WO2021064319A1 - Système de traitement d'un gaz contenu dans une cuve de stockage et/ou de transport de gaz à l'état liquide et gazeux - Google Patents

Système de traitement d'un gaz contenu dans une cuve de stockage et/ou de transport de gaz à l'état liquide et gazeux Download PDF

Info

Publication number
WO2021064319A1
WO2021064319A1 PCT/FR2020/051702 FR2020051702W WO2021064319A1 WO 2021064319 A1 WO2021064319 A1 WO 2021064319A1 FR 2020051702 W FR2020051702 W FR 2020051702W WO 2021064319 A1 WO2021064319 A1 WO 2021064319A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
heat exchanger
tank
pass
cooling means
Prior art date
Application number
PCT/FR2020/051702
Other languages
English (en)
Inventor
Bernard Aoun
Pavel BORISEVICH
Original Assignee
Gaztransport Et Technigaz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport Et Technigaz filed Critical Gaztransport Et Technigaz
Priority to CN202080079447.6A priority Critical patent/CN114729779B/zh
Priority to KR1020227014722A priority patent/KR20220074933A/ko
Publication of WO2021064319A1 publication Critical patent/WO2021064319A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/023Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0248Stopping of the process, e.g. defrosting or deriming, maintenance; Back-up mode or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/037Treating the boil-off by recovery with pressurising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/066Fluid distribution for feeding engines for propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/60Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/60Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to the field of ships whose propulsion engines are powered by natural gas and which furthermore make it possible to contain and / or transport liquefied natural gas.
  • Such ships thus conventionally include tanks which contain natural gas in the liquid state. Natural gas is liquid at temperatures below -160 ° C, at atmospheric pressure. These tanks are never perfectly thermally insulated so that the natural gas at least partially evaporates there. Thus, these tanks include both natural gas in liquid form and natural gas in gaseous form. This natural gas in gaseous form is also called “BOG” from the acronym “Boil-off Gas” and forms the head cap. The pressure of this tank top must be controlled so as not to damage the tank. In a known manner, at least part of the natural gas present in the tank in gaseous form is thus used to supply, among other things, the propulsion engines of the ship.
  • the reliquefaction systems currently in use are very expensive and the present invention aims to overcome this drawback by providing a gas treatment system comprising fewer components than current systems, or comprising less expensive components, thus making it possible to reduce the total costs of implementation of such systems, while being at least as efficient.
  • An object of the present invention thus relates to a system for processing a gas contained in a tank for storing and / or transporting gas in the liquid state and in the gaseous state, the system comprising at least one appliance consuming gas. gas, at least one supply installation of at least one gas consuming appliance and at least one closed circuit configured to be traversed by a refrigerant, the supply installation of at least one gas consuming appliance comprising at least: - a first heat exchanger configured to cool the refrigerant fluid circulating in the closed circuit,
  • a compression device configured to compress the gas in the gaseous state which leaves the first heat exchanger to a pressure compatible with the needs of the at least one gas consuming device
  • a cooling means configured to operate a heat exchange between the refrigerant and the gas taken in the liquid state from the tank
  • a second heat exchanger configured to operate a heat exchange between the gas in the liquid state taken from the tank and part of the gas in the gaseous state which leaves the compression device and which is not sent to the at least one gas consuming device.
  • the cooling means and the second heat exchanger are separate.
  • the cooling medium and the second heat exchanger are physically separated and arranged at a non-zero distance from each other.
  • the gas treatment system according to the invention makes it possible to treat the gas present in the gaseous state in the tank, this gas present in the gaseous state being generated by a phenomenon of natural evaporation of the liquid gas contained in this tank.
  • the first heat exchanger is configured to operate a heat exchange between the gas taken from the tank in the gaseous state and the refrigerant fluid circulating in the closed circuit.
  • the first heat exchanger is arranged at an interface between the supply installation of at least one gas consuming device and the closed refrigerant fluid circuit.
  • the first heat exchanger comprises at least a first pass adapted to be traversed by gas taken in the gaseous state from the tank and at least a second pass adapted to be traversed by the refrigerant of the closed circuit.
  • the cooling means may for example be a third heat exchanger configured to operate a heat exchange between the refrigerant fluid and the gas withdrawn in the liquid state from the tank. More particularly, the gas taken in the liquid state in the tank which circulates in this third heat exchanger is able to yield calories to the refrigerant fluid which also circulates in this third heat exchanger, so that the gas taken in the liquid state in the tank is cooled by its passage through through the third heat exchanger.
  • the second heat exchanger and the third heat exchanger are separate, that is to say that no direct heat transfer takes place between the fluids which circulate in the second heat exchanger and the fluids which circulate in the third heat exchanger.
  • At least one expansion means is arranged between the second heat exchanger and the tank.
  • This expansion means makes it possible to reduce the pressure of the compressed gas by its passage through the compression device so as to bring it back to a pressure substantially identical to the pressure of the gas present in the tank, so as to be able to return it to this tank.
  • At least one regulating means is arranged between the compression device and the tank.
  • this regulation means can be an all or nothing valve, that is to say a valve which can take an open position in which it allows the circulation of gas in the pipe which carries it or a closed position in which it prohibits the flow of gas in this pipe.
  • the second heat exchanger comprises at least a first pass adapted to be traversed by the part of the gas in the gaseous state which is not sent to the at least one gas consuming device and at least a second pass adapted to be traversed by gas taken in the liquid state from the tank, the first pass and the second pass of the second heat exchanger both being connected to a bottom of the tank.
  • all of the gas leaving the second heat exchanger is returned to the bottom of the vessel after it has passed through the second heat exchanger.
  • bottom of the tank is understood to mean a portion of the tank which extends from a bottom wall of the tank and a plane parallel to this bottom wall and arranged, at most, at 20% of a total height of the tank, this total height being measured along a straight line perpendicular to the bottom bottom wall of the tank between two opposite ends of this tank, along this straight line.
  • the plane parallel to the lower bottom wall which participates in delimiting the “bottom of the tank” can be arranged at 10% of the total height of the tank.
  • the second pass of the second heat exchanger is adapted to be supplied, directly, with gas taken in the liquid state from the tank.
  • the term “directly” is understood to mean the fact that the gas taken in the liquid state from the tank is sent to the second pass of the second heat exchanger without undergoing pressure or temperature changes other than those linked to the pumping itself.
  • the gas taken in the liquid state from the tank which supplies the cooling means is returned directly to the tank after it has passed through this cooling means.
  • the terms "directly returned” should be understood in the sense that the gas taken in the liquid state in the tank is returned to the tank without undergoing other changes in pressure or temperature than those undergone in the tank. cooling medium.
  • the second pass of the second heat exchanger is adapted to be supplied with gas cooled by its passage through the cooling means.
  • the gas cooled by the cooling means is reheated by its passage through the second heat exchanger before being returned to the tank.
  • a first mode of operation of the gas treatment system all of the gas compressed by the compression device is consumed by at least one gas consuming device.
  • the regulation means arranged between the compression device and the second heat exchanger is in its closed position and the gas taken in the liquid state which supplies the cooling means is returned directly to the tank after its passage through this cooling means, that is to say without passing through the second heat exchanger.
  • the gas taken in the liquid state in the tank is cooled by its passage through the cooling means and, by mixing with the liquid gas already present in this tank, this gas cooled by the cooling means causes cooling. liquid gas present in the tank, which tends to limit the phenomenon of natural evaporation mentioned above.
  • the second heat exchanger forms a condenser for the part of gaseous gas which is not sent to the at least one gas consuming device.
  • the regulation means arranged between the compression device and the second heat exchanger is in its open position, allowing the part of gaseous gas which is not sent to the at least one consuming device to gas to join the second heat exchanger.
  • this unused part is liquefied before being returned to the tank in which it mixes with the gas already present in the liquid state.
  • this part ends.
  • the gas taken in the liquid state from the tank to supply the cooling means has a temperature between -163 ° C and -158 ° C at an inlet of this cooling means and a temperature between - 177 ° C and -165 ° C at an outlet of this cooling means, and the gas which leaves the cooling means to reach the second heat exchanger has a temperature between -177 ° C and -165 ° C at an inlet of this second heat exchanger and a temperature between -177 ° C and -150 ° C at an outlet of the second heat exchanger.
  • the gas treatment system according to the invention operates at nominal speed, that is to say a situation in which the at least one appliance consuming gas at minimum consumption.
  • the gas has a temperature of -160 ° C at the inlet of the cooling means, a temperature of -168 ° C at the outlet of the cooling means and at the inlet of the second heat exchanger and a temperature of -152 ° C at the outlet of the second heat exchanger.
  • the part of the gas which is not sent to the gas consuming device has a temperature between 5 ° C and 45 ° C at an inlet of the second heat exchanger and a temperature between -160 ° C and - 152 ° C at an outlet of this second heat exchanger.
  • the part of the gas which is not sent to the gas consuming device has a temperature of 43 ° C at the inlet of the second heat exchanger and a temperature of -158 ° C at the outlet of this second heat exchanger. .
  • the closed circuit comprises at least one compression member, at least the first heat exchanger, at least one expansion member and at least the cooling means.
  • the compression member, the first heat exchanger, the expansion member and the cooling means are arranged in this order according to a direction of circulation of the refrigerant fluid in the closed circuit.
  • the first heat exchanger comprises at least a first pass adapted to be traversed by gas taken in gaseous state from the tank, at least a second pass adapted to be traversed by refrigerant fluid compressed by the compression member and at least one third pass adapted to be traversed by the expanded refrigerant fluid.
  • At least a first complementary pipe is arranged between a first pipe which extends between the tank and the compression device, and the compression member of the closed circuit, at least a second complementary pipe is arranged between the pressure member.
  • compression and at least one gas consuming device and at least one control valve is arranged on the first complementary pipe or on the second complementary pipe.
  • this control valve is an all-or-nothing valve which is configured to take an open position in which it allows the passage of gas in the gaseous state which leaves the first pass of the first heat exchanger through this first complementary pipe. , or a closed position in which it prevents the passage of gas through the first complementary pipe.
  • the compression member, the first and second complementary pipes and the regulating valve thus form a redundancy system of the compression device.
  • the compression member can take over so that the supply of the at least one gas consuming device is not interrupted.
  • the cooling means and / or the second heat exchanger are plate heat exchangers.
  • these exchangers are formed by a stack of plates between which circulate the fluids concerned. These plates are made of a heat-conducting material and the fluids which circulate between these plates have a temperature difference, so that a heat exchange can take place between the fluids which circulate on either side of a same plate.
  • the invention also relates to a liquefied gas transport vessel, comprising at least one tank of a liquefied gas cargo, at least one appliance consuming evaporated gas and at least one gas treatment system according to the invention.
  • the invention also relates to a system for loading or unloading a liquid gas which combines at least one means on land and at least one liquid gas transport vessel according to the invention.
  • the invention relates to a method of implementing a gas treatment system according to the invention, comprising at least the steps of:
  • the invention further relates to a method for loading or unloading a liquid gas from a gas transport vessel according to the invention.
  • FIG. 1 illustrates, schematically, a gas treatment system according to the present invention
  • FIG. 2 illustrates, schematically, a first mode of operation of the gas treatment system illustrated in FIG. 1;
  • FIG. 3 illustrates, schematically, a second mode of operation of the gas treatment system illustrated in FIG. 1;
  • FIG. 4 illustrates, schematically, a third mode of operation of the gas treatment system illustrated in FIG. 1;
