EP3555457A1 - Conduit de passage de liquide de refroidissement pour moteur à combustion interne de véhicule automobile - Google Patents

Conduit de passage de liquide de refroidissement pour moteur à combustion interne de véhicule automobile

Info

Publication number
EP3555457A1
EP3555457A1 EP17825423.1A EP17825423A EP3555457A1 EP 3555457 A1 EP3555457 A1 EP 3555457A1 EP 17825423 A EP17825423 A EP 17825423A EP 3555457 A1 EP3555457 A1 EP 3555457A1
Authority
EP
European Patent Office
Prior art keywords
engine
passage
coolant
tubular portion
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17825423.1A
Other languages
German (de)
English (en)
Other versions
EP3555457B1 (fr
Inventor
Marc LACOUR
Olivier Debrois
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New H Powertrain Holding SLU
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP3555457A1 publication Critical patent/EP3555457A1/fr
Application granted granted Critical
Publication of EP3555457B1 publication Critical patent/EP3555457B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P11/20Indicating devices; Other safety devices concerning atmospheric freezing conditions, e.g. automatically draining or heating during frosty weather
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/04Arrangements of liquid pipes or hoses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2037/00Controlling
    • F01P2037/02Controlling starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2070/00Details
    • F01P2070/04Details using electrical heating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/02Aiding engine start by thermal means, e.g. using lighted wicks
    • F02N19/04Aiding engine start by thermal means, e.g. using lighted wicks by heating of fluids used in engines
    • F02N19/10Aiding engine start by thermal means, e.g. using lighted wicks by heating of fluids used in engines by heating of engine coolants

Definitions

  • the present invention relates to the field of cooling circuits for an internal combustion engine, in particular for motor vehicles.
  • a motor vehicle comprising an internal combustion engine is provided with a cooling circuit for regulating the temperature of the engine.
  • the lowering of the temperature is done by the passage of a coolant whose circulation is generated by a pump.
  • the liquid is conventionally called water but is mostly a brine type coolant.
  • exhaust gas recirculation duct also known by the English name “Exhaust Gas Recirculation” or under the abbreviation "EGR”.
  • EGR exhaust Gas Recirculation
  • Such a duct has the function of withdrawing exhaust gas at the outlet of the internal combustion engine to reinject them into an intake duct of the engine. In this way, the recirculation duct helps to limit fuel consumption and pollutant emissions.
  • housings comprising means for heating the cooling liquid of the engine cooling circuit.
  • the case is connected to a first point of the cooling circuit via a first hose and at a second point of the cooling circuit via a second hose.
  • the coolant flowing through the cooling circuit passes through the first hose, is heated as it passes through the housing, and then rejoins the cooling circuit through the second hose. Due to the heating of the coolant, the recirculation of the exhaust gas is activated more quickly.
  • the invention aims to provide a cooling circuit component of an internal combustion engine overcomes the aforementioned drawbacks.
  • the invention aims to allow the heating of the coolant while optimizing the heat exchange efficiency caused during heating, to limit fuel consumption and pollutant emissions, and limiting congestion generated within the engine compartment.
  • a coolant passageway for a motor vehicle internal combustion engine comprising a tubular portion to allow the passage of a cooling liquid from a cooling circuit of the engine, said tubular portion comprising an upstream end intended to be connected to a first functional member of the engine, and a downstream end opposite the upstream end and intended to be connected to a second functional member of the engine.
  • the tubular portion comprises at least one receiving orifice adapted to receive at least one heating element of the cooling liquid.
  • the passage duct comprises a branch intended to be connected to a heater of the cooling circuit. Such a branching makes it possible to directly bring the coolant which has passed through the heater to circulate through the second functional member of the engine
  • Such a passage duct makes it possible to heat the coolant while limiting the space generated within the engine compartment.
  • the coolant is heated near the engine so as to allow a temperature rise of the engine faster. This improves the cold start conditions to enable faster activation of the exhaust gas recirculation.
  • the heating passage duct further provides an additional source of heat that helps warm up a charge air cooler with anticipation. In particular, these effects result in better treatment of pollutants and lower fuel consumption.
  • the first functional element of the engine is an oil cooler and / or the second functional element of the engine is a cylinder block of the engine or a coolant pump.
  • Providing the passageway with a heating element between the oil cooler and the coolant pump, and in particular just upstream of the coolant pump, allows in particular to circulate the liquid. Hot cooling in the water pump, which is close to the engine. This further warms the exhaust gas to open the exhaust gas recirculation valve even earlier and further heat up the charge air cooler.
