WO2011055045A1 - Système de vaporisation d'un fluide cryogénique avec des échangeurs centralisés - Google Patents

Système de vaporisation d'un fluide cryogénique avec des échangeurs centralisés Download PDF

Info

Publication number
WO2011055045A1
WO2011055045A1 PCT/FR2010/051311 FR2010051311W WO2011055045A1 WO 2011055045 A1 WO2011055045 A1 WO 2011055045A1 FR 2010051311 W FR2010051311 W FR 2010051311W WO 2011055045 A1 WO2011055045 A1 WO 2011055045A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
circuit
heat
ambient air
propane
Prior art date
Application number
PCT/FR2010/051311
Other languages
English (en)
Inventor
Herveline Robidou
Nicolas Bariteau
Assaad Zoughaib
Original Assignee
Gea Batignolles Technologies Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gea Batignolles Technologies Thermiques filed Critical Gea Batignolles Technologies Thermiques
Publication of WO2011055045A1 publication Critical patent/WO2011055045A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/035High pressure, i.e. between 10 and 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0311Air heating
    • F17C2227/0313Air heating by forced circulation, e.g. using a fan
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0323Heat exchange with the fluid by heating using another fluid in a closed loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/031Dealing with losses due to heat transfer
    • F17C2260/032Avoiding freezing or defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/04Reducing risks and environmental impact
    • F17C2260/046Enhancing energy recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/05Regasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground
    • F17C2270/0136Terminals

