaz naturel ou d’un biogaz

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180604

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FAURE-BRAC, DENIS

Inventor name: DROUET, EMELINE

Inventor name: TORRES-MANSILLA, ANNA

Inventor name: BENOIT, LAURENT

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220124

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230509

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20230926

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231206

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016085513

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

U01 Request for unitary effect filed

Effective date: 20240212

P04 Withdrawal of opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240219

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240222

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2972396

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20240612