  • the passage duct consists of a single piece made by molding, preferably aluminum.
  • the passage conduit comprises at least four receiving ports each adapted to receive a glow plug.
  • glow plugs are particularly advantageous in that it allows to increase sufficiently the engine load during regeneration of the particulate filter.
  • Glow plugs are also known as immersion heaters.
  • said at least four receiving orifices are arranged in staggered rows.
  • said at least one receiving orifice comprises a cylindrical bore of small diameter extending outwardly from an inner wall of the tubular portion, and a cylindrical bore of large diameter extending towards the interior of a wall located outside the tubular portion, the two cylindrical bores being coaxial, the two cylindrical bores being connected by a frustoconical bore whose generatrices form an angle of between 58 ° and 66 ° with the common axial direction of said two cylindrical bores.
  • Such a design of the at least one receiving orifice allows easy installation of a glow plug, while maintaining a reinforced seal of the coolant passage conduit.
  • the passage duct comprises an attachment lug to a crankcase of the engine.
  • Such an ear makes it possible to prevent the transmission of the vibrations of the crankcase to the passage duct.
  • an internal combustion engine for a motor vehicle comprising a cylinder block, a cooling circuit, a first functional member, a second functional member and a coolant passage as defined above.
  • the engine comprises a coolant pump defined by a pump housing, said the pump casing being at least partially formed by a portion of the crankcase.
  • Such an embodiment is particularly advantageous in that the cooling liquid heated by said at least one heating element is directly in contact with the crankcase. As a result, thermal losses are minimized during the transfer of energy from the heated coolant to the internal combustion engine. In this way, by providing a minimum of energy, the temperature rise of the internal combustion engine is further increased so as to further limit fuel consumption and pollutant emissions.
  • FIG. 1 schematically represents a cooling circuit of an internal combustion engine according to an exemplary embodiment of the invention
  • FIG. 2 is an isometric view of a passage duct of the cooling circuit in FIG. 1, and
  • FIG. 3 is a sectional view of a receiving orifice of the passage conduit of Figure 2.
  • FIG. 1 An internal combustion engine 2.
  • the engine 2 is intended to be incorporated in a motor vehicle.
  • the engine 2 may be a spark ignition engine or a compression ignition engine.
  • the engine 2 comprises in particular at least one cylinder (not shown) inside which the combustion takes place.
  • the cylinder is delimited by a cylinder block 4 schematically represented in FIG. 1 by the rectangular frame surrounding the combustion engine 2.
  • the engine 2 is associated with a cooling circuit 6.
  • the function of the cooling circuit 6 is to regulate the temperature of the engine 2.
  • the cooling circuit 6 comprises a plurality of organs, some of which cooperate directly with the engine 2. These bodies are designated in this application as being functional members of the engine.
  • the cooling circuit 6 comprises a coolant pump 8, also known as a water pump.
  • the function of the pump 8 is to actuate the circulation of the coolant in the circuit 6 passing through the engine 2 before cooling the latter.
  • the pump 8 is delimited by a pump casing 10, schematically represented in FIG. 1 by the rectangular frame surrounding the pump 8. In a manner known per se, the pump 8 is driven directly by the internal combustion engine 2. The pump 8 is thus a functional organ of the engine 2.
  • the compression chamber of the pump 8 is only partially delimited by the pump casing 10.
  • the pump casing 1 0 is fixed on the crankcase 4.
  • the compression chamber of the pump 8 is partly delimited by the pump housing 10 and partly by the crankcase 4.
  • the cooling circuit 6 further comprises a heater 12.
  • the function of the heater 12 is to allow the heating of the passenger compartment of the motor vehicle while cooling the cooling liquid of the circuit 6.
  • the circuit 6 further comprises a radiator 14.
  • the radiator 14 is provided to cool the cooling liquid by convection.
  • the radiator 14 can be arranged just behind the radiator grille of the motor vehicle, so that the coolant circulating in the circuit 6 can be effectively cooled.
  • the circuit 6 further comprises an oil cooler 16.
  • the oil cooler 1 6 is used to regulate the temperature of the engine oil 2.
  • the cooler 16 is then an organ 2.
  • the oil cooler 1 6 is directly attached to the crankcase 4 of the engine 2.
  • the cooling circuit 6 comprises a plurality of passages for passing the coolant between the members 8, 12, 14 and 16.
  • the circuit 6 comprises a first common line 1 8 connecting a water outlet housing 1 7 at a bifurcation point (not referenced).