Definitions

  • the invention relates to a system for vaporizing a cryogenic fluid, in particular a vaporization or regasification system for liquefied natural gas, using ambient air as an indirect heat source.
  • Such a liquefied natural gas vaporization system is intended to be installed on terminals where the liquefied natural gas arrives in LNG carriers in liquid form at a temperature of approximately -160 degrees Celsius (° C) and is converted into a gas at a temperature of temperature between about + 2 ° C and + 20 ° C, the natural gas is then transported by pipelines to its place of use.
  • the three sources of thermal energy available on a LNG terminal for the regasification of liquefied natural gas are:
  • This system has the advantage of using a renewable energy that does not emit greenhouse gases and a cost operating margin lower than the cost of operating other techniques.
  • the liquefied natural gas is heated from -160 ° C to + 20 ° C in a heat exchanger by an intermediate heat transfer fluid.
  • the intermediate heat transfer fluid is heated in another heat exchanger by ambient air pulsed from top to bottom by means of fans.
  • This de-icing system is for example a system based on electrical resistances which requires to provide in the vaporization system an extra electric energy.
  • the object of the invention is to propose another system for vaporizing a cryogenic fluid such as liquefied natural gas that uses ambient air as an indirect heat source to heat an intermediate fluid.
  • a cryogenic fluid such as liquefied natural gas that uses ambient air as an indirect heat source to heat an intermediate fluid.
  • Another object of the invention is to provide such a vaporization system which is arranged to operate autonomously with an integrated defrosting system by providing in the vaporization cycle a motor cycle generating electrical energy to feed the de-icing system .
  • Another object of the invention is to provide such a vaporization system arranged so that the defrosting system is compact and centralized that can defrost sequentially all the heat exchanger batteries between the ambient air and the fluid intermediate.
  • the subject of the invention is a system for vaporizing a cryogenic fluid using ambient air as an indirect heat source, in particular for vaporizing liquefied natural gas, comprising a primary circuit in which an intermediate fluid circulates. heat heated from the ambient air, this primary circuit being connected to a common reservoir of high capacity of said intermediate fluid, characterized in that this system further comprises a cascade of secondary circuits also connected to the common tank, which are suitable for heating in successive temperature increments, said cryogenic fluid, the intermediate coolant fluid and the cryogenic fluid being heat exchanged at each of the successive secondary circuits
  • the idea underlying the invention is therefore to use a central tank to store a large amount of the intermediate coolant heated directly by the ambient air via heat exchanger batteries, these exchangers can therefore be de-iced centrally.
  • said primary circuit of the intermediate heat transfer fluid passes through heat exchanger batteries with the ambient air and there is provided a defrosting circuit which passes through said heat exchangers and which is connected. to a first thermodynamic cycle secondary circuit of the heat pump type.
  • a second intermediate circuit at least one turbine for generating electrical energy for supplying a compressor of said first secondary circuit.
  • said turbine is part of a sub-circuit of said second secondary circuit in which another thermodynamic fluid circulates through which said intermediate fluid exchanges heat with said cryogenic fluid, this other fluid thermodynamics effecting in said sub-circuit a Brayton or Rankine type motor thermodynamic cycle.
  • said common tank is arranged to supply said secondary circuits said intermediate heat transfer fluid in vapor or liquid form.
  • the intermediate heat transfer fluid may be propane vaporized by the ambient air and stored in the tank in vapor / liquid form.
  • the heat of the intermediate heat transfer fluid is used in all the cascade thermodynamic cycles (a motor cycle with one or two cascade loops, a two-phase intermediate fluid cycle and a heat pump cycle) of the system and the electrical energy that can be produced in the engine cycle is used to supply the equipment of the heat pump cycle used for defrosting as well as the fans of the drycoolers and the few pumps of the system.
  • the system according to the invention thus has in this way a low impact on the environment.
  • the use of a heat pump cycle allows operation of the system in climatic zones where the ambient air temperature is lower than the operating temperature of the vaporized cryogenic fluid.
  • the system allows the gas to be returned at a temperature of 5 ° C even if the ambient air remains at a temperature not exceeding 0 ° C.
  • Such a system can be put into operation even in remote areas of an electrical network and if such an electrical network is available, this system may if necessary provide excess electrical energy.
  • thermodynamic system a coupling of three thermodynamic systems is actually effected through the heat transfer medium which is also the working fluid of the heat pump.
  • This coupling makes it possible to associate a set of air coolers with the evaporation function of this intermediate fluid by heat exchange with the ambient air.
  • This heat is stored in a tank and subsequently distributed to the thermodynamic cycles in the secondary circuits (engine cycle, direct reheat cycle and heat pump cycle).
  • Intermediate fluid coolant is under its vapor pressure and is in the storage tank in two phases liquid and vapor to be operated by the secondary circuits.
  • the motor cycle (s) allow partial vaporization of the cryogenic fluid while generating electrical energy from the energy available in the cryogenic fluid itself.
  • the heat source of the motor cycle (s) comes from the ambient air.
  • the electrical energy generated in the motor cycle (s) is intended to supply the energy-consuming components of the vaporization system.
  • One of the secondary circuits allows a partial vaporization of the cryogenic fluid via the intermediate heat transfer fluid.
  • the heat pump cycle is used to complete the vaporization by "superheating" which is also used for defrosting.
  • the de-icing system exploits the heat-transfer medium fluid as thermodynamic fluid, which is more effective than external heating.
  • Figure 1 is a very schematic representation of the principle of the vaporization system according to the invention.
  • FIG. 2 is a Mollier diagram illustrating a first stage for reheating LNG in a first thermodynamic cycle circuit of the system according to the invention.
  • FIG. 3 is a Mollier diagram illustrating a second LNG heating stage in a second thermodynamic cycle circuit of the system according to the invention.
  • FIG. 4 is a Mollier diagram illustrating a third LNG heating stage in a third thermodynamic cycle circuit of the system according to the invention.
  • FIG. 1 diagrammatically shows a liquefied LNG regasification system 1 according to the invention using the ambient air AIR as an indirect source of heat.
  • the liquefied LNG enters the regasification system 1 through the inlet E at a temperature of about -160 ° C and a pressure of about 90 bar. It emerges from the regasification system 1 by the outlet S in gaseous form at a temperature of about + 5 ° C. and at a pressure of about 90 bars and with a flow rate of 160 tons / hour, for example.
  • the LNG is heated in the system 1 in successive temperature increments in a cascade of heat exchangers respectively distributed in different thermodynamic cycle circuits.
  • the ambient air AIR is drawn by fans which direct it from the top to the bottom (on the ground) by diffusing it on horizontal tube heat exchangers.
  • Fans with these horizontal tube heat exchangers preferably with fins are hereinafter referred to as "air cooler”.
  • air cooler In Figure 1, there is shown three air-dryers 2, but it is obvious that a regasification facility liquefied LNG according to the invention may comprise a larger number of such air-cooled refrigerators arranged in one or more rows.
  • the cooling chambers 2 are connected in parallel to a primary circuit 3 with a thermodynamic cycle in which circulates a first coolant, here propane.
  • the circuit 3 crosses in order from the outlet of the drycoolers 2, following the arrow indicative of the flow direction of the propane, an expansion valve 4, a propane storage tank 5 in two-phase form with large storage capacity and a pump 6 for circulating propane.
