EP3899240B1 - Dispositif d'alimentation en carburant - Google Patents

Dispositif d'alimentation en carburant Download PDF

Info

Publication number
EP3899240B1
EP3899240B1 EP19813337.3A EP19813337A EP3899240B1 EP 3899240 B1 EP3899240 B1 EP 3899240B1 EP 19813337 A EP19813337 A EP 19813337A EP 3899240 B1 EP3899240 B1 EP 3899240B1
Authority
EP
European Patent Office
Prior art keywords
casing
fuel
supply device
pump
fuel supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19813337.3A
Other languages
German (de)
English (en)
Other versions
EP3899240A1 (fr
Inventor
Gabriel HAMARD
Jean-Pierre Millon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Nissan Motor Co Ltd
Original Assignee
Renault SAS
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS, Nissan Motor Co Ltd filed Critical Renault SAS
Publication of EP3899240A1 publication Critical patent/EP3899240A1/fr
Application granted granted Critical
Publication of EP3899240B1 publication Critical patent/EP3899240B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/04Means for damping vibrations or pressure fluctuations in injection pump inlets or outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/31Fuel-injection apparatus having hydraulic pressure fluctuations damping elements
    • F02M2200/315Fuel-injection apparatus having hydraulic pressure fluctuations damping elements for damping fuel pressure fluctuations