  • the pipe 18 is divided into a first sub-pipe 20 and a second sub-pipe 22.
  • the sub-pipe 20 connects the bifurcation point to the heater 12.
  • the sub-pipe 22 connects the bifurcation point to the radiator 14.
  • the water outlet housing 17 comprises an inlet opening communicating with the water circuit of a cylinder head 5 and an outlet placed in fluid communication with the first common pipe 1 8.
  • the cooling circuit further comprises a second pipe 24 connecting the radiator 14 to the oil cooler 16.
  • the cooling circuit 6 also comprises a third pipe 26 connected to the heater 12.
  • the direction of circulation of the cooling liquid in the lines 1 8 to 26 is schematically represented in FIG. 1 by arrows.
  • the water pump 8 is arranged upstream of the engine 2, according to the direction of flow of the coolant in the cooling circuit 6.
  • the pump 8 allows a flow of water through the crankcase 4 and the cylinder head 5 of the engine 2.
  • the coolant exits the cylinder head 5 through the outlet housing 17 to which the pipe 1 8 is connected.
  • the coolant passing through the heater 12 out of the water outlet housing 17 through the pipe 1 8 passes the bifurcation point, borrows the pipe 20 passes through the heater 12 and then borrows the pipe 26.
  • the cooling circuit 6 further comprises a passage duct 28, diagrammatically shown in FIG. 1 and shown in isometric view in FIG. 2. A function of the passage duct 28 is to connect the oil cooler 1 6, the pump coolant 8 and the pipe 26 from the heater 12.
  • the passage duct 28 allows a connection only of the oil cooler 16 to the coolant pump 8, in particular via an interface of the cylinder block 4 intended to receive the coolant pump. 8.
  • the cooling circuit then comprises another stitching point for the pipe 26.
  • the passage duct 28 comprises a tubular portion 30.
  • the portion 30 is of bent shape to adapt more to the environment of the engine compartment.
  • the tubular portion 30 has a substantially constant circular section.
  • the tubular portion 30 includes a first upstream end 32 and a second downstream end 34. Each end 32, 34 is provided with an abutment flange 36 and an annular groove 38.
  • the upstream end 32 is configured to be directly connected to an outlet (not shown) of the oil cooler 1 6. More particularly, the end 32 is inserted into a cylindrical opening provided in the oil cooler 1 6, such that the flange 36 abuts against a wall of the oil cooler 16. An annular seal may be inserted into the groove 38, so as to provide a sufficient seal of the connection of the passage duct 28 to the cooler. oil 16.
  • downstream end 34 is configured to be directly connected to an inlet (not shown) of the crankcase 4 which can partially define the body of the coolant pump 8.
  • the end 34 is in inserted species in a cylindrical opening provided the cylinder block 4, the flange 36 coming into abutment against a wall of the pump 8, an annular sealing ring being inserted into the groove 38.
  • the duct 28 may further comprise a branch 40.
  • the branch 40 is stitched directly onto the tubular portion 30 of the passage duct 28.
  • the branch 40 comprises an end 42 forming a cylindrical sleeve 44 for connection with the duct 26. As the ends 32 and 34, the end 42 has a stop flange 46.
  • the passage duct 28 is directly connected to the oil cooler 16 and to the cylinder block 4, and indirectly connected to the heater 12 via the duct 26. three connections, the passage duct 28 is fixed isostatically with respect to the crankcase 4.
  • the passage duct 28 further comprises an attachment lug 48.
  • the lug 48 extends from the branch 40, the ear 48 may extend from a different portion of the passage duct 28, for example the tubular portion 30.
  • the attachment lug 48 is provided to allow attachment of the passage duct 28 to the cylinder block 4.
  • the attachment lug 48 allows the duct 28 to be fixed in a simple manner, for example by means of a screw cooperating with a corresponding threaded bore made in the crankcase 4.
  • the attachment lug 48 makes it possible to prevent the transmission of the vibrations of the crankcase 4 to the passage duct 28.
  • the passage duct 28 further includes four local protuberances 50 extending from the tubular portion 30. Each protuberance extends substantially radially outwardly from the tubular portion 30. A sectional view a local protuberance 50 is shown in FIG. Each protrusion 50 is intended to receive a heating element of the coolant circulating in the passage conduit 28.
  • the heating means is an electric glow plug (not shown). In other words, four electric glow plugs are intended to be respectively mounted in the four local protuberances 50.
  • preheating glow plugs powered to electrical power will be preferred as needed.
  • the electrical power is between 250 W and 350 W for each candle, and even more preferably of substantially 300 W each.