  • the pump 6 and the valve 4 are controlled by a control / control unit 7 which serves to regulate the propane temperature in the circuit 3.
  • the storage tank 5 may have a capacity of several m 3 .
  • the tank contains propane at the liquid / vapor equilibrium. Its pressure is regulated by the temperature of the propane which is itself regulated according to the ambient temperature and therefore the heat exchanges in the air-cooling coil batteries.
  • the tank contains propane in liquid form in its lower part and under vapor in its upper part.
  • the propane leaves the tank 5 in the liquid phase with a floating pair of temperature and pressure, for example at a temperature of -10 ° C for an ambient air temperature of 0 ° C and between in the tank 5 in the mixed vapor / liquid phase or in vapor form with the same floating temperature and pressure torque.
  • the propane tank 5 is used as a centralized heat source for the cascade of secondary circuits with a thermodynamic cycle for heating the LNG.
  • This arrangement thus makes it possible to centralize the air coolers 2 which indirectly provide heat for all the secondary circuits. It is understood that in such a system, moisture contained in the ambient air tends to condense on the tubes of the air coolers due to the temperature difference between the ambient air and propane which causes a phenomenon of frost on these tubes which therefore requires to provide an automatic defrost system.
  • the centralized arrangement of the air coolers 2 advantageously also makes it possible to centralize this de-icing system and thus to obtain a compact structure of the regasification system 1.
  • propane could be used another heat transfer fluid such as carbon dioxide or ammonia without departing from the scope of the invention.
  • the cascade of thermodynamic-cycle secondary circuits which serve to heat the liquid LNG from the heat stored in the tank 5 comprises a first secondary circuit 10 which makes it possible to heat the LNG at a first temperature level from -160 ° C. to approximately - 60 ° C, a second secondary circuit 20 for heating the LNG on a second temperature level of -60 ° C to -15 ° C and a third secondary circuit 30 for heating the LNG on a last temperature level of -15 ° C to + 5 ° C.
  • the first heat exchanger 1 1 is part of a Brayton thermodynamic closed loop intermediate loop 10A that allows the LNG to be heated at a temperature level of -160 ° C to -1 15 ° C by means of a heat exchanger. heat with a 10C propane loop connected to the tank 5.
  • the second heat exchanger 12 is part of another Rankine thermodynamic closed cycle closed loop intermediate loop 10B which allows the LNG to be heated at a temperature level of -1 15 ° C to -60 ° C by heat exchange with the propane loop 10C.
  • the sub-circuit 10A contains a thermodynamic fluid, in this case nitrogen, which follows a Brayton thermodynamic cycle illustrated in FIG. 2 by the diagram D1.
  • the sub-circuit 10B conducts another thermodynamic fluid, in this case ethane, which follows a thermodynamic Rankine cycle illustrated in FIG. 2 by the diagram D2.
  • the nitrogen is heated in a heat exchanger 13 by heat exchange with the propane loop 10C and in the sub-circuit 10B, the ethane is heated in another heat exchanger
  • the nitrogen exits the heat exchanger 13 at a temperature of about -20 ° C and then passes through a turbine
  • the ethane exits the heat exchanger 14 also at a temperature of -20 ° C., then passes through a turbine 17 able to use a pressure difference of the ethane to produce the electrical energy, then passes through the heat exchanger 12 and leaves it at about -1 10 ° C, then is compressed in a pump 18 before returning to the heat exchanger 14.
  • the ethane is compressed in the pump 18 and expanded in the turbine 17 in a quasi-isentropic manner and is heated in the exchanger 14 and cooled in the exchanger 12 in a substantially isobaric manner.
  • the LNG changes from a liquid state at -15 ° C to a gaseous state at -60 ° C, the liquid / gaseous passage of LNG occurring more particularly in the temperature range -80 ° C to - 70 ° C.
  • the LNG circulates against the flow of nitrogen and ethane.
  • the propane also circulates against the flow of nitrogen and ethane.
  • the second secondary circuit 20 is a propane loop which leaves the tank 5 in vapor form, then which passes through a heat exchanger 21 to exchange heat with the LNG, then returning to the tank 5 in liquid form.
  • the propane follows a thermodynamic cycle which is illustrated in FIG. 3 by the diagram D3.
  • a pump is used at the outlet of the heat exchanger 21.
  • the system according to the invention therefore comprises the third intermediate circuit 30 with a thermodynamic cycle which is still a propane loop but functioning as a heat pump to overheat the LNG already heated by the circuit 20 downstream.
  • the propane leaves the tank 5 in the form of steam, then passes through a vaporized propane compressor 31, then condenses in a heat exchanger 32 to give off heat with the LNG, then passes through a valve again. 33 before returning to the two-phase state in the tank 5.
  • the propane follows a thermodynamic cycle illustrated by the diagram D4 in FIG.
  • the compressor 31 can be powered by electrical energy produced by the turbines 15 and 17.
  • the electrical energy needed to overheat the LNG from -10 ° C to + 5 ° C remains quite weak.
  • a 10A sub-circuit Rankine cycle can be used to heat the LNG from -160 ° C to 60 ° C.
  • the energy produced by the turbine 17 alone is certainly lower than that which can be produced by the two turbines 15 and 17 in cascade, however it can be enough to completely supply the system with electricity.
  • the propane circulating in the secondary circuit 30 at a temperature above 0 ° C is also used to supply a defrosting circuit 40 of the air coolers 2.
  • This defrosting circuit 40 is connected to the inlets and outlets of the aircoolers and comprises bypass valves controlled by the control / control unit 7 in such a way that the stream of propane in vapor form which leaves at high temperature from the compressor 31 is derived in the circuit 40 to selectively heat one or more air-cooled coolers in the defrost cycle.
  • the circuit 40 is connected to the primary circuit 3 so that in the defrosting cycle, the air cooler becomes an insulated condenser of propane and is powered by hot propane under form of steam that gives up its heat to defrost the fins of the air cooler very effectively.
  • the control / control unit 7 and the defrosting system are designed so that even during a defrost cycle of some air-dryers 2, the system 1 continues to vaporize the LNG with the other part of the aircoolers.
  • a defrosting system as illustrated in Figure 1 is much more effective than external heating by electric resistance for example.
  • the system 1 according to the invention can also incorporate a waste heat recovery available near the implantation area.
  • the recovery of the heat of an available source makes it possible to reduce quantitatively the number of air coolers 4 necessary for the good functioning of the system 1.
  • This integration makes system 1 of excess advantage in electrical energy which could be efficientlyzed.
  • control / control unit 7 is arranged to regulate the temperature and pressure torque of the propane (in the example at -10 ° C.) for its change of vapor / liquid state as a function of the ambient air temperature (in the example at 0 ° C) by acting on the pump 6 and the valve 4.
  • the unit 7 also acts on a control valve (not shown) mounted on a portion of the secondary circuit 10 to regulate the propane flow rate in this circuit for heating the intermediate fluids sub-circuits 10A and 10B.
  • the unit 7 still acts on another control valve (not shown) mounted on a portion of the secondary circuit 20 to regulate the flow of propane in this circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Un système de vaporisation d'un fluide cryogénique utilisant l'air ambiant comme source de chaleur indirecte, comprend un circuit primaire (3) dans lequel circule un fluide intermédiaire caloporteur réchauffé à partir de l'air ambiant et échangeant de la chaleur avec ledit fluide cryogénique à travers une cascade de circuits secondaires (10,20,30) qui réchauffent par paliers de température successifs ledit fluide cryogénique, ledit circuit primaire et lesdits circuits secondaires étant raccordés à un réservoir central (5) de forte capacité de stockage dudit fluide intermédiaire.