Definitions

  • the invention relates to a device for supplying fuel, in particular diesel, the fuel supply device comprising a pump, in particular a high pressure pump.
  • the invention also relates to a powertrain comprising such a fuel supply device.
  • the invention also relates to a motor vehicle comprising such a fuel supply device or such a powertrain.
  • Combustion engines particularly diesel engines, generally include a pump, called a “high pressure” pump connected to a fuel injection system.
  • the pump is connected upstream to a fuel tank and is capable of putting the fuel at high pressure with a view to injecting it into the combustion chambers of the engine.
  • the pressurized fuel can be led from the pump to a common injection rail, then from this rail to injectors opening into the different combustion chambers.
  • This filtration device comprises a buffer tank, an inlet connected to the fuel tank, a first outlet connected to the pump and a second outlet, called “return”, also connected to the tank.
  • This filtration device makes it possible in particular to regulate the fuel pressure upstream of the pump and thus to lower the sizing requirements of the hydraulic connectors of the pump.
  • connection pipes between the filtration device and the tank and between the filtration and pump.
  • the routes of these connecting pipes must include little or no elbow or curvature in order to avoid pressure losses within the pipes.
  • materials chosen for the connection pipes must take into account the interface and sealing constraints with the buffer tank. Thus, when the buffer tank is made of plastic, the connection pipes cannot be metallic.
  • the filtration device must also have low sensitivity to thermal radiation and be as light as possible.
  • the aim of the invention is to provide a fuel supply device remedying the above drawbacks and improving the devices known from the prior art.
  • the invention makes it possible to produce a fuel supply device which is compact, easy to install, robust and light.
  • the documents DE 195 47 097 A1 , FROM 10 2011 090186 A1 And US 2015/337753 A1 disclose fuel supply devices.
  • the pump may comprise a second casing at least partially enveloping the pump, the first casing enveloping the second casing, the buffer volume being defined between the first casing and the second casing.
  • the first casing and the second casing can form a one-piece assembly, in particular an assembly obtained by molding.
  • the first casing and/or the second casing may be made of plastic.
  • the first casing and the second casing can form a one-piece metal assembly obtained by sheet metal deformation and/or welding.
  • the second fuel outlet may include a valve, the valve being able to open if the fuel pressure in the buffer volume exceeds a pressure threshold.
  • the first fuel outlet may include a first hydraulic connector.
  • the second fuel outlet may include a second hydraulic connector.
  • the fuel inlet may include a third hydraulic connection.
  • the first hydraulic connection can extend from the second casing towards the inside of the buffer volume.
  • the second hydraulic connection can extend from the first casing towards the outside of the buffer volume.
  • the third hydraulic connection can extend from the first casing towards the outside of the buffer volume.
  • the first hydraulic connector and the second hydraulic connector can extend in different directions, including directions perpendicular to each other.
  • the first hydraulic connector and the third hydraulic connector can extend in different directions, including directions perpendicular to each other.
  • the second casing may take the shape of the pump, and/or the first casing may have a substantially parallelepiped shape.
  • the pump may be able to put diesel under a pressure of at least 1000 bars, or even at least 2000 bars.
  • the pump may include a cam follower piston, the pump being able to be driven in operation by the rotation of a cam in contact with the cam follower piston.
  • the first casing and/or the second casing may include a mounting flange for securing the fuel supply device to an engine block.
  • the invention also relates to a powertrain comprising a fuel supply device as defined above and a fuel injection system, the fuel supply device being connected downstream to the fuel injection system.
  • the invention also relates to a motor vehicle comprising a fuel tank, a fuel supply device as defined above and/or a powertrain as defined previously, the fuel supply device being connected to the fuel tank. fuel through the fuel inlet and through the second fuel outlet.
  • upstream and downstream relate to the direction of flow of a liquid, in particular a fuel, the liquid flowing from upstream to downstream.
  • the powertrain 1' comprises an engine block 2' to which various pieces of equipment are attached.
  • the powertrain 1' includes a pump 3', called a "high pressure pump” and a filtration device 4'.
  • the pump 3' is capable of putting fuel, in particular diesel, under pressure with a view to its injection into the combustion chambers of the powertrain 1'.
  • the pump 3' includes a low pressure inlet 5' and a high pressure outlet 6'.
  • the filtration device 4' sometimes called “damper", makes it possible in particular to regulate the fuel pressure upstream of the pump 3'.
  • the filtration device comprises a buffer tank 7', an inlet 8' connected to a fuel tank, a first outlet 9' connected to the pump 3' and a second outlet 10', called “return", also connected to the fuel tank.
  • the powertrain 1' therefore comprises a first pipe 11' connecting the first outlet 9' to the pump 3', a second pipe 12' connecting the second outlet 10' to the fuel tank, a third pipe 13' connecting the inlet 8 'to the fuel tank, and a fourth pipe 14' connecting the pump 3' to an injection device such as an injection rail.
  • These pipes have bends or curvatures in order to orient the ends of the pipes parallel to the inlets and outlets of the pump 3' and the filtration device 4'.
  • first outlet 9' of the filtration device 4' and the low pressure inlet 5' of the pump 3' are substantially oriented in perpendicular directions.
  • the first pipe 11' includes two 90° elbows to connect the first outlet 9' to the low pressure inlet 5'.
  • the pump 3' is protected by a protective casing 15'.
  • the protective casing 15' also surrounds a downstream part of the first pipe 11'.
  • the first pipe must therefore run as close as possible to the body of the pump 3' in order to limit the size of the protective casing 15'.
  • the fuel present in the fuel tank passes successively through the third pipe 12', the buffer tank 7' and the first pipe 10' before reaching the pump 3' where it is put under pressure.
  • the fuel pressurized by the pump is then directed to the injection system via the fourth line 13'.
  • part of the diesel present in the buffer tank is redirected to the fuel tank via the second pipe 11'. THE pipes having numerous bends, fuel pressure losses occur inside the pipes 11', 12', 13', 14'.
  • the vehicle 100 can be of any type. In particular, it can be for example a private vehicle, a utility vehicle, a truck or a bus.
  • the powertrain 1 comprises a combustion engine 2, a fuel injection system 3 and the fuel supply device 10.
  • the combustion engine is a diesel engine, that is to say it is able to operate thanks to the combustion of diesel as fuel.
  • the combustion engine 2 comprises an engine block in which combustion chambers are dug. It further comprises rotating shafts 4, in particular a crankshaft, camshafts, or even balancing shafts.
  • the fuel injection system 3 may comprise a fuel distribution rail to which injectors opening into the different combustion chambers are connected.
  • the motor vehicle 100 further comprises a fuel tank 5 connected to the powertrain 1.
  • the fuel supply device 10 is connected downstream to the fuel injection system 3 by a first pipe 6.
  • the fuel supply device 10 is also connected to the tank by a second pipe 7 and by a third pipe 8
  • the first pipe 6 is a so-called “high pressure” pipe insofar as it is capable of containing fuel under a pressure of up to 1000 bars, or even 2000 bars, or even 3000 bars.
  • the second pipe 7 and the third pipe 8 are so-called “low pressure” pipes insofar as they are capable of containing fuel under a pressure of the order of only a few bars.
  • the fuel supply device 10 comprises a pump 11 capable of putting the fuel under pressure, a first casing 21 at least partially enveloping the pump 11, and a buffer volume 23 defined between the first casing 21 and the pump 11.
  • Pump 11 is particularly visible on the figure 5 .
  • the first casing 21 is not shown to be able to observe the pump 11.
  • the pump 11 is fixed to the engine block and it is able to put the fuel under pressure.
  • the fuel is diesel and the pressure of the diesel at the outlet of the pump 11 can reach 1000 bars, or even 2000 bars, or even 3000 bars.
  • Pump 11 can thus be called “high pressure pump”.
  • the pump 11 may comprise one or more pistons driven in movement by the combustion engine.
  • the pump may include a pump body 12 and a single cam follower piston 13 movable in translation inside the pump body.
  • the cam follower piston 13 is equipped at one end with a cam follower 14, in particular a cam follower bearing.
  • the cam follower 14 bears against a cam 9 fixed to a rotating shaft 4 of the combustion engine.
  • the positioning of the pump in the powertrain is therefore at least partly imposed by the position of the rotating shafts.
  • the pump 11 is supported on the engine block via a face 15 of the pump 11.
  • the rotation of the rotating shaft 4 causes the movement of the cam follower piston 13 and the pressurization of the fuel inside the pump 11.
  • the pump is therefore able to be driven in operation by the rotation of the cam 9 in contact with the cam follower piston 13.