  • FIG. 5 illustrates, schematically, the gas treatment system illustrated in FIG. 1, in which a compression device has failed
  • FIG. 6 is a cut-away schematic representation of an LNG vessel tank and a terminal for loading and / or unloading this tank.
  • FIGS. 2 to 5 which illustrate different modes of operation of a gas treatment system 100 according to the invention
  • the solid lines represent pipes of this gas treatment system 100 in which a gas or a refrigerant fluid FR circulates.
  • the dotted lines represent pipes of this gas treatment system 100 in which no gas or refrigerant fluid FR circulates.
  • upstream and downstream are understood to mean a direction of flow of gas or refrigerant fluid FR in the pipe or the object concerned.
  • FIG. 1 represents the system 100 for treating a gas according to the invention, this gas being contained in a tank 200 in the liquid state and in the gaseous state.
  • the terms “vessel head 201” refer to a part of the vessel 200 in which the gas is present in the gaseous state. In the rest of the tank 200, the gas is present in the liquid state.
  • bottom of the tank is meant a portion of the tank 200 which extends from a bottom wall 202 of the tank 200 and a plane parallel to this bottom wall 202 and arranged, at most, at 20% of a total height of the tank 200, this total height being measured along a straight line D perpendicular to the bottom wall 202 of the tank 200 between two opposite ends of this tank 200, along this straight line D.
  • the plane parallel to the lower bottom wall which participates in delimiting the “bottom of the tank” can be arranged at 10% of the total height of the tank.
  • the gas contained in the tank 200 is natural gas, this tank 200 advantageously making it possible to store and / or transport this natural gas. It is understood that this is only an exemplary embodiment and that this gas could be different without departing from the context of the present invention.
  • This natural gas is liquid at a temperature of the order of -160 ° C, so that part of this liquid natural gas evaporates spontaneously, then generating gaseous natural gas which accumulates in the headspace 201
  • treatment system 100 and “gas treatment system 100” are also used without distinction.
  • the treatment system 100 comprises at least one gas consuming device 300, at least one supply installation 110 of at least one gas consuming device 300 adapted to be traversed by the gas contained in the tank 200. and at least one closed circuit 120 configured to be traversed by a refrigerant fluid FR.
  • FR refrigerant fluid means a fluid configured to capture and release calories by changing state. Thus, when this refrigerant fluid FR changes from a liquid state to a gaseous state, it captures calories present in its environment and when it changes from a gaseous state to a liquid state, it transfers calories to its environment.
  • the gas contained in the tank 200 can be a natural gas, that is to say composed mainly of methane, which has a liquefaction temperature below - 160 ° C.
  • the composition of the FR refrigerant fluid according to the invention is particularly suitable for use at cryogenic temperature, that is to say in particular that this FR refrigerant fluid does not freeze at these cryogenic temperatures.
  • cryogenic temperature is understood to mean a temperature below -50 ° C.
  • the FR refrigerant fluid according to the present invention is also non-corrosive and non-toxic.
  • the supply installation 110 of at least one gas consuming appliance 300 comprises at least a first heat exchanger 130 configured to heat the gas taken in the gaseous state from the vessel head 201, at least one compression device 140 configured to compress gas so that this gas can be sent to at least one gas consuming device 300, at least one cooling means 160 for gas taken in the liquid state in the tank 200 and at least one second exchanger thermal 170 configured to condense at least part of the gas compressed by the compression device 140 which is not sent to the at least a gas consuming device 300 so as to allow the reinjection of that part of the gas which is not sent to at least one gas consuming device 300 in the tank 200.
  • the second heat exchanger 170 is more particularly configured to operate a heat exchange between the part of the compressed gas which is not sent to the gas consuming device 300 and the gas taken in the liquid state from the gas. the tank 200.
  • the second heat exchanger 170 comprises at least a first pass 171 in which the portion of compressed gas which is not sent to the at least one gas consuming device 300 is able to circulate and at least a second pass 172 in which the gas taken in the liquid state in the tank 200 is able to circulate.
  • the gas in the gaseous state which circulates in the first pass 171 is condensed by transferring calories to the liquid gas which circulates in the second pass 172.
  • the second heat exchanger 170 acts as a vis-à-vis condenser. of the part of the gas in the gaseous state which is not sent to the at least one gas consuming device 300.
  • the gas taken in the liquid state in the tank 200 which circulates in the second pass 172 of the second heat exchanger 170 can be cooled by the cooling means 160 before joining the second. heat exchanger 170, thus maximizing the temperature difference between the fluids which circulate respectively in the first pass 171 and in the second pass 172 of the second heat exchanger 170, thus improving the heat exchange between these fluids and therefore the condensation resulting from it results.
  • the gas taken in the liquid state in the tank 200 to supply the cooling means 160 has a temperature between -163 ° C and -158 ° C at an inlet 401 of this.
  • the gas which leaves the cooling means 160 to join the second heat exchanger 170 has a temperature between -177 ° C and -165 ° C at an inlet 403 of this second heat exchanger 170 and a temperature between -177 ° C and -150 ° C at an outlet 404 of the second heat exchanger 170.
  • the gas has a temperature -160 ° C at the inlet 401 of the cooling means 160, a temperature of - 168 ° C at the outlet 402 of the cooling means 160 and at the inlet 403 of the second pass 172 of the second heat exchanger 170 and a temperature of -152 ° C at the 404 outlet of the uxth pass 172 of the second heat exchanger 170.
  • the part of the gas which is not sent to the gas consuming device 300 has a temperature of between 5 ° C and 45 ° C at an inlet 405 of the first pass 171 of the second heat exchanger 170 and a temperature between - 172 ° C and -150 ° C at an outlet 406 of this first pass 171 of the second heat exchanger 170.
  • the part of the gas which is not sent to the gas consuming appliance 300 has a temperature of 43 ° C at the inlet 405 of the first pass 171 of the second heat exchanger 170 and a temperature of -158 ° C at the outlet 406 of the first pass 171 of this second heat exchanger 170.
  • the supply installation 110 also comprises at least one expansion means 150 arranged between the compression device 140 and the vessel 200.
  • This expansion means 150 is configured to expand the portion of gas compressed by the compression device 140 which does not 'is not sent to the gas consuming device 300, that is to say to reduce the pressure of this part of the gas to a pressure substantially equivalent to the pressure of the gas present in the tank 200 to the 'liquid state in order to allow this part of the gas which is not sent to the gas consuming apparatus 300 to be returned to the tank 200.
  • this expansion means 150 is arranged between the second exchanger heat 170 and the tank 200. More particularly, this expansion means 150 is arranged between the outlet 406 of the first pass 171 of the second heat exchanger 170 and the tank 200.
  • the cooling means 160 is formed by a third heat exchanger 161 adapted to operate a heat exchange between the gas taken in the liquid state in the tank 200 and the fluid. refrigerant FR intended to run through the closed circuit 120.
  • this third heat exchanger 161 is arranged at an interface between the closed circuit 120 and the supply installation 110 of the at least one consuming device of gas 300 and that it comprises at least a first pass 162 adapted to be traversed by gas taken in the liquid state in the tank 200 and at least a second pass 163 adapted to be traversed by the refrigerant fluid FR.
  • this third heat exchanger 161 can be a plate exchanger, that is to say an exchanger formed by a stack of several plates between which circulate, according to the example illustrated, gas taken in the liquid state in the tank 200 and the coolant.
  • These plates include a heat conductive material that allows heat transfer between the two fluids that circulate on either side of these plates.
  • the second heat exchanger 170 can also be a plate exchanger, that is to say an exchanger formed by a stack of plates between which circulate gas in the liquid state and gas in the gaseous state and tablet which has not been consumed by the gas consuming device 300.
  • a pump 164 is arranged in the tank 200, this pump 164 being connected to the first pass 162 of the third heat exchanger 161 by a first pipe 165.
  • a second pipe 166 connects the first pass 162 of the third heat exchanger 161 to the second heat exchanger 170 and a third pipe 167 connects the second heat exchanger 170 to a bottom of the tank 200.
  • a fourth pipe 168 is arranged between the second pipe 166 and the tank 200, at least a first regulator 192 being arranged on this fourth pipe 168 and a fifth pipe 169 is arranged between the first pipe 165 and the second pipe 166, this fifth pipe 169 being equipped with at least a second regulator 193.
  • the first regulator 192 and the second regulator 193 are two all or nothing valves, that is to say valves configured to take an open position in which they allow, respectively, the circulation of gas in the fourth pipe 168 and in the fifth pipe 169, or a closed position in which they prohibit the flow of gas in these pipes. It is understood that these valves are controllable independently of one another.
  • the supply installation 110 for its part comprises at least one first pipe 111 carrying the first heat exchanger 130 arranged between the tank top 201 and the compression device 140, at least one second pipe 112 arranged between the first pipe 111 and the compression device 140 and equipped with a third regulating member 194 similar to the first and second regulating members 16, 17 described above, at least one third pipe 113 arranged between the compression device 140 and the at least one gas consuming apparatus 300, at least a fourth pipe 114 arranged between the third pipe 113 and the first pass 171 of the second heat exchanger 170 and at least a fifth pipe 115 arranged between the second pass 171 of the second heat exchanger 170 and the tank 200 More particularly, this fifth pipe 115 is arranged between the second pass 171 of the second heat exchanger 170 and the bottom of the tank 200. As previously mentioned, the fifth pipe 115 is, according to the illustrated example, carrying the expansion means 150.
  • the second pipe 112 makes it possible to bypass the first heat exchanger 130, that is to say that this second pipe 112 makes it possible to supply, at least, the compression device 140, even in the event of failure or voluntary shutdown of the closed circuit 120.
  • the at least one gas consuming device 300 may for example be an engine, in particular a propulsion engine, of a ship for which the gas treatment system 100 according to the invention is intended. Alternatively, this gas consuming device 300 can be a motor of an electric generator of the ship concerned.
  • the supply installation 110 of the treatment system 100 can be configured to supply gas to at least two gas consuming devices 300. It is understood that it is only a question of exemplary embodiments which are not limiting of the present invention.
  • the closed circuit 120 of refrigerant fluid FR comprises, successively, at least one compression member 121, the first heat exchanger 130, an expansion member 122, and the cooling means 160 formed, according to the example illustrated, by the third exchanger thermal 161.
  • the first heat exchanger 130 is thus arranged at the interface between the closed circuit 120 of refrigerant fluid FR and the supply installation 110 of the gas consuming appliance 300.
  • the first exchanger thermal 130 comprises at least a first pass 131 adapted to be traversed by the gas sampled in the gaseous state in the tank top 201 and at least a second pass 132 adapted to be traversed by the refrigerant fluid FR.
  • the first heat exchanger 130 comprises a third pass 133 also adapted to be traversed by the refrigerant fluid FR. More particularly, the refrigerant fluid FR circulating in this third pass 133 captures calories from the refrigerant fluid FR circulating in the second pass 132. It is understood that this is only an exemplary embodiment and that the first exchanger thermal 130 could be devoid of this third pass 133 without departing from the context of the present invention.
  • the closed circuit 120 thus comprises at least a first conduit 123 arranged between the compression member 121 and the second pass 132 of the first heat exchanger 130, at least a second conduit 124 arranged between the second pass 132 of the first heat exchanger 130 and the 'expansion member 122, at least a third conduit 125 arranged between the expansion member 122 and the second pass 163 of the third heat exchanger 161, at least a fourth conduit 126 arranged between the second pass 163 of the third heat exchanger 161 and the third pass 133 of the first heat exchanger 130 and at least a fifth conduit 127 arranged between the third pass 133 of the first heat exchanger 130 and the compression member 121.
  • the refrigerant fluid FR leaves the compression member 121 in the gaseous state and at high pressure, that is to say at a pressure between 18 and 36 bar, thanks to the first duct 123 to join the first heat exchanger 130, and more particularly the second pass 132 of this first heat exchanger 130 in which it transfers calories to the gas which then circulates in the first pass 131 of this first heat exchanger 130 and, optionally, to the refrigerant fluid FR which circulates in the third pass 133 of this first heat exchanger 130.
  • the refrigerant fluid FR then leaves the first heat exchanger 130 via the second pipe 124 in the liquid state and at high pressure to join the expansion member 122 in which its pressure is reduced.
  • the refrigerant fluid FR then leaves the expansion member 122 in the liquid state and at low pressure, that is to say a pressure of between 1.2 bar to 2.5 bar, and takes the third pipe 125 to join the second pass 163 of the third heat exchanger 161 in which it captures calories from the liquid natural gas which circulates in the first pass 162 of this third heat exchanger 161 as mentioned above.