Description

Système de vaporisation d'un fluide cryogénique avec des
échangeurs centralisés
L'invention concerne un système de vaporisation d'un fluide cryogénique, notamment un système de vaporisation ou regazéification du gaz naturel liquéfié, utilisant de l'air ambiant comme source de chaleur indirecte.
Un tel système de vaporisation du gaz naturel liquéfié est destiné à être installé sur des terminaux où le gaz naturel liquéfié arrive dans des méthaniers sous forme liquide à une température d'environ -160 degrés Celsius (°C) et est transformé en gaz à une température comprise environ entre +2°C et +20°C, le gaz naturel étant ensuite transporté par des gazoducs jusqu'à son lieu d'utilisation.
Les trois sources d'énergie thermique disponibles sur un terminal méthanier pour la regazéification du gaz naturel liquéfié sont :
- le gaz naturel lui-même dont une partie peut être brûlée,
- l'eau de mer,
- l'air ambiant.
Les systèmes de vaporisation du gaz naturel liquéfié les plus utilisés actuellement sont :
-l'évaporateur par combustion submergée mais celui-ci présente l'inconvénient d'un coût opérationnel élevé et d'un fort impact sur l'environnement naturel. Un tel système est décrit en particulier dans le document de brevet US-2005092263.
-l'évaporateur par échange de chaleur avec l'eau de mer mais celui-ci nécessite un pompage d'une grande quantité d'eau de mer, puis son rejet avec les risque de pollution que cela entraîne ainsi que la nécessité de disposer d'une eau de mer à une température supérieure à 8°C pour être autonome. Un tel système est décrit en particulier dans le document de brevet JP-5332499.
-l'évaporateur par fluide intermédiaire caloporteur utilisant l'air ambiant comme source de chaleur indirecte tel que décrit dans le brevet US 7155917. Ce système présente l'avantage d'utiliser une énergie renouvelable non émettrice de gaz à effet de serre et un coût d'exploitation limité inférieur au coût d'exploitation des autres techniques. Dans le brevet indiqué ci-dessus, le gaz naturel liquéfié est réchauffé de -160°C à +20°C dans un échangeur de chaleur par un fluide intermédiaire caloporteur. Le fluide intermédiaire caloporteur est réchauffé dans un autre échangeur de chaleur par de l'air ambiant puisé du haut vers le bas à l'aide de ventilateurs. Dans ce genre d'installation, il faut prévoir un système de dégivrage de l'échangeur de chaleur avec l'air ambiant car du givre se forme sur cet échangeur de chaleur. Ce système de dégivrage est par exemple un système à base de résistances électriques ce qui nécessite d'apporter dans le système de vaporisation un appoint en énergie électrique.
Le but de l'invention est de proposer un autre système de vaporisation d'un fluide cryogénique comme le gaz naturel liquéfié qui utilise l'air ambiant comme source de chaleur indirecte pour réchauffer un fluide intermédiaire. Un autre but de l'invention est de proposer un tel système de vaporisation qui est agencé pour fonctionner en autonomie avec un système de dégivrage intégré en prévoyant dans le cycle de vaporisation un cycle moteur générant de l'énergie électrique pour alimenter le système de dégivrage. Un autre but de l'invention est encore de proposer un tel système de vaporisation agencé pour que le système de dégivrage soit compact et centralisé pouvant dégivrer de façon séquentielle l'ensemble des batteries d'échangeurs de chaleur entre l'air ambiant et le fluide intermédiaire.
A cet effet, l'invention a pour objet un système de vaporisation d'un fluide cryogénique utilisant de l'air ambiant comme source de chaleur indirecte, en particulier pour vaporiser du gaz naturel liquéfié, comprenant un circuit primaire dans lequel circule un fluide intermédiaire caloporteur réchauffé à partir de l'air ambiant, ce circuit primaire étant raccordé à un réservoir commun de forte capacité dudit fluide intermédiaire, caractérisé en ce que ce système comprend en outre une cascade de circuits secondaires raccordés également au réservoir commun, qui sont propres à réchauffer par paliers de température successifs ledit fluide cryogénique, le fluide intermédiaire caloporteur et le fluide cryogénique étant mis en échange de chaleur au niveau de chacun des circuits secondaires successifs
L'idée à la base de l'invention est donc d'utiliser un réservoir central pour stocker une grande quantité du fluide intermédiaire caloporteur réchauffé directement par l'air ambiant par l'intermédiaire de batteries d'échangeurs de chaleur, ces échangeurs pouvant donc être dégivrés de manière centralisée.
Ainsi, selon une particularité du système selon l'invention, ledit circuit primaire du fluide intermédiaire caloporteur traverse des batteries d'échangeurs de chaleur avec l'air ambiant et il est prévu un circuit de dégivrage qui traverse lesdits échangeurs de chaleur et qui est raccordé à un premier circuit secondaire à cycle thermodynamique du type pompe à chaleur.
Selon encore une autre particularité du système selon l'invention, il est prévu dans un second circuit intermédiaire au moins une turbine pour générer de l'énergie électrique destinée à alimenter un compresseur dudit premier circuit secondaire.
Selon encore une autre particularité du système selon l'invention, ladite turbine fait partie d'un sous circuit dudit second circuit secondaire dans lequel circule un autre fluide thermodynamique à travers lequel ledit fluide intermédiaire échange de la chaleur avec ledit fluide cryogénique, cet autre fluide thermodynamique effectuant dans ledit sous circuit un cycle thermodynamique moteur de type Brayton ou Rankine. Selon encore une autre particularité du système selon l'invention, ledit réservoir commun est agencé pour fournir auxdits circuits secondaires ledit fluide intermédiaire caloporteur sous forme vapeur ou liquide.
Le fluide intermédiaire caloporteur peut être du propane vaporisé par l'air ambiant et stocké dans le réservoir sous forme vapeur/liquide. La chaleur du fluide intermédiaire caloporteur est utilisée dans tous les cycles thermodynamiques en cascade (un cycle moteur avec une ou deux boucles en cascade ; un cycle de fluide intermédiaire diphasique et un cycle de pompe à chaleur) du système et l'énergie électrique qui peut être produite dans le cycle moteur est exploitée pour alimenter l'appareillage du cycle de pompe à chaleur utilisé pour le dégivrage ainsi que les ventilateurs des aéroréfrigérants et les quelques pompes du système. Le système selon l'invention a donc de cette manière un faible impact sur l'environnement. L'utilisation d'un cycle de pompe à chaleur permet une exploitation du système dans des zones climatiques où la température de l'air ambiant est inférieure à la température d'exploitation du fluide cryogénique vaporisé. Dans le cas du gaz naturel liquéfié, le système permet de restituer le gaz à une température de 5°C même si l'air ambiant reste à une température ne dépassant pas 0°C. Un tel système peut être mis en exploitation même dans des zones éloignées d'un réseau électrique et si un tel réseau électrique est disponible, ce système pourra le cas échéant fournir de l'énergie électrique excédentaire.