  • the rotating shaft 4 supporting the cam 9 could be a specific shaft of the pump 11 and not a rotating shaft of the combustion engine.
  • the rotation of the rotating shaft specific to the pump 11 could then be obtained by connecting the pump to the crankshaft, to a camshaft or to a balancing shaft via gears, a chain or a belt.
  • Pump 11 includes a second casing 22 clearly visible on the figure 5 .
  • the second casing 22 matches the shape of the pump 11 and forms a sealed envelope around the body of the pump 12.
  • the volume between the pump body 12 and the second casing 22 can be small or even zero.
  • the second casing 22 protects the pump body while limiting the size of the pump 11.
  • the first casing 21, visible in particular on the Figure 6 is a housing or in other words a cowling at least partially enveloping the pump 11.
  • the first casing 21 therefore also envelops the second casing 22 of the pump 11.
  • the first casing 21 covers or at least partially covers the pump 11.
  • the first casing 21 can cover at least one face of the pump 1, preferably at least two faces of the pump 11.
  • the first casing 21 covers all the faces of the pump 11 with the exception of face 15 of pump 11 resting on the motor block.
  • the first casing 21 is fixed to the pump 11. It can have a substantially parallelepiped shape or alternatively any other shape imposed by the environment of the fuel supply device.
  • the buffer volume 23 is defined between the first casing 21 and the second casing 22. It can have any shape.
  • This buffer volume 23 is a volume capable of containing fuel upstream of the pump 11. According to a variant embodiment, the pump 11 could not include the second casing 22 and the buffer volume 23 would then be defined between the first casing and the body of the pump 12 directly.
  • the first casing 21 and/or the second casing 22 are made of plastic, in particular a plastic suitable for contact with a fuel and having low sensitivity to thermal radiation.
  • the first casing 21 and/or the second casing 22 can both be one-piece parts obtained by plastic injection.
  • the first casing 21 and the second casing 22 could form a single-piece assembly obtained by molding, in particular by rotational molding.
  • the use of plastic makes it possible to design the first casing and the second casing according to freedom of form.
  • the shape of the first casing 21 can therefore adapt to the environment close to the fuel supply device 10 and the shape of the second casing 22 can therefore adapt to the shape of the body of the pump 21.
  • the first casing 21 and the second casing 22 could form a single metal unit obtained by deformation of sheet metal, in particular by stamping and/or by welding. Different sheet metal elements could be welded together to form a watertight buffer volume.
  • the first casing 21 and/or the second casing 22 may comprise a fixing flange intended to fix the fuel supply device 10 to the engine block.
  • the second casing 22 comprises at least one flange 24 provided with a circular opening for its attachment against the engine block.
  • the first casing and the second casing each comprise a fixing flange provided with fixing openings. The openings of the first flange then coincide with the openings of the second flange so that the fixing of the fuel supply device to the engine block also makes it possible to secure the first casing 21 to the second casing 22.
  • the fuel supply device 10 further comprises a first fuel outlet 31 from the buffer volume 23 to the pump 11, a second fuel outlet 32 from the buffer volume 23 to the fuel tank 5, and an inlet 33 of fuel from the fuel tank 5 towards the buffer volume 23.
  • the fuel therefore enters the buffer volume 23 via the inlet 33 and leaves via the first outlet 31 or via the second outlet 32.
  • the buffer volume 23 is waterproof.
  • the first casing is linked to the second casing so as to form a sealed interface.
  • the fuel cannot therefore enter or leave the buffer volume 23 other than via the inlet 33 or via the outlets 31, 32.
  • the second outlet 32 is therefore connected to the fuel tank 5 via the second pipe 7.
  • the inlet 33 is therefore connected to the fuel tank 5 by the third pipe 8.
  • the first outlet allows the fuel contained in the buffer volume to pass directly to the pump 11 without passing through any pipe.
  • the first outlet 31 comprises a first hydraulic connection 41.
  • the second outlet 32 comprises a second hydraulic connection 42.
  • the inlet 33 comprises a third hydraulic connection 43.
  • Each of these three hydraulic connections 41, 42, 43 can be in the form a tube of generally cylindrical shape and or in the form of a snap-on connector.
  • the first hydraulic connection 41 could be replaced by a simple opening allowing the pump 11 to communicate with the buffer volume 23.
  • the invention makes it possible to use a pump 11 already equipped with a hydraulic connection without modifying it.
  • the second hydraulic connection 42 and the third hydraulic connection 43 can be provided with means for fixing respectively to the second pipe 7 and to the third pipe 8. These fixing means can for example be a thread or circumferential grooves.
  • Hydraulic fittings can be made from any material suitable for handling diesel. Advantageously, they are chosen from a material compatible with the material forming the pipes to which they are connected.
  • the first hydraulic connection 41 extends from the second casing 22 towards the interior of the buffer volume 23.
  • the first hydraulic connection can extend perpendicularly to the face 15 of the pump 11 along which the supply device 10 is fixed to the engine block.
  • the direction in which the first hydraulic connection 41 extends may also be parallel to the direction in which the cam follower piston 13 is movable.
  • the second hydraulic connector 42 and the third hydraulic connector 43 both extend from the first casing 21 towards the outside of the buffer volume 23.
  • the two hydraulic connectors 42, 43 project from the first casing 21 towards the outside of the fuel supply device 10.
  • the first hydraulic connector 41 and the second hydraulic connector 42 extend in directions perpendicular to each other.
  • the first hydraulic connector 41 and the third hydraulic connector 43 extend in directions perpendicular to each other.
  • the two hydraulic connections extend parallel to the face 15 and in opposite directions.
  • the hydraulic connections could be oriented differently to facilitate the installation of pipes 7 and 8 while limiting the pressure losses in these pipes.
  • the fuel supply device 10 further comprises a first seal 51 at the interface between the first hydraulic connector 41 and the second casing 22, a second seal 52 at the interface between the second hydraulic connector 42 and the first casing 21, and a third seal 53 at the interface between the third hydraulic connection 43 and the first casing 21.
  • the second outlet 32 includes a valve 34, called a “pressure relief valve”.
  • the valve 34 is capable of opening if the fuel pressure in the buffer volume 23 exceeds one given pressure threshold.
  • the valve 34 can be a completely mechanical and autonomous device. It can for example include a spring or a membrane.
  • the fuel supply device could not include a valve, the sole presence of the buffer volume sufficient to regulate the fuel pressure upstream of the pump 11.
  • the fuel supply device 10 For the manufacture of the fuel supply device 10, it is possible to take a pump 11 as supplied by a pump manufacturer and add to this pump the first casing 21 equipped with the second outlet 32 and the inlet 33. When fixing the first casing 21 on the pump it can be ensured that the interface between the first casing 21 and the second casing 22 is watertight.
  • the fuel supply device 10 For mounting the fuel supply device 10 within the powertrain 1, the fuel supply device 10 can be fixed via the fixing flange(s) 24.
  • the fuel supply device is connected in fuel 10 to the fuel injection system 3 with the first line 6 and the fuel supply device 10 is connected to the fuel tank 5 with the second line 7 and with the third line 8. Compared to the powertrain 1' according to state of the art, this saves the assembly and use of the connection pipe 11'.
  • connection pipe 11' Assembly is therefore made easier and pressure losses occurring inside the connection pipe 11' are avoided.
  • the fuel flows from the fuel tank 5 to the fuel supply device 10 via the third line 8. It enters the buffer volume 23 via the inlet 33.
  • the fuel passes from the buffer volume 23 to the pump 11 via the first outlet 31.
  • the fuel flow is oriented from a direction parallel to the inlet 33 towards a direction parallel to the first outlet 31 It is thus possible to modify the direction of the fuel flow without using an elbow in a pipe.
  • the fuel is pressurized by the pump 11 and is then directed to the fuel injection system 3 via the first line 6. It is then injected into the combustion chambers. If the pressure within the buffer volume 23 reaches a predefined threshold, for example due to leaks from the pump 11 towards the low pressure circuit, the valve 34 opens and lets the fuel return to the tank.
  • the buffer volume 23 makes it possible to obtain fine regulation of the pressure upstream of the pump but also makes it possible to limit fuel overpressure. Such a buffer volume 23 allows also reduce the acoustic impact linked to pressure variations.
  • the first casing 21 combines the functions of protecting the pump 11, forms a wall of the buffer volume 23 and allows the fixing of the fuel supply device to the engine block if it includes a fixing flange.
  • the filtration device is directly integrated under the first casing 21 protecting the pump 11. We thus manage to obtain a compact power unit, easy to install, robust and light.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Description