  • the refrigerant fluid FR thus leaves the third heat exchanger 161 in the two-phase or gaseous state and at low pressure and joins the third pass 133 of the first heat exchanger 130 via the fourth duct 126.
  • the refrigerant fluid FR to the two-phase state captures the calories of the refrigerant fluid FR which circulates in the second pass 132 of this first heat exchanger 130.
  • This capture of the calories makes it possible to evaporate the liquid gas which may still be present in the circuit at the outlet of the cooling means 160 so that the compression member 121 is supplied only with refrigerant FR in the gaseous state.
  • the refrigerant FR therefore leaves the third pass 133 of the first heat exchanger 130 in the gaseous state and joins, thanks to the fifth pipe 127, the compression member 121.
  • the refrigerant FR which circulates in the closed circuit undergoes at least two changes of state, exchanging calories with the gas transported by the vessel concerned.
  • the first heat exchanger does not have the third pass and only comprises the first pass in which circulates the gas withdrawn from the tank in the gaseous state and the second pass in which circulates the refrigerant fluid at gaseous state and at high pressure.
  • a gas-liquid separator can be arranged between the cooling means and the compression member so as to ensure that only refrigerant fluid in the gaseous state is sent to this compression member. Indeed, refrigerant in the liquid state would risk damaging this compression member, thus rendering it unusable.
  • the supply installation 110 of the gas treatment system 100 is equipped with a redundancy system of the compression device 140 which is used to supply the at least one gas consuming device 300.
  • this redundancy of the compression device 140 is achieved, in part, thanks to the compression member 121.
  • at least at least one complementary first pipe 180 is arranged between the first pipe 111 of the supply installation 110 and the compression member 121 and at least one additional second pipe 181 is for its part arranged between the compression member 121 and the third pipe 113 of the supply installation 110, at least a control valve 190 being arranged on the first complementary pipe 180.
  • FIGS. 2 to 4 we will now describe in more detail a first mode of operation of the supply installation 110 illustrated in FIG. 2, a second mode of operation of this supply installation 110 illustrated in FIG. 3 and a third mode of operation of this supply installation 110 illustrated in FIG. 4.
  • FIG. 2 thus illustrates the first so-called “equilibrium” operating mode in which at least one gas consuming appliance 300 of the vessel for which the supply installation 110 is intended consumes all of the gas present at the vessel. gaseous state in the top of the vessel 201.
  • the gas is taken in the gaseous state in the tank top 201 and takes the first pipe 111 to join the first heat exchanger 130, and more particularly the first pass 131 of this first heat exchanger 130.
  • the gas circulating in the first pass 131 of the first heat exchanger is adapted to capture calories from the refrigerant fluid FR which circulates in the second pass 132 of this second heat exchanger 130.
  • a gas temperature at a inlet 134 of the first pass 131 of the first heat exchanger 130 is lower than a temperature of this gas at an outlet 135 of this first pass 131 of this first heat exchanger 130.
  • the gas reaches the inlet 134 of the first pass 131 of the first heat exchanger 130 at a temperature between -140 ° C and -90 ° C, for example equal to -120 ° C, and this gas leaves the first pass 131 of this first heat exchanger 130 at a temperature between -30 ° C and 40 ° C, for example equal to 20 ° C.
  • the gas thus heated then joins the compression device 140 in which its pressure is increased until it reaches a pressure suitable for supplying the at least one consuming device. of gas 300.
  • the heated and high-pressure gas then joins the third pipe 113 as far as the gas consuming appliance 300.
  • the first pipe 111 of the supply installation 110 also forms the first pass 131 of the first heat exchanger 130.
  • the first pass 171 of the second heat exchanger 170 is empty and no heat exchange takes place in this second heat exchanger 170.
  • the closed circuit 120 of refrigerant fluid FR for its part operates as described above.
  • the result is that the gas cooled by the cooling means 160 is reinjected into the tank 200 without undergoing any other change in pressure or in temperature which that undergoes in the third heat exchanger 161, that is to say by borrowing the fourth pipe 168.
  • the gas present in the liquid state in the tank 200 is thus brought into contact with the gas cooled by the cooling means 160 so that the temperature of the gas present in the tank in the liquid state is reduced, thus limiting the phenomenon of evaporation which generates the gas in the gaseous state present in the top of the vessel 201 and which tends to increase the pressure in this vessel 200.
  • the gas consuming device 300 is not sufficient to consume all of the gas taken from the tank top 201, heated and compressed. This is for example the case in the second mode of operation of the supply installation 110 illustrated in FIG. 3. According to this second mode of operation, only a portion of the compressed and heated gas is sent to the appliance consuming energy. gas 300.
  • the portion of gas which cannot be consumed by the gas consuming device 300 is itself directed towards the fourth pipe 114, for example by means of a regulation means 191 arranged on this fourth pipe 114, and joins the second heat exchanger 170.
  • the regulating means 191 can be arranged on the third pipe 113, upstream of the fourth pipe 114 with respect to a direction of gas flow in these third and fourth pipes 113, 114.
  • the regulation means 191 can for example be an all or nothing valve, that is to say a valve configured to allow or prevent the passage of gas through the pipe on which it is arranged.
  • the part of the heated and compressed gas which is not consumed by the gas consuming device 300 more particularly reaches the first pass 171 of the second heat exchanger 170 in which it transfers calories to the cooled gas by its passage through the means of cooling 160, here formed by the third heat exchanger 161, which then circulates in the second pass 172 of this second heat exchanger 170.
  • a heat exchange takes place between the part of gas which is not consumed by the gas consuming device 300 and the cooled gas by the cooling means 160.
  • All of the gas circulating in the second heat exchanger 170 is then returned to the bottom of the tank 200 as previously mentioned, respectively by the third pipe 167 for the gas circulating in the second pass 172 of the second heat exchanger 170 and through the fifth pipe 115 for the gas circulating in the first pass 171 of this second heat exchanger 170. It is understood that this is only an exemplary embodiment and that the third pipe 167 and the fifth pipe 115 could meet before joining the bottom of the tank 200, that is to say that the gas circulating in the first pass 171 of the second heat exchanger 170 and the gas circulating ant in the second pass 172 of this second heat exchanger 170 could be mixed and then returned, together, to the bottom of the tank 200.
  • the closed circuit 120 of the gas treatment system 100 can be likened to a heat pump in which calories are stored by the refrigerant fluid FR which circulates in the cooling means 160 , these calories then being transferred to the gas taken from the tank 200 in the gaseous state which circulates in the first heat exchanger 130.
  • the gas treatment system 100 makes it possible to carry out a heat transfer which allows to heat gas in the gaseous state so that its temperature is compatible with the needs of the at least one gas consuming device 300, while cooling gas in the liquid state which in turn allows either to condense the gas in the gaseous state in excess, that is to say which cannot be consumed by at least one gas consuming device 300, or to cool the gas present in the liquid state in the tank 200 is so as to limit the phenomenon of evap oration which causes the generation of gas in the gaseous state in the vessel head 201.
  • FIG. 4 illustrates a third mode of operation of the gas treatment system 100 according to the invention, in which the compression member 121 is stopped.
  • Such an operating mode can for example be chosen when the temperature of the gas present in the liquid state in the tank 200 is sufficiently low to allow condensation of the gas which is not consumed by the gas consuming device 300 and which circulates in the second heat exchanger 170 without this liquid gas having to be cooled beforehand by the cooling means 160.
  • the closed circuit 120 is stopped, that is to say that the circulation of refrigerant fluid FR in this closed circuit 120 is stopped.
  • Such a mode of operation has an economic advantage, in particular due to the stopping of the compression member 121.
  • the third regulating member 194 carried by the second pipe 112 of the installation of the feed 110 is in its open position so that the gas taken in the gaseous state in the vessel head 201 which joins the first pipe 111 of the supply installation 110 is diverted to the second pipe 112 upstream of the first heat exchanger 130, so as to bypass this first heat exchanger 130.
  • the gas in the gaseous state circulating in this second pipe 112 then joins the compression device 140 to reach the pressure compatible with the needs of the gas consuming appliance 300 Similarly to what has been described above with reference to the second mode of operation, part of the gas compressed by the compression device 140 can be directed towards the two. th heat exchanger 170 in order to be condensed there in order to return to the tank 200.
  • the closed circuit 120 being stopped, the second pass 172 of the second heat exchanger 170 is supplied directly with gas taken in the liquid state in the tank 200, that is to say that this gas is taken in the liquid state in the tank 200, for example by the pump 164 described above, then this gas takes the fifth pipe 169 in order to join the second pass 172 of the second heat exchanger 170.
  • the second regulator 193 is therefore, according to this third operating mode, in its open position to allow the circulation of liquid gas in the fifth pipe 169.
  • the gas withdrawn in the liquid state in the tank 200 does not undergo any other change in pressure or temperature than that linked to the pumping itself before joining the second heat exchanger 170.
  • the heat exchange which takes place in the second heat exchanger 17 0 is identical to that described above with reference to the second operating mode.
  • FIG. 5 illustrates the gas treatment system 100 according to the invention in a situation in which the compression device 140 has failed.
  • the system 100 according to the invention is equipped with a redundancy system formed, in part, by the compression member 121, the first complementary pipe 180 and the second complementary pipe 181.
  • the compression member 121 in the event of failure of the compression device 140, the compression of the gas to a pressure compatible with the needs of the gas consuming device 300 is ensured by the compression member 121, so that the latter is no longer available for the compression of the refrigerant fluid which circulates in the closed circuit 120.
  • the closed circuit 120 is stopped, that is to say that no exchange of heat does not take place in the first heat exchanger 130, nor in the cooling means 160.
  • the third regulator 194 is open, allowing the gas taken in the gaseous state in the vessel head 201 to reach the second pipe 112.
  • the regulator valve 190 is open so as to allow the gas which leaves the second pipe 112 to pass through in the gaseous state.
  • the compression member 121 takes over from the compression device 140 to supply power to at least one gas consuming device 300, at least until this compression device 140 is repaired.
  • the regulating means 191 is open so as to allow this compressed gas to reach the second heat exchanger 170.
  • the closed circuit 120 is stopped.
  • the second regulator 193 is open in order to supply the second pass 172 of the second heat exchanger 170 with gas taken in the liquid state from the tank 200. and thus allow the condensation of the compressed gas which circulates in the first pass 171 of this second heat exchanger 170 before it is returned to the tank 200.
  • control valve 190 arranged on the first complementary pipe 180 is for example an all or nothing valve, that is to say a valve which is configured to take an open position or a closed position. It is understood that this is only an exemplary embodiment of the present invention and that any other redundancy system can be envisaged without departing from the context of the present invention.
  • FIG. 6 is a cut-away representation of the vessel 15 which shows the natural gas storage tank 200 mounted in a double hull 16 of the vessel 15 formed by a set of at least one primary waterproofing membrane, a membrane of secondary waterproofing, arranged between the primary waterproofing membrane and the double hull 16 of the vessel 15, and two insulating barriers, respectively arranged between the primary waterproofing membrane and the secondary waterproofing membrane and between the secondary waterproofing membrane and the double hull 16.
  • Pipes 17 for loading and / or unloading arranged on the upper deck of the ship 15 can be connected, by means of suitable connectors, to a marine or port terminal 18 in order to transfer the cargo of natural gas in the liquid state from or to tank 200.
  • the present invention proposes a system for treating a gas that is simple and less expensive than the gas treatment systems currently. on the market, which makes it possible to supply a gas consuming device of a ship, while participating in the regulation of the pressure in the tank which contains said gas.
  • the invention cannot, however, be limited to the means and configurations described and illustrated here, and it also extends to any equivalent means or configuration and to any technical combination operating such means.
  • the number of passes per exchanger, the type of refrigerant and the type of gas consuming device can be changed without harming the invention, as long as they fulfill the functions described in this document.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

L'invention concerne un système de traitement (100) d'un gaz contenu dans une cuve (200) comprenant au moins un appareil consommateur de gaz (300), au moins une installation d'alimentation (110) de l'appareil (300) et au moins un circuit fermé (120) de fluide réfrigérant (FR), l'installation d'alimentation (110) comprenant : − un premier échangeur thermique (130) configuré pour refroidir le fluide réfrigérant (FR), − un dispositif de compression (140) configuré pour comprimer le gaz issu du premier échangeur thermique (130), − un moyen de refroidissement (160) de gaz liquide issu de la cuve (200), − un deuxième échangeur thermique (170) configuré pour opérer un échange de chaleur entre le gaz prélevé à l'état liquide dans la cuve (200) et une partie du gaz gazeux issu du dispositif de compression (140), caractérisé en ce que le moyen de refroidissement (160) et le deuxième échangeur thermique (170) sont distincts.

Description

Description
Titre : Système de traitement d’un gaz contenu dans une cuve de stockage et/ou de transport de gaz à l’état liquide et gazeux
La présente invention concerne le domaine des navires dont les moteurs de propulsion sont alimentés par du gaz naturel et qui permettent en outre de contenir et/ ou transporter du gaz naturel liquéfié.
De tels navires comprennent ainsi classiquement des cuves qui contiennent du gaz naturel à l’état liquide. Le gaz naturel est liquide à des températures inférieures à -160°C, à pression atmosphérique. Ces cuves ne sont jamais parfaitement isolées thermiquement de sorte que le gaz naturel s’y évapore au moins partiellement. Ainsi, ces cuves comprennent à la fois du gaz naturel sous une forme liquide et du gaz naturel sous forme gazeuse. Ce gaz naturel sous forme gazeuse est également appelé « BOG » de l’acronyme anglais « Boil-off Gas » et forme le ciel de cuve. La pression de ce ciel de cuve doit être contrôlée afin de ne pas endommager la cuve. De façon connue au moins une partie du gaz naturel présent dans la cuve sous forme gazeuse est ainsi utilisée pour alimenter, entre autres, les moteurs de propulsion du navire.
Toutefois, la consommation de gaz naturel gazeux par les moteurs du navire est variable, et il est nécessaire de mettre en place des systèmes complémentaires pour traiter le gaz naturel évaporé en excès. Des systèmes de reliquéfaction qui permettent de condenser le gaz naturel évaporé présent dans la cuve sont ainsi mis en place sur le navire, afin de le renvoyer vers cette cuve, à l’état liquide.
Les systèmes de reliquéfaction actuellement utilisés sont très coûteux et la présente invention vise à résoudre cet inconvénient en proposant un système de traitement du gaz comprenant moins de composants que les systèmes actuels, ou comprenant des composants moins coûteux, permettant ainsi de réduire les coûts totaux de mise en œuvre de tels systèmes, tout en étant au moins aussi performant.
Un objet de la présente invention concerne ainsi un système de traitement d’un gaz contenu dans une cuve de stockage et/ ou de transport de gaz à l’état liquide et à l’état gazeux, le système comprenant au moins un appareil consommateur de gaz, au moins une installation d’alimentation de l’au moins un appareil consommateur de gaz et au moins un circuit fermé configuré pour être parcouru par un fluide réfrigérant, l’installation d’alimentation de l’au moins un appareil consommateur de gaz comprenant au moins : — un premier échangeur thermique configuré pour refroidir le fluide réfrigérant circulant dans le circuit fermé,
— un dispositif de compression configuré pour comprimer le gaz à l’état gazeux qui quitte le premier échangeur thermique jusqu’à une pression compatible avec les besoins de l’au moins un appareil consommateur de gaz,
— un moyen de refroidissement configuré pour opérer un échange de chaleur entre le fluide réfrigérant et le gaz prélevé à l’état liquide dans la cuve,
— un deuxième échangeur thermique configuré pour opérer un échange de chaleur entre le gaz à l’état liquide prélevé dans la cuve et une partie du gaz à l’état gazeux qui quitte le dispositif de compression et qui n’est pas envoyée vers l’au moins un appareil consommateur de gaz.
Selon l’invention, le moyen de refroidissement et le deuxième échangeur thermique sont distincts. En d’autres termes, le moyen de refroidissement et le deuxième échangeur thermique sont physiquement séparés et agencés à une distance non nulle l’un de l’autre. De plus, il n’existe aucun transfert de calories direct entre le moyen de refroidissement et le deuxième échangeur thermique.
Le système de traitement de gaz selon l’invention permet de traiter le gaz présent à l’état gazeux dans la cuve, ce gaz présent à l’état gazeux étant généré par un phénomène d’évaporation naturelle du gaz liquide contenu dans cette cuve.
Selon une caractéristique de la présente invention, le premier échangeur thermique est configuré pour opérer un échange de chaleur entre du gaz prélevé dans la cuve à l’état gazeux et le fluide réfrigérant circulant dans le circuit fermé. Selon cette caractéristique de la présente invention, le premier échangeur thermique est agencé à une interface entre l’installation d’alimentation de l’au moins un appareil consommateur de gaz et le circuit fermé de fluide réfrigérant. Autrement dit, le premier échangeur thermique comprend au moins une première passe adaptée pour être parcourue par du gaz prélevé à l’état gazeux dans la cuve et au moins une deuxième passe adaptée pour être parcourue par le fluide réfrigérant du circuit fermé.
Selon un exemple de réalisation de la présente invention, le moyen de refroidissement peut par exemple être un troisième échangeur thermique configuré pour opérer un échange de chaleur entre le fluide réfrigérant et le gaz prélevé à l’état liquide dans la cuve. Plus particulièrement, le gaz prélevé à l’état liquide dans la cuve qui circule dans ce troisième échangeur thermique est apte à céder des calories au fluide réfrigérant qui circule également dans ce troisième échangeur thermique, de sorte que le gaz prélevé à l’état liquide dans la cuve est refroidi par son passage à travers le troisième échangeur thermique. Selon l’invention, le deuxième échangeur thermique et le troisième échangeur thermique sont distincts, c’est à dire qu’aucun transfert de chaleur direct n’a lieu entre les fluides qui circulent dans le deuxième échangeur thermique et les fluides qui circulent dans le troisième échangeur thermique.
Selon une caractéristique de la présente invention, au moins un moyen de détente est agencé entre le deuxième échangeur thermique et la cuve. Ce moyen de détente permet de réduire la pression du gaz comprimé par son passage à travers le dispositif de compression de sorte à le ramener à une pression sensiblement identique à la pression du gaz présent dans la cuve, de manière à pouvoir le renvoyer dans cette cuve.
Selon une autre caractéristique de la présente invention, au moins un moyen de régulation est agencé entre le dispositif de compression et la cuve. Par exemple, ce moyen de régulation peut être une vanne tout ou rien, c’est-à-dire une vanne qui peut prendre une position ouverte dans laquelle elle autorise la circulation de gaz dans la conduite qui la porte ou une position fermée dans laquelle elle interdit la circulation de gaz dans cette conduite.
Selon l’invention, le deuxième échangeur thermique comprend au moins une première passe adaptée pour être parcourue par la partie du gaz à l’état gazeux qui n’est pas envoyée vers l’au moins un appareil consommateur de gaz et au moins une deuxième passe adaptée pour être parcourue par du gaz prélevé à l’état liquide dans la cuve, la première passe et la deuxième passe du deuxième échangeur thermique étant toutes deux connectées à un fond de la cuve. Autrement dit, la totalité du gaz qui quitte le deuxième échangeur thermique est renvoyé dans le fond de la cuve après son passage à travers le deuxième échangeur thermique. On entend par « fond de la cuve » une portion de la cuve qui s’étend depuis une paroi de fond de la cuve et un plan parallèle à cette paroi de fond et agencé, au maximum, à 20% d’une hauteur totale de la cuve, cette hauteur totale étant mesurée selon une droite perpendiculaire à la paroi de fond inférieure de la cuve entre deux extrémités opposées de cette cuve, le long de cette droite. Avantageusement, le plan parallèle à la paroi de fond inférieure qui participe à délimiter le « fond de la cuve » peut être agencé à 10% de la hauteur totale de la cuve.
Selon une caractéristique de l’invention, la deuxième passe du deuxième échangeur thermique est adaptée pour être alimentée, directement, par du gaz prélevé à l’état liquide dans la cuve. On entend par « directement » le fait que le gaz prélevé à l’état liquide dans la cuve est envoyé vers la deuxième passe du deuxième échangeur thermique sans subir d’autres modifications de pression ou de température que celles liées au pompage en lui-même. Selon une autre caractéristique de l’invention, le gaz prélevé à l’état liquide dans la cuve qui alimente le moyen de refroidissement est directement renvoyé dans la cuve après son passage à travers ce moyen de refroidissement. De même que précédemment, les termes « directement renvoyé » doivent être compris en ce sens que le gaz prélevé à l’état liquide dans la cuve est renvoyé vers la cuve sans subir d’autres modifications de pression ou de température que celles subies dans le moyen de refroidissement.
Alternativement, la deuxième passe du deuxième échangeur thermique est adaptée pour être alimentée par du gaz refroidi par son passage à travers le moyen de refroidissement. Selon cette alternative, le gaz refroidi par le moyen de refroidissement est réchauffé par son passage à travers le deuxième échangeur thermique avant d’être renvoyé dans la cuve.
Ainsi, selon un premier mode de fonctionnement du système de traitement de gaz selon l’invention, la totalité du gaz comprimé par le dispositif de compression est consommée par l’au moins un appareil consommateur de gaz. Selon ce premier mode de fonctionnement, le moyen de régulation agencé entre le dispositif de compression et le deuxième échangeur thermique est dans sa position fermée et le gaz prélevé à l’état liquide qui alimente le moyen de refroidissement est directement renvoyé dans la cuve après son passage à travers ce moyen de refroidissement, c’est-à-dire sans passer par le deuxième échangeur thermique. Autrement dit, le gaz prélevé à l’état liquide dans la cuve est refroidi par son passage à travers le moyen de refroidissement et, en se mélangeant au gaz liquide déjà présent dans cette cuve, ce gaz refroidi par le moyen de refroidissement entraîne un refroidissement du gaz liquide présent dans la cuve, ce qui tend à limiter le phénomène d’évaporation naturelle évoqué ci-dessus.
Selon un deuxième mode de fonctionnement du système de traitement de gaz selon l’invention, le deuxième échangeur thermique forme un condenseur de la partie de gaz gazeux qui n’est pas envoyée vers l’au moins un appareil consommateur de gaz. Selon ce deuxième mode de fonctionnement, le moyen de régulation agencé entre le dispositif de compression et le deuxième échangeur thermique est dans sa position ouverte, permettant à la partie de gaz gazeux qui n’est pas envoyée vers l’au moins un appareil consommateur de gaz de rejoindre le deuxième échangeur thermique. Ainsi, cette partie inutilisée est liquéfiée avant d’être retournée dans la cuve dans laquelle elle se mélange avec le gaz déjà présent à l’état liquide. Avantageusement, dans l’hypothèse où l’échange de chaleur opéré dans le deuxième échangeur thermique ne permettrait pas une condensation totale de la partie de gaz gazeux qui n’est pas envoyée vers l’au moins un appareil consommateur de gaz, cette partie termine sa condensation en entrant en contact avec le gaz présent à l’état liquide dans la cuve. Selon l’invention, le gaz prélevé à l’état liquide dans la cuve pour alimenter le moyen de refroidissement présente une température comprise entre -163°C et -158°C à une entrée de ce moyen de refroidissement et une température comprise entre -177°C et -165°C à une sortie de ce moyen de refroidissement, et le gaz qui quitte le moyen de refroidissement pour rejoindre le deuxième échangeur thermique présente une température comprise entre -177°C et -165°C à une entrée de ce deuxième échangeur thermique et une température comprise entre -177°C et -150°C à une sortie du deuxième échangeur thermique. Plus particulièrement, ces valeurs se vérifient lorsque le système de traitement de gaz selon l’invention fonctionne à régime nominal, c’est-à- dire une situation dans laquelle l’au moins un appareil consommateur de gaz à une consommation minimale. Avantageusement, le gaz présente une température de -160°C à l’entrée du moyen de refroidissement, une température de -168°C à la sortie du moyen de refroidissement et à l’entrée du deuxième échangeur thermique et une température de -152°C à la sortie du deuxième échangeur thermique.
La partie du gaz qui n’est pas envoyée vers l’appareil consommateur de gaz présente quant à elle une température comprise entre 5°C et 45°C à une entrée du deuxième échangeur thermique et une température comprise entre -160°C et -152°C à une sortie de ce deuxième échangeur thermique. Avantageusement, la partie du gaz qui n’est pas envoyée vers l’appareil consommateur de gaz présente une température de 43°C à l’entrée du deuxième échangeur thermique et une température de -158°C à la sortie de ce deuxième échangeur thermique.
Selon l’invention, le circuit fermé comprend au moins un organe de compression, au moins le premier échangeur thermique, au moins un organe de détente et au moins le moyen de refroidissement. Selon l’invention, l’organe de compression, le premier échangeur thermique, l’organe de détente et le moyen de refroidissement sont agencés dans cet ordre selon un sens de circulation du fluide réfrigérant dans le circuit fermé.
Selon une caractéristique de la présente invention, le premier échangeur thermique comprend au moins une première passe adaptée pour être parcourue par du gaz prélevé à l’état gazeux dans la cuve, au moins une deuxième passe adaptée pour être parcourue par du fluide réfrigérant comprimé par l’organe de compression et au moins une troisième passe adaptée pour être parcourue par du fluide réfrigérant détendu.
Avantageusement, au moins une première conduite complémentaire est agencée entre une première conduite qui s’étend entre la cuve et le dispositif de compression, et l’organe de compression du circuit fermé, au moins une deuxième conduite complémentaire est agencée entre l’organe de compression et l’au moins un appareil consommateur de gaz et au moins une vanne de régulation est agencée sur la première conduite complémentaire ou sur la deuxième conduite complémentaire. Selon l’invention cette vanne de régulation est une vanne tout ou rien qui est configurée pour prendre une position ouverte dans laquelle elle autorise le passage du gaz à l’état gazeux qui quitte la première passe du premier échangeur thermique à travers cette première conduite complémentaire, ou une position fermée dans laquelle elle interdit le passage du gaz à travers la première conduite complémentaire. Selon l’invention, l’organe de compression, les première et deuxième conduites complémentaires et la vanne de régulation forment ainsi un système de redondance du dispositif de compression. Ainsi, lorsque ce dispositif de compression est défaillant, l’organe de compression peut prendre le relais de sorte que l’alimentation de l’au moins un appareil consommateur de gaz ne soit pas interrompue.
Selon un exemple de réalisation de la présente invention, le moyen de refroidissement et/ ou le deuxième échangeur thermique sont des échangeurs thermiques à plaques. Autrement dit, ces échangeurs sont formés d’un empilement de plaques entre lesquelles circulent les fluides concernés. Ces plaques sont réalisées en un matériau conducteur de chaleur et les fluides qui circulent entre ces plaques présentent un écart de température, de sorte qu’un échange de chaleur puisse s’opérer entre les fluides qui circulent de part et d’autre d’une même plaque.
L’invention concerne également un navire de transport de gaz liquéfié, comprenant au moins une cuve d’une cargaison de gaz liquéfié, au moins un appareil consommateur de gaz évaporé et au moins un système de traitement de gaz selon l’invention.
L’invention concerne aussi un système pour charger ou décharger un gaz liquide qui combine au moins un moyen à terre et au moins un navire de transport de gaz liquide selon l’invention.
Enfin, l’invention concerne un procédé de mise en œuvre d’un système de traitement de gaz selon l’invention, comprenant au moins les étapes de :
— prélèvement de gaz à l’état gazeux dans la cuve,
— réchauffage du gaz prélevé à l’état gazeux dans la cuve par un échange de chaleur avec du fluide réfrigérant, l’échange de chaleur étant opéré dans le premier échangeur thermique
— alimentation d’au moins un appareil consommateur de gaz par au moins une partie du gaz réchauffé par son passage à travers le premier échangeur thermique et comprimé par le dispositif de compression,
— refroidissement de gaz prélevé à l’état liquide dans la cuve par le moyen de refroidissement — condensation d’une autre partie du gaz réchauffé par son passage à travers le premier échangeur thermique qui n’est pas envoyée vers l’au moins un appareil consommateur de gaz par échange de chaleur avec le gaz refroidi par le moyen de refroidissement, l’échange de chaleur s’opérant dans le deuxième échangeur thermique.
L’invention concerne en outre un procédé de chargement ou de déchargement d’un gaz liquide d’un navire de transport de gaz selon l’invention.
D’autres caractéristiques, détails et avantages de l’invention ressortiront plus clairement à la lecture de la description qui suit d’une part, et d’un exemple de réalisation donné à titre indicatif et non limitatif en référence aux dessins schématiques annexés d’autre part, sur lesquels :
[Fig. 1] illustre, schématiquement, un système de traitement de gaz selon la présente invention ; [Fig. 2] illustre, schématiquement, un premier mode de fonctionnement du système de traitement de gaz illustré sur le figure 1 ;
[Fig. 3] illustre, schématiquement, un deuxième mode de fonctionnement du système de traitement de gaz illustré sur la figure 1 ;
[Fig. 4] illustre, schématiquement, un troisième mode de fonctionnement du système de traitement de gaz illustré sur la figure 1 ;
[Fig. 5] illustre, schématiquement, le système de traitement de gaz illustré sur la figure 1, dans lequel un dispositif de compression est défaillant ;
[Fig. 6] est une représentation schématique écorchée d’une cuve de navire méthanier et d’un terminal de chargement et/ ou de déchargement de cette cuve.
Sur les figures 2 à 5 qui illustrent différents modes de fonctionnement d’un système de traitement 100 de gaz selon l’invention, les traits pleins représentent des conduites de ce système de traitement 100 de gaz dans lesquelles un gaz ou un fluide réfrigérant FR circule, et les traits pointillés représentent des conduites de ce système de traitement 100 de gaz dans lesquelles aucun gaz, ni fluide réfrigérant FR ne circule. Les termes « amont » et « aval » s’entendent selon un sens de circulation du gaz ou du fluide réfrigérant FR dans la conduite ou l’objet concerné.
La figure 1 représente le système de traitement 100 d’un gaz selon l’invention, ce gaz étant contenu dans une cuve 200 à l’état liquide et à l’état gazeux. Dans la suite de la description, les termes « ciel de cuve 201 » font référence à une partie de la cuve 200 dans laquelle est présent le gaz à l’état gazeux. Dans le reste de la cuve 200, le gaz est présent à l’état liquide. On entend par « fond de la cuve » une portion de la cuve 200 qui s’étend depuis une paroi de fond 202 de la cuve 200 et un plan parallèle à cette paroi de fond 202 et agencé, au maximum, à 20% d’une hauteur totale de la cuve 200, cette hauteur totale étant mesurée selon une droite D perpendiculaire à la paroi de fond 202 de la cuve 200 entre deux extrémités opposées de cette cuve 200, le long de cette droite D. Avantageusement, le plan parallèle à la paroi de fond inférieure qui participe à délimiter le « fond de la cuve » peut être agencé à 10% de la hauteur totale de la cuve.
Selon un exemple d’application de la présente invention, le gaz contenu dans la cuve 200 est du gaz naturel, cette cuve 200 permettant avantageusement de stocker et/ ou de transporter ce gaz naturel. Il est entendu qu’il ne s’agit que d’un exemple de réalisation et que ce gaz pourrait être différent sans sortir du contexte de la présente invention. Ce gaz naturel est liquide à une température de l’ordre de -160°C, de sorte qu’une partie de ce gaz naturel liquide s’évapore spontanément, générant alors le gaz naturel gazeux qui s’accumule dans le ciel de cuve 201. Les termes « système de traitement 100 » et « système de traitement 100 de gaz » sont par ailleurs utilisés sans distinction.
Le système de traitement 100 selon l’invention comprend au moins un appareil consommateur de gaz 300, au moins une installation d’alimentation 110 de l’au moins un appareil consommateur de gaz 300 adaptée pour être parcourue par le gaz contenu dans la cuve 200 et au moins un circuit fermé 120 configuré pour être parcouru par un fluide réfrigérant FR. On entend par « fluide réfrigérant FR » un fluide configuré pour capter et céder des calories en changeant d’état. Ainsi, lorsque ce fluide réfrigérant FR passe d’un état liquide à un état gazeux, il capte des calories présentes dans son environnement et lorsqu’il passe d’un état gazeux à un état liquide, il cède des calories à son environnement.
Tel que précédemment évoqué, le gaz contenu dans la cuve 200 peut être un gaz naturel, c’est à dire composé en majorité de méthane, qui présente une température de liquéfaction inférieure à - 160°C. Ainsi, la composition du fluide réfrigérant FR selon l’invention est particulièrement adaptée à un usage à température cryogénique, c’est-à-dire notamment que ce fluide réfrigérant FR ne gèle pas à ces températures cryogéniques. On entend par « température cryogénique », une température inférieure à -50°C. Le fluide réfrigérant FR selon la présente invention est également non corrosif et non toxique.
L’installation d’alimentation 110 de l’au moins un appareil consommateur de gaz 300 comprend au moins un premier échangeur thermique 130 configuré pour réchauffer le gaz prélevé à l’état gazeux dans le ciel de cuve 201, au moins un dispositif de compression 140 configuré pour comprimer du gaz afin que ce gaz puisse être envoyé vers l’au moins un appareil consommateur de gaz 300, au moins un moyen de refroidissement 160 de gaz prélevé à l’état liquide dans la cuve 200 et au moins un deuxième échangeur thermique 170 configuré pour condenser au moins une partie du gaz comprimé par le dispositif de compression 140 qui n’est pas envoyée à l’au moins un appareil consommateur de gaz 300 de sorte à permettre la réinjection de cette partie du gaz qui n’est pas envoyée vers l’au moins un appareil consommateur de gaz 300 dans la cuve 200.
Selon l’invention, le deuxième échangeur thermique 170 est plus particulièrement configuré pour opérer un échange de chaleur entre la partie du gaz comprimé qui n’est pas envoyée vers l’appareil consommateur de gaz 300 et du gaz prélevé à l’état liquide dans la cuve 200. Autrement dit, le deuxième échangeur thermique 170 comprend au moins une première passe 171 dans laquelle la partie de gaz comprimé qui n’est pas envoyée vers l’au moins un appareil consommateur de gaz 300 est apte à circuler et au moins une deuxième passe 172 dans laquelle le gaz prélevé à l’état liquide dans la cuve 200 est apte à circuler. Ainsi, le gaz à l’état gazeux qui circule dans la première passe 171 est condensé en cédant des calories au gaz liquide qui circule dans la deuxième passe 172. Autrement dit, le deuxième échangeur thermique 170 agit comme un condenseur vis-à-vis de la partie du gaz à l’état gazeux qui n’est pas envoyée vers l’au moins un appareil consommateur de gaz 300.
Selon un exemple d’application particulier de la présente invention, le gaz prélevé à l’état liquide dans la cuve 200 qui circule dans la deuxième passe 172 du deuxième échangeur thermique 170 peut être refroidi par le moyen de refroidissement 160 avant de rejoindre le deuxième échangeur thermique 170, maximisant ainsi l’écart de température entre les fluides qui circulent respectivement dans la première passe 171 et dans la deuxième passe 172 du deuxième échangeur thermique 170, améliorant ainsi l’échange de chaleur entre ces fluides et donc la condensation qui en résulte. Selon cet exemple d’application de la présente invention, le gaz prélevé à l’état liquide dans la cuve 200 pour alimenter le moyen de refroidissement 160 présente une température comprise entre -163°C et -158°C à une entrée 401 de ce moyen de refroidissement 160 et une température comprise entre -177°C et -165°C à une sortie 402 de ce moyen de refroidissement 160. Le gaz qui quitte le moyen de refroidissement 160 pour rejoindre le deuxième échangeur thermique 170 présente une température comprise entre -177°C et -165°C à une entrée 403 de ce deuxième échangeur thermique 170 et une température comprise entre -177°C et -150°C à une sortie 404 du deuxième échangeur thermique 170. Avantageusement, le gaz présente une température de -160°C à l’entrée 401 du moyen de refroidissement 160, une température de - 168°C à la sortie 402 du moyen de refroidissement 160 et à l’entrée 403 de la deuxième passe 172 du deuxième échangeur thermique 170 et une température de -152°C à la sortie 404 de la deuxième passe 172 du deuxième échangeur thermique 170.
Par ailleurs, la partie du gaz qui n’est pas envoyée vers l’appareil consommateur de gaz 300 présente une température comprise entre 5°C et 45°C à une entrée 405 de la première passe 171 du deuxième échangeur thermique 170 et une température comprise entre — 172°C et -150°C à une sortie 406 de cette première passe 171 du deuxième échangeur thermique 170. Avantageusement, la partie du gaz qui n’est pas envoyée vers l’appareil consommateur de gaz 300 présente une température de 43°C à l’entrée 405 de la première passe 171 du deuxième échangeur thermique 170 et une température de -158°C à la sortie 406 de la première passe 171 de ce deuxième échangeur thermique 170.
L’installation d’alimentation 110 comprend également au moins un moyen de détente 150 agencé entre le dispositif de compression 140 et la cuve 200. Ce moyen de détente 150 est configuré pour détendre la partie de gaz comprimé par le dispositif de compression 140 qui n’est pas envoyée vers l’appareil consommateur de gaz 300, c’est-à-dire pour diminuer la pression de cette partie du gaz jusqu’à une pression sensiblement équivalente à la pression que présente le gaz présent dans la cuve 200 à l’état liquide afin de permettre à cette partie du gaz qui n’est pas envoyée vers l’appareil consommateur de gaz 300 d’être retournée dans la cuve 200. Selon les exemples illustrés, ce moyen de détente 150 est agencé entre le deuxième échangeur thermique 170 et la cuve 200. Plus particulièrement, ce moyen de détente 150 est agencé entre la sortie 406 de la première passe 171 du deuxième échangeur thermique 170 et la cuve 200.
Selon un exemple de réalisation de la présente invention illustré sur les figures, le moyen de refroidissement 160 est formé par un troisième échangeur thermique 161 adapté pour opérer un échange de chaleur entre le gaz prélevé à l’état liquide dans la cuve 200 et le fluide réfrigérant FR destiné à parcourir le circuit fermé 120. En d’autres termes, on comprend que ce troisième échangeur thermique 161 est agencé à une interface entre le circuit fermé 120 et l’installation d’alimentation 110 de l’au moins un appareil consommateur de gaz 300 et qu’il comprend au moins une première passe 162 adaptée pour être parcourue par du gaz prélevé à l’état liquide dans la cuve 200 et au moins une deuxième passe 163 adaptée pour être parcourue par le fluide réfrigérant FR. Par exemple, ce troisième échangeur thermique 161 peut être un échangeur à plaques c’est-à-dire un échangeur formé d’un empilement de plusieurs plaques entre lesquelles circulent, selon l’exemple illustré, du gaz prélevé à l’état liquide dans la cuve 200 et du fluide réfrigérant. Ces plaques comprennent un matériau conducteur de chaleur qui permet un transfert de calories entre les deux fluides qui circulent de part et d’autre de ces plaques.
Avantageusement, le deuxième échangeur thermique 170 peut également être un échangeur à plaques, c’est-à-dire un échangeur formé d’un empilement de plaques entre lesquelles circulent du gaz à l’état liquide et du gaz à l’état gazeux et comprimé qui n’a pas été consommé par l’appareil consommateur de gaz 300. Afin d’assurer l’alimentation du troisième échangeur thermique 161 en gaz liquide, une pompe 164 est agencée dans la cuve 200, cette pompe 164 étant connectée à la première passe 162 du troisième échangeur thermique 161 par une première canalisation 165. Par ailleurs une deuxième canalisation 166 permet de relier la première passe 162 du troisième échangeur thermique 161 au deuxième échangeur thermique 170 et une troisième canalisation 167 relie quant à elle le deuxième échangeur thermique 170 à un fond de la cuve 200.
En outre, une quatrième canalisation 168 est agencée entre la deuxième canalisation 166 et la cuve 200, au moins un premier organe de régulation 192 étant agencé sur cette quatrième canalisation 168 et une cinquième canalisation 169 est agencée entre la première canalisation 165 et la deuxième canalisation 166, cette cinquième canalisation 169 étant équipée d’au moins un deuxième organe de régulation 193. Par exemple, le premier organe de régulation 192 et le deuxième organe de régulation 193 sont deux vannes tout ou rien, c’est-à-dire des vannes configurées pour prendre une position ouverte dans laquelle elles autorisent, respectivement, la circulation de gaz dans la quatrième canalisation 168 et dans la cinquième canalisation 169, ou une position fermée dans laquelle elles interdisent la circulation de gaz dans ces conduites. Il est entendu que ces vannes sont pilotables indépendamment l’une de l’autre.
L’installation d’alimentation 110 comprend quant à elle au moins une première conduite 111 porteuse du premier échangeur thermique 130 agencée entre le ciel de cuve 201 et le dispositif de compression 140, au moins une deuxième conduite 112 agencée entre la première conduite 111 et le dispositif de compression 140 et équipée d’un troisième organe de régulation 194 similaire aux premier et deuxième organes de régulation 16, 17 décrits ci-dessus, au moins une troisième conduite 113 agencée entre le dispositif de compression 140 et l’au moins un appareil consommateur de gaz 300, au moins une quatrième conduite 114 agencée entre la troisième conduite 113 et la première passe 171 du deuxième échangeur thermique 170 et au moins une cinquième conduite 115 agencée entre la deuxième passe 171 du deuxième échangeur thermique 170 et la cuve 200. Plus particulièrement, cette cinquième conduite 115 est agencée entre la deuxième passe 171 du deuxième échangeur thermique 170 et le fond de la cuve 200. Tel que précédemment évoqué, la cinquième conduite 115 est, selon l’exemple illustré, porteuse du moyen de détente 150.
Tel que cela sera plus amplement décrit ci-dessous, la deuxième conduite 112 permet de contourner le premier échangeur thermique 130, c’est-à-dire que cette deuxième conduite 112 permet d’alimenter, au moins, le dispositif de compression 140, même en cas de défaillance ou d’arrêt volontaire du circuit fermé 120. L’au moins un appareil consommateur de gaz 300 peut par exemple être un moteur, notamment un moteur de propulsion, d’un navire auquel est destiné le système de traitement 100 de gaz selon l’invention. Alternativement, cet appareil consommateur de gaz 300 peut être un moteur d’une génératrice électrique du navire concerné. Selon un exemple d’application de la présente invention, l’installation d’alimentation 110 du système de traitement 100 peut être configurée pour alimenter en gaz au moins deux appareils consommateurs de gaz 300. Il est entendu qu’il ne s’agit que d’exemples de réalisation qui ne sont pas limitatifs de la présente invention.
Le circuit fermé 120 de fluide réfrigérant FR comprend, successivement, au moins un organe de compression 121, le premier échangeur thermique 130, un organe de détente 122, et le moyen de refroidissement 160 formé, selon l’exemple illustré, par le troisième échangeur thermique 161. Le premier échangeur thermique 130 est ainsi agencé à l’interface entre le circuit fermé 120 de fluide réfrigérant FR et l’installation d’alimentation 110 de l’appareil consommateur de gaz 300. En d’autres termes, le premier échangeur thermique 130 comprend au moins une première passe 131 adaptée pour être parcourue par le gaz prélevé à l’état gazeux dans le ciel de cuve 201 et au moins une deuxième passe 132 adaptée pour être parcourue par le fluide réfrigérant FR. Ainsi, un échange de chaleur peut s’opérer, au sein du premier échangeur thermique 130, entre la première passe 131 et la deuxième passe 132, de sorte que le gaz y est réchauffé et le fluide réfrigérant FR refroidi. Avantageusement, le premier échangeur thermique 130 selon l’exemple de réalisation illustré sur les figures comprend une troisième passe 133 également adaptée pour être parcourue par le fluide réfrigérant FR. Plus particulièrement, le fluide réfrigérant FR circulant dans cette troisième passe 133 capte des calories issues du fluide réfrigérant FR circulant dans la deuxième passe 132. Il est entendu qu’il ne s’agit que d’un exemple de réalisation et que le premier échangeur thermique 130 pourrait être dépourvu de cette troisième passe 133 sans sortir du contexte de la présente invention.
Le circuit fermé 120 comprend ainsi au moins une premier conduit 123 agencé entre l’organe de compression 121 et la deuxième passe 132 du premier échangeur thermique 130, au moins un deuxième conduit 124 agencé entre la deuxième passe 132 du premier échangeur thermique 130 et l’organe de détente 122, au moins un troisième conduit 125 agencé entre l’organe de détente 122 et la deuxième passe 163 du troisième échangeur thermique 161, au moins un quatrième conduit 126 agencé entre la deuxième passe 163 du troisième échangeur thermique 161 et la troisième passe 133 du premier échangeur thermique 130 et au moins un cinquième conduit 127 agencé entre la troisième passe 133 du premier échangeur thermique 130 et l’organe de compression 121. Lorsque le système de traitement 100 de gaz selon l’invention est mis en fonctionnement, le fluide réfrigérant FR quitte l’organe de compression 121 à l’état gazeux et à haute pression, c’est- à-dire à une pression comprise entre 18 et 36 bar, grâce au premier conduit 123 pour rejoindre le premier échangeur thermique 130, et plus particulièrement la deuxième passe 132 de ce premier échangeur thermique 130 dans laquelle il cède des calories au gaz qui circule alors dans la première passe 131 de ce premier échangeur thermique 130 et, optionnellement, au fluide réfrigérant FR qui circule dans la troisième passe 133 de ce premier échangeur thermique 130. Le fluide réfrigérant FR quitte alors le premier échangeur thermique 130 par le deuxième conduit 124 à l’état liquide et à haute pression pour rejoindre l’organe de détente 122 dans lequel sa pression est diminuée. Le fluide réfrigérant FR quitte alors l’organe de détente 122 à l’état liquide et à basse pression, c’est-à-dire une pression comprise entre 1.2 bar à 2.5 bar, et emprunte le troisième conduit 125 pour rejoindre la deuxième passe 163 du troisième échangeur thermique 161 dans lequel il capte des calories du gaz naturel liquide qui circule dans la première passe 162 de ce troisième échangeur thermique 161 tel que mentionné ci-dessus. Le fluide réfrigérant FR quitte ainsi le troisième échangeur thermique 161 à l’état diphasique ou gazeux et à basse pression et rejoint la troisième passe 133 du premier échangeur thermique 130 par le quatrième conduit 126. Dans cette troisième passe 133, le fluide réfrigérant FR à l’état diphasique capte les calories du fluide réfrigérant FR qui circule dans la deuxième passe 132 de ce premier échangeur thermique 130. Cette captation des calories permet d’évaporer le gaz liquide qui peut encore être présent dans le circuit en sortie du moyen de refroidissement 160 de sorte que l’organe de compression 121 ne soit alimenté que par du fluide réfrigérant FR à l’état gazeux. Le fluide réfrigérant FR quitte donc la troisième passe 133 du premier échangeur thermique 130 à l’état gazeux et rejoint, grâce au cinquième conduit 127, l’organe de compression 121. Autrement dit, on comprend que le fluide réfrigérant FR qui circule dans le circuit fermé subit au moins deux changements d’état, en échangeant des calories avec le gaz transporté par le navire concerné.
Selon une variante de réalisation non illustrée ici, le premier échangeur thermique est dépourvu de la troisième passe et comprend uniquement la première passe dans laquelle circule le gaz prélevé dans la cuve à l’état gazeux et la deuxième passe dans laquelle circule le fluide réfrigérant à l’état gazeux et à haute pression. Selon cette variante, un séparateur gaz-liquide peut être agencé entre le moyen de refroidissement et l’organe de compression de sorte à s’assurer que seul du fluide réfrigérant à l’état gazeux soit envoyé vers cet organe de compression. En effet, du fluide réfrigérant à l’état liquide risquerait d’endommager cet organe de compression, le rendant alors inutilisable. Tel que précédemment évoqué, il est important d’évacuer le gaz à l’état gazeux présent dans le ciel de cuve 201 de ce ciel de cuve 201 afin d’éviter une surpression qui pourrait endommager la cuve 200 concernée. Aussi, l’installation d’alimentation 110 du système de traitement 100 de gaz selon l’invention est équipée d’un système de redondance du dispositif de compression 140 qui sert à l’alimentation de l’au moins un appareil consommateur de gaz 300. Selon un exemple illustré sur les figures, cette redondance du dispositif de compression 140 est réalisée, en partie, grâce à l’organe de compression 121. Ainsi, au moins au moins une première conduite complémentaire 180 est agencée entre la première conduite 111 de l’installation d’alimentation 110 et l’organe de compression 121 et au moins une deuxième conduite complémentaire 181 est quant à elle agencée entre l’organe de compression 121 et la troisième conduite 113 de l’installation d’alimentation 110, au moins une vanne de régulation 190 étant agencée sur la première conduite complémentaire 180. Le fonctionnement de ce système de redondance sera plus amplement détaillé ci-dessous en référence à la figure 5.
En référence aux figures 2 à 4, nous allons maintenant décrire plus en détail un premier mode de fonctionnement de l’installation d’alimentation 110 illustré sur la figure 2, un deuxième mode de fonctionnement de cette installation d’alimentation 110 illustré sur la figure 3 et un troisième mode de fonctionnement de cette installation d’alimentation 110 illustré sur la figure 4.
La figure 2 illustre ainsi le premier mode de fonctionnement dit « à l’équilibre » dans lequel l’au moins un appareil consommateur de gaz 300 du navire auquel est destiné l’installation d’alimentation 110 consomme la totalité du gaz présent à l’état gazeux dans le ciel de cuve 201.
Selon ce premier mode de fonctionnement, le gaz est prélevé à l’état gazeux dans le ciel de cuve 201 et emprunte la première conduite 111 pour rejoindre le premier échangeur thermique 130, et plus particulièrement la première passe 131 de ce premier échangeur thermique 130. Tel que précédemment mentionné, le gaz circulant dans la première passe 131 du premier échangeur thermique est adapté pour capter des calories du fluide réfrigérant FR qui circule dans la deuxième passe 132 de ce deuxième échangeur thermique 130. Autrement dit, une température du gaz à une entrée 134 de la première passe 131 du premier échangeur thermique 130 est inférieure à une température de ce gaz à une sortie 135 de cette première passe 131 de ce premier échangeur thermique 130. Particulièrement, le gaz rejoint l’entrée 134 de la première passe 131 du premier échangeur thermique 130 à une température comprise entre -140°C et -90°C, par exemple égale à -120°C, et ce gaz quitte la première passe 131 de ce premier échangeur thermique 130 à une température comprise entre -30°C et 40°C, par exemple égale à 20°C. Le gaz ainsi réchauffé rejoint ensuite le dispositif de compression 140 dans lequel sa pression est augmentée jusqu’à atteindre une pression adaptée à l’alimentation de l’au moins un appareil consommateur de gaz 300. Le gaz réchauffé et à haute pression rejoint alors la troisième conduite 113 jusqu’à l’appareil consommateur de gaz 300. Autrement dit, on comprend que la première conduite 111 de l’installation d’alimentation 110 forme également la première passe 131 du premier échangeur thermique 130.
La totalité du gaz prélevé à l’état gazeux étant consommé par l’au moins un appareil consommateur de gaz 300, la première passe 171 du deuxième échangeur thermique 170 est vide et aucun échange de chaleur ne s’opère dans ce deuxième échangeur thermique 170.
Le circuit fermé 120 de fluide réfrigérant FR fonctionne quant à lui tel que décrit ci-dessus. Il en résulte que le gaz refroidi par le moyen de refroidissement 160 est réinjecté dans la cuve 200 sans subir d’autre changement de pression ni de température qui celui subit dans le troisième échangeur thermique 161, c’est-à-dire en empruntant la quatrième canalisation 168. Avantageusement, le gaz présent à l’état liquide dans la cuve 200 est ainsi mis en contact avec le gaz refroidi par le moyen de refroidissement 160 de sorte que la température du gaz présent dans la cuve à l’état liquide est diminuée, limitant alors le phénomène d’évaporation qui génère le gaz à l’état gazeux présent dans le ciel de cuve 201 et qui tend à augmenter la pression dans cette cuve 200.
Dans certaines conditions, l’appareil consommateur de gaz 300 ne suffit pas à consommer la totalité du gaz prélevé dans le ciel de cuve 201, réchauffé et comprimé. C’est par exemple le cas dans le deuxième mode de fonctionnement de l’installation d’alimentation 110 illustré sur la figure 3. Selon ce deuxième mode de fonctionnement, seule une partie du gaz comprimé et réchauffé est envoyée vers l’appareil consommateur de gaz 300. La partie de gaz qui ne peut être consommée par l’appareil consommateur de gaz 300 est quant à elle dirigée vers la quatrième conduite 114, par exemple grâce à un moyen de régulation 191 agencé sur cette quatrième conduite 114, et rejoint le deuxième échangeur thermique 170. Alternativement, le moyen de régulation 191 peut être agencé sur la troisième conduite 113, en amont de la quatrième conduite 114 par rapport à un sens de circulation du gaz dans ces troisième et quatrième conduites 113, 114. Selon l’invention, le moyen de régulation 191 peut par exemple être une vanne tout ou rien, c’est-à-dire une vanne configurée pour permettre ou empêcher le passage du gaz à travers la conduite sur laquelle il est agencé.
Le partie du gaz réchauffé et comprimé qui n’est pas consommée par l’appareil consommateur de gaz 300 rejoint plus particulièrement la première passe 171 du deuxième échangeur thermique 170 dans lequel elle cède des calories au gaz refroidi par son passage à travers le moyen de refroidissement 160, ici formé par le troisième échangeur thermique 161, qui circule alors dans la deuxième passe 172 de ce deuxième échangeur thermique 170. Autrement dit, selon ce deuxième mode de fonctionnement, un échange de chaleur s’opère entre la partie de gaz qui n’est pas consommée par l’appareil consommateur de gaz 300 et le gaz refroidi par le moyen de refroidissement 160. La totalité du gaz circulant dans le deuxième échangeur thermique 170 est ensuite renvoyé vers le fond de la cuve 200 tel que précédemment évoqué, respectivement par la troisième canalisation 167 pour le gaz circulant dans la deuxième passe 172 du deuxième échangeur thermique 170 et par la cinquième conduite 115 pour le gaz circulant dans la première passe 171 de ce deuxième échangeur thermique 170. Il est entendu qu’il ne s’agit que d’un exemple de réalisation et que la troisième canalisation 167 et la cinquième conduite 115 pourraient se rejoindre avant de rejoindre le fond de la cuve 200, c’est-à-dire que le gaz circulant dans la première passe 171 du deuxième échangeur thermique 170 et le gaz circulant dans la deuxième passe 172 de ce deuxième échangeur thermique 170 pourraient être mélangés puis renvoyés, ensemble, au fond de la cuve 200.
On comprend de ce qui précède, que le circuit fermé 120 du système de traitement de gaz 100 selon l’invention peut être assimilé à une pompe à chaleur dans laquelle des calories sont emmagasinées par le fluide réfrigérant FR qui circule dans le moyen de refroidissement 160, ces calories étant ensuite transférées au gaz prélevé dans la cuve 200 à l’état gazeux qui circule dans le premier échangeur thermique 130. Autrement dit, le système de traitement de gaz 100 selon l’invention permet de réaliser un transfert de chaleur qui permet de réchauffer du gaz à l’état gazeux afin que sa température soit compatible avec les besoins de l’au moins un appareil consommateur de gaz 300, tout en refroidissant du gaz à l’état liquide qui permet, à son tour, soit de condenser le gaz à l’état gazeux en excès, c’est-à-dire qui ne peut être consommé par l’au moins un appareil consommateur de gaz 300, soit de refroidir le gaz présent à l’état liquide dans la cuve 200 se sorte à limiter le phénomène d’évaporation qui entraîne la génération de gaz à l’état gazeux dans le ciel de cuve 201.
La figure 4 illustre un troisième mode de fonctionnement du système 100 de traitement de gaz selon l’invention, dans lequel l’organe de compression 121 est mis à l’arrêt. Un tel mode de fonctionnement peut par exemple être choisi lorsque la température du gaz présent à l’état liquide dans la cuve 200 est suffisamment basse pour permettre une condensation du gaz qui n’est pas consommé par l’appareil consommateur de gaz 300 et qui circule dans le deuxième échangeur thermique 170 sans que ce gaz liquide n’ait à être préalablement refroidi par le moyen de refroidissement 160.
Ainsi, selon ce quatrième mode de fonctionnement, le circuit fermé 120 est arrêté, c’est-à-dire que la circulation de fluide réfrigérant FR dans ce circuit fermé 120 est stoppée. Un tel mode de fonctionnement présente un avantage économique, notamment du fait de l’arrêt de l’organe de compression 121. Tel qu’illustré, selon ce quatrième mode de fonctionnement, le troisième organe de régulation 194 porté par la deuxième conduite 112 de l’installation d’alimentation 110 est dans sa position ouverte de sorte que le gaz prélevé à l’état gazeux dans le ciel de cuve 201 qui rejoint la première conduite 111 de l’installation d’alimentation 110 est dérivé vers la deuxième conduite 112 en amont du premier échangeur thermique 130, de manière à contourner ce premier échangeur thermique 130. Le gaz à l’état gazeux circulant dans cette deuxième conduite 112 rejoint ensuite le dispositif de compression 140 pour atteindre la pression compatible avec les besoins de l’appareil consommateur de gaz 300. De façon similaire à ce qui a été décrit ci-dessus en référence au deuxième mode de fonctionnement, une partie du gaz comprimé par le dispositif de compression 140 peut être dirigée vers le deuxième échangeur thermique 170 afin d’y être condensée en vue de retourner dans la cuve 200. Le circuit fermé 120 étant à l’arrêt, la deuxième passe 172 du deuxième échangeur thermique 170 est alimentée directement par du gaz prélevé à l’état liquide dans la cuve 200, c’est-à-dire que ce gaz est prélevé à l’état liquide dans la cuve 200, par exemple par la pompe 164 précédemment décrite, puis ce gaz emprunte la cinquième canalisation 169 afin de rejoindre la deuxième passe 172 du deuxième échangeur thermique 170. Le deuxième organe de régulation 193 est donc, selon ce troisième mode de fonctionnement, dans sa position ouverte pour autoriser la circulation de gaz liquide dans la cinquième canalisation 169. Ainsi, le gaz prélevé à l’état liquide dans la cuve 200 ne subit aucune autre modification de pression ou de température que celle liée au pompage en lui-même avant de rejoindre le deuxième échangeur thermique 170. L’échange de chaleur qui s’opère dans le deuxième échangeur thermique 170 est identique à celui décrit ci-dessus en référence au deuxième mode de fonctionnement.
La figure 5 illustre quant à elle le système 100 de traitement de gaz selon l’invention dans une situation dans laquelle le dispositif de compression 140 est défaillant. Tel que précédemment évoqué, le système 100 selon l’invention est équipé d’un système de redondance formé, en partie, par l’organe de compression 121, la première conduite complémentaire 180 et la deuxième conduite complémentaire 181. Tel que détaillé ci-dessous, en cas de défaillance du dispositif de compression 140, la compression du gaz à la pression compatible avec les besoins de l’appareil consommateur de gaz 300 es assurée par l’organe de compression 121, de sorte que ce dernier n’est plus disponible pour la compression du fluide réfrigérant qui circule dans le circuit fermé 120. Autrement dit, en cas de défaillance du dispositif de compression 140, le circuit fermé 120 est à l’arrêt, c’est-à-dire qu’aucun échange de chaleur ne s’opère dans le premier échangeur thermique 130, ni dans le moyen de refroidissement 160. Tel que représenté, en cas de défaillance du dispositif de compression 140, le troisième organe de régulation 194 est ouvert, permettant au gaz prélevé à l’état gazeux dans le ciel de cuve 201 de rejoindre la deuxième conduite 112. La vanne de régulation 190 est ouverte de sorte à laisser passer le gaz qui quitte la deuxième conduite 112 à l’état gazeux. Ainsi, l’organe de compression 121 prend le relais du dispositif de compression 140 pour assurer l’alimentation de l’au moins un appareil consommateur de gaz 300, au moins le temps que ce dispositif de compression 140 soit remis en état. Si l’appareil consommateur de gaz 300 ne consomme pas la totalité du gaz prélevé à l’état gazeux dans le ciel de cuve 201 et comprimé par l’organe de compression 121, le moyen de régulation 191 est ouvert de sorte à permettre à ce gaz comprimé de rejoindre le deuxième échangeur thermique 170. Tel que mentionné, en cas de défaillance du dispositif de compression 140, le circuit fermé 120 est à l’arrêt. Ainsi, tel que décrit en référence au troisième mode de fonctionnement décrit ci-dessus, le deuxième organe de régulation 193 est ouvert afin d’alimenter la deuxième passe 172 du deuxième échangeur thermique 170 en gaz prélevé à l’état liquide dans la cuve 200 et ainsi permettre la condensation du gaz comprimé qui circule dans la première passe 171 de ce deuxième échangeur thermique 170 avant son renvoi dans la cuve 200.
Avantageusement, un tel système de redondance permet de faire l’économie d’un moyen de compression supplémentaire. La vanne de régulation 190 agencée sur la première conduite complémentaire 180 est par exemple une vanne tout ou rien, c’est-à-dire une vanne qui est configurée pour prendre une position ouverte ou une position fermée. Il est entendu qu’il ne s’agit que d’un exemple de réalisation de la présente invention et que tout autre système de redondance est envisageable sans sortir du contexte de la présente invention.
Enfin, la figure 6 est une représentation écorchée du navire 15 qui montre la cuve 200 de stockage du gaz naturel montée dans une double coque 16 du navire 15 formée par un ensemble d’au moins une membrane d’étanchéité primaire, une membrane d'étanchéité secondaire, agencée entre la membrane d'étanchéité primaire et la double coque 16 du navire 15, et deux barrières isolantes, respectivement aménagées entre la membrane d'étanchéité primaire et la membrane d'étanchéité secondaire et entre la membrane d'étanchéité secondaire et la double coque 16.
Des canalisations 17 de chargement et/ ou de déchargement disposées sur le pont supérieur du navire 15 peuvent être raccordées, au moyen de connecteurs appropriées, à un terminal 18 maritime ou portuaire afin de transférer la cargaison de gaz naturel à l’état liquide depuis ou vers la cuve 200.
On comprend à la lecture de ce qui précède que la présente invention propose un système de traitement d’un gaz simple et moins coûteux que les systèmes de traitement de gaz actuellement sur le marché, qui permet d’alimenter un appareil consommateur de gaz d’un navire, tout en participant à la régulation de la pression dans la cuve qui contient ledit gaz.
L’invention ne saurait toutefois se limiter aux moyens et configurations décrits et illustrés ici, et elle s’étend également à tout moyen ou configuration équivalents et à toute combinaison technique opérant de tels moyens. En particulier, le nombre de passes par échangeurs, le type de fluide réfrigérant et le type d’appareil consommateur de gaz peuvent être modifiés sans nuire à l’invention, dans la mesure où ils remplissent les fonctionnalités décrites dans le présent document.

Claims

Revendications
1. Système de traitement (100) d’un gaz contenu dans une cuve (200) de stockage et/ ou de transport de gaz à l’état liquide et à l’état gazeux, le système de traitement (100) comprenant au moins un appareil consommateur de gaz (300), au moins une installation d’alimentation (110) de l’au moins un appareil consommateur de gaz (300) et au moins un circuit fermé (120) configuré pour être parcouru par un fluide réfrigérant (FR), l’installation d’alimentation (110) de l’au moins un appareil consommateur de gaz (300) comprenant au moins :
- un premier échangeur thermique (130) configuré pour opérer un échange de chaleur entre du gaz prélevé dans la cuve (200) à l’état gazeux et le fluide réfrigérant (FR) circulant dans le circuit fermé (120) pour refroidir le fluide réfrigérant (FR) circulant dans le circuit fermé (120),
- un dispositif de compression (140) configuré pour comprimer le gaz à l’état gazeux qui quitte le premier échangeur thermique (130) jusqu’à une pression compatible avec les besoins de l’au moins un appareil consommateur de gaz (300),
- un moyen de refroidissement (160) configuré pour opérer un échange de chaleur entre le fluide réfrigérant (FR) et le gaz prélevé à l’état liquide dans la cuve (200),
- un deuxième échangeur thermique (170) configuré pour opérer un échange de chaleur entre le gaz à l’état liquide prélevé dans la cuve (200) et une partie du gaz à l’état gazeux qui quitte le dispositif de compression (140) et qui n’est pas envoyé vers l’au moins un appareil consommateur de gaz (300), caractérisé en ce que le moyen de refroidissement (160) et le deuxième échangeur thermique (170) sont distincts et en ce que le circuit fermé (120) comprend au moins un organe de compression (121), le premier échangeur thermique (130), un organe de détente (122) et le moyen de refroidissement (160), agencés dans cet ordre selon un sens de circulation du fluide réfrigérant (FR) dans le circuit fermé (120).
2. Système de traitement (100) de gaz selon la revendication précédente, dans lequel au moins un moyen de détente (150) est agencé entre le deuxième échangeur thermique (170) et la cuve (200).
3. Système de traitement (100) de gaz selon l’une quelconque des revendications précédentes, dans lequel au moins un moyen de régulation (191) est agencé entre le dispositif de compression (140) et le deuxième échangeur thermique (170).
4. Système de traitement (100) de gaz selon l’une quelconque des revendications précédentes, dans lequel le deuxième échangeur thermique (170) comprend au moins une première passe (171) adaptée pour être parcourue par la partie du gaz à l’état gazeux qui n’est pas envoyée vers l’au moins un appareil consommateur de gaz (300) et au moins une deuxième passe (172) adaptée pour être parcourue par du gaz prélevé à l’état liquide dans la cuve (200), et dans lequel la première passe (171) et la deuxième passe (172) du deuxième échangeur thermique (170) sont toutes deux connectées à un fond de la cuve (200).
5. Système de traitement (100) de gaz selon la revendication précédente, dans lequel la deuxième passe (172) du deuxième échangeur thermique (170) est adaptée pour être alimentée, directement, par du gaz prélevé à l’état liquide dans la cuve (200).
6. Système de traitement (100) de gaz selon l’une quelconque des revendications précédentes, dans lequel le gaz prélevé à l’état liquide dans la cuve (200) qui alimente le moyen de refroidissement (160) est directement renvoyé dans la cuve (200) après son passage à travers ce moyen de refroidissement (160).
7. Système de traitement (100) de gaz selon l’une quelconque des revendications précédentes, dans lequel le gaz prélevé à l’état liquide dans la cuve (200) pour alimenter le moyen de refroidissement (160) présente une température comprise entre -163°C et -158°C à une entrée de ce moyen de refroidissement (160) et une température comprise entre -177°C et -165°C à une sortie de ce moyen de refroidissement (160), et dans lequel le gaz qui quitte le moyen de refroidissement (160) pour rejoindre le deuxième échangeur thermique (170) présente une température comprise entre -177°C et -165°C à une entrée de ce deuxième échangeur thermique (170) et une température comprise entre -177°C et -150°C à une sortie du deuxième échangeur thermique (170).
8. Système de traitement (100) de gaz selon l’une quelconque des revendications précédentes, dans lequel la partie du gaz qui n’est pas envoyée vers l’appareil consommateur de gaz (300) présente une température comprise entre 5°C et 45°C à une entrée du deuxième échangeur thermique (170) et une température comprise entre -177°C et -150°C à une sortie de ce deuxième échangeur thermique (170).
9. Système de traitement (100) de gaz selon l’une quelconque des revendications précédentes, dans lequel le premier échangeur thermique (130) comprend au moins une première passe (131) adaptée pour être parcourue par du gaz prélevé à l’état gazeux dans la cuve (200), au moins une deuxième passe (132) adaptée pour être parcourue par du fluide réfrigérant (FR) comprimé par l’organe de compression (121) et au moins une troisième passe (133) adaptée pour être parcourue par du fluide réfrigérant (FR) détendu.
10. Système de traitement (100) de gaz selon l’une quelconque des revendications précédentes, comprenant au moins une première conduite complémentaire (180) agencée entre une première conduite (111) qui s’étend entre la cuve (200) et le dispositif de compression (140), et l’organe de compression (121) du circuit fermé (120), et au moins une deuxième conduite complémentaire (181) agencée entre l’organe de compression (121) et l’au moins un appareil consommateur de gaz (300) et dans lequel au moins une vanne de régulation (190) est agencée sur la première conduite complémentaire (180) ou sur la deuxième conduite complémentaire (181).
11. Système de traitement (100) de gaz selon l’une quelconque des revendications précédentes, dans lequel le moyen de refroidissement (160) et/ ou le deuxième échangeur thermique (170) sont des échangeurs thermiques à plaques.
12. Navire (15) de transport de gaz liquéfié, comprenant au moins une cuve (200) d’une cargaison de gaz liquéfié, et au moins un système de traitement (100) de gaz selon l’une quelconque des revendications précédentes.
13. Système pour charger ou décharger un gaz liquide qui combine au moins un moyen à terre et au moins un navire (15) de transport de gaz liquide selon la revendication précédente.
14. Procédé de mise en œuvre d’un système de traitement (100) de gaz selon l’une quelconque des revendications 1 à 11, comprenant au moins les étapes de :
- prélèvement de gaz à l’état gazeux dans la cuve (200),
- réchauffage du gaz prélevé à l’état gazeux dans la cuve (200) par un échange de chaleur avec du fluide réfrigérant (FR), l’échange de chaleur étant opéré dans le premier échangeur thermique (130)
- alimentation d’au moins un appareil consommateur de gaz (300) par au moins une partie du gaz réchauffé par son passage à travers le premier échangeur thermique (130) et comprimé par le dispositif de compression (140),
- refroidissement de gaz prélevé à l’état liquide dans la cuve (200) par le moyen de refroidissement (160), - condensation d’une autre partie du gaz réchauffé par son passage à travers le premier échangeur thermique (130) qui n’est pas envoyée vers l’au moins un appareil consommateur de gaz (300) par échange de chaleur avec le gaz refroidi par le moyen de refroidissement (160), l’échange de chaleur s’opérant dans le deuxième échangeur thermique (170).
15. Procédé de chargement ou de déchargement d’un gaz liquide d’un navire (15) de transport de gaz selon la revendication 12.
PCT/FR2020/051702 2019-09-30 2020-09-29 Système de traitement d'un gaz contenu dans une cuve de stockage et/ou de transport de gaz à l'état liquide et gazeux WO2021064319A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080079447.6A CN114729779B (zh) 2019-09-30 2020-09-29 用于处理容纳在储存和/或运输气体的罐中的气体的系统
KR1020227014722A KR20220074933A (ko) 2019-09-30 2020-09-29 액체상 및 기체상의 가스를 저장 및/또는 수송하기 위해 탱크에 수용된 가스를 처리하는 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1910837A FR3101408B1 (fr) 2019-09-30 2019-09-30 Système de traitement d’un gaz contenu dans une cuve de stockage et/ou de transport de gaz à l’état liquide et gazeux
FRFR1910837 2019-09-30

Publications (1)

Publication Number Publication Date
WO2021064319A1 true WO2021064319A1 (fr) 2021-04-08

Family

ID=69468722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/051702 WO2021064319A1 (fr) 2019-09-30 2020-09-29 Système de traitement d'un gaz contenu dans une cuve de stockage et/ou de transport de gaz à l'état liquide et gazeux

Country Status (4)

Country Link
KR (1) KR20220074933A (fr)
CN (1) CN114729779B (fr)
FR (1) FR3101408B1 (fr)
WO (1) WO2021064319A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05280696A (ja) * 1992-03-31 1993-10-26 Osaka Gas Co Ltd 都市ガスの液化・気化方法および装置
KR20160068178A (ko) * 2014-12-05 2016-06-15 삼성중공업 주식회사 연료공급시스템
WO2018096187A2 (fr) * 2017-02-14 2018-05-31 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Système de production de gnl équipé d'un recondenseur
FR3066257A1 (fr) * 2018-01-23 2018-11-16 Gaztransport Et Technigaz Pompe a chaleur cryogenique et son utilisation pour le traitement de gaz liquefie
US20190101329A1 (en) * 2016-03-23 2019-04-04 Cryostar Sas System for treating a gas deriving from the evaporation of a cryogenic liquid and supplying pressurized gas to a gas engine
FR3078136A1 (fr) * 2018-02-21 2019-08-23 Gaztransport Et Technigaz Paroi de cuve etanche comprenant une membrane d'etancheite comportant une zone renforcee

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140060110A1 (en) * 2011-03-11 2014-03-06 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Fuel supply system for marine structure having reliquefaction apparatus and high-pressure natural gas injection engine
KR101386543B1 (ko) * 2012-10-24 2014-04-18 대우조선해양 주식회사 선박의 증발가스 처리 시스템
GB201316227D0 (en) * 2013-09-12 2013-10-30 Cryostar Sas High pressure gas supply system
KR20150062382A (ko) * 2013-11-29 2015-06-08 삼성중공업 주식회사 선박의 연료가스 공급시스템
KR101613495B1 (ko) * 2015-09-18 2016-04-19 유진초저온(주) 엘엔지 재액화를 통한 냉열 이용 시스템
KR101784842B1 (ko) * 2015-10-07 2017-10-12 삼성중공업 주식회사 연료가스 공급시스템
KR101831177B1 (ko) * 2015-12-09 2018-02-26 대우조선해양 주식회사 엔진을 포함하는 선박
KR102066632B1 (ko) * 2017-03-24 2020-01-15 대우조선해양 주식회사 선박용 증발가스 재액화 시스템 및 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05280696A (ja) * 1992-03-31 1993-10-26 Osaka Gas Co Ltd 都市ガスの液化・気化方法および装置
KR20160068178A (ko) * 2014-12-05 2016-06-15 삼성중공업 주식회사 연료공급시스템
US20190101329A1 (en) * 2016-03-23 2019-04-04 Cryostar Sas System for treating a gas deriving from the evaporation of a cryogenic liquid and supplying pressurized gas to a gas engine
WO2018096187A2 (fr) * 2017-02-14 2018-05-31 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Système de production de gnl équipé d'un recondenseur
FR3066257A1 (fr) * 2018-01-23 2018-11-16 Gaztransport Et Technigaz Pompe a chaleur cryogenique et son utilisation pour le traitement de gaz liquefie
FR3078136A1 (fr) * 2018-02-21 2019-08-23 Gaztransport Et Technigaz Paroi de cuve etanche comprenant une membrane d'etancheite comportant une zone renforcee

Also Published As

Publication number Publication date
CN114729779A (zh) 2022-07-08
KR20220074933A (ko) 2022-06-03
CN114729779B (zh) 2024-09-17
FR3101408B1 (fr) 2022-05-13
FR3101408A1 (fr) 2021-04-02

Similar Documents

Publication Publication Date Title
FR3066257B1 (fr) Pompe a chaleur cryogenique et son utilisation pour le traitement de gaz liquefie
FR3028306A1 (fr) Dispositif et procede de refroidissement d'un gaz liquefie
EP3743651A1 (fr) Procede et systeme de traitement de gaz d'une installation de stockage de gaz pour un navire de transport de gaz
FR3077867A1 (fr) Procede et systeme de traitement de gaz d'une installation de stockage de gaz pour un navire de transport de gaz
WO2023247852A1 (fr) Système d'alimentation et de refroidissement pour ouvrage flottant
WO2022208003A1 (fr) Procédé de refroidissement d'un échangeur thermique d'un système d'alimentation en gaz d'un appareil consommateur de gaz d'un navire
WO2021064319A1 (fr) Système de traitement d'un gaz contenu dans une cuve de stockage et/ou de transport de gaz à l'état liquide et gazeux
WO2022157446A1 (fr) Système d'alimentation en gaz pour appareils consommateurs de gaz à haute et basse pression
EP4018119A1 (fr) Système de traitement de gaz contenu dans une cuve de stockage et/ou de transport de gaz à l'état liquide et à l'état gazeux équipant un navire
EP4062046A1 (fr) Système d'alimentation en gaz d'au moins un appareil consommateur de gaz équipant un navire
FR3124830A1 (fr) Système d’alimentation en gaz pour appareils consommateurs de gaz à haute et basse pression
WO2021064318A1 (fr) Fluide réfrigérant destiné à un circuit de fluide réfrigérant d'un système de traitement de gaz naturel
WO2020188199A1 (fr) Système de contrôle de pression dans une cuve de gaz naturel liquéfié
FR3108167A1 (fr) Système de traitement d’un gaz naturel issu d’une cuve d’un ouvrage flottant configuré pour alimenter en gaz naturel en tant que carburant un appareil consommateur de gaz naturel
WO2020109607A1 (fr) Dispositif de generation de gaz sous forme gazeuse a partir de gaz liquefie
WO2023194670A1 (fr) Système d'alimentation en gaz pour appareils consommateurs de gaz à haute et basse pression et procédé de contrôle d'un tel système
WO2023052708A1 (fr) Système de traitement d'un gaz naturel issu d'une cuve d'un ouvrage flottant configuré pour alimenter en gaz naturel en tant que carburant un appareil consommateur de gaz naturel
FR3116507A1 (fr) Système d’alimentation en gaz d’au moins un appareil consommateur de gaz équipant un navire
FR3123716A1 (fr) Système de gestion de l’état de fluides
EP4222366A1 (fr) Système d'alimentation en gaz pour appareils consommateurs de gaz à haute et basse pression
WO2023194669A1 (fr) Système d'alimentation en gaz pour appareils consommateurs de gaz à haute et basse pression et procédé de contrôle d'un tel système
FR3123717A1 (fr) Circuit de reliquéfaction d’un fluide et d’alimentation d’un consommateur.
FR3114797A1 (fr) Système d’alimentation en gaz pour appareils consommateurs de gaz à haute et basse pression
WO2024084154A1 (fr) Procede de gestion d'un fluide sous forme liquide contenu dans une cuve
EP4431792A1 (fr) Système d'alimentation en gaz pour appareils consommateurs de gaz à haute et basse pression

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20793024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227014722

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20793024

Country of ref document: EP

Kind code of ref document: A1