Comme cela apparaîtra dans la description, dans le système de vaporisation selon l'invention, on réalise en fait un couplage de trois systèmes thermodynamiques à travers le fluide intermédiaire caloporteur qui est également le fluide de travail de la pompe à chaleur. Ce couplage permet d'associer un ensemble d'aéroréfrigérants à la fonction d'évaporation de ce fluide intermédiaire par échange thermique avec l'air ambiant. Cette chaleur est emmagasinée dans un réservoir et distribuée par la suite aux cycles thermodynamiques dans les circuits secondaires (cycle moteur, cycle de réchauffage direct et cycle de pompe à chaleur). Le fluide intermédiaire caloporteur est sous sa tension de vapeur et se présente dans le réservoir de stockage en deux phases liquide et vapeur pour être exploité par les circuits secondaires. Le ou les cycles moteurs permettent une vaporisation partielle du fluide cryogénique tout en générant de l'énergie électrique à partir de l'énergie disponible dans le fluide cryogénique lui-même. La source de chaleur du ou des cycles moteurs vient de l'air ambiant. L'énergie électrique générée dans le ou les cycles moteurs est destinée à alimenter les composants énergivores du système de vaporisation. Un des circuits secondaires permet une vaporisation partielle du fluide cryogénique par l'intermédiaire du fluide intermédiaire caloporteur. Quand la température de l'air ambiant est inférieure à la température d'exploitation du fluide cryogénique vaporisé, le cycle de pompe à chaleur permet de terminer la vaporisation par une « surchauffe » qui est également exploitée pour le dégivrage. Le système de dégivrage exploite comme fluide thermodynamique le fluide intermédiaire caloporteur ce qui est plus efficace qu'un chauffage externe.
D'autres caractéristiques et avantages du système de vaporisation d'un fluide cryogénique, en particulier pour la regazéification du gaz naturel liquéfié, apparaîtront encore mieux à la lecture de la description qui suit d'un exemple de mise en œuvre illustré par les dessins.
La figure 1 est une représentation très schématique de principe du système de vaporisation selon l'invention.
La figure 2 est un diagramme de Mollier illustrant un premier palier de réchauffage du GNL dans un premier circuit à cycle thermodynamique du système selon l'invention.
La figure 3 est un diagramme de Mollier illustrant un second palier de réchauffage du GNL dans un second circuit à cycle thermodynamique du système selon l'invention. La figure 4 est un diagramme de Mollier illustrant un troisième palier de réchauffage du GNL dans un troisième circuit à cycle thermodynamique du système selon l'invention.
Sur la figure 1 , on a représenté de façon schématique un système 1 de regazéification du GNL liquéfié selon l'invention exploitant l'air ambiant AIR comme source indirecte de chaleur.
Le GNL liquéfié entre dans le système de regazéification 1 par l'entrée E à une température d'environ -160°C et à une pression d'environ 90 bars. Il ressort du système de regazéification 1 par la sortie S sous forme gazeuse à une température d'environ +5°C et à une pression d'environ 90 bars et avec un débit de 160 tonnes/heure par exemple.
Selon l'invention, le GNL est réchauffé dans le système 1 par paliers de température successifs dans une cascade d'échangeurs de chaleur répartis respectivement dans différents circuits à cycles thermodynamiques.
Comme illustré sur la figure 1 , l'air ambiant AIR est puisé par des ventilateurs qui le dirigent du haut vers le bas (au sol) en le diffusant sur des échangeurs de chaleur à tubes horizontaux. Les ventilateurs avec ces échangeurs de chaleur à tubes horizontaux munis de préférence d'ailettes sont ci-après désignés par le terme « aéroréfrigérant ». Sur la figure 1 , on a représenté trois aéroréfrigérants 2 mais il est évident qu'une installation de regazéification du GNL liquéfié selon l'invention peut comprendre un plus grand nombre de tels aéroréfrigérants disposés en batterie en une ou plusieurs rangées.
Les aéroréfrigeants 2 sont raccordés en parallèle à un circuit primaire 3 à cycle thermodynamique dans lequel circule un premier fluide caloporteur, ici du propane. Le circuit 3 traverse dans l'ordre depuis la sortie des aéroréfrigérants 2, en suivant la flèche indicative du sens de circulation du propane, une vanne de détente 4, un réservoir de stockage 5 du propane sous forme diphasique avec grande capacité de stockage et une pompe 6 servant à faire circuler le propane. Par ailleurs, la pompe 6 et la vanne 4 sont commandées par une unité de contrôle/commande 7 qui sert à réguler la température du propane dans le circuit 3. Le réservoir de stockage 5 peut avoir une contenance de plusieurs m3. Le réservoir contient le propane à l'équilibre liquide/vapeur. Sa pression est régulée par la température du propane qui est elle-même régulée en fonction de la température ambiante et donc des échanges thermiques dans les batteries d'aéroréfrigérants. Le réservoir contient le propane sous forme liquide dans sa partie basse et sous vapeur dans sa partie haute. Dans cet agencement du circuit 3, le propane sort du réservoir 5 en phase liquide avec un couple flottant de température et de pression, par exemple à une température de -10°C pour une température de l'air ambiant de 0°C et entre dans le réservoir 5 en phase mixte vapeur/liquide ou sous forme vapeur avec le même couple flottant de température et de pression.
Selon l'invention, le réservoir 5 de propane est utilisé comme une source de chaleur centralisée pour la cascade de circuits secondaires à cycle thermodynamique de réchauffage du GNL. Cette disposition permet donc de centraliser les aéroréfrigérants 2 qui fournissent indirectement la chaleur pour tous les circuits secondaires. On comprend que dans un tel système, de l'humidité contenue dans l'air ambiant à tendance à se condenser sur les tubes des aéroréfrigérants du fait de l'écart de température entre l'air ambiant et le propane ce qui provoque un phénomène de givre sur ces tubes lequel nécessite donc de prévoir un système de dégivrage automatique. La disposition centralisée des aéroréfrigérants 2 permet avantageusement de centraliser également ce système de dégivrage et donc d'obtenir une structure compacte du système de regazéification 1 . A noter, qu'à la place du propane on pourrait utiliser un autre fluide caloporteur comme le dioxyde de carbone ou l'ammoniac sans sortir du cadre de l'invention.
La cascade de circuits secondaires à cycle thermodynamique qui servent à réchauffer le GNL liquide à partir de la chaleur stockée dans le réservoir 5 comprend un premier circuit secondaire 10 qui permet de réchauffer le GNL sur un premier palier de température de -160°C à environ - 60°C, un second circuit secondaire 20 qui permet de réchauffer le GNL sur un second palier de température de -60°C à -15°C et un troisième circuit secondaire 30 qui permet de réchauffer le GNL sur un dernier palier de température de -15°C à +5°C.
Dans le premier circuit secondaire 10, le GNL arrivant sur l'entrée E à -
160°C traverse successivement un premier échangeur de chaleur 1 1 et un second échangeur de chaleur 12 d'où il sort réchauffé à -60°C. Le premier échangeur de chaleur 1 1 fait partie d'un sous circuit intermédiaire 10A en boucle fermée à cycle thermodynamique de Brayton qui permet de réchauffer le GNL sur un palier de température de -160°C à -1 15°C par un échangeur de chaleur avec une boucle de propane 10C raccordée au réservoir 5. Le second échangeur de chaleur 12 fait partie d'un autre sous circuit intermédiaire 10B en boucle fermée à cycle thermodynamique de Rankine qui permet de réchauffer le GNL sur un palier de température de - 1 15°C à -60°C par échange de chaleur avec la boucle de propane 10C.
Le sous circuit 10A contient un fluide thermodynamique, ici de l'azote, qui suit donc un cycle thermodynamique de Brayton illustré sur la figure 2 par le diagramme D1 . Le sous circuit 10B conduit un autre fluide thermodynamique, ici de l'éthane, qui suit un cycle thermodynamique de Rankine illustré sur la figure 2 par le diagramme D2.
Dans le sous circuit 10A, l'azote est réchauffé dans un échangeur de chaleur 13 par échange de chaleur avec la boucle de propane 10C et dans le sous circuit 10B, l'éthane est réchauffé dans un autre échangeur de chaleur
14 par échange de chaleur avec la boucle de propane 10C. Sur la figure 1 , on voit que les deux échangeurs 10A et 10B sont donc raccordés en série sur la boucle de propane 10C.
Dans le sous circuit 10A à cycle de Brayton, l'azote sort de l'échangeur de chaleur 13 à une température d'environ -20°C, puis traverse une turbine
15 apte à utiliser une différence de pression de l'azote pour produire de l'énergie électrique, puis traverse l'échangeur de chaleur 1 1 et ressort à une température d'environ -150°C, puis traverse enfin un compresseur 16 avant de revenir dans l'échangeur de chaleur 13. On peut dans cette boucle du sous circuit 10A, prévoir en plus un système de récupération d'énergie par un échange de chaleur entre l'azote sortant de la turbine 15 et l'azote sortant du compresseur 16. Dans ce cycle thermodynamique, l'azote est comprimé dans le compresseur 16 et détendu dans la turbine 15 de façon quasi- isentropique et il est réchauffé dans l'échangeur 13 et refroidi dans l'échangeur 1 1 de façon quasi-isobare. L'azote ayant un point critique suffisamment bas reste toujours sous forme de vapeur sur tout son parcours dans le sous circuit 10A. L'azote pourrait être remplacé par un autre fluide thermodynamique présentant un point critique très bas et un profil de température croissant afin de suivre facilement l'augmentation de température du GNL comme illustré sur la figure 2.
Dans le sous circuit 10B à cycle de Rankine, l'éthane sort de l'échangeur de chaleur 14 également à une température de -20°C, puis traverse une turbine 17 apte à utiliser une différence de pression de l'éthane pour produire de l'énergie électrique, puis traverse l'échangeur de chaleur 12 et ressort de celui-ci à environ -1 10°C, puis est comprimé dans une pompe 18 avant de revenir dans l'échangeur de chaleur 14. Dans ce cycle thermodynamique de Rankine, l'éthane est comprimé dans la pompe 18 et détendu dans la turbine 17 de façon quasi-isentropique et il est réchauffé dans l'échangeur 14 et refroidi dans l'échangeur 12 de façon quasi-isobare.
Dans l'échangeur de chaleur 12, le GNL passe d'un état liquide à - 1 15°C à un état gazeux à -60°C, le passage liquide/gazeux du GNL se produisant plus particulièrement dans la tranche de température -80°C à - 70°C. Dans les tubes des échangeurs de chaleur 1 1 et 12, le GNL circule à contre courant du flux d'azote et d'éthane. Par ailleurs, dans les tubes des échangeurs de chaleur 13 et 14, le propane circule également à contre courant des flux d'azote et d'éthane.
Le second circuit secondaire 20 est une boucle de propane qui sort du réservoir 5 sous forme vapeur, puis qui traverse un échangeur de chaleur 21 pour échanger de la chaleur avec le GNL, puis qui revient dans le réservoir 5 sous forme liquide. Dans ce circuit secondaire, le propane suit un cycle thermodynamique qui est illustré sur la figure 3 par le diagramme D3. Pour compenser les pertes de charges du circuit et réguler le débit de propane, une pompe est utilisée en sortie de l'échangeur de chaleur 21 .
Comme le propane dans l'échangeur de chaleur 21 entre à une température d'environ -10°C alors que la température de l'air ambiant d'environ 0°C est inférieure à la température d'exploitation du GNL vaporisé qui est de +5°C, le système selon l'invention comprend donc le troisième circuit intermédiaire 30 à cycle thermodynamique qui est encore une boucle de propane mais fonctionnant comme une pompe à chaleur pour surchauffer le GNL déjà réchauffé par le circuit 20 en aval. Dans ce circuit 30, le propane sort du réservoir 5 sous forme de vapeur, puis traverse un compresseur 31 de propane vaporisé, puis se condense dans un échangeur de chaleur 32 pour céder de la chaleur avec le GNL, puis traverse encore une vanne de détente 33 avant de revenir en état diphasique dans le réservoir 5. Dans ce circuit secondaire, le propane suit un cycle thermodynamique illustré par le diagramme D4 sur la figure 4.
Comme on peut le comprendre de la description ci-dessus, le compresseur 31 peut être alimenté par de l'énergie électrique produite par les turbines 15 et 17. Toutefois, l'énergie électrique nécessaire pour surchauffer le GNL de -10°C à +5°C reste assez faible. Selon les conditions d'utilisation du système d'exploitation, qui peuvent être liées à la zone géographique d'exploitation, il n'est pas toujours nécessaire d'utiliser deux sous circuits 10A, 10B, seul un sous circuit 10A à cycle de Rankine pouvant permettre de réchauffer le GNL de -160°C à 60°C peut être proposé. Il est possible aussi d'utiliser dans la boucle de Rankine comme fluide intermédiaire un mélange de fluide azéotropiques, par exemple des hydrocarbures, dont la particularité est que le changement de phase liquide- gaz s'effectue avec un changement de température. L'énergie produite par la turbine 17 seule est certes plus faible que celle qui peut est produite par les deux turbines 15 et 17 en cascade, cependant elle peut suffire à alimenter complètement le système en électricité.
Selon l'invention, le propane circulant dans le circuit secondaire 30 à une température supérieure à 0°C est également utilisé pour alimenter un circuit de dégivrage 40 des aéroréfrigérants 2. Ce circuit de dégivrage 40 est raccordé aux entrées et aux sorties des aéroréfrigérants et comprend des vannes de dérivation commandées par l'unité de contrôle/commande 7 de telle manière que le flux de propane sous forme vapeur qui sort en haute température du compresseur 31 soit dérivé dans le circuit 40 pour réchauffer de façon sélective un ou plusieurs aéroréfrigérants positionnés en cycle de dégivrage. A noter, comme illustré par les flèches sur le circuit 40, que le circuit 40 est raccordé au circuit primaire 3 de telle manière qu'en cycle de dégivrage, l'aéroréfrigérant devient un condenseur isolé de propane et est alimenté par du propane chaud sous forme de vapeur qui cède sa chaleur pour dégivrer les ailettes de l'aéroréfrigérant de manière très efficace. L'unité de contrôle/commande 7 et le système de dégivrage sont conçus pour que même pendant un cycle de dégivrage de certains aéroréfrigérants 2, le système 1 continue d'assurer la vaporisation du GNL avec l'autre partie des aéroréfrigérants. Un système de dégivrage comme illustré sur la figure 1 est beaucoup plus efficace qu'un chauffage externe par résistance électrique par exemple.
Le système 1 selon l'invention peut également intégrer une récupération de chaleur perdue disponible à proximité de la zone d'implantation. La récupération de la chaleur d'une source disponible permet de baisser quantitativement le nombre d'aéroréfrigérants 4 nécessaires au bon fonctionnement du système 1 . Cette intégration rend le système 1 d'avantage excédentaire en énergie électrique laquelle pourrait être valorisée.
Dans le système 1 , l'unité de contrôle/commande 7 est agencée pour réguler le couple de température et de pression du propane (dans l'exemple à -10°C) pour son changement d'état vapeur/liquide en fonction de la température de l'air ambiant (dans l'exemple à 0°C) en agissant sur la pompe 6 et la vanne 4. L'unité 7 agit également sur une vanne de régulation (non illustrée) montée sur une portion du circuit secondaire 10 pour réguler le débit de propane dans ce circuit permettant de réchauffer les fluides intermédiaires des sous circuits 10A et 10B. L'unité 7 agit encore sur une autre vanne de régulation (non illustrée) montée sur une portion du circuit secondaire 20 pour réguler le débit du propane dans ce circuit.

Claims

REVENDICATIONS
1. Système de vaporisation d'un fluide cryogénique utilisant l'air ambiant (AIR) comme source de chaleur indirecte, comprenant un circuit primaire (3) dans lequel circule un fluide intermédiaire caloporteur réchauffé à partir de l'air ambiant, ce circuit primaire étant raccordé à un réservoir commun (5) de forte capacité dudit fluide intermédiaire, caractérisé en ce que ce système comprend en outre une cascade de circuits secondaires (10, 20, 30) raccordés également au réservoir commun, qui sont propres à réchauffer par paliers de température successifs ledit fluide cryogénique, le fluide intermédiaire caloporteur et le fluide cryogénique étant mis en échange de chaleur au niveau de chacun des circuits secondaires successifs (10, 20, 30).
2. Système selon la revendication 1 , dans lequel ledit circuit primaire (3) du fluide intermédiaire caloporteur traverse au moins une batterie d'échangeurs de chaleur (2) avec l'air ambiant et dans lequel il est prévu un circuit de dégivrage (40) qui traverse lesdits échangeurs de chaleur et qui est raccordé à un premier circuit secondaire (30) à cycle thermodynamique du type pompe à chaleur.
3. Système selon la revendication 2, dans lequel il est prévu dans un second circuit intermédiaire (10) au moins une turbine pour générer de l'énergie électrique destinée à alimenter un compresseur dudit premier circuit secondaire.
4. Système selon la revendication 3, dans lequel ladite turbine fait partie d'un sous circuit (10A) dudit second circuit secondaire dans lequel circule un autre fluide thermodynamique à travers lequel ledit fluide intermédiaire échange de la chaleur avec ledit fluide cryogénique, cet autre fluide thermodynamique effectuant dans ledit sous circuit un cycle thermodynamique de type Brayton ou Rankine.
Système selon l'une des revendications précédentes, dans lequel ledit réservoir commun (5) est agencé pour fournir auxdits circuits secondaires ledit fluide intermédiaire caloporteur sous forme vapeur ou liquide.
Procédé pour vaporiser du gaz naturel liquéfié, caractérisé en ce qu'il consiste à utiliser un système selon l'une des revendications précédentes et du propane comme fluide intermédiaire caloporteur.
PCT/FR2010/051311 2009-11-03 2010-06-25 Système de vaporisation d'un fluide cryogénique avec des échangeurs centralisés WO2011055045A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0957766 2009-11-03
FR0957766A FR2952161B1 (fr) 2009-11-03 2009-11-03 Systeme de vaporisation d'un fluide cryogenique avec des echangeurs centralises

Publications (1)

Publication Number Publication Date
WO2011055045A1 true WO2011055045A1 (fr) 2011-05-12

Family

ID=41815472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/051311 WO2011055045A1 (fr) 2009-11-03 2010-06-25 Système de vaporisation d'un fluide cryogénique avec des échangeurs centralisés

Country Status (2)

Country Link
FR (1) FR2952161B1 (fr)
WO (1) WO2011055045A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012089978A1 (fr) * 2010-12-30 2012-07-05 Gea Batignolles Technologies Thermiques Dispositif de vaporisation de gaz naturel liquéfié
WO2017095230A1 (fr) * 2015-12-01 2017-06-08 Wärtsilä Oil & Gas Systems As Installation et procédé pour la regazéification de gnl
US11371654B2 (en) 2017-04-25 2022-06-28 Chart Inc. Pressure building cryogenic fluid delivery system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201600121441A1 (it) * 2016-11-30 2018-05-30 Saipem Spa Pompa di calore con motore primo in applicazioni criogeniche e fluidi refrigeranti

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05332499A (ja) 1992-06-03 1993-12-14 Tokyo Gas Co Ltd 液化天然ガス気化装置
US20050092263A1 (en) 2003-10-16 2005-05-05 Engdahl Gerald E. Submerged combustion LNG vaporizer
FR2882129A1 (fr) * 2005-02-17 2006-08-18 Inst Francais Du Petrole Installation de regazeification de gaz naturel liquefie
US7155917B2 (en) 2004-06-15 2007-01-02 Mustang Engineering L.P. (A Wood Group Company) Apparatus and methods for converting a cryogenic fluid into gas
WO2007104076A1 (fr) * 2006-03-15 2007-09-20 Woodside Energy Limited Regazéification continue de gnl grâce à l'air ambiant
WO2007104077A1 (fr) * 2006-03-15 2007-09-20 Woodside Energy Limited Gestion de l'eau de lest lors de la regazéification en mer de gnl grâce à l'air ambiant
WO2009062240A1 (fr) * 2007-11-16 2009-05-22 Woodside Energy Limited Dégivrage intermittent pendant une regazéification continue d'un fluide cryogène à l'aide d'air ambiant

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05332499A (ja) 1992-06-03 1993-12-14 Tokyo Gas Co Ltd 液化天然ガス気化装置
US20050092263A1 (en) 2003-10-16 2005-05-05 Engdahl Gerald E. Submerged combustion LNG vaporizer
US7155917B2 (en) 2004-06-15 2007-01-02 Mustang Engineering L.P. (A Wood Group Company) Apparatus and methods for converting a cryogenic fluid into gas
FR2882129A1 (fr) * 2005-02-17 2006-08-18 Inst Francais Du Petrole Installation de regazeification de gaz naturel liquefie
WO2007104076A1 (fr) * 2006-03-15 2007-09-20 Woodside Energy Limited Regazéification continue de gnl grâce à l'air ambiant
WO2007104077A1 (fr) * 2006-03-15 2007-09-20 Woodside Energy Limited Gestion de l'eau de lest lors de la regazéification en mer de gnl grâce à l'air ambiant
WO2009062240A1 (fr) * 2007-11-16 2009-05-22 Woodside Energy Limited Dégivrage intermittent pendant une regazéification continue d'un fluide cryogène à l'aide d'air ambiant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012089978A1 (fr) * 2010-12-30 2012-07-05 Gea Batignolles Technologies Thermiques Dispositif de vaporisation de gaz naturel liquéfié
WO2017095230A1 (fr) * 2015-12-01 2017-06-08 Wärtsilä Oil & Gas Systems As Installation et procédé pour la regazéification de gnl
US11371654B2 (en) 2017-04-25 2022-06-28 Chart Inc. Pressure building cryogenic fluid delivery system

Also Published As

Publication number Publication date
FR2952161A1 (fr) 2011-05-06
FR2952161B1 (fr) 2012-01-13

Similar Documents

Publication Publication Date Title
US11578623B2 (en) Cryogenic combined cycle power plant
US20030005698A1 (en) LNG regassification process and system
JP5026588B2 (ja) Lng再ガス化および発電
EP3052773B1 (fr) Système thermodynamique de stockage/production d'énergie électrique
US11268439B2 (en) Cold-heat power generation device
KR102196751B1 (ko) 액화가스 연료의 냉열을 이용한 액체공기 저장 시스템
RU2464480C2 (ru) Способ и устройство для испарения сжиженного природного газа и его хранения
US20170038008A1 (en) Cold utilization system, energy system comprising cold utilization system, and method for utilizing cold utilization system
US20100083670A1 (en) Method for vaporizing and heating crycogenic fluid
FR2993643A1 (fr) Procede de liquefaction de gaz naturel avec changement de phase
US11300010B2 (en) Cooling equipment, combined cycle plant comprising same, and cooling method
KR20070114167A (ko) 액화 천연 가스 재기화 설비
WO2011055045A1 (fr) Système de vaporisation d'un fluide cryogénique avec des échangeurs centralisés
FR2991439A1 (fr) Installation de transformation d'energie thermique
WO2013102537A2 (fr) Système de stockage d'énergie électrothermique équipé d'un dispositif de stockage de glace à évaporation amélioré et procédé pour stocker de l'énergie électrothermique
US10704830B2 (en) Process and system for reliquefying boil-off gas (BOG)
FR2642152A1 (fr) Pompe a chaleur capable d'alimenter simultanement en fluides chauds et froids
KR20200120940A (ko) Lng 재기화
EP2288841B1 (fr) Système et procédé de vaporisation d'un fluide cryogénique, notamment du gaz naturel liquéfié, à base de co2
FR2993925A1 (fr) Dispositif permettant de stocker et de restituer de l'energie electrique a grande echelle
FR2775518A1 (fr) Procede et installation de production frigorifique a partir d'un cycle thermique d'un fluide a bas point d'ebullition
EP2417411A2 (fr) Procede et systeme frigorifique pour la recuperation de la froideur du methane par des fluides frigorigenes
EP3770382B1 (fr) Système de production d'énergie électrique
EP4136394A1 (fr) Installation de stockage de gaz liquéfié
WO2016146858A1 (fr) Dispositif thermodynamique reversible de transfert de chaleur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10745331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10745331

Country of ref document: EP

Kind code of ref document: A1