  • L'invention concerne un dispositif d'alimentation en carburant, notamment du gazole, le dispositif d'alimentation en carburant comprenant une pompe, notamment un pompe haute pression. L'invention porte aussi sur un groupe motopropulseur comprenant un tel dispositif d'alimentation en carburant. L'invention porte encore sur un véhicule automobile comprenant un tel dispositif d'alimentation en carburant ou un tel groupe motopropulseur.
  • Les moteurs à combustion, notamment les moteurs diesel, comprennent généralement une pompe, dite pompe « haute pression » reliée à un système d'injection de carburant. La pompe est reliée en amont à un réservoir de carburant et elle est apte à mettre le carburant à haute pression en vue de l'injecter dans des chambres de combustion du moteur. A cet effet, le carburant sous pression peut être conduit depuis la pompe jusqu'à une rampe commune d'injection, puis depuis cette rampe jusqu'à des injecteurs débouchant dans les différentes chambres de combustion.
  • On connait l'utilisation d'un dispositif de filtration, également dénommé selon l'anglicisme « damper », interposé entre le réservoir de carburant et la pompe. Ce dispositif de filtration comprend un réservoir tampon, une entrée reliée au réservoir de carburant, une première sortie reliée à la pompe et une deuxième sortie, dite de « retour », reliée également au réservoir. Ce dispositif de filtration permet notamment de réguler la pression du carburant en amont de la pompe et ainsi d'abaisser les exigences de dimensionnement des connecteurs hydrauliques de la pompe.
  • L'installation d'un dispositif de filtration dans un groupe motopropulseur requiert un volume disponible important dans le compartiment moteur, autant pour le réservoir tampon lui-même que pour les conduites de raccordement entre le dispositif de filtration et le réservoir et entre le dispositif de filtration et la pompe. De plus, les parcours de ces conduites de raccordement doivent comprendre peu ou pas de coude ou de courbure afin d'éviter les pertes de pression au sein des conduites. Enfin, les matériaux choisis pour les conduites de raccordement doivent tenir compte des contraintes d'interface et d'étanchéité avec le réservoir tampon. Ainsi, lorsque le réservoir tampon est réalisé en plastique, les conduites de raccordement ne peuvent pas être métalliques. Enfin, le dispositif de filtration doit également présenter une faible sensibilité au rayonnement thermique et être aussi léger que possible.
  • Le but de l'invention est de fournir un dispositif d'alimentation en carburant remédiant aux inconvénients ci-dessus et améliorant les dispositifs connus de l'art antérieur. En particulier, l'invention permet de réaliser un dispositif d'alimentation en carburant qui soit compact, facile à installer, robuste et léger. Les documents DE 195 47 097 A1 , DE 10 2011 090186 A1 et US 2015/337753 A1 divulguent des dispositifs d'alimentation en carburant.
  • L'invention se rapporte à un dispositif d'alimentation en carburant comprenant :
    • une pompe apte à mettre un carburant sous pression,
    • un premier carter enveloppant au moins partiellement la pompe,
    • un volume tampon défini entre le premier carter et la pompe,
    • une entrée de carburant vers le volume tampon et destinée à être reliée en amont à un réservoir de carburant,
    • une première sortie de carburant depuis le volume tampon vers la pompe,
    • une deuxième sortie de carburant depuis le volume tampon et destinée à être reliée en aval à un réservoir de carburant.
  • La pompe peut comprendre un deuxième carter enveloppant au moins partiellement la pompe, le premier carter enveloppant le deuxième carter, le volume tampon étant défini entre le premier carter et le deuxième carter.
  • Le premier carter et le deuxième carter peuvent former un ensemble monobloc, notamment un ensemble obtenu par moulage.
  • Le premier carter et/ou le deuxième carter peuvent être en plastique.
  • Le premier carter et le deuxième carter peuvent former un ensemble monobloc métallique obtenu par déformation de tôle et/ou par soudure.
  • La deuxième sortie de carburant peut comprendre un clapet, le clapet étant apte à s'ouvrir si la pression de carburant dans le volume tampon dépasse un seuil de pression.
  • la première sortie de carburant peut comprendre un premier raccord hydraulique. La deuxième sortie de carburant peut comprendre un deuxième raccord hydraulique. L'entrée de carburant peut comprendre un troisième raccord hydraulique.
  • le premier raccord hydraulique peut s'étendre depuis le deuxième carter vers l'intérieur du volume tampon. Le deuxième raccord hydraulique peut s'étendre depuis le premier carter vers l'extérieur du volume tampon. Le troisième raccord hydraulique peut s'étendre depuis le premier carter vers l'extérieur du volume tampon.
  • Le premier raccord hydraulique et le deuxième raccord hydraulique peuvent s'étendre dans des directions différentes, notamment des directions perpendiculaires l'une à l'autre. Le premier raccord hydraulique et le troisième raccord hydraulique peuvent s'étendre dans des directions différentes, notamment des directions perpendiculaires l'une à l'autre.
  • Le dispositif d'alimentation en carburant peut comprendre :
    • un premier joint d'étanchéité à l'interface entre le premier raccord hydraulique et le deuxième carter, et/ou
    • un deuxième joint d'étanchéité à l'interface entre le deuxième raccord hydraulique et le premier carter, et/ou
    • un troisième joint d'étanchéité à l'interface entre le troisième raccord hydraulique et le premier carter.
  • Le deuxième carter peut épouser la forme de la pompe, et/ou en le premier carter peut avoir une forme sensiblement parallélépipédique.
  • La pompe peut être apte à mettre du gazole sous une pression d'au moins 1000 bars, voire au moins 2000 bars.
  • La pompe peut comprendre un piston suiveur de came, la pompe étant apte être entraînée en fonctionnement par la rotation d'une came en contact avec le piston suiveur de came.
  • Le premier carter et/ou le deuxième carter peuvent comprendre une bride de fixation destinée à fixer le dispositif d'alimentation en carburant à un bloc moteur.
  • L'invention se rapporte également à un groupe motopropulseur comprenant un dispositif d'alimentation en carburant tel que défini précédemment et un système d'injection de carburant, le dispositif d'alimentation en carburant étant relié en aval au système d'injection de carburant.
  • L'invention se rapporte également à un véhicule automobile comprenant un réservoir de carburant, un dispositif d'alimentation en carburant tel que défini précédemment et/ ou un groupe motopropulseur tel que défini précédemment, le dispositif d'alimentation en carburant étant relié au réservoir de carburant par l'entrée de carburant et par la deuxième sortie de carburant.
  • Ces objets, caractéristiques et avantages de la présente invention seront exposés en détail dans la description suivante d'un mode de réalisation particulier fait à titre non-limitatif en relation avec les figures jointes parmi lesquelles :
    • [fig.1]
      La figure 1 est une vue isométrique d'une pompe et d'un dispositif de filtration selon l'état de la technique.
    • [fig.2]
      La figure 2 est une vue isométrique partielle de la pompe et d'un dispositif de filtration selon l'état de la technique.
    • [fig.3]
      La figure 3 est une vue isométrique de la pompe équipée d'un carter de protection.
    • [fig.4]
      La figure 4 est une vue schématique d'un véhicule automobile selon un mode de réalisation de l'invention.
    • [fig.5]
      La figure 5 est une vue isométrique d'une pompe d'un dispositif d'alimentation en carburant selon un mode de réalisation de l'invention.
    • [fig.6]
      La figure 6 est une vue en coupe d'un dispositif d'alimentation en carburant selon un mode de réalisation de l'invention.
  • Dans ce document, les termes « amont » et « aval » se rapportent au sens d'écoulement d'un liquide, notamment d'un carburant, le liquide s'écoulant de l'amont vers l'aval.
  • Pour bien comprendre l'invention nous allons décrire dans un premier temps un groupe motopropulseur 1' selon l'état de la technique en référence aux figures 1, 2 et 3. Le groupe motopropulseur 1' comprend un bloc moteur 2' sur lequel sont fixés divers équipements. Notamment, le groupe motopropulseur 1' comprend une pompe 3', dite « pompe haute pression » et un dispositif de filtration 4'. La pompe 3' est apte à mettre du carburant, notamment du gazole, sous pression en vue de son injection dans des chambres de combustion du groupe motopropulseur 1'. La pompe 3' comprend une entrée basse pression 5' et une sortie haute pression 6'. Le dispositif de filtration 4', parfois dénommé selon l'anglicisme « damper », permet notamment de réguler la pression du carburant en amont de la pompe 3'. A cet effet, le dispositif de filtration comprend un réservoir tampon 7', une entrée 8' reliée à un réservoir de carburant, une première sortie 9' reliée à la pompe 3' et une deuxième sortie 10', dite de « retour », reliée également au réservoir de carburant. Le groupe motopropulseur 1' comprend donc une première conduite 11' reliant la première sortie 9' à la pompe 3', une deuxième conduite 12' reliant la deuxième sortie 10' au réservoir de carburant, une troisième conduite 13' reliant l'entrée 8' au réservoir de carburant, et une quatrième conduite 14' reliant la pompe 3' à un dispositif d'injection tel qu'une rampe d'injection. Ces conduites présentent des coudes ou courbures afin d'orienter les extrémités des conduites parallèlement aux entrées et sorties de la pompe 3' et du dispositif de filtration 4'. Notamment, la première sortie 9' du dispositif de filtration 4' et l'entrée basse pression 5' de la pompe 3' sont sensiblement orientées selon des directions perpendiculaires. La première conduite 11' comprend deux coudes à 90° pour relier la première sortie 9' à l'entrée basse pression 5'.
  • Par ailleurs, la pompe 3' est protégée par un carter de protection 15'. Le carter de protection 15' enveloppe également une partie aval de la première conduite 11'. La première conduite doit donc longer le plus possible le corps de la pompe 3' afin de limiter l'encombrement du carter de protection 15'.
  • Lorsque le moteur fonctionne le carburant présent dans le réservoir de carburant passe successivement au travers de la troisième conduite 12', du réservoir tampon 7' et de la première conduite 10' avant de parvenir à la pompe 3' ou il est mis sous pression. Le carburant mis sous pression par la pompe est ensuite dirigé vers le système d'injection via la quatrième conduite 13'. En cas de pression de carburant trop importante dans le réservoir tampon, une partie du gazole présent dans le réservoir tampon est redirigé vers le réservoir de carburant via la deuxième conduite 11'. Les conduites présentant de nombreux coudes, des pertes de pression du carburant se produisent à l'intérieur des conduites 11', 12', 13', 14'.
  • Nous allons à présent décrire un véhicule 100 automobile équipé d'un groupe motopropulseur 1 et d'un dispositif d'alimentation en carburant 10 selon un mode de réalisation de l'invention en référence aux figures 4, 5 et 6.
  • La figure 4 illustre schématiquement le véhicule 100 selon un mode de réalisation de l'invention. Le véhicule 100 peut être de toute nature. Notamment, il peut être par exemple un véhicule particulier, un véhicule utilitaire, un camion ou un bus. Le groupe motopropulseur 1 comprend un moteur à combustion 2, un système d'injection de carburant 3 et le dispositif d'alimentation en carburant 10. Préférentiellement le moteur à combustion est un moteur diesel, c'est-à-dire qu'il est apte à fonctionner grâce à la combustion de gazole comme carburant. Le moteur à combustion 2 comprend un bloc moteur dans lequel sont creusées des chambres de combustion. Il comprend en outre des arbres tournants 4, notamment un vilebrequin, des arbres à cames, voire des arbres d'équilibrages. Le système d'injection de carburant 3 peut comprendre un rail de distribution du carburant auquel sont reliés des injecteurs débouchant dans les différentes chambres de combustion. Le véhicule automobile 100 comprend en outre un réservoir de carburant 5 relié au groupe motopropulseur 1.
  • Le dispositif d'alimentation en carburant 10 est relié en aval au système d'injection de carburant 3 par une première conduite 6. Le dispositif d'alimentation en carburant 10 est également relié au réservoir par une deuxième conduite 7 et par une troisième conduite 8. La première conduite 6 est une conduite dite « haute pression » dans la mesure où elle est apte à contenir du carburant sous une pression pouvant atteindre 1000 bars, voire 2000 bars, voire encore 3000 bars. La deuxième conduite 7 et la troisième conduite 8 sont des conduites dites « basse pression » dans la mesure où elles sont aptes à contenir du carburant sous une pression de l'ordre de quelques bars seulement.
  • Le dispositif d'alimentation en carburant 10 comprend une pompe 11 apte à mettre le carburant sous pression, un premier carter 21 enveloppant au moins partiellement la pompe 11, et un volume tampon 23 défini entre le premier carter 21 et la pompe 11.
  • La pompe 11 est particulièrement visible sur la figure 5. En remarque, sur la figure 5 le premier carter 21 n'est pas montré pour pouvoir observer la pompe 11. La pompe 11 est fixée au bloc moteur et elle est apte à mettre le carburant sous pression. Selon un mode de réalisation préféré de l'invention, le carburant est du gazole et la pression du gazole en sortie de la pompe 11 peut atteindre 1000 bars, voire 2000 bars, voire encore 3000 bars. La pompe 11 peut ainsi être dénommée « pompe haute pression ». La pompe 11 peut comprendre un ou plusieurs pistons entraînés en mouvement par le moteur à combustion. Par exemple la pompe peut comprendre un corps de pompe 12 et un unique piston suiveur de came 13 mobile en translation à l'intérieur du corps de pompe. Le piston suiveur de came 13 est équipé à une extrémité d'un suiveur de came 14, notamment un roulement suiveur de came. Le suiveur de came 14 est en appui contre une came 9 fixée à un arbre tournant 4 du moteur à combustion. Le positionnement de la pompe dans le groupe motopropulseur est donc au moins en partie imposé par la position des arbres tournants. La pompe 11 est en appui sur le bloc moteur via une face 15 de la pompe 11. La rotation de l'arbre tournant 4 entraîne le déplacement du piston suiveur de came 13 et la mise sous pression du carburant à l'intérieur de la pompe 11. La pompe est donc apte être entraînée en fonctionnement par la rotation de la came 9 en contact avec le piston suiveur de came 13. En variante, l'arbre tournant 4 supportant la came 9 pourrait être un arbre propre de la pompe 11 et non un arbre tournant du moteur à combustion. La rotation de l'arbre tournant propre à la pompe 11 pourrait alors être obtenue en reliant la pompe au vilebrequin, à un arbre à cames ou à un arbre d'équilibrage par l'intermédiaire d'engrenages, d'une chaîne ou d'une courroie.
  • La pompe 11 comprend un deuxième carter 22 bien visible sur la figure 5. Le deuxième carter 22 épouse la forme de la pompe 11 et forme une enveloppe étanche autour du corps de la pompe 12. Le volume compris entre le corps de pompe 12 et le deuxième carter 22 peut être faible voire même nul. Avantageusement, le deuxième carter 22 protège le corps de pompe tout en en limitant l'encombrement de la pompe 11.
  • Le premier carter 21, visible notamment sur la figure 6, est un boîtier ou autrement dit un capotage enveloppant au moins partiellement la pompe 11. Le premier carter 21 enveloppe donc également le deuxième carter 22 de la pompe 11. Autrement dit, le premier carter 21 couvre ou recouvre au moins partiellement la pompe 11. Avantageusement le premier carter 21 peut couvrir au moins une face de la pompe 1, de préférence au moins deux faces de la pompe 11. Selon le mode de réalisation présenté, le premier carter 21 couvre toute les faces de la pompe 11 à l'exception de la face 15 de la pompe 11 en appui sur le bloc moteur. Lorsque le dispositif d'alimentation en carburant 10 est fixé au bloc moteur, la pompe 11 n'est donc pas visible et elle est complètement protégée par le premier carter 21.
  • Le premier carter 21 est fixé à la pompe 11. Il peut avoir une forme sensiblement parallélépipédique ou en variante toute autre forme imposée par l'environnement du dispositif d'alimentation en carburant. Le volume tampon 23 est défini entre le premier carter 21 et le deuxième carter 22. Il peut avoir une forme quelconque. Ce volume tampon 23 est un volume apte à contenir du carburant en amont de la pompe 11. Selon une variante de réalisation, la pompe 11 pourrait ne pas comprendre le deuxième carter 22 et le volume tampon 23 serait alors défini entre le premier carter et le corps de la pompe 12 directement.
  • Avantageusement, le premier carter 21 et/ou le deuxième carter 22 sont fabriqués en plastique, notamment dans un plastique apte au contact avec un carburant et présentant une faible sensibilité au rayonnement thermique. Le premier carter 21 et/ou le deuxième carter 22 peuvent être tous deux des pièces monobloc obtenues par injection plastique. En variante, le premier carter 21 et le deuxième carter 22 pourraient former un ensemble monobloc obtenu par moulage, notamment par rotomoulage. L'utilisation du plastique permet de concevoir le premier carter et le deuxième carter selon une liberté de forme. La forme du premier carter 21 peut donc s'adapter à l'environnement proche du dispositif d'alimentation en carburant 10 et la forme du deuxième carter 22 peut donc s'adapter à la forme du corps de la pompe 21. Selon une autre variante, le premier carter 21 et le deuxième carter 22 pourraient former un ensemble monobloc métallique obtenu par déformation de tôle, notamment par emboutissage et/ou par soudure. Différents éléments de tôles pourraient être soudés ensemble de manière à former un volume tampon étanche.