  • energy of the order of 1,200 W must be provided to the spark plugs to carry out the heating of the coolant.
  • the presence of an electrical consumer requiring 1,200 W makes it possible to increase the motor load during regenerations of the particulate filter. This results in greater efficiency in the operation of this filter and therefore a reduction in pollutant emissions.
  • the four protuberances 50 extend from the tubular portion 30 substantially in the same direction.
  • Each protrusion 50 comprises a front wall 49 opposite to the tubular portion 30.
  • a local protuberance 50 has a receiving port 52 adapted to receive a glow plug.
  • the receiving orifice 52 is through.
  • the receiving orifice 52 extends from an inner wall 5 1 of the tubular portion 30, passes through the tubular portion 30 over its entire thickness, passes through the local protuberance 50 and opens out of the the tubular portion 30 and the protuberance 50, at the wall 49.
  • the receiving orifice 52 has a generally axisymmetrical shape about a cylindrical axis 53 and consists of several successive cylindrical and / or frustoconical bores around the axis 53. In the illustrated example, the axis 53 coincides with the direction in which extends the corresponding protuberance 50.
  • the receiving orifice 52 comprises a first cylindrical bore 54 adjacent to the bottom wall 5 1.
  • the axis of cylindricity of the bore 54 coincides with the axis 53.
  • the bore 54 is extended by a first frustoconical bore 56.
  • the axis of cylindricity of the bore 56 also coincides with the axis 53.
  • the frustoconical bore 56 has the shape of a cylinder trunk whose generatrices form an angle ⁇ with respect to the axis 53.
  • the angle a is included between 58 ° and 66 °, preferably between 60 ° and 64 ° and even more preferably is substantially equal to 60 °.
  • the frustoconical bore 56 is extended by a second cylindrical bore 58.
  • the axis of cylindricity of the bore 58 coincides with the axis 53.
  • the bore 58 has a larger diameter than the bore 54.
  • the bore 58 comprises a thread 59 adapted to cooperate with a corresponding thread formed on a cylindrical wall complementary to the glow plug.
  • the cylindrical bore 58 is extended by a second frustoconical bore 60.
  • the frustoconical bore 60 forms a cylinder trunk whose generatrices form an angle ⁇ with the axis 53. In the illustrated example, the angle ⁇ is substantially equal to 45 °.
  • a glow plug (not shown) can be inserted into the bores 60, 58, 56 and 54.
  • the bore 60 provides an inlet chamfer of the orifice 52 to to facilitate the insertion of the glow plug.
  • the glow plug has a shoulder of complementary design to that of the frustoconical bore 56. In this way, the shoulder of the glow plug abuts against the frustoconical bore 56. The sealing is thus enhanced. provided at the receiving orifice 52 and the glow plug vis-à-vis the coolant circulating in the passage conduit 28. In particular, the tightness is enhanced by the optimal shape of bore 56 and the value of the angle formed by its generators. In addition, thanks to the threading made on the bore 58, the glow plug is simply and reliably fixed in the receiving orifice 52.
  • the receiving orifices 52 extend between the inner wall 5 1 of the duct 28 and the front portion 49 of the protuberances 50.
  • This arrangement is particularly advantageous in that it allows a reliable and reliable installation. waterproof glow plugs.
  • the thickness of the tubular portion 30 must be greater if it is desired to obtain a reliable and sealed installation.
  • the embodiment illustrated in the figures, including in particular the orifices 52 partially located in the local protuberances 50 thus saves material and limits the bulk and mass of the passage duct 28.
  • the four lateral protuberances 50 and the four receiving orifices 52 are arranged approximately staggered with respect to one another. Such an arrangement is particularly advantageous because it allows the supply of glow plugs with an electric cable (not shown) for the circulation of a power current, limiting the size caused by the presence of the electric cable.
  • the design of the passage duct 28 in one piece made by molding is advantageous in that it facilitates the production of the passage duct 28, so as to limit costs, in that it reduces the risk of leakage of the cooling circuit and in that it increases the thermal conductivity through the conduit 28.
  • the cooling liquid of the circuit 6 is heated during the temperature rise phase of the engine 2, the losses are minimized. caused during the transfer of heat from the coolant to the engine 2.
  • this effect is further accentuated by choosing a suitable material for molding the passage duct 28, that is to say a material with a high thermal conductivity such as aluminum.
  • the passage duct 28 makes it possible to pass the cooling liquid of the cooling circuit 6 in a simple and economical manner, so as to improve the operation of the engine during the phases of temperature rise and regeneration of the engine. particulate filter, while optimizing the energy consumption of electronic components such as glow plugs and limiting the space requirement in the engine compartment.
  • the invention allows for earlier recirculation of the exhaust gas, faster activation of an engine charge air cooler and increased engine load in an optimum manner during the engine. regeneration phases of the particulate filter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Ce conduit de passage (28) de liquide de refroidissement pour moteur à combustion interne (2) de véhicule automobile comprend une portion tubulaire (30) pour permettre le passage d'un liquide de refroidissement d'un circuit de refroidissement (6) du moteur (2), ladite portion tubulaire (30) comportant une extrémité amont (32) prévue pour être raccordée à un premier organe fonctionnel du moteur (2), et une extrémité aval (34) opposée à l'extrémité amont (32) et prévue pour être raccordée à un second organe fonctionnel du moteur(2). La portion tubulaire (30) comprend au moins un orifice de réception (52) apte à recevoir au moins un élément de chauffage du liquide de refroidissement.

Description

Conduit de passage de liquide de refroidissement pour moteur à combustion interne de véhicule automobile
La présente invention concerne le domaine des circuits de refroidissement pour moteur à combustion interne, en particulier pour des véhicules automobiles.
De manière classique, un véhicule automobile comprenant un moteur à combustion interne est doté d'un circuit de refroidissement destiné à réguler la température du moteur. L'abaissement de la température se fait par le passage d'un liquide de refroidissement dont la circulation est générée par une pompe . Le liquide est conventionnellement appelé eau mais correspond la plupart du temps à un liquide de refroidissement de type eau glycolée.
Les véhicules automobiles dotés d'un moteur à combustion interne sont confrontés à des exigences sans cesse croissantes visant à limiter la consommation de carburant et les émissions de polluants. A cet effet, de tels véhicules comprennent généralement un conduit de recirculation des gaz d'échappement, également connu sous la dénomination anglo-saxonne « Exhaust Gas Recirculation » ou sous l ' abréviation « EGR » . Un tel conduit a pour fonction de prélever des gaz d'échappement en sortie du moteur à combustion interne pour les réinj ecter dans un conduit d'admission du moteur. De cette manière, le conduit de recirculation permet de limiter la consommation de carburant et les émissions de polluants .
Cette solution n'apporte toutefois pas pleinement satisfaction. En particulier, au cours d'une phase de démarrage du véhicule, le moteur à combustion interne est généralement froid, de sorte que le conduit de recirculation ne peut pas être ouvert immédiatement. Dans ces conditions, le véhicule consomme davantage de carburant et émet davantage de polluants .
Pour pallier cet inconvénient, il peut être utilisé des boîtiers comprenant des moyens de chauffage du liquide de refroidissement du circuit de refroidissement du moteur. Le boîtier est connecté à un premier point du circuit de refroidissement par l'intermédiaire d'une première durite et à un second point du circuit de refroidissement par l'intermédiaire d'une seconde durite. De cette manière, le liquide de refroidissement circulant dans le circuit de refroidissement passe par la première durite, est chauffé tandis qu' il traverse le boîtier, puis rejoint le circuit de refroidissement par la seconde durite. Du fait du chauffage du liquide de refroidissement, la recirculation des gaz d'échappement est activée plus rapidement.
Bien qu'une telle so lution soit globalement considérée comme satisfaisante, elle continue de présenter certains inconvénients. En particulier, l'encombrement généré par le boîtier et les deux durites rend pratiquement impossible la mise en place d'un tel boîtier dans un compartiment moteur de véhicule automobile.
Au vu de ce qui précède, l'invention a pour but de fournir un composant de circuit de refroidissement d'un moteur à combustion interne palliant les inconvénients précités .
Plus particulièrement, l'invention a pour but de permettre le chauffage du liquide de refroidissement tout en optimisant le rendement d'échange thermique occasionné lors du chauffage, afin de limiter la consommation de carburant et les émissions de polluants, et en limitant l'encombrement généré au sein du compartiment moteur.
À cet effet, il est proposé un conduit de passage de liquide de refroidissement pour moteur à combustion interne de véhicule automobile comprenant une portion tubulaire pour permettre le passage d'un liquide de refroidissement d'un circuit de refroidissement du moteur, ladite portion tubulaire comportant une extrémité amont prévue pour être raccordée à un premier organe fonctionnel du moteur, et une extrémité aval opposée à l'extrémité amont et prévue pour être raccordée à un second organe fonctionnel du moteur.
Selon une caractéristique générale de ce conduit, la portion tubulaire comprend au moins un orifice de réception apte à recevoir au moins un élément de chauffage du liquide de refroidissement. En outre le conduit de passage comprend une ramification destinée à être raccordée à un aérotherme du circuit de refroidissement. Une telle ramification permet d' amener directement le liquide de refroidissement ayant traversé l ' aérotherme de circuler au travers du second organe fonctionnel du moteur
Un tel conduit de passage permet de chauffer le liquide de refroidissement tout en limitant l'encombrement généré au sein du compartiment moteur. En outre, on chauffe le liquide de refroidissement à proximité du moteur de sorte à permettre une montée en température du moteur plus rapide. On améliore ainsi les conditions de démarrage à froid pour permettre une activation de la recirculation des gaz d'échappement plus rapide. Le conduit de passage chauffant constitue en outre une source de chaleur supplémentaire qui aide à réchauffer un refroidisseur d'air de suralimentation avec anticipation. Il résulte notamment de ces effets un meilleur traitement des polluants et une moindre consommation de carburant.
Selon un mode de réalisation, le premier organe fonctionnel du moteur est un refroidisseur d ' huile et/ou le second organe fonctionnel du moteur est un carter-cylindres du moteur ou une pompe de liquide de refroidissement.
Le fait de disposer le conduit de passage doté d'un élément de chauffage entre le refroidisseur d ' huile et la pompe de liquide de refroidissement, et en particulier juste en amont de la pompe de liquide de refroidissement, permet notamment de faire circuler le liquide de refroidissement chaud dans la pompe à eau, qui est proche du moteur. On réchauffe ainsi davantage les gaz d'échappement pour ouvrir encore plus tôt la vanne de recirculation des gaz d'échappement et réchauffer davantage le refroidisseur d'air de suralimentation.
De manière avantageuse, le conduit de passage est constitué d'une seule pièce réalisée par moulage, de préférence en aluminium.
En réalisant le conduit de passage de cette manière, on réduit les coûts de fabrication du conduit et les coûts d'intégration du circuit de refroidissement au sein du moteur à combustion interne, et on augmente la conductivité thermique du conduit de passage. Selon un autre mode de réalisation, le conduit de passage comprend au moins quatre orifices de réception chacun apte à recevoir une bougie de préchauffage.
Comme cela sera expliqué par la suite, l'utilisation de quatre bougies de préchauffage est notamment avantageuse en ce qu'elle permet d'augmenter suffisamment la charge moteur lors des régénérations du filtre à particules. Les bougies de préchauffage sont également connues sous la dénomination de thermoplongeurs.
De préférence, lesdits au moins quatre orifices de réception sont disposés en quinconce.
Dans un mode de réalisation avantageux, ledit au moins un orifice de réception comprend un alésage cylindrique de petit diamètre s'étendant vers l'extérieur depuis une paroi interne de la portion tubulaire, et un alésage cylindrique de grand diamètre s'étendant vers l'intérieur depuis une paroi située à l ' extérieur de la portion tubulaire, les deux alésages cylindriques étant coaxiaux, les deux alésages cylindriques étant reliés par un alésage tronconique dont les génératrices forment un angle compris entre 58 ° et 66° avec la direction axiale commune desdits deux alésages cylindriques .
Une telle conception dudit au moins un orifice de réception permet une installation aisée d'une bougie de préchauffage, tout en maintenant une étanchéité renforcée du conduit de passage de liquide de refroidissement.
Dans un mode de réalisation particulier, le conduit de passage comprend une oreille de fixation à un carter-cylindres du moteur.
Une telle oreille permet d' empêcher la transmission des vibrations du carter-cylindres au conduit de passage.
Selon un autre aspect, il est proposé un moteur à combustion interne pour véhicule automobile comprenant un carter-cylindres, un circuit de refroidissement, un premier organe fonctionnel, un second organe fonctionnel et un conduit de passage de liquide de refroidissement tel que défini précédemment.
Dans un mode de réalisation, le moteur comprend une pompe de liquide de refroidissement délimitée par un carter de pompe, ledit carter de pompe étant au mo ins partiellement formé par une portion du carter-cylindres.
Un tel mode de réalisation est en particulier avantageux en ce que le liquide de refroidissement chauffé par ledit au moins un élément de chauffage est directement en contact avec le carter- cylindres. En résultat, on minimise les pertes thermiques lors du transfert d'énergie depuis le liquide de refroidissement chauffé vers le moteur à combustion interne. De la sorte, en fournissant un minimum d'énergie, on augmente davantage la montée en température du moteur à combustion interne de sorte à limiter encore la consommation de carburant et les émissions de polluants .
D'autres buts, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante, donnée uniquement à titre d'exemple non limitatif, et faite en référence aux dessins annexés sur lesquels :
- la figure 1 représente schématiquement un circuit de refroidissement d'un moteur à combustion interne selon un exemple de réalisation de l'invention,
- la figure 2 est une vue isométrique d'un conduit de passage du circuit de refroidissement la figure 1 , et
- la figure 3 est une vue en coupe d'un orifice de réception du conduit de passage de la figure 2.
On a représenté sur la figure 1 un moteur à combustion interne 2. Le moteur 2 est destiné à être incorporé dans un véhicule automobile. Le moteur 2 peut être un moteur à allumage commandé ou un moteur à allumage par compression. Le moteur 2 comprend notamment au moins un cylindre (non représentée) à l'intérieur duquel s'effectue la combustion. Le cylindre est délimité par un carter- cylindres 4 schématiquement représenté sur la figure 1 par le cadre rectangulaire entourant le moteur à combustion 2.
Le moteur 2 est associé à un circuit de refroidissement 6. Le circuit de refroidissement 6 a pour fonction de réguler la température du moteur 2. Comme cela va être détaillé par la suite, le circuit de refroidissement 6 comporte une p luralité d'organes dont certains coopèrent directement avec le moteur 2. Ces organes sont désignés dans la présente demande comme étant des organes fonctionnels du moteur.
Le circuit de refroidissement 6 comporte une pompe de liquide de refroidissement 8 , également connue sous la dénomination de pompe à eau. La pompe 8 a pour fonction d'actionner la circulation du liquide de refroidissement dans le circuit 6 traversant le moteur 2 avant de refroidir ce dernier. La pompe 8 est délimitée par un carter de pompe 10, schématiquement représenté sur la figure 1 par le cadre rectangulaire entourant la pompe 8. De manière connue en soi, la pompe 8 est entraînée directement par le moteur à combustion interne 2. La pompe 8 est ainsi un organe fonctionnel du moteur 2.
Comme cela est schématiquement représenté sur la figure 1 , la chambre de compression de la pompe 8 n'est que partiellement délimitée par le carter de pompe 10. Pour délimiter la chambre de compression de la pompe 8 , le carter de pompe 1 0 est fixé sur le carter-cylindres 4. En d'autres termes, la chambre de compression de la pompe 8 est délimitée partiellement par le carter de pompe 10 et partiellement par le carter-cylindres 4.
Le circuit de refroidissement 6 comporte en outre un aérotherme 12. La fonction de l'aérotherme 12 est de permettre le chauffage de l'habitacle du véhicule automobile tout en refroidissant le liquide de refroidissement du circuit 6.
Le circuit 6 comporte en outre un radiateur 14. Le radiateur 14 est prévu afin de refroidir par convection le liquide de refroidissement. A cet effet, le radiateur 14 peut être disposé juste derrière la calandre du véhicule automobile, de sorte à pouvoir refroidir efficacement le liquide de refroidissement circulant dans le circuit 6.
Le circuit 6 comporte en outre un refroidisseur d' huile 16. Le refroidisseur d ' huile 1 6 est utilisé pour réguler la température de l 'huile du moteur 2. Le refroidisseur 16 est alors un organe fonctionnel du moteur 2. Par ailleurs, le refroidisseur d'huile 1 6 est directement fixé sur le carter-cylindres 4 du moteur 2.
Le circuit de refroidissement 6 comporte une pluralité de conduits de passage du liquide de refroidissement entre les organes 8 , 12, 14 et 16. En particulier, le circuit 6 comporte une première conduite commune 1 8 reliant un boîtier de sortie d' eau 1 7 à un point de bifurcation (non référencé) . Au niveau de ce point de bifurcation, la conduite 1 8 se divise en une première sous-conduite 20 et une seconde sous-conduite 22. La sous-conduite 20 relie le point de bifurcation à l'aérotherme 12. La sous-conduite 22 relie le point de bifurcation au radiateur 14.
Le boîtier de sortie d' eau 17 comprend une ouverture d' entrée communiquant avec le circuit d' eau d' une culasse 5 et une sortie mise en communication fluidique avec la première conduite commune 1 8.
Le circuit de refroidissement comporte en outre une deuxième conduite 24 reliant le radiateur 14 au refroidisseur d ' huile 16. Le circuit de refroidissement 6 comporte également une troisième conduite 26 raccordée à l'aérotherme 12.
Le sens de circulation du liquide de refroidissement dans les conduites 1 8 à 26 est schématiquement représenté par la figure 1 par des flèches. La pompe à eau 8 est disposée en amont du moteur 2, selon le sens d' écoulement du liquide de refroidissement dans le circuit de refroidissement 6. La pompe 8 permet un écoulement de l ' eau au travers du carter-cylindres 4 et de la culasse 5 du moteur 2. Après avoir circulé au travers de la culasse 5 du moteur 2, le liquide de refroidissement sort de la culasse 5 par le boîtier de sortie 1 7 auquel est connectée la conduite 1 8. En d'autres termes, le liquide de refroidissement passant par l'aérotherme 12 sort du boîtier de sortie d' eau 17 par la conduite 1 8 , passe le point de bifurcation, emprunte la conduite 20 , traverse l'aérotherme 12 puis emprunte la conduite 26. Le liquide de refroidissement passant par le radiateur 14 et le refroidisseur 16 sort du boîtier de sortie d' eau 17 par la conduite 1 8 , passe le point de bifurcation, emprunte la conduite 22, traverse le radiateur 14, emprunte la conduite 24 et parvient au refroidisseur 16. Le circuit de refroidissement 6 comporte en outre un conduit de passage 28 , schématiquement représenté sur la figure 1 et représenté en vue isométrique sur la figure 2. Une fonction du conduit de passage 28 est de raccorder le refroidisseur d' huile 1 6, la pompe de liquide de refroidissement 8 et la conduite 26 issue de l ' aérotherme 12.
Dans une variante de réalisation non représentée, le conduit de passage 28 permet un raccordement uniquement du refroidisseur d'huile 16 à la pompe de liquide de refroidissement 8 , notamment via une interface du carter-cylindres 4 destiné à recevoir la pompe de liquide de refroidissement 8. Le circuit de refroidissement comprend alors un autre point de piquage pour la conduite 26.
En référence à la figure 2, le conduit de passage 28 comprend une portion tubulaire 30. Dans l'exemple de réalisation illustré, la portion 30 est de forme coudée pour s'adapter davantage à l'environnement du compartiment moteur. Toutefois, on ne sort pas du cadre de l'invention en envisageant une forme différente de la portion tubulaire 30. Par ailleurs, dans l'exemple illustré, la portion tubulaire 30 a une section circulaire sensiblement constante.
La portion tubulaire 30 comprend une première extrémité 32 amont et une seconde extrémité 34 aval. Chaque extrémité 32, 34 est dotée d'une bride de butée 36 et d'une gorge annulaire 38.
L'extrémité amont 32 est configurée pour pouvoir être directement raccordée sur une sortie (non représentée) du refroidisseur d' huile 1 6. Plus particulièrement, l'extrémité 32 est insérée dans une ouverture cylindrique prévue dans le refroidisseur d ' huile 1 6, de telle sorte que la bride 36 arrive en butée contre une paroi du refroidisseur d' huile 16. Un joint annulaire peut être inséré dans la gorge 38 , de sorte à fournir une étanchéité suffisante du raccordement du conduit de passage 28 sur le refroidisseur d' huile 16.
De même, l'extrémité aval 34 est configurée pour pouvoir être directement raccordée sur une entrée (non représentée) du carter- cylindres 4 lequel peut définir en partie le corps de la pompe de liquide de refroidissement 8. L ' extrémité 34 est en l ' espèce insérée dans une ouverture cylindrique prévue le carter-cylindres 4, la bride 36 arrivant en butée contre une paroi de la pompe 8 , un jo int d' étanchéité annulaire étant inséré dans la gorge 38.
Le conduit 28 peut en outre comporter une ramification 40. La ramification 40 est piquée directement sur la portion tubulaire 30 du conduit de passage 28. La ramification 40 comporte une extrémité 42 formant un manchon cylindrique 44 de raccordement avec la conduite 26. Comme les extrémités 32 et 34, l'extrémité 42 comporte une bride de butée 46.
Grâce aux extrémités 32, 34 et 42, le conduit de passage 28 est directement raccordé au refroidisseur d' huile 16 et au carter- cylindres 4, et indirectement raccordé à l'aérotherme 12 par l'intermédiaire de la conduite 26. De par ces trois raccordements, le conduit de passage 28 est fixé de manière isostatique par rapport au carter-cylindres 4.
Dans l'exemple de réalisation illustré, le conduit de passage 28 comporte en outre une oreille de fixation 48. Bien que, dans l'exemple illustