WO2023194670A1 - Système d'alimentation en gaz pour appareils consommateurs de gaz à haute et basse pression et procédé de contrôle d'un tel système - Google Patents

Système d'alimentation en gaz pour appareils consommateurs de gaz à haute et basse pression et procédé de contrôle d'un tel système Download PDF

Info

Publication number
WO2023194670A1
WO2023194670A1 PCT/FR2023/050362 FR2023050362W WO2023194670A1 WO 2023194670 A1 WO2023194670 A1 WO 2023194670A1 FR 2023050362 W FR2023050362 W FR 2023050362W WO 2023194670 A1 WO2023194670 A1 WO 2023194670A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
heat exchanger
supply circuit
vapor state
supply system
Prior art date
Application number
PCT/FR2023/050362
Other languages
English (en)
Inventor
Bernard Aoun
Charbel HOMSY
Romain NARME
Original Assignee
Gaztransport Et Technigaz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport Et Technigaz filed Critical Gaztransport Et Technigaz
Publication of WO2023194670A1 publication Critical patent/WO2023194670A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • F17C9/04Recovery of thermal energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/026Special adaptations of indicating, measuring, or monitoring equipment having the temperature as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0326Valves electrically actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/043Localisation of the removal point in the gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/046Localisation of the removal point in the liquid
    • F17C2223/047Localisation of the removal point in the liquid with a dip tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/036Very high pressure, i.e. above 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0171Arrangement
    • F17C2227/0178Arrangement in the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0306Heat exchange with the fluid by heating using the same fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0323Heat exchange with the fluid by heating using another fluid in a closed loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • F17C2250/032Control means using computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0439Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0621Volume
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0636Flow or movement of content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/04Reducing risks and environmental impact
    • F17C2260/046Enhancing energy recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • F17C2265/034Treating the boil-off by recovery with cooling with condensing the gas phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/037Treating the boil-off by recovery with pressurising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/066Fluid distribution for feeding engines for propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/07Generating electrical power as side effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships

Definitions

  • the present invention relates to the field of vessels for storing and/or transporting gas in the liquid state and more particularly concerns a gas supply system for consumer appliances included within such vessels, as well as a method of control of such a system.
  • a ship comprising a tank of gas in the liquid state intended to be consumed and/or delivered to a destination point
  • said ship may be able to use at least part of said gas to the liquid state in order to power at least one of its engines, via a gas supply system.
  • a gas supply system This is the case for ships equipped with a ME-GI type high-pressure propulsion engine.
  • the gas In order to power this type of engine, the gas must be compressed at very high pressure by special compression devices capable of compressing the gas up to 300 bar absolute, but such compression devices are expensive and generate maintenance costs. consequent and induce vibrations within the vessel.
  • An alternative to installing these high pressure compression devices is to vaporize the gas in liquid form at 300 bar absolute, in particular using a high pressure pump, before it is sent to the propulsion engine. .
  • a means of low compression pressure can be installed to power an auxiliary engine, capable of consuming the gas in the vapor state at low pressure. Excess gas in vapor form can also be recirculated to the tank by being recondensed.
  • the present invention aims to resolve such problems by proposing a gas supply system for at least one high-pressure gas-consuming device and at least one low-pressure gas-consuming device for a floating structure which comprises at least one tank configured to contain the gas at least in the liquid state, the supply system comprising: at least one first gas supply circuit of the high pressure gas consuming device, at least one high pressure evaporator pressure configured to evaporate the gas circulating in the first supply circuit, at least a second gas supply circuit of the low-pressure gas consuming device, comprising at least one compression device configured to compress gas taken from the vapor state in the tank up to a pressure compatible with the needs of the low-pressure gas consuming device, at least one gas return line connected to the second supply circuit downstream of the compression device and s 'extending to the tank, at least a first heat exchanger and a second heat exchanger, each configured to carry out a heat exchange between the gas circulating in the return line and the gas in the liquid state circulating in the first power circuit.
  • the supply system is innovative in that it comprises at least one branch for cooling the gas taken in the vapor state from the tank connected to the second supply circuit upstream of the compression device, the supply system comprising at least one heat exchanger which comprises at least one first pass installed on the first supply circuit between the second heat exchanger heat and high pressure evaporator as well as a second pass installed on the cooling branch.
  • the cooling branch bifurcates the gas in the vapor state taken from the tank in relation to a portion of the second supply circuit. In doing so, the gas is brought to the heat exchanger which cools the gas which circulates in the cooling branch by means of the gas in the liquid state which passes through the first supply circuit.
  • the heat exchange is all the more efficient when it is carried out between a fluid in the liquid state and a fluid in the gaseous state.
  • the cooling branch and its heat exchanger are therefore of interest in the case where the consumer device is supplied at low pressure or in the case where we seek to liquefy the excess gas present in the head of the tank.
  • the densification of the gas in the vapor state after passing through the heat exchanger makes it possible to reduce the electrical consumption of the compression device by up to 30% when the gas in the vapor state circulates in the return line in view to be condensed. This reduction in the electrical consumption of the compression device can reach 45% when the gas in vapor state circulates in the second supply circuit in order to be supplied to the low-pressure gas consuming device.
  • the first gas supply circuit makes it possible to meet the fuel needs of the high-pressure gas consuming device.
  • the latter can for example be the means of propulsion of the floating structure, for example a ME-GI engine.
  • the first supply circuit extends from the tank to the high pressure gas consuming device.
  • the pump is installed at the bottom of the tank and pumps the gas in the liquid state so that it can circulate in the first supply circuit.
  • the gas must be in the vapor state to be able to supply the high pressure gas consuming device, the high pressure evaporator guarantees the evaporation of the gas before its supply to the high pressure gas consuming device.
  • the high pressure evaporator is the site of an exchange of calories between the gas in the liquid state circulating in the first supply circuit and a heat transfer fluid, for example glycol water, sea water or water vapor. This heat transfer fluid, whatever its form, must be at a sufficiently high temperature to create a change in state of the gas so that it passes into the vapor or supercritical state and supplies the high pressure gas consuming device.
  • the second supply circuit extends from the tank to the low-pressure gas consuming device.
  • the latter can for example be an auxiliary engine such as an internal combustion engine of an electric generator.
  • the compression device arranged on the second supply circuit is responsible for sucking the gas present in the top of the tank in order to be able to both supply the gas consuming device at low pressure but also to regulate the pressure within of the tank.
  • the gas in the vapor state can supply the low pressure gas consuming device, and/or circulate through the return line if the low pressure gas consuming device does not require or little fuel supply.
  • the return line being connected downstream of the compression device, the gas in vapor state sucked in by the compression device can therefore circulate there.
  • the gas in vapor state circulating in the return line first passes through the second heat exchanger, then the first heat exchanger, before returning to the tank.
  • the temperature of the gas at the vapor state decreases while passing through the two heat exchangers, until said gas condenses and returns to the liquid state substantially downstream of the first heat exchanger.
  • the gas thus condensed that is to say in the liquid state, then circulates to the tank.
  • the heat exchanger comprises at least a first pass installed on the first supply circuit upstream of the high pressure evaporator, as well as a second pass installed on the cooling branch.
  • the gas in the liquid state which passes through the first supply circuit therefore first passes through the heat exchanger, then passes through the first pass of the high pressure evaporator.
  • the first pass of the heat exchanger is installed between the second heat exchanger and the high pressure evaporator. It is understood here that the gas in the liquid state which circulates in the first supply circuit first passes through the first pass of the first exchanger, then passes through the first pass of the heat exchanger and finally passes through the first pass of the high pressure evaporator.
  • the second pass of the heat exchanger is upstream of the compression device, in the direction of gas circulation within the second supply circuit.
  • the gas in the vapor state thus enters the compression device at a lower temperature, which makes it possible to increase the density of the gas and thus reduce the volume flow rate of the compression device.
  • the power system comprises a point of divergence where the cooling branch and the second power circuit separate and a point of convergence where the cooling branch and the second power circuit join, the cooling branch extending between the point of divergence and the point of convergence. Point of divergence and point of convergence bound a portion of the second supply circuit and the cooling branch is thus in parallel with this portion.
  • the second supply circuit comprises at least one member for controlling the circulation of the gas within said second supply circuit, the cooling branch being arranged in parallel with the member for controlling the circulation of the gas within said second power circuit.
  • the control member is thus placed on the portion of the second supply circuit.
  • the cooling branch comprises at least one valve for controlling the circulation of gas within said cooling branch. We thus control the flow of gas which passes through the heat exchanger, in particular its second pass.
  • control member and/or the control valve can for example be an on-off valve.
  • the supply system which is the subject of the invention may also comprise at least one means for determining the temperature of the gas in the vapor state taken from the tank and a management device which controls at least the circulation control member. gas within said second supply circuit and the valve for controlling the circulation of gas within said cooling branch.
  • the determination means evaluates or measures, directly or indirectly, the temperature of the gas in vapor state taken from the tank.
  • the management device is able to authorize the circulation of gas within the cooling branch when the temperature determined by the determination means is greater than a reference threshold. Furthermore, the management device is able to prohibit the circulation of gas within the cooling branch when the temperature determined by the determination means is lower than the reference threshold.
  • the first supply circuit comprises a pump interposed between the first heat exchanger and the second heat exchanger. It is the pump, called the high pressure pump, which makes it possible to increase the pressure of the gas in the liquid state circulating in the first supply circuit, so that it presents a compatible gas pressure for the supply of the high pressure gas consuming device.
  • the high pressure evaporator and the heat exchanger form a unitary heat exchange module.
  • the second heat exchanger and the heat exchanger form a unitary heat exchange module.
  • at least the high pressure evaporator, the second heat exchanger and the heat exchanger form a unitary module heat exchange.
  • This unitary heat exchange module is a single exchanger provided with at least three, four or five passes fluidly distinct from each other.
  • the supply system comprises a heat treatment branch of the gas in the vapor state circulating in the return line, the heat treatment branch being connected to the second supply circuit upstream of the device compression, the supply system comprising a third heat exchanger configured to carry out a heat exchange between the gas in the vapor state circulating in the heat treatment branch and the gas in the vapor state circulating in the return line .
  • the heat treatment branch and the third heat exchanger make it possible to exploit the cold contained in the gas in the vapor state taken from the tank to transfer it to the gas in the vapor state circulating in the return line, so as to promote the liquefaction of this gas.
  • the first supply circuit comprises at least one pump configured to pump the gas taken in the liquid state from the tank.
  • the pump is advantageously submerged by being arranged at the bottom of the tank in order to take the gas in the liquid state to circulate it within the first supply circuit.
  • the gas in the liquid state is pumped by the pump, its pressure is high between 6 and 17 bars absolute.
  • the invention also relates to a method for controlling a supply system as described in this document, during which: in a determination step, the temperature of the gas in the vapor state taken from the tank is determined, then the gas in the vapor state is circulated within the cooling branch if the temperature of the gas in the vapor state determined in the determination step is greater than a reference threshold or, the gas in the vapor state is circulated within the second supply circuit if the temperature of the gas in the vapor state determined in the determination step is lower than the reference threshold.
  • the valve controlling the circulation of the gas within the cooling branch authorizes circulation of the gas within of said cooling branch. If the temperature of the gas taken in the vapor state from the tank is lower than the reference threshold, the gas circulation control valve within the cooling branch prohibits gas circulation within said cooling branch.
  • the method authorizes circulation of gas within said second supply circuit by opening a member for controlling the circulation of gas within the second supply circuit and prohibits circulation within of the return line, for example by closing the flow regulation member.
  • the determination step is implemented by the means for determining the temperature of the gas in the vapor state taken from the tank.
  • the comparison between this temperature thus determined and the reference threshold, as well as the resulting choice, are implemented by the management device.
  • a good level of efficiency is obtained from the system when the reference threshold is equal to - 90°C, in particular +/- 10%, the process then comprising a step of condensing the gas in the vapor state circulating in the line of back.
  • the method comprises a step of supplying the appliance consuming gas at low pressure via the second supply circuit.
  • FIG. 1 is a schematic representation of a power system according to the invention
  • FIG. 2 is a schematic representation of a power system of Figure 1 in a first operating state
  • FIG. 1 is a schematic representation of a power supply system of Figures 1 and 2 in a second operating state
  • FIG. 4 is a schematic representation of a power supply system according to the invention, according to another embodiment.
  • upstream and downstream used in the following description are used to express positions of elements within gas circuits in the liquid state or in the vapor state and refer to the direction of circulation of said gas. within said circuit.
  • Figure 1 represents a gas supply system 1 on board a floating structure.
  • the supply system 1 makes it possible to circulate gas which can be in the liquid state, in the vapor state, in the two-phase state or in the supercritical state, from a storage tank 8 and /or transport, and up to a high pressure gas consuming device 4 and up to a low pressure gas consuming device 5, in order to supply the latter with fuel.
  • Said floating structure can for example be an LNG tanker type vessel capable of storing and/or transporting gas in the liquid state, in particular natural gas.
  • the supply system 1 is in this case capable of using the gas in the liquid state that the floating structure stores and/or transports to supply the high-pressure gas consuming device 4, which may for example be a motor propulsion, and the low pressure gas consuming device 5, which can for example be an electric generator supplying the floating structure with electricity.
  • the supply system 1 is provided with a first gas supply circuit 2.
  • the first power supply circuit 2 includes a submerged pump 9 arranged within the tank 8.
  • the submerged pump 9 makes it possible to pump the gas in the liquid state and to circulate it in particular within the first supply circuit 2. By sucking the gas in the liquid state liquid, the submerged pump 9 raises the pressure thereof to a value between 6 and 17 bars absolute.
  • the gas in the liquid state in a direction of circulation going from the tank 8 towards the high pressure gas consuming device 4, passes through a first heat exchanger 6 and is pressurized by a pump 10, otherwise called pump high pressure. Subsequently, the gas in the liquid state passes through a second heat exchanger 7, then a high pressure evaporator 11 before joining the high pressure motor 4.
  • the pump 10 is advantageously arranged between the first heat exchanger 6 and the second heat exchanger 7.
  • the high pressure evaporator 11 makes it possible to modify the state of the gas circulating in the first supply circuit 2 in order to change it to the vapor or supercritical state.
  • a state is a compatible state for supplying the high pressure gas consuming device 4.
  • the evaporation of the gas in the liquid state can for example be carried out by heat exchange between the gas in the liquid state which enters into the high pressure evaporator 11 and a heat transfer fluid at a sufficiently high temperature to evaporate the gas into the liquid state, here glycol water, sea water or water vapor.
  • the increase in gas pressure is ensured by pump 10 when it pumps the gas in the liquid state.
  • the pump 10 makes it possible to raise the pressure of the gas in the liquid state to a value between 30 and 400 bars absolute, in particular for use with ammonia or hydrogen, between 30 and 70 bars absolute for a use with liquefied petroleum gas, and preferably between 150 and 400 bar absolute for use with ethane, ethylene or even with liquefied natural gas consisting mainly of methane.
  • the gas is at a pressure and in a state compatible with supplying the high pressure consumer device 4.
  • Such a configuration makes it possible to avoid the 'facility high pressure compression devices on the first supply circuit 2 which present cost constraints and generate strong vibrations.
  • part of the gas cargo can naturally pass into the vapor state and be contained in a tank head 12.
  • the gas inside the tank 8 vapor state contained in the tank head 12 must be evacuated.
  • the supply system 1 therefore comprises a second gas supply circuit 3, which uses the gas in the vapor state to supply the low-pressure gas consumer device 5.
  • the second supply circuit 3 extends between the tank top 12 and the low pressure gas consuming device 5.
  • the second supply circuit 3 comprises a compression device 13 , notably a compressor.
  • the compression device 13 also makes it possible to compress the gas in the vapor state circulating in the second supply circuit 3 at a pressure of between 6 and 20 bars absolute, and this so that the gas in the vapor state is at a compatible pressure for supplying the low-pressure gas consuming device 5.
  • the second supply circuit 3 thus makes it possible to supply the gas consuming device at low pressure 5, and this while regulating the pressure within the tank 8 by sucking the gas in the vapor state present in the tank head 12.
  • the supply system 1 comprises a return line 14 which extends from the second supply circuit 3 to the tank 8.
  • the return line 14 is connected to the second supply circuit 3 downstream of the compression device 13 with respect to a direction of circulation of the gas in the vapor state circulating in the second supply circuit 3.
  • the return line 14 crosses in first the second heat exchanger 7, then continues its journey by passing through the first heat exchanger 6.
  • the first heat exchanger 6 comprises a first pass 6a which is part of the first supply circuit 2.
  • This first heat exchanger 6 comprises a second pass 6b which is part of the return line 14.
  • the direction of circulation within the first pass 6a is opposite to the direction of circulation within the second pass 6b of the first heat exchanger 6.
  • the second heat exchanger 7 is installed between the first heat exchanger 6 and the high pressure evaporator 11, on the first supply circuit 2.
  • the second heat exchanger 7 comprises a first pass 7a which is part of the first supply circuit 2.
  • This second heat exchanger 7 comprises a second pass 7b which is part of the return line 14.
  • the direction of circulation within the first pass 7a is opposite to the direction of circulation within the second pass 7b of the second heat exchanger 7.
  • the return line 14 further comprises a flow regulating member 15 which controls the flow rate of the fluid circulating in the return line 14.
  • This flow regulating member 15 has a passage section which can be modified. Once the gas is condensed, it circulates to the tank 8.
  • the first heat exchanger 6 therefore acts as a condenser while the flow regulation member 15 controls the heat exchange taking place in the first heat exchanger 6, in the second heat exchanger 7 and in the high pressure evaporator 11.
  • the power system 1 also includes an auxiliary power line 16, extending from the first power circuit 2, via a tap placed between the submerged pump 9 and the first heat exchanger 6, to the second circuit d supply 3, by connecting to it between the compression device 13 and the low pressure gas consuming device 5.
  • the auxiliary supply line 16 makes it possible to supply the low pressure gas consuming device 5 in the event of insufficient flow of gas in the vapor state formed within the tank head 12.
  • the gas in the liquid state pumped by the submerged pump 9 can then circulate within this auxiliary supply line 16 in order to to supply the gas consuming device at low pressure 5.
  • the auxiliary supply line 16 passes through a low pressure evaporator 17 so that the gas in the liquid state circulating in the auxiliary supply line 16 passes in a vapor state.
  • the operation of the low pressure evaporator 17 can for example be identical to that of the high pressure evaporator 11, that is to say that the gas is evaporated by heat exchange with a heat transfer fluid at a temperature high enough to evaporate. gas in liquid state.
  • the gas in the vapor state circulates within the auxiliary supply line 16, then joins the second supply circuit 3 in order to supply the low-pressure gas consumer device. pressure 5.
  • the auxiliary supply line 16 is only used in the absence of gas in the vapor state in sufficient quantity within the tank head 12.
  • the auxiliary supply line 16 includes a valve 19 controlling the circulation of gas within the auxiliary supply line 16 when use thereof is not necessary.
  • the supply system 1 comprises at least one branch 40 for cooling the gas taken in the vapor state from the tank.
  • a branch makes it possible to circulate the gas taken in the vapor state in the tank 8 in order to cool it.
  • the cooling branch 40 is fluidly connected to the second supply circuit 3, in a position located upstream of the compression device 13. This is as well as the supply system comprises a point of divergence 44 provided on the second supply circuit 3 and at which the cooling branch 40 begins.
  • the supply system 3 further comprises a point of convergence 45, where the second power circuit 3 and the cooling branch 40 come together. The point of divergence 44 and the point of convergence 45 are both placed on the second supply circuit 3, before the compression device 13.
  • the supply system 1 also includes a heat exchanger 41 responsible for cooling the gas taken in the vapor state from the tank by exchanging calories with the gas in the liquid state which circulates in the first supply circuit 2.
  • This heat exchanger 41 comprises a first pass 42 which exchanges calories with a second pass 43 constituting this heat exchanger 41.
  • the first pass 42 of the heat exchanger 41 forms part of the first supply circuit 2 by being traversed by the gas in the liquid state, while the second pass 43 of the heat exchanger 41 is part of the cooling branch 40 and is traversed by the gas in the vapor state taken from the tank 8.
  • the first pass 42 of the heat exchanger 41 is fluidly arranged between the first pass 7a of the second heat exchanger 7 and a first pass 1 la of the high pressure evaporator 11.
  • Such a location makes it possible to cool the gas in the vapor state which circulates in the cooling branch 40 by heat exchange with the gas in the liquid state which circulates in the first supply circuit 2, which ultimately makes it possible to reduce the volume flow rate at the inlet of the compression device 13 and thus reduce its consumption, particularly electrical consumption.
  • This location also makes it possible to reduce the flow of heat transfer fluid which passes through a second pass 11b of the high pressure evaporator 11 in order to evaporate the gas in the liquid state which comes from the tank 8.
  • the invention makes it possible to reduce the quantity of calories supplied by the heat transfer fluid since part of the calories is supplied by the gas in the vapor state which circulates in the cooling branch 40.
  • the circulation of gas in the vapor state within the second supply circuit 3 is placed under the control of a control member 46.
  • the latter is for example a valve.
  • the circulation of gas in the vapor state within the cooling branch 40 is placed under the dependence of a control valve 47.
  • This control member and/or this control valve is for example a valve or an all valve. or nothing.
  • the cooling branch 40 is installed in parallel with this control member 46.
  • the point of divergence 44 is positioned upstream of the control member 46 of the gas circulation within the second circuit.
  • power supply 3 while the point of convergence 45 is positioned downstream of this same control member 46.
  • the supply system also includes a management device 49 and at least one means 48 for determining the temperature of the gas in the vapor state taken from the tank 8.
  • the means 48 for determining the temperature is for example a temperature sensor. temperature positioned on the second supply circuit 3, between the tank and the point of divergence 44. Alternatively, the sensor can be installed in the tank roof 12. This means 48 of determining the temperature is electrically connected to the management device 49 since the information noted by the determination means 48 is used in a calculation implemented by the management device 49.
  • This management device 49 is an electronic control module which receives information from the determination means 48 and which controls the opening or closing of the control member 46 and/or the control valve 47.
  • the control device management 49 implements the process and its various stages, with the exception of the stage of determining the temperature of the gas in the value state taken from the tank 8.
  • the management device 49 is able to authorize the circulation of gas within the cooling branch 40 when the temperature of the gas in the vapor state taken from the tank 8 and determined by the determination means 48 is greater than a threshold of reference, such a reference threshold being for example equal to -90°C when the gas in the vapor state travels mainly or exclusively the return line 14.
  • this reference threshold is greater than or equal to -150°C when the gas in vapor state is mainly or exclusively sent to the low-pressure gas consuming device 5, via the second supply circuit3.
  • the flow regulation member 15 reduces the flow of gas circulating in the return line 14, or interrupts it completely if necessary.
  • the management device 49 controls an opening of the control valve 47, thus authorizing the gas in the vapor state taken from the tank 8 to join the heat exchanger 41, in particular its second pass 43. In such a situation, the device management device 49 prohibits the passage of gas in the vapor state within a portion 51 of the second supply circuit 3 located between the point of divergence 44 and the point of convergence 45. To do this, the management device 49 commands a closing of the control member 46 installed on this portion 51.
  • the management device 49 is also capable of prohibiting the circulation of gas within the cooling branch 40 when the temperature determined by the determination means 48 is lower than the reference threshold mentioned above .
  • the management device 49 controls a closing of the control valve 47.
  • the management device 49 authorizes the circulation of gas in the vapor state through the portion 51 of the second circuit. supply 3, by controlling the opening of the control member 46, thus authorizing the gas in the vapor state taken from the tank 8 to directly reach the compression device 13.
  • management device 49 can be assigned to other calculation operations necessary for the operation of the power supply system 1 according to the invention, such as for example the control of the flow regulation member 15 or the control of the valve 19 controlling the circulation of gas within the auxiliary supply line 16, or the control of the compression device 13 or the control of the submerged pump 9 or the pump 10.
  • each exchanger described in this document can be a two-pass component.
  • the invention also covers the case where certain exchangers are brought together to form a single exchanger, for example with three or four passes.
  • the high pressure evaporator and the heat exchanger 41, or the second heat exchanger 7 and the heat exchanger 41 or even the combination of these three components can form a unitary heat exchange module 50.
  • FIG 4 illustrates the power system shown in Figures 1 to 3 to which additional components are added.
  • the supply system 1 shown in Figure 4 thus further comprises a heat treatment branch 33 of the gas in the vapor state circulating in the return line 14.
  • This heat treatment branch 33 has the function of participating in the cooling of the gas in vapor state which circulates in the return line, so as to facilitate its condensation. In this situation, the heat treatment branch 33 makes it possible to collect the cold of the gas in the vapor state taken from the tank 8 and to recover it by transferring it to the return line 14.
  • the heat treatment branch 33 is connected to the second supply circuit 3 upstream of the compression device 13, via a divergence zone 52 and a convergence zone 53 specific to the heat treatment branch 33.
  • the heat treatment branch 33 and the cooling branch 40 can both be connected to the point of divergence 44 and to the point of convergence 45.
  • the heat treatment branch 33 and the cooling branch are in parallel one by relative to the other, and relative to portion 51 of the second power supply circuit 3.
  • FIG. 4 also shows the presence of a third heat exchanger 36 configured to carry out a heat exchange between the gas in the vapor state circulating in the heat treatment branch 33 and the gas in the vapor state circulating in the line return 14.
  • a third heat exchanger 36 comprises a first pass 36a which is part of the return line 14 and which is arranged between the second pass 6b of the first heat exchanger 6 and the second pass 7b of the second heat exchanger 7.
  • This third heat exchanger 36 comprises a second pass 36b which is part of the heat treatment branch 33.
  • the heat treatment branch 33 further comprises a control device 38 configured to control the circulation of gas in the vapor state within the heat treatment branch 33.
  • This control device 38 is placed under the control of the management device 49 and it is in an open position when the temperature of the gas in the vapor state taken from the tank 8 detected by the determination means 48 is below a temperature threshold, for example equal to - 110°C.
  • the management device 49 controls the closing of the control device 38 and circulates the gas in the vapor state within the second power circuit 3.
  • the unitary heat exchange module 50 mentioned above can be completed with the third heat exchanger 36. Such a unitary heat exchange module 50 can then comprise at least five passes fluidically separated from each other. others.
  • the invention is not limited to the examples which have just been described and numerous adjustments can be made to these examples without departing from the scope of the invention.
  • the invention achieves the goal it set for itself, and makes it possible to propose a gas supply system which reduces the energy consumption of the compression and/or the high pressure evaporator.
  • Variants not described here could be implemented without departing from the context of the invention, since, in accordance with the invention, they include a power supply system conforming to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

La présente invention concerne un système d'alimentation (1) d'un appareil consommateur de gaz à haute pression (4) et d'un appareil consommateur de gaz à basse pression (5) d'un ouvrage flottant comprenant une cuve (8), le système d'alimentation (1) comprenant : un premier circuit d'alimentation (2), un deuxième circuit d'alimentation (3), une ligne de retour (14), un premier échangeur de chaleur (6) et un deuxième échangeur de chaleur (7), le système d'alimentation (1) comprend au moins une branche de refroidissement (40) du gaz prélevé à l'état vapeur dans la cuve (8) raccordée au deuxième circuit d'alimentation (3) en amont du dispositif de compression (13), le système d'alimentation (1) comprenant au moins un échangeur thermique (41) configuré pour opérer un échange de chaleur entre le gaz à l'état vapeur qui circule dans la branche de refroidissement (40) et le gaz à l'état liquide qui circule dans le premier circuit d'alimentation (2).

Description

DESCRIPTION
Titre de l'invention : Système d’alimentation en gaz pour appareils consommateurs de gaz à haute et basse pression et procédé de contrôle d’un tel système
La présente invention se rapporte au domaine des navires de stockage et/ou de transport de gaz à l’état liquide et concerne plus particulièrement un système d’alimentation en gaz pour appareils consommateurs compris au sein de tels navires, ainsi qu’un procédé de contrôle d’un tel système.
Au cours d’un trajet effectué par un navire comprenant une cuve de gaz à l’état liquide destiné à être consommé et/ou à être livré à un point de destination, ledit navire peut être apte à utiliser au moins une partie dudit gaz à l’état liquide afin d’alimenter au moins l’un de ses moteurs, et ce via un système d’alimentation en gaz. C’est le cas des navires pourvus d’un moteur de propulsion haute pression de type ME-GI. Afin d’alimenter ce type de moteur, le gaz doit être comprimé à très haute pression par des dispositifs de compression spéciaux aptes à comprimer le gaz jusqu’à 300 bars absolus, mais de tels dispositifs de compression sont chers, engendrent des frais de maintenance conséquents et induisent des vibrations au sein du navire.
Une alternative à l’installation de ces dispositifs de compression à haute pression est de vaporiser le gaz sous forme liquide à 300 bars absolus, notamment à l’aide d’une pompe haute pression, avant que ce dernier ne soit envoyé au moteur de propulsion. Une telle solution ne permettant pas d’éliminer le gaz sous forme vapeur (ou BOG, qui en anglais signifie « Boil-Off Gas ») se formant naturellement au sein d’une cuve contenant au moins partiellement la cargaison, un moyen de compression basse pression peut être installé pour alimenter un moteur auxiliaire, capable de consommer le gaz à l’état vapeur à basse pression. L’excès de gaz sous forme vapeur peut également recirculer jusqu’à la cuve en étant recondensé.
L’efficacité atteinte par un tel système est déjà élevée, mais il est encore possible d’augmenter le rendement global de ce système. En effet, un inconvénient de ce système réside dans les variations de la température du gaz sous forme vapeur prélevé dans la cuve. Il est ainsi des cas où cette température dépasse un seuil qui in fine provoque une augmentation de la consommation du moyen de compression basse pression, notamment une augmentation de sa consommation électrique.
Un autre inconvénient réside dans la grande quantité d’énergie demandé par la vaporisation du gaz sous forme liquide pour atteindre 300 bars absolus.
La présente invention vise à résoudre de telles problématiques en proposant un système d’alimentation en gaz d’au moins un appareil consommateur de gaz à haute pression et d’au moins un appareil consommateur de gaz à basse pression d’un ouvrage flottant qui comprend au moins une cuve configurée pour contenir le gaz au moins à l’état liquide, le système d’alimentation comprenant : au moins un premier circuit d’alimentation en gaz de l’appareil consommateur de gaz à haute pression, au moins un évaporateur haute pression configuré pour évaporer le gaz circulant dans le premier circuit d’alimentation, au moins un deuxième circuit d’alimentation en gaz de l’appareil consommateur de gaz à basse pression, comprenant au moins un dispositif de compression configuré pour comprimer du gaz prélevé à l’état vapeur dans la cuve jusqu’à une pression compatible avec les besoins de l’appareil consommateur de gaz à basse pression, au moins une ligne de retour de gaz connectée au deuxième circuit d’alimentation en aval du dispositif de compression et s’étendant jusqu’à la cuve, au moins un premier échangeur de chaleur et un deuxième échangeur de chaleur, chacun configurés pour opérer un échange de chaleur entre le gaz circulant dans la ligne de retour et le gaz à l’état liquide circulant dans le premier circuit d’alimentation.
Le système d’alimentation est innovant en ce qu’il comprend au moins une branche de refroidissement du gaz prélevé à l’état vapeur dans la cuve raccordée au deuxième circuit d’alimentation en amont du dispositif de compression, le système d’alimentation comprenant au moins un échangeur thermique qui comporte au moins une première passe installée sur le premier circuit d’alimentation entre le deuxième échangeur de chaleur et l’évaporateur haute pression ainsi qu’une seconde passe installée sur la branche de refroidissement.
La branche de refroidissement fait bifurquer le gaz à l’état vapeur prélevé dans la cuve par rapport à une portion du deuxième circuit d’alimentation. Ce faisant, le gaz est amené à l’échangeur thermique qui met en oeuvre un refroidissement du gaz qui circule dans la branche de refroidissement au moyen du gaz à l’état liquide qui transite dans le premier circuit d’alimentation. L’échange thermique est d’autant plus efficace qu’il est réalisé entre un fluide à l’état liquide et un fluide à l’état gazeux. La branche de refroidissement et son échangeur thermique sont donc intéressants dans le cas où on alimente l’appareil consommateur à basse pression ou dans le cas où on cherche à liquéfier l’excédent de gaz présent dans le ciel de la cuve. La densification du gaz à l’état de valeur après passage au sein de l’échangeur thermique permet de réduire la consommation électrique du dispositif de compression jusqu’à 30% quand le gaz à l’état vapeur circule dans la ligne de retour en vue d’être condensé. Cette réduction de la consommation électrique du dispositif de compression peut atteindre 45% quand le gaz à l’état vapeur circule dans le deuxième circuit d’alimentation en vue d’être fourni à l’appareil consommateur de gaz à basse pression.
Le premier circuit d’alimentation en gaz permet de subvenir aux besoins en carburant de l’appareil consommateur de gaz à haute pression. Ce dernier peut par exemple être le moyen de propulsion de l’ouvrage flottant, par exemple un moteur ME-GI. Le premier circuit d’alimentation s’étend de la cuve jusqu’à l’appareil consommateur de gaz à haute pression. La pompe est installée en fond de cuve et assure le pompage du gaz à l’état liquide afin que celui-ci puisse circuler dans le premier circuit d’alimentation.
Le gaz devant être à l’état vapeur pour pouvoir alimenter l’appareil consommateur de gaz à haute pression, l’évaporateur haute pression garantit l’évaporation du gaz avant sa fourniture à l’appareil consommateur de gaz à haute pression. L’évaporateur haute pression est le siège d’un échange de calories entre le gaz à l’état liquide circulant dans le premier circuit d’alimentation et un fluide caloporteur, par exemple de l’eau glycolée, de l’eau de mer ou de la vapeur d’eau. Ce fluide caloporteur, quelle que soit sa forme, doit être à une température suffisamment élevée pour créer un changement d’état du gaz afin que ce dernier passe à l’état vapeur ou supercritique et alimente l’appareil consommateur de gaz à haute pression.
Le deuxième circuit d’alimentation s’étend de la cuve jusqu’à l’appareil consommateur de gaz à basse pression. Ce dernier peut par exemple être un moteur auxiliaire tel qu’un moteur à combustion interne d’un générateur électrique. Le dispositif de compression disposé sur le deuxième circuit d’alimentation est chargé d’aspirer le gaz présent dans le ciel de la cuve afin de pouvoir à la fois alimenter l’appareil consommateur de gaz à basse pression mais aussi de réguler la pression au sein de la cuve.
En sortie du dispositif de compression, le gaz à l’état vapeur peut alimenter l’appareil consommateur de gaz à basse pression, et/ou circuler à travers la ligne de retour si l’appareil consommateur de gaz à basse pression ne nécessite pas ou peu d’apport en carburant. La ligne de retour étant connectée en aval du dispositif de compression, le gaz à l’état vapeur aspiré par le dispositif de compression peut donc y circuler.
Le gaz à l’état vapeur circulant dans la ligne de retour traverse dans un premier temps le deuxième échangeur de chaleur, puis le premier échangeur de chaleur, avant de retourner dans la cuve. Selon cette configuration, grâce à l’échange de calories s’opérant entre le gaz à l’état liquide circulant dans le premier circuit d’alimentation et le gaz à l’état vapeur circulant dans la ligne de retour, la température du gaz à l’état vapeur diminue en traversant les deux échangeurs de chaleur, jusqu’à ce que ledit gaz se condense et repasse à l’état liquide sensiblement en aval du premier échangeur de chaleur. Le gaz ainsi condensé, c’est-à-dire à l’état liquide, circule alors jusqu’à la cuve.
Selon une caractéristique de l’invention, l’échangeur thermique comprend au moins une première passe installée sur le premier circuit d’alimentation en amont de l’évaporateur haute pression, ainsi qu’une seconde passe installée sur la branche de refroidissement. Le gaz à l’état liquide qui transite dans le premier circuit d’alimentation traverse donc en premier l’échangeur thermique, puis traverse la première passe de l’évaporateur haute pression. Selon une autre raffinement, la première passe de l’échangeur thermique est installée entre le deuxième échangeur de chaleur et l’évaporateur haute pression. On comprend ici que le gaz à l’état liquide qui circule dans le premier circuit d’alimentation traverse d’abord la première passe du premier échangeur, puis traverse la première passe de l’échangeur thermique et enfin traverse la première passe de l’évaporateur haute pression.
Les successions d’échange thermique mis en oeuvre par les variantes ci-dessus permettent de mettre à profit les calories de l’un et/ou l’autre des fluides concernés, selon un ordre qui augmente l’efficacité du système.
Selon une autre caractéristique de l’invention, la deuxième passe de l’échangeur thermique est en amont du dispositif de compression, selon le sens de circulation du gaz au sein du deuxième circuit d’alimentation. Le gaz à l’état vapeur entre ainsi dans le dispositif de compression à une température plus basse, ce qui permet d’augmenter la densité du gaz et ainsi diminuer le débit volumique du dispositif de compression.
Selon encore une autre caractéristique, le système d’alimentation comprend un point de divergence où se séparent la branche de refroidissement et le deuxième circuit d’alimentation et un point de convergence où se rejoignent la branche de refroidissement et le deuxième circuit d’alimentation, la branche de refroidissement s’étendant entre le point de divergence et le point de convergence. Point de divergence et point de convergence bornent une portion du deuxième circuit d’alimentation et la branche de refroidissement est ainsi en parallèle de cette portion.
De manière avantageuse, le deuxième circuit d’alimentation comprend au moins un organe de contrôle de la circulation du gaz au sein dudit deuxième circuit d’alimentation, la branche de refroidissement étant disposée en parallèle de l’organe de contrôle de la circulation du gaz au sein dudit deuxième circuit d’alimentation. L’organe de contrôle est ainsi disposé sur la portion du deuxième circuit d’alimentation.
Le point de divergence est alors en amont de l’organe de contrôle de la circulation du gaz au sein dudit deuxième circuit d’alimentation et le point de convergence est aval dudit l’organe de contrôle, selon le sens de circulation du gaz au sein dudit deuxième circuit d’alimentation. De manière encore avantageuse, la branche de refroidissement comprend au moins une vanne de contrôle de la circulation du gaz au sein dudit branche de refroidissement. On contrôle ainsi le flux de gaz qui traverse l’échangeur thermique, notamment sa deuxième passe.
L’organe de contrôle et/ou la vanne de contrôle peut par exemple être une vanne tout ou rien.
Le système d’alimentation objet de l’invention peut aussi comprendre au moins un moyen de détermination de la température du gaz à l’état vapeur prélevé dans la cuve et un dispositif de gestion qui commande au moins l’organe de contrôle de la circulation du gaz au sein dudit deuxième circuit d’alimentation et la vanne de contrôle de la circulation du gaz au sein dudit branche de refroidissement. Le moyen de détermination évalue ou mesure, directement ou indirectement, la température du gaz à l’état vapeur prélevé dans la cuve.
Le dispositif de gestion est apte à autoriser la circulation de gaz au sein de la branche de refroidissement quand la température déterminée par le moyen de détermination est supérieure à un seuil de référence. Par ailleurs, le dispositif de gestion est apte à interdire la circulation de gaz au sein de la branche de refroidissement quand la température déterminée par le moyen de détermination est inférieure au seuil de référence.
De manière intéressante, le premier circuit d’alimentation comprend une pompe interposée entre le premier échangeur de chaleur et le deuxième échangeur de chaleur. C’est la pompe, dite pompe haute pression, qui permet d’augmenter la pression du gaz à l’état liquide circulant dans le premier circuit d’alimentation, et ce afin que celui-ci présente une pression de gaz compatible pour l’alimentation de l’appareil consommateur de gaz à haute pression.
Selon un premier exemple de mise en oeuvre, l’évaporateur haute pression et l’échangeur thermique forment un module unitaire d’échange thermique. De manière alternative, le deuxième échangeur de chaleur et l’échangeur thermique forment un module unitaire d’échange thermique. De manière combinée, au moins l’évaporateur haute pression, le deuxième échangeur de chaleur et l’échangeur thermique forme un module unitaire d’échange thermique. Ce module unitaire d’échange thermique est un seul et même échangeur pourvu d’au moins trois, quatre ou cinq passes fluidiquement distinctes les unes des autres.
Selon une caractéristique de l’invention, le système d’alimentation comprend une branche de traitement thermique du gaz à l’état vapeur circulant dans la ligne de retour, la branche de traitement thermique étant raccordée au deuxième circuit d’alimentation en amont du dispositif de compression, le système d’alimentation comprenant un troisième échangeur de chaleur configuré pour opérer un échange de chaleur entre le gaz à l’état vapeur circulant dans la branche de traitement thermique et le gaz à l’état vapeur circulant dans la ligne de retour. La branche de traitement thermique et le troisième échangeur de chaleur permet d’exploiter le froid contenu dans le gaz à l’état vapeur prélevé dans la cuve pour le céder au gaz à l’état vapeur circulant dans la ligne de retour, de manière à favoriser la liquéfaction de ce gaz.
Selon une caractéristique de l’invention, le premier circuit d’alimentation comprend au moins une pompe configurée pour pomper le gaz prélevé à l’état liquide dans la cuve. La pompe est avantageusement immergée en étant agencée au fond de la cuve afin de prélever le gaz à l’état liquide pour le faire circuler au sein du premier circuit d’alimentation. Lorsque le gaz à l’état liquide est pompé par la pompe, la pression de celui-ci est élevée entre 6 et 17 bars absolus.
L’invention vise aussi un procédé de contrôle d’un système d’alimentation tel que décrit dans le présent document, au cours duquel : à une étape de détermination, on détermine la température du gaz à l’état vapeur prélevé dans la cuve, puis on fait circuler le gaz à l’état vapeur au sein de la branche de refroidissement si la température du gaz à l’état vapeur déterminée à l’étape de détermination est supérieure à un seuil de référence ou, on fait circuler le gaz à l’état vapeur au sein du deuxième circuit d’alimentation si la température du gaz à l’état vapeur déterminée à l’étape de détermination est inférieure au seuil de référence.
En d’autres termes, si la température du gaz prélevé à l’état vapeur dans la cuve est supérieure au seuil de référence, la vanne de contrôle de la circulation du gaz au sein de la branche de refroidissement autorise une circulation du gaz au sein dudit branche de refroidissement. Si la température du gaz prélevé à l’état vapeur dans la cuve est inférieure au seuil de référence, la vanne de contrôle de la circulation du gaz au sein de la branche de refroidissement interdit une circulation du gaz au sein dudit branche de refroidissement. En fonction du seuil de référence sélectionné, le procédé autorise une circulation du gaz au sein dudit deuxième circuit d’alimentation par ouverture d’un organe de contrôle de la circulation du gaz au sein du deuxième circuit d’alimentation et interdit la circulation au sein de la ligne de retour, par exemple en fermant l’organe de régulation du débit.
L’étape de détermination est mise en oeuvre par le moyen de détermination de la température du gaz à l’état vapeur prélevé dans la cuve. La comparaison entre cette température ainsi déterminée et le seuil de référence, ainsi que le choix qui en découle, sont mis en oeuvre par le dispositif de gestion.
Un bon niveau d’efficacité est tiré du système lorsque le seuil de référence est égale à - 90°C, notamment +/- 10%, le procédé comprenant alors un étape de condensation du gaz à l’état vapeur circulant dans la ligne de retour.
Selon un aspect de l’invention, lorsque le seuil de référence est supérieure ou égale à - 150°C, le procédé comprend un étape d’alimentation de l’appareil consommateur de gaz à basse pression via le deuxième circuit d’alimentation.
D’autres caractéristiques et avantages de l’invention apparaîtront encore au travers de la description qui suit d’une part, et de plusieurs exemples de réalisation donnés à titre indicatif et non limitatif en référence aux dessins schématiques annexés d’autre part, sur lesquels : [fig 1] est une représentation schématique d’un système d’alimentation selon l’invention, [fig 2] est une représentation schématique d’un système d’alimentation de la figure 1 dans un premier état de fonctionnement,
[fig 3] est une représentation schématique d’un système d’alimentation des figures 1 et 2 dans un deuxième état de fonctionnement,
[fig 4] est une représentation schématique d’un système d’alimentation selon l’invention, selon un autre mode de réalisation.
Les termes « amont » et « aval » employés dans la description qui suit sont utilisés pour exprimer des positions d’éléments au sein de circuits de gaz à l’état liquide ou à l’état vapeur et se réfèrent au sens de circulation dudit gaz au sein dudit circuit.
Les éléments identiques conservent la même référence quel que soit les figures où ils apparaissent.
La figure 1 représente un système d’alimentation 1 en gaz embarqué sur un ouvrage flottant. Le système d’alimentation 1 permet de faire circuler du gaz pouvant être à l’état liquide, à l’état vapeur, à l’état diphasique ou à l’état supercritique, et ce à partir d’une cuve 8 de stockage et/ou de transport, et jusqu’à un appareil consommateur de gaz à haute pression 4 et jusqu’à un appareil consommateur de gaz à basse pression 5, afin d’alimenter ces derniers en carburant.
Ledit ouvrage flottant peut par exemple être un navire de type méthanier pouvant stocker et/ou transporter du gaz à l’état liquide, notamment du gaz naturel. Le système d’alimentation 1 est dans ce cas apte à utiliser le gaz à l’état liquide que l’ouvrage flottant stocke et/ou transporte pour alimenter l’appareil consommateur de gaz à haute pression 4, lequel pouvant par exemple être un moteur de propulsion, et l’appareil consommateur de gaz à basse pression 5, lequel pouvant par exemple être un générateur électrique alimentant l’ouvrage flottant en électricité.
Afin d’assurer la circulation du gaz contenu dans la cuve 8 jusqu’à l’appareil consommateur de gaz à haute pression 4, le système d’alimentation 1 est pourvu d’un premier circuit d’alimentation 2 en gaz. Le premier circuit d’alimentation 2 comprend une pompe immergée 9 disposée au sein de la cuve 8. La pompe immergée 9 permet de pomper le gaz à l’état liquide et de le faire circuler notamment au sein du premier circuit d’alimentation 2. En aspirant le gaz à l’état liquide, la pompe immergée 9 élève la pression de celui-ci à une valeur comprise entre 6 et 17 bars absolus.
Le gaz à l’état liquide, selon un sens de circulation allant de la cuve 8 vers l’appareil consommateur de gaz à haute pression 4, traverse un premier échangeur de chaleur 6 et est mis en pression par une pompe 10, autrement appelé pompe haute pression. Par la suite, le gaz à l’état liquide traverse un deuxième échangeur de chaleur 7, puis un évaporateur haute pression 11 avant de rejoindre le moteur haute pression 4. La pompe 10 est avantageusement disposée entre le premier échangeur de chaleur 6 et le deuxième échangeur de chaleur 7.
L’ évaporateur haute pression 11 permet de modifier l’état du gaz circulant dans le premier circuit d’alimentation 2 afin de le faire passer à l’état vapeur ou supercritique. Un tel état est un état compatible pour alimenter l’appareil consommateur de gaz à haute pression 4. L’évaporation du gaz à l’état liquide peut par exemple se faire par échange de chaleur entre le gaz à l’état liquide qui entre dans l’évaporateur haute pression 11 et un fluide caloporteur à température suffisamment élevée pour évaporer le gaz à l’état liquide, ici de l’eau glycolée, de l’eau de mer ou de la vapeur d’eau.
La hausse de la pression du gaz est assurée par la pompe 10 lorsque celle-ci pompe le gaz à l’état liquide. La pompe 10 permet d’élever la pression du gaz à l’état liquide à une valeur comprise entre 30 et 400 bars absolus, notamment pour un usage avec de l’ammoniaque ou de l’hydrogène, entre 30 et 70 bars absolus pour un usage avec du gaz de pétrole liquéfié, et de préférence entre 150 et 400 bars absolus pour un usage avec de l’éthane, de l’éthylène ou encore avec du gaz naturel liquéfié constitué majoritairement de méthane.
Grâce à la combinaison de la pompe 10 et de l’évaporateur haute pression 11, le gaz est à une pression et dans un état compatibles pour l’alimentation de l’appareil consommateur à haute pression 4. Une telle configuration permet d’éviter l’installation de dispositifs de compression haute pression sur le premier circuit d’alimentation 2 qui présentent des contraintes de coûts et génèrent de fortes vibrations.
Au sein de la cuve 8, une partie de la cargaison de gaz peut naturellement passer à l’état vapeur et être contenu dans un ciel de cuve 12. Afin d’éviter une surpression au sein de la cuve 8, le gaz à l’état vapeur contenu dans le ciel de cuve 12 doit être évacué.
Le système d’alimentation 1 comprend donc un deuxième circuit d’alimentation 3 en gaz, qui utilise le gaz à l’état vapeur pour alimenter l’appareil consommateur de gaz à basse pression 5. Le deuxième circuit d’alimentation 3 s’étend entre le ciel de cuve 12 et l’appareil consommateur de gaz à basse pression 5. Afin d’aspirer le gaz à l’état vapeur contenu dans le ciel de cuve 12, le deuxième circuit d’alimentation 3 comprend un dispositif de compression 13, notamment un compresseur. En plus d’aspirer le gaz à l’état vapeur, le dispositif de compression 13 permet également de comprimer le gaz à l’état vapeur circulant dans le deuxième circuit d’alimentation 3 à une pression comprise entre 6 et 20 bars absolus, et ce afin que le gaz à l’état vapeur soit à une pression compatible pour l’alimentation de l’appareil consommateur de gaz à basse pression 5. Le deuxième circuit d’alimentation 3 permet ainsi d’alimenter l’appareil consommateur de gaz à basse pression 5, et ce tout en régulant la pression au sein de la cuve 8 en aspirant le gaz à l’état vapeur présent dans le ciel de cuve 12.
La présence du gaz à l’état vapeur en quantité excessive au sein du ciel de cuve 12 entraîne une surpression au sein de la cuve 8. Il est donc nécessaire d’évacuer le gaz à l’état vapeur dans le but d’abaisser la pression au sein de la cuve 8. Le gaz à l’état vapeur en excès peut alors par exemple être éliminé par un brûleur 18 ou, de façon non illustrée, rejeté dans l’atmosphère. Ces solutions engendrent une perte de cargaison. C’est pourquoi, le système d’alimentation 1 selon l’invention comprend une ligne de retour 14 qui s’étend du deuxième circuit d’alimentation 3 jusqu’à la cuve 8.
La ligne de retour 14 est raccordée sur le deuxième circuit d’alimentation 3 en aval du dispositif de compression 13 par rapport à un sens de circulation du gaz à l’état vapeur circulant dans le deuxième circuit d’alimentation 3. La ligne de retour 14 traverse dans un premier temps le deuxième échangeur de chaleur 7, puis poursuit son cheminement en passant au travers du premier échangeur de chaleur 6.
Le premier échangeur de chaleur 6 comprend une première passe 6a qui fait partie du premier circuit d’alimentation 2. Ce premier échangeur de chaleur 6 comprend une seconde passe 6b qui fait partie de la ligne de retour 14. Le sens de circulation au sein de la première passe 6a est opposé au sens de circulation au sein de la seconde passe 6b du premier échangeur de chaleur 6.
Le deuxième échangeur de chaleur 7 est installé entre le premier échangeur de chaleur 6 et l’évaporateur haute pression 11, sur le premier circuit d’alimentation 2.
Le deuxième échangeur de chaleur 7 comprend une première passe 7a qui fait partie du premier circuit d’alimentation 2. Ce deuxième échangeur de chaleur 7 comprend une seconde passe 7b qui fait partie de la ligne de retour 14. Le sens de circulation au sein de la première passe 7a est opposé au sens de circulation au sein de la seconde passe 7b du deuxième échangeur de chaleur 7.
C’est à l’entrée de la première passe 6a du premier échangeur de chaleur 6 que le gaz à l’état liquide du premier circuit d’alimentation 2 présente la température la plus basse. De ce fait, c’est donc après avoir traversé le premier échangeur de chaleur 6 que le gaz circulant dans la ligne de retour 14 est condensé. Le fluide circulant dans la ligne de retour 14 est donc à l’état vapeur à l’entrée de la seconde passe 6b du premier échangeur de chaleur 6 et sort à l’état liquide suite à l’échange de calories se déroulant au sein du premier échangeur de chaleur 6.
La ligne de retour 14 comprend par ailleurs un organe de régulation de débit 15 qui contrôle le débit du fluide circulant dans la ligne de retour 14. Cet organe de régulation de débit 15 présente une section de passage pouvant être modifiée. Une fois que le gaz est condensé, celui-ci circule jusqu’à la cuve 8. Le premier échangeur de chaleur 6 fait donc office de condenseur tandis que l’organe de régulation de débit 15 contrôle l’échange thermique ayant lieu dans le premier échangeur de chaleur 6, dans le deuxième échangeur de chaleur 7 et dans l’évaporateur haute pression 11. Le système d’alimentation 1 comprend également une ligne d’alimentation auxiliaire 16, s’étendant du premier circuit d’alimentation 2, par un piquage disposé entre la pompe immergée 9 et le premier échangeur de chaleur 6, jusqu’au deuxième circuit d’alimentation 3, en se raccordant à celui-ci entre le dispositif de compression 13 et l’appareil consommateur de gaz à basse pression 5. La ligne d’alimentation auxiliaire 16 permet d’alimenter l’appareil consommateur de gaz à basse pression 5 en cas de débit insuffisant de gaz à l’état vapeur formé au sein du ciel de cuve 12.
Lorsque le gaz à l’état vapeur n’est pas présent en quantité suffisante dans le ciel de cuve 12, le gaz à l’état liquide pompé par la pompe immergée 9 peut alors circuler au sein de cette ligne d’alimentation auxiliaire 16 afin d’alimenter l’appareil consommateur de gaz à basse pression 5. Pour ce faire, la ligne d’alimentation auxiliaire 16 traverse un évaporateur basse pression 17 afin que le gaz à l’état liquide circulant dans la ligne d’alimentation auxiliaire 16 passe à l’état de vapeur. Le fonctionnement de l’évaporateur basse pression 17 peut par exemple être identique à celui de l’évaporateur haute pression 11 , c’est-à-dire que le gaz est évaporé par échange de chaleur avec un fluide caloporteur à température suffisamment élevée pour évaporer le gaz à l’état liquide. En sortie de l’évaporateur basse pression 17, le gaz à l’état vapeur circule au sein de la ligne d’alimentation auxiliaire 16, puis rejoint le deuxième circuit d’alimentation 3 afin d’alimenter l’appareil consommateur de gaz à basse pression 5.
On comprend de ce qui précède que la ligne d’alimentation auxiliaire 16 n’est utilisée qu’en l’absence de gaz à l’état vapeur en quantité suffisante au sein du ciel de cuve 12. Ainsi, la ligne d’alimentation auxiliaire 16 comprend une vanne 19 contrôlant la circulation de gaz au sein de la ligne d’alimentation auxiliaire 16 lorsque l’utilisation de celle-ci n’est pas nécessaire.
Selon l’invention, le système d’alimentation 1 comprend au moins une branche de refroidissement 40 du gaz prélevé à l’état vapeur dans la cuve. Une telle branche permet de faire circuler le gaz prélevé à l’état vapeur dans la cuve 8 en vue de le refroidir.
La branche de refroidissement 40 est fluidiquement raccordée au deuxième circuit d’alimentation 3, en une position située en amont du dispositif de compression 13. C’est ainsi que le système d’alimentation comprend un point de divergence 44 ménagé sur le deuxième circuit d’alimentation 3 et au niveau duquel débute la branche de refroidissement 40. Le système d’alimentation 3 comprend en outre un point de convergence 45, où le deuxième circuit d’alimentation 3 et la branche de refroidissement 40 se rejoignent. Le point de divergence 44 et le point de convergence 45 sont tous deux placés sur le deuxième circuit d’alimentation 3, avant le dispositif de compression 13.
Le système d’alimentation 1 comprend également un échangeur thermique 41 chargé de refroidir le gaz prélevé à l’état vapeur dans la cuve par échange de calories avec le gaz à l’état liquide qui circule dans le premier circuit d’alimentation 2.
Cet échangeur thermique 41 comprend une première passe 42 qui échange des calories avec une deuxième passe 43 constitutive de cet échangeur thermique 41. La première passe 42 de l’échangeur thermique 41 fait partie du premier circuit d’alimentation 2 en étant parcouru par le gaz à l’état liquide, tandis que la deuxième passe 43 de l’échangeur thermique 41 fait partie de la branche de refroidissement 40 et se trouve parcouru par le gaz à l’état vapeur prélevé dans la cuve 8.
De manière ingénieuse, la première passe 42 de l’échangeur thermique 41 est fluidiquement disposée entre la première passe 7a du deuxième échangeur de chaleur 7 et une première passe 1 la de l’évaporateur haute pression 11.
Une telle localisation permet de refroidir le gaz à l’état vapeur qui circule dans la branche de refroidissement 40 par échange de chaleur avec le gaz à l’état liquide qui circule dans le premier circuit d’alimentation 2, ce qui in fine permet de diminuer le débit volumique en entrée du dispositif de compression 13 et ainsi réduire sa consommation, notamment électrique.
Cette localisation permet aussi de réduire le débit de fluide caloporteur qui parcourt une seconde passe 11b de l’évaporateur haute pression 11 en vue d’évaporer le gaz à l’état liquide qui provient de la cuve 8. Comme il s’agit d’une source chaude, l’invention permet de réduire la quantité de calories fournie par le fluide caloporteur puisqu’une partie des calories est fournie par le gaz à l’état vapeur qui circule dans la branche de refroidissement 40. La circulation de gaz à l’état vapeur au sein du deuxième circuit d’alimentation 3 est placée sous la dépendance d’un organe de contrôle 46. Ce dernier est par exemple une vanne. La circulation de gaz à l’état vapeur au sein de la branche de refroidissement 40 est placée sous la dépendance d’une vanne de contrôle 47. Cet organe de contrôle et/ou cette vanne de contrôle est par exemple une vanne ou une valve tout ou rien.
La branche de refroidissement 40 est installée en parallèle de cet organe de contrôle 46. En d’autres termes, le point de divergence 44 est positionné en amont de l’organe de contrôle 46 de la circulation du gaz au sein du deuxième circuit d’alimentation 3, tandis que le point de convergence 45 est positionné en aval de ce même organe de contrôle 46.
Le système d’alimentation comprend également un dispositif de gestion 49 et au moins un moyen de détermination 48 de la température du gaz à l’état vapeur prélevé dans la cuve 8. Le moyen de détermination 48 de la température est par exemple un capteur de température positionné sur le deuxième circuit d’alimentation 3, entre la cuve et le point de divergence 44. Alternativement, le capteur peut être installé dans le ciel de cuve 12. Ce moyen de détermination 48 de la température est électriquement connecté au dispositif de gestion 49 puisque que l’information relevée par le moyen de détermination 48 est utilisée dans un calcul mis en oeuvre par le dispositif de gestion 49.
Ce dispositif de gestion 49 est un module électronique de commande qui reçoit l’information du moyen de détermination 48 et qui commande l’ouverture ou la fermeture de l’organe de contrôle 46 et/ou de la vanne de contrôle 47. Le dispositif de gestion 49 met en oeuvre le procédé et ses différentes étapes, à l’exception de l’étape de détermination de la température du gaz à l’état valeur prélevé dans la cuve 8.
Le procédé objet de l’invention est illustré par la figure 2 et par la figure 3.
Le dispositif de gestion 49 est apte à autoriser la circulation de gaz au sein de la branche de refroidissement 40 quand la température du gaz à l’état vapeur prélevé dans la cuve 8 et déterminée par le moyen de détermination 48 est supérieure à un seuil de référence, un tel seuil de référence étant par exemple égale à -90°C quand le gaz à l’état vapeur parcourt majoritairement ou exclusivement la ligne de retour 14. Alternativement, ce seuil de référence est supérieur ou égal à -150°C quand le gaz à l’état vapeur est majoritairement ou exclusivement envoyé à l’appareil consommateur de gaz à basse pression 5, via le deuxième circuit d’alimentation3. Dans un tel cas, l’organe de régulation de débit 15 réduit le débit de gaz qui circule dans la ligne de retour 14, ou l’interrompt totalement le cas échéant.
Le dispositif de gestion 49 commande une ouverture de la vanne de contrôle 47, autorisant ainsi le gaz à l’état vapeur prélevé dans la cuve 8 à rejoindre l’échangeur thermique 41, notamment sa deuxième passe 43. Dans une telle situation, le dispositif de gestion 49 interdit le passage de gaz à l’état vapeur au sein d’une portion 51 du deuxième circuit d’alimentation 3 située entre le point de divergence 44 et le point de convergence 45. Pour ce faire, le dispositif de gestion 49 commande une fermeture de l’organe de contrôle 46 installé sur cette portion 51.
Tel que montré sur la figure 3, le dispositif de gestion 49 est également apte à interdire la circulation de gaz au sein de la branche de refroidissement 40 quand la température déterminée par le moyen de détermination 48 est inférieure au seuil de référence mentionné ci-dessus. Pour ce faire, le dispositif de gestion 49 commande une fermeture de la vanne de contrôle 47. Dans un tel cas, le dispositif de gestion 49 autorise la circulation de gaz à l’état vapeur au travers de la portion 51 du deuxième circuit d’alimentation 3, en commandant l’ouverture de l’organe de contrôle 46, autorisant ainsi le gaz à l’état vapeur prélevé dans la cuve 8 à rejoindre directement le dispositif de compression 13.
Bien entendu, le dispositif de gestion 49 peut être affecté à d’autres opérations de calcul nécessaires au fonctionnement du système d’alimentation 1 selon l’invention, comme par exemple le contrôle de l’organe de régulation de débit 15 ou le contrôle de la vanne 19 contrôlant la circulation de gaz au sein de la ligne d’alimentation auxiliaire 16, ou encore le contrôle du dispositif de compression 13 ou le contrôle de la pompe immergée 9 ou de la pompe 10.
On note que chaque échangeur décrit dans le présent document peut être un composant à deux passes. L’invention couvre également le cas où certains échangeurs sont rassemblés pour ne former qu’un seul et même échangeur, par exemple à trois ou quatre passes. Ainsi, l’évaporateur haute pression et l’échangeur thermique 41, ou le deuxième échangeur de chaleur 7 et l’échangeur thermique 41 ou encore la combinaison de ces trois composants peuvent former un module unitaire d’échange thermique 50.
La figure 4 illustre le système d’alimentation présenté aux figures 1 à 3 auquel est ajouté des composants supplémentaires.
Le système d’alimentation 1 montré à la figure 4 comprend ainsi en plus une branche de traitement thermique 33 du gaz à l’état vapeur circulant dans la ligne de retour 14. Cette branche de traitement thermique 33 a pour fonction de participer au refroidissement du gaz à l’état vapeur qui circule dans la ligne de retour, de manière à faciliter sa condensation. Dans cette situation, la branche de traitement thermique 33 permet de collecter le froid du gaz à l’état vapeur prélevé dans la cuve 8 et de le valoriser en le cédant à la ligne de retour 14.
La branche de traitement thermique 33 est raccordée au deuxième circuit d’alimentation 3 en amont du dispositif de compression 13, via une zone de divergence 52 et une zone convergence 53 propre à la branche de traitement thermique 33. Alternativement, la branche de traitement thermique 33 et la branche de refroidissement 40 peuvent être toutes deux raccordées au point de divergence 44 et au point de convergence 45. Quel que soit le mode de raccordement, la branche de traitement thermique 33 et la branche de refroidissement sont en parallèle l’une par rapport à l’autre, et par rapport à la portion 51 du deuxième circuit d’alimentation 3.
La figure 4 montre également la présence d’un troisième échangeur de chaleur 36 configuré pour opérer un échange de chaleur entre le gaz à l’état vapeur circulant dans la branche de traitement thermique 33 et le gaz à l’état vapeur circulant dans la ligne de retour 14. Un tel troisième échangeur de chaleur 36 comprend une première passe 36a qui fait partie de la ligne de retour 14 est qui est disposée entre la deuxième passe 6b du premier échangeur de chaleur 6 et la deuxième passe 7b du deuxième échangeur de chaleur 7. Ce troisième échangeur de chaleur 36 comprend une deuxième passe 36b qui fait partie de la branche de traitement thermique 33. La branche de traitement thermique 33 comprend en outre un dispositif de contrôle 38 configuré pour contrôler la circulation de gaz à l’état vapeur au sein de la branche de traitement thermique 33. Ce dispositif de contrôle 38 est placé sous la dépendance du dispositif de gestion 49 et il est en une position ouverte lorsque la température du gaz à l’état vapeur prélevé dans la cuve 8 détectée par le moyen de détermination 48 est inférieure à un seuil de température, par exemple égale à - 110°C.
Quand la température du gaz à l’état vapeur déterminée par le moyen de détermination est supérieure au seuil de température, le dispositif de gestion 49 commande la fermeture du dispositif de contrôle 38 et fait circuler le gaz à l’état vapeur au sein du deuxième circuit d’alimentation 3.
Selon un aspect intéressant de la figure 4, il convient de gérer la circulation des flux entre la branche de refroidissement 40 et la branche de traitement thermique 33. C’est ainsi que le procédé objet de l’invention prévoit notamment que, lorsque la température du gaz à l’état vapeur déterminée à l’étape de détermination par le moyen de détermination 48 est inférieure au seuil de température, on fait exclusivement circuler le gaz à l’état vapeur au sein de la branche de traitement thermique 33. De manière complémentaire, lorsque la température du gaz à l’état vapeur déterminée à l’étape de détermination par le moyen de détermination 48 est inférieure au seuil de température, on fait exclusivement circuler le gaz à l’état vapeur au sein de la branche de refroidissement 40. Enfin, lorsque la température du gaz à l’état vapeur déterminée à l’étape de détermination par le moyen de détermination 48 est comprise entre le seuil de température et le seuil de référence, on fait exclusivement circuler le gaz à l’état vapeur au sein du deuxième circuit d’alimentation 3.
Dans le cas de la figure 4, le module unitaire d’échange thermique 50 évoqué plus haut peut être compléter avec le troisième échangeur de chaleur 36. Un tel module unitaire d’échange thermique 50 peut alors comprendre au moins cinq passes fluidiquement séparées les unes des autres. Bien sûr, l’invention n’est pas limitée aux exemples qui viennent d’être décrits et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l’invention.
L’invention, telle qu’elle vient d’être décrite, atteint bien le but qu’elle s’était fixée, et permet de proposer un système d’alimentation en gaz qui réduit la consommation énergétique du dispositif de compression et/ou de l’évaporateur haute pression. Des variantes non décrites ici pourraient être mises en oeuvre sans sortir du contexte de l’invention, dès lors que, conformément à l’invention, elles comprennent un système d’alimentation conforme à l’invention.

Claims

REVENDICATIONS
1- Système d’alimentation (1) en gaz d’au moins un appareil consommateur de gaz à haute pression (4) et d’au moins un appareil consommateur de gaz à basse pression (5) d’un ouvrage flottant qui comprend au moins une cuve (8) configurée pour contenir le gaz au moins à l’état liquide, le système d’alimentation (1) comprenant : au moins un premier circuit d’alimentation (2) en gaz de l’appareil consommateur de gaz à haute pression (4), au moins un évaporateur haute pression (11) configuré pour évaporer le gaz circulant dans le premier circuit d’alimentation (2), au moins un deuxième circuit d’alimentation (3) en gaz de l’appareil consommateur de gaz à basse pression (5), comprenant au moins un dispositif de compression (13) configuré pour comprimer du gaz prélevé à l’état vapeur dans la cuve (8) jusqu’à une pression compatible avec les besoins de l’appareil consommateur de gaz à basse pression (5), au moins une ligne de retour (14) de gaz connectée au deuxième circuit d’alimentation (3) en aval du dispositif de compression (13) et s’étendant jusqu’à la cuve (8), au moins un premier échangeur de chaleur (6) et un deuxième échangeur de chaleur (7), chacun configurés pour opérer un échange de chaleur entre le gaz circulant dans la ligne de retour (14) et le gaz à l’état liquide circulant dans le premier circuit d’alimentation (2), caractérisé en ce que le système d’alimentation (1) comprend au moins une branche de refroidissement (40) du gaz prélevé à l’état vapeur dans la cuve (8) raccordée au deuxième circuit d’alimentation (3) en amont du dispositif de compression (13), le système d’alimentation (1) comprenant au moins un échangeur thermique (41) configuré pour opérer un échange de chaleur entre le gaz à l’état vapeur qui circule dans la branche de refroidissement (40) et le gaz à l’état liquide qui circule dans le premier circuit d’alimentation (2).
2- Système d’alimentation (1) selon la revendication précédente, dans lequel l’échangeur thermique (41) comprend au moins une première passe (42) installée sur le premier circuit d’alimentation (2) en amont de l’évaporateur haute pression (11), ainsi qu’une seconde passe (43) installée sur la branche de refroidissement (40).
3- Système d’alimentation (1) selon la revendication précédente, dans lequel la première passe (42) de l’échangeur thermique (41) est installée entre le deuxième échangeur de chaleur (7) et l’évaporateur haute pression (11).
4- Système d’alimentation (1) selon la revendication précédente, dans lequel la deuxième passe (43) de l’échangeur thermique (41) est en amont du dispositif de compression (13), selon le sens de circulation du gaz au sein du deuxième circuit d’alimentation (3).
5- Système d’alimentation (1) selon l’une quelconque des revendications précédentes, comprenant un point de divergence (44) où se séparent la branche de refroidissement (40) et le deuxième circuit d’alimentation (3) et un point de convergence (45) où se rejoignent la branche de refroidissement (40) et le deuxième circuit d’alimentation (3), la branche de refroidissement (40) s’étendant entre le point de divergence (44) et le point de convergence (45).
6- Système d’alimentation (1) selon l’une quelconque des revendications précédentes, dans lequel le deuxième circuit d’alimentation (3) comprend au moins un organe de contrôle (46) de la circulation du gaz au sein dudit deuxième circuit d’alimentation (3), la branche de refroidissement (40) étant disposée en parallèle de l’organe de contrôle (46) de la circulation du gaz au sein dudit deuxième circuit d’alimentation (3).
7- Système d’alimentation (1) selon la revendication précédente, dans lequel la branche de refroidissement (40) comprend au moins une vanne de contrôle (47) de la circulation du gaz au sein dudit branche de refroidissement (40).
8- Système d’alimentation (1) selon la revendication précédente, comprenant au moins un moyen de détermination (48) de la température du gaz à l’état vapeur prélevé dans la cuve (8) et un dispositif de gestion (49) qui commande au moins l’organe de contrôle (46) de la circulation du gaz au sein dudit deuxième circuit d’alimentation (3) et la vanne de contrôle (47) de la circulation du gaz au sein dudit branche de refroidissement (40). 9- Système d’alimentation (1) selon l’une quelconque des revendications précédentes, dans lequel le premier circuit d’alimentation (2) comprend une pompe (10) interposée entre le premier échangeur de chaleur (6) et le deuxième échangeur de chaleur (7).
10- Système d’alimentation (1) selon l’une quelconque des revendications 1 à 9, dans lequel au moins l’évaporateur haute pression (11) et l’échangeur thermique (41) forme un module unitaire d’échange thermique (50).
11- Système d’alimentation (1) selon l’une quelconque des revendications 1 à 9, dans lequel au moins l’évaporateur haute pression (11), le deuxième échangeur de chaleur (7) et l’échangeur thermique (41) forme un module unitaire d’échange thermique (50).
12- Système d’alimentation (1) selon l’une quelconque des revendications précédentes, comprenant une branche de traitement thermique (33) du gaz à l’état vapeur circulant dans la ligne de retour (14), la branche de traitement thermique (33) étant raccordée au deuxième circuit d’alimentation (3) en amont du dispositif de compression (13), le système d’alimentation (1) comprenant un troisième échangeur de chaleur (36) configuré pour opérer un échange de chaleur entre le gaz à l’état vapeur circulant dans la branche de traitement thermique (33) et le gaz à l’état vapeur circulant dans la ligne de retour (14).
13- Procédé de contrôle d’un système d’alimentation (1) selon l’une quelconque des revendications précédentes, au cours duquel : à une étape de détermination, on détermine la température du gaz à l’état vapeur prélevé dans la cuve (8), puis on fait circuler le gaz à l’état vapeur au sein de la branche de refroidissement (40) si la température du gaz à l’état vapeur déterminée à l’étape de détermination est supérieure à un seuil de référence ou, on fait circuler le gaz à l’état vapeur au sein du deuxième circuit d’alimentation (3) si la température du gaz à l’état vapeur déterminée à l’étape de détermination est inférieure au seuil de référence. 14- Procédé de contrôle selon la revendication précédente, au cours duquel le seuil de référence est égale à -90°C, le procédé comprenant un étape de condensation du gaz à l’état vapeur circulant dans la ligne de retour (14).
15- Procédé de contrôle selon la revendication précédente, au cours duquel le seuil de référence est supérieure ou égale à -150°C, le procédé comprenant un étape d’alimentation de l’appareil consommateur de gaz à basse pression (5) via le deuxième circuit d’alimentation (3).
PCT/FR2023/050362 2022-04-07 2023-03-15 Système d'alimentation en gaz pour appareils consommateurs de gaz à haute et basse pression et procédé de contrôle d'un tel système WO2023194670A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2203214 2022-04-07
FR2203214A FR3134430A1 (fr) 2022-04-07 2022-04-07 Système d’alimentation en gaz pour appareils consommateurs de gaz à haute et basse pression et procédé de contrôle d’un tel système

Publications (1)

Publication Number Publication Date
WO2023194670A1 true WO2023194670A1 (fr) 2023-10-12

Family

ID=82196493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2023/050362 WO2023194670A1 (fr) 2022-04-07 2023-03-15 Système d'alimentation en gaz pour appareils consommateurs de gaz à haute et basse pression et procédé de contrôle d'un tel système

Country Status (2)

Country Link
FR (1) FR3134430A1 (fr)
WO (1) WO2023194670A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017162984A1 (fr) * 2016-03-23 2017-09-28 Cryostar Sas Système de traitement d'un gaz issu de l'évaporation d'un liquide cryogénique et d'alimentation en gaz sous pression d'un moteur à gaz
EP3483419A1 (fr) * 2016-07-05 2019-05-15 Kawasaki Jukogyo Kabushiki Kaisha Navire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017162984A1 (fr) * 2016-03-23 2017-09-28 Cryostar Sas Système de traitement d'un gaz issu de l'évaporation d'un liquide cryogénique et d'alimentation en gaz sous pression d'un moteur à gaz
EP3483419A1 (fr) * 2016-07-05 2019-05-15 Kawasaki Jukogyo Kabushiki Kaisha Navire

Also Published As

Publication number Publication date
FR3134430A1 (fr) 2023-10-13

Similar Documents

Publication Publication Date Title
EP3433557B1 (fr) Système de traitement d'un gaz issu de l'évaporation d'un liquide cryogénique et d'alimentation en gaz sous pression d'un moteur à gaz
EP3743651A1 (fr) Procede et systeme de traitement de gaz d'une installation de stockage de gaz pour un navire de transport de gaz
FR3077867A1 (fr) Procede et systeme de traitement de gaz d'une installation de stockage de gaz pour un navire de transport de gaz
EP4264114A1 (fr) Système d'alimentation et de refroidissement pour ouvrage flottant
WO2017037400A1 (fr) Système et procédé de traitement de gaz issu de l'évaporation d'un liquide cryogénique
WO2023247852A1 (fr) Système d'alimentation et de refroidissement pour ouvrage flottant
EP4281718A1 (fr) Système d'alimentation en gaz pour appareils consommateurs de gaz à haute et basse pression
WO2023194670A1 (fr) Système d'alimentation en gaz pour appareils consommateurs de gaz à haute et basse pression et procédé de contrôle d'un tel système
WO2023194669A1 (fr) Système d'alimentation en gaz pour appareils consommateurs de gaz à haute et basse pression et procédé de contrôle d'un tel système
FR3121504A1 (fr) Procédé de refroidissement d’un échangeur thermique d’un système d’alimentation en gaz d’un appareil consommateur de gaz d’un navire
WO2021032925A1 (fr) Système de traitement de gaz contenu dans une cuve de stockage et/ou de transport de gaz à l'état liquide et à l'état gazeux équipant un navire
FR3114797A1 (fr) Système d’alimentation en gaz pour appareils consommateurs de gaz à haute et basse pression
WO2020188199A1 (fr) Système de contrôle de pression dans une cuve de gaz naturel liquéfié
EP4062046A1 (fr) Système d'alimentation en gaz d'au moins un appareil consommateur de gaz équipant un navire
WO2021064319A1 (fr) Système de traitement d'un gaz contenu dans une cuve de stockage et/ou de transport de gaz à l'état liquide et gazeux
EP4222366A1 (fr) Système d'alimentation en gaz pour appareils consommateurs de gaz à haute et basse pression
FR3124830A1 (fr) Système d’alimentation en gaz pour appareils consommateurs de gaz à haute et basse pression
FR3116507A1 (fr) Système d’alimentation en gaz d’au moins un appareil consommateur de gaz équipant un navire
WO2024003484A1 (fr) Système de gestion d'un gaz contenu dans un ouvrage flottant
EP4253822A1 (fr) Système d'alimentation en gaz pour appareils consommateurs de gaz à haute et basse pression et procédé de contrôle d'un tel système
WO2023208872A1 (fr) Système de contrôle de la température d'un fluide caloporteur dans une boucle de circulation, procédé de contrôle de la température
FR3123717A1 (fr) Circuit de reliquéfaction d’un fluide et d’alimentation d’un consommateur.
WO2024084147A1 (fr) Système de gestion d'un gaz contenu dans une cuve
WO2024084154A1 (fr) Procede de gestion d'un fluide sous forme liquide contenu dans une cuve
FR3123716A1 (fr) Système de gestion de l’état de fluides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23713131

Country of ref document: EP

Kind code of ref document: A1