  • Le premier carter 21 et/ou le deuxième carter 22 peuvent comprendre une bride de fixation destinée à fixer le dispositif d'alimentation en carburant 10 au bloc moteur. Comme cela apparaît sur la figure 5, le deuxième carter 22 comprend au moins une bride 24 pourvue d'une ouverture circulaire en vue de sa fixation contre le bloc moteur. Avantageusement, le premier carter et le deuxième carter comprennent chacun une bride de fixation munie d'ouvertures de fixation. Les ouvertures de la première bride coïncident alors avec les ouvertures de la deuxième bride de sorte que la fixation du dispositif d'alimentation en carburant au bloc moteur permette également de solidariser le premier carter 21 au deuxième carter 22.
  • Le dispositif d'alimentation en carburant 10 comprend en outre une première sortie 31 de carburant depuis le volume tampon 23 vers la pompe 11, une deuxième sortie 32 de carburant depuis le volume tampon 23 vers le réservoir de carburant 5, et une entrée 33 de carburant depuis le réservoir de carburant 5 vers le volume tampon 23. Le carburant entre donc dans le volume tampon 23 par l'entrée 33 et en ressort par la première sortie 31 ou par la deuxième sortie 32. En dehors des trois ouvertures formées par l'entrée 33 et les deux sorties 31, 32, le volume tampon 23 est étanche. En particulier, le premier carter est lié au deuxième carter de sorte à former une interface étanche. La carburant ne peut donc pas entrer ou sortir du volume tampon 23 autrement que par l'entrée 33 ou par les sorties 31, 32. La deuxième sortie 32 est donc reliée au réservoir de carburant 5 par la deuxième conduite 7. L'entrée 33 est donc reliée au réservoir de carburant 5 par la troisième conduite 8. La première sortie permet de faire passer directement le carburant contenu dans le volume tampon vers la pompe 11 sans transiter par une quelconque conduite.
  • La première sortie 31 comprend un premier raccord hydraulique 41. La deuxième sortie 32 comprend un deuxième raccord hydraulique 42. L'entrée 33 comprend un troisième raccord hydraulique 43. Chacun de ces trois raccords hydrauliques 41, 42, 43 peut se présenter sous la forme d'un tube de forme globalement cylindrique et ou sous la forme d'un raccord encliquetable. En variante, le premier raccord hydraulique 41 pourrait être remplacé par une simple ouverture permettant de faire communiquer la pompe 11 avec le volume tampon 23. Toutefois, l'invention permet d'utiliser un pompe 11 déjà munie d'un raccord hydraulique sans la modifier. Le deuxième raccord hydraulique 42 et le troisième raccord hydraulique 43 peuvent être pourvus de moyens de fixation respectivement à la deuxième conduite 7 et à la troisième conduite 8. Ces moyens de fixation peuvent être par exemple un filetage ou des gorges circonférentielles. Les raccords hydrauliques peuvent être fabriqués dans tout matériau adapté à conduire du gazole. Avantageusement, ils sont choisis dans un matériau compatible avec le matériau formant les conduites auxquelles ils sont raccordés.
  • Le premier raccord hydraulique 41 s'étend depuis le deuxième carter 22 vers l'intérieur du volume tampon 23. Notamment, le premier raccord hydraulique peut s'étendre perpendiculairement à la face 15 de la pompe 11 le long de laquelle le dispositif d'alimentation 10 est fixé au bloc moteur. La direction dans laquelle le premier raccord hydraulique 41 s'étend peut également être parallèle à la direction dans laquelle le piston suiveur de came 13 est mobile. Le deuxième raccord hydraulique 42 et le troisième raccord hydraulique 43 s'étendent tous deux depuis le premier carter 21 vers l'extérieur du volume tampon 23. Autrement dit, les deux raccords hydraulique 42, 43 sont saillants du premier carter 21 vers l'extérieur du dispositif d'alimentation en carburant 10. Le premier raccord hydraulique 41 et le deuxième raccord hydraulique 42 s'étendent dans des directions perpendiculaires l'une de l'autre. De même, le premier raccord hydraulique 41 et le troisième raccord hydraulique 43 s'étendent dans des directions perpendiculaires l'une de l'autre. En particulier, les deux raccords hydrauliques s'étendent parallèlement à la face 15 et dans des directions opposées. En variante, les raccords hydrauliques pourraient être orientés différemment pour faciliter l'installation des conduites 7 et 8 tout en limitant les pertes de charge dans ces conduites.
  • Le Dispositif d'alimentation en carburant 10 comprend en outre un premier joint d'étanchéité 51 à l'interface entre le premier raccord hydraulique 41 et le deuxième carter 22, un deuxième joint d'étanchéité 52 à l'interface entre le deuxième raccord hydraulique 42 et le premier carter 21, et un troisième joint d'étanchéité 53 à l'interface entre le troisième raccord hydraulique 43 et le premier carter 21.
  • La deuxième sortie 32 comprend un clapet 34, dit « clapet de surpression ». Le clapet 34 est apte à s'ouvrir si la pression de carburant dans le volume tampon 23 dépasse un seuil de pression donné. Avantageusement, le clapet 34 peut être un dispositif complètement mécanique et autonome. Il peut par exemple comprendre un ressort ou une membrane. En variante, le dispositif d'alimentation en carburant pourrait ne pas comprendre de clapet, la seule présence du volume tampon suffisant à réguler la pression de carburant en amont de la pompe 11.
  • Pour la fabrication du dispositif d'alimentation en carburant 10 on peut prendre une pompe 11 telle que fournie par un fabricant de pompe et rajouter sur cette pompe le premier carter 21 équipé de la deuxième sortie 32 et de l'entrée 33. Lors de la fixation du premier carter 21 sur la pompe on peut s'assurer que l'interface entre le premier carter 21 et le deuxième carter 22 est étanche. Pour le montage du dispositif d'alimentation en carburant 10 au sein du groupe motopropulseur 1, on peut fixer le dispositif d'alimentation en carburant 10 par l'intermédiaire de la ou des brides de fixation 24. On raccorde le dispositif d'alimentation en carburant 10 au système d'injection de carburant 3 avec la première conduite 6 et on raccorde le dispositif d'alimentation en carburant 10 au réservoir de carburant 5 avec la deuxième conduite 7 et avec la troisième conduite 8. Comparativement au groupe motopropulseur 1' selon l'état de la technique, on épargne ainsi le montage et l'utilisation de la conduite de raccordement 11'. Le montage est donc facilité et on évite les pertes de charge se produisant à l'intérieur de la conduite de raccordement 11'. On évite également les problèmes de fuite de carburant pouvant se produire à l'interface entre la conduite de raccordement 11' et le dispositif de filtration 4' ou à l'interface entre la conduite de raccordement 11' et la pompe 3'. On limite également le nombre de connexions hydrauliques qui sont autant de points sensibles en cas d'accident du véhicule 100.
  • Lorsque le groupe motopropulseur 1 fonctionne, le carburant circule depuis le réservoir de carburant 5 vers le dispositif d'alimentation en carburant 10 en passant par la troisième conduite 8. Il pénètre dans le volume tampon 23 en passant par l'entrée 33. Le carburant passe du volume tampon 23 à la pompe 11 en passant par la première sortie 31. Au sein du volume tampon 23, le flux de carburant s'oriente d'une direction parallèle à l'entrée 33 vers une direction parallèle à la première sortie 31. On parvient ainsi à modifier l'orientation du flux du carburant sans utiliser un coude dans une conduite. Le carburant est mis sous pression par la pompe 11 et est ensuite dirigé vers le système d'injection de carburant 3 via la première conduite 6. Il est ensuite injecté dans les chambres de combustion. Si la pression au sein du volume tampon 23 atteint un seuil prédéfini, par exemple au cause de fuites de la pompe 11 vers le circuit basse pression, le clapet 34 s'ouvre et laisse le carburant retourner vers le réservoir. On s'assure ainsi d'une pression stable en amont de la pompe 11. Le volume tampon 23 permet d'obtenir une régulation fine de la pression en amont de la pompe mais permet aussi de limiter les surpressions de carburant. Un tel volume tampon 23 permet également de réduire l'impact acoustique lié au variations de pressions. Le volume tampon 23, directement accolé à la pompe 11, contribue à isoler acoustiquement la pompe 11.
  • Finalement, le premier carter 21 cumule les fonctions de protection de la pompe 11, forme une paroi du volume tampon 23 et permet la fixation du dispositif d'alimentation en carburant au bloc moteur s'il comprend une bride de fixation. Autrement dit, le dispositif de filtration est directement intégré sous le premier carter 21 protégeant la pompe 11. On parvient ainsi à obtenir un groupe motopropulseur compact, facile à installer, robuste et léger.

Claims (15)

  1. Dispositif d'alimentation en carburant (10), comprenant:
    - une pompe (11) apte à mettre un carburant sous pression,
    - un premier carter (21) enveloppant au moins partiellement la pompe (11),
    - un volume tampon (23) défini entre le premier carter (21) et la pompe (11),
    - une entrée (33) de carburant vers le volume tampon (23) et destinée à être reliée en amont à un réservoir de carburant (5),
    - une première sortie (31) de carburant depuis le volume tampon (23) vers la pompe (11), caractérisé en ce qu'il comprend en outre
    - une deuxième sortie (32) de carburant depuis le volume tampon (23) et destinée à être reliée en aval à un réservoir de carburant (5).
  2. Dispositif d'alimentation en carburant (10) selon la revendication précédente, caractérisé en ce que la pompe (11) comprend un deuxième carter (22) enveloppant au moins partiellement la pompe (11), le premier carter (21) enveloppant le deuxième carter (22), le volume tampon (23) étant défini entre le premier carter (21) et le deuxième carter (22).
  3. Dispositif d'alimentation en carburant (10) selon la revendication précédente, caractérisé en ce que le premier carter (21) et le deuxième carter (22) forment un ensemble monobloc, notamment un ensemble obtenu par moulage.
  4. Dispositif d'alimentation en carburant (10) selon l'une des revendications précédentes, caractérisé en ce que le premier carter (21) et/ou le deuxième carter (22) sont en plastique.
  5. Dispositif d'alimentation en carburant (10) selon la revendication 2, caractérisé en ce que le premier carter (21) et le deuxième carter (22) forment un ensemble monobloc, métallique, obtenu par déformation de tôle et/ou par soudure.
  6. Dispositif d'alimentation en carburant (10) selon l'une des revendications précédentes, caractérisé en ce que la deuxième sortie (32) de carburant comprend un clapet (34), le clapet (34) étant apte à s'ouvrir si la pression de carburant dans le volume tampon (23) dépasse un seuil de pression.
  7. Dispositif d'alimentation en carburant (10) selon l'une des revendications précédentes, caractérisé en ce que :
    - la première sortie (31) de carburant comprend un premier raccord hydraulique (41), et/ou
    - la deuxième sortie (32) de carburant comprend un deuxième raccord hydraulique (42), et/ou
    - l'entrée (33) de carburant comprend un troisième raccord hydraulique (43).
  8. Dispositif d'alimentation en carburant (10) selon la revendication précédente, caractérisé en ce que :
    - le premier raccord hydraulique (41) s'étend depuis le deuxième carter (22) vers l'intérieur du volume tampon (23), et/ou
    - le deuxième raccord hydraulique (42) s'étend depuis le premier carter (21) vers l'extérieur du volume tampon (23), et/ou
    - le troisième raccord hydraulique s'étend depuis le premier carter (21) vers l'extérieur du volume tampon (23).
  9. Dispositif d'alimentation en carburant (10) selon l'une des revendications 7 ou 8, caractérisé en ce que :
    - le premier raccord hydraulique (41) et le deuxième raccord hydraulique (42) s'étendent dans des directions différentes, notamment des directions perpendiculaires l'une à l'autre, et/ou
    - le premier raccord hydraulique (41) et le troisième raccord hydraulique (43) s'étendent dans des directions différentes, notamment des directions perpendiculaires l'une à l'autre.
  10. Dispositif d'alimentation en carburant (10) selon l'une des revendications 7 à 9, caractérisé en ce qu'il comprend :
    - un premier joint d'étanchéité (51) à l'interface entre le premier raccord hydraulique (41) et le deuxième carter (22), et/ou
    - un deuxième joint d'étanchéité (52) à l'interface entre le deuxième raccord hydraulique (42) et le premier carter (21), et/ou
    - un troisième joint d'étanchéité (53) à l'interface entre le troisième raccord hydraulique (43) et le premier carter (21).
  11. Dispositif d'alimentation en carburant (10) selon l'une des revendications précédentes, caractérisé en ce que le deuxième carter (22) épouse la forme de la pompe (11), et/ou en ce que le premier carter (21) a une forme sensiblement parallélépipédique.
  12. Dispositif d'alimentation en carburant (10) selon l'une des revendications précédentes, caractérisé en ce que la pompe (11) comprend un piston suiveur de came (13), la pompe (11) étant apte être entraînée en fonctionnement par la rotation d'une came (9) en contact avec le piston suiveur de came (13).
  13. Dispositif d'alimentation en carburant (10) selon l'une des revendications précédentes, caractérisé en ce que le premier carter (21) et/ou le deuxième carter (22) comprennent une bride de fixation (24) destinée à fixer le dispositif d'alimentation en carburant (10) à un bloc moteur.
  14. Groupe motopropulseur (1), caractérisé en ce qu'il comprend un dispositif d'alimentation en carburant (10) selon l'une des revendications précédentes et un système d'injection de carburant (3), le dispositif d'alimentation en carburant (10) étant relié en aval au système d'injection de carburant (3).
  15. Véhicule automobile (100), caractérisé en ce qu'il comprend un réservoir de carburant (5), un dispositif d'alimentation en carburant (10) selon l'une des revendications 1 à 13, et/ou un groupe motopropulseur (1) selon la revendication précédente, le dispositif d'alimentation en carburant (10) étant relié au réservoir de carburant (5) par l'entrée (33) de carburant et par la deuxième sortie (32) de carburant.
EP19813337.3A 2018-12-20 2019-12-05 Dispositif d'alimentation en carburant Active EP3899240B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1873670A FR3090752B1 (fr) 2018-12-20 2018-12-20 Dispositif d’alimentation en carburant.
PCT/EP2019/083877 WO2020126528A1 (fr) 2018-12-20 2019-12-05 Dispositif d'alimentation en carburant

Publications (2)

Publication Number Publication Date
EP3899240A1 EP3899240A1 (fr) 2021-10-27
EP3899240B1 true EP3899240B1 (fr) 2024-03-27

Family

ID=66530298

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19813337.3A Active EP3899240B1 (fr) 2018-12-20 2019-12-05 Dispositif d'alimentation en carburant

Country Status (4)

Country Link
EP (1) EP3899240B1 (fr)
CN (1) CN113260782A (fr)
FR (1) FR3090752B1 (fr)
WO (1) WO2020126528A1 (fr)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE351604C (de) * 1922-04-08 Hannoversche Waggonfabrik Akt Betriebsstoffzufuehrung, insbesondere fuer Hochdruckmotoren
ES477347A1 (es) * 1978-03-21 1979-10-16 Lucas Industries Ltd Sistema de combustible para un motor de combustion interna policilindrico.
DE3146454A1 (de) * 1981-11-24 1983-06-01 Robert Bosch Gmbh, 7000 Stuttgart Element zum daempfen von druckschwingungen in hydraulischen systemen
US5535724A (en) * 1995-08-23 1996-07-16 Davco Manufacturing L.L.C. Fuel pulsation dampener
DE19547097A1 (de) * 1995-12-16 1997-06-19 Audi Ag Vorrichtung zur Versorgung einer Brennkraftmaschine mit Kraftstoff
GB2383113A (en) * 2001-12-15 2003-06-18 Delphi Tech Inc Pressure regulating device
DE60319968T2 (de) * 2003-06-20 2009-04-16 Delphi Technologies, Inc., Troy Kraftstoffsystem
US7677872B2 (en) * 2007-09-07 2010-03-16 Gm Global Technology Operations, Inc. Low back-flow pulsation fuel injection pump
DE102008042324A1 (de) * 2008-09-24 2010-04-01 Robert Bosch Gmbh Kraftstoffversorgungseinrichtung
EP2249021A1 (fr) * 2009-05-06 2010-11-10 Delphi Technologies Holding S.à.r.l. Système de livraison de carburant
IT1403264B1 (it) * 2010-12-16 2013-10-17 Bosch Gmbh Robert Gruppo di pompaggio per alimentare combustibile, preferibilmente gasolio, da un serbatoio di contenimento ad un motore a combustione interna
DE102011090186A1 (de) * 2011-12-30 2013-07-04 Continental Automotive Gmbh Niederdruckdämpfer für Kraftstoffpumpen
KR101335871B1 (ko) * 2012-06-11 2013-12-02 인지컨트롤스 주식회사 펄세이션 댐퍼
WO2014063715A1 (fr) * 2012-10-22 2014-05-01 Volvo Lastvagnar Aktiebolag Système d'injection de carburant
US9683512B2 (en) * 2014-05-23 2017-06-20 Ford Global Technologies, Llc Pressure device to reduce ticking noise during engine idling
GB201503779D0 (en) * 2015-03-06 2015-04-22 Delphi International Operations Luxembourg S.�.R.L. Damping apparatus
DE102015219419B3 (de) * 2015-10-07 2017-02-23 Continental Automotive Gmbh Pumpeinrichtung sowie Kraftstoffversorgungseinrichtung für eine Verbrennungskraftmaschine und Mischeinrichtung, insbesondere für einen Kraftwagen
DE102015219417B3 (de) * 2015-10-07 2017-02-16 Continental Automotive Gmbh Kraftstoffhochdruckpumpe sowie Kraftstoffversorgungseinrichtung für eine Verbrennungskraftmaschine, insbesondere eines Kraftwagens

Also Published As

Publication number Publication date
FR3090752B1 (fr) 2021-03-05
WO2020126528A1 (fr) 2020-06-25
CN113260782A (zh) 2021-08-13
EP3899240A1 (fr) 2021-10-27
FR3090752A1 (fr) 2020-06-26

Similar Documents

Publication Publication Date Title
EP2917551B1 (fr) Vanne motorisée surmoulée a etanchéité améliorée
FR2460395A1 (fr) Installation d'injection de carburant
FR2975172A1 (fr) Dispositif pour le montage d'une bougie d'allumage dans une chambre de combustion de moteur a turbine a gaz
FR2857076A1 (fr) Joint annulaire pour raccord de transfert de fluide et raccord equipe d'un tel joint.
FR2640555A1 (fr) Circuit de carburant a pompe electrique
EP3899240B1 (fr) Dispositif d'alimentation en carburant
FR2794807A1 (fr) Installation de transfert de carburant pour l'alimentation d'un moteur a combustion interne
EP0702142B1 (fr) Ensemble de pompage incorporant un régulateur de pression, pour réservoir de carburant de véhicule automobile et réservoir ainsi équipé
WO2006059050A1 (fr) Dispositif de protection pour un tuyau d'alimentation en carburant
FR3051839A1 (fr) Logement de joint d'etancheite pour injecteur de turbomachine
EP3555457A1 (fr) Conduit de passage de liquide de refroidissement pour moteur à combustion interne de véhicule automobile
FR3014488A1 (fr) Vanne pour circuit carburant d'un moteur d'aeronef
FR2900975A1 (fr) Dispositif de protection contre les fuites de turbocompresseur
FR2987098A1 (fr) Tuyau de retour de fluide moteur et entree dans le carter
EP3617518B1 (fr) Pompe de turbomachine
FR3068415B1 (fr) Pompe hydraulique pour interface de connexion hydraulique d'un mecanisme d'embrayage
WO2016166434A1 (fr) Ensemble de raccordement d'un carter-cylindre a un turbocompresseur pour sa lubrification
EP3265667B1 (fr) Cache de protection de rampe d'alimentation de carburant avec un guide-jauge intégré
FR2924164A1 (fr) Dispositif amortisseur des pulsations de pression dans un circuit de refroidissement d'un moteur
EP3206773B1 (fr) Systeme de filtrage pour carburant avec pompe integree
FR3117417A1 (fr) Dispositif de maintien d’un conduit à travers une pièce de structure de véhicule.
EP4382433A1 (fr) Dispositif d'alimentation en hydrogène comprenant un réservoir d'hydrogène ainsi que des équipements répartis dans au moins un contenant relié au réservoir et au moins un contenant amovible
WO2022258781A1 (fr) Capteur de pression
FR3102824A1 (fr) Vanne d’échappement
FR2874234A1 (fr) Dispositif d'obturation d'un conduit de gaz d'echappement

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210701

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NISSAN MOTOR CO., LTD.

Owner name: RENAULT S.A.S

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NISSAN MOTOR CO., LTD.

Owner name: RENAULT S.A.S

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231013

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019049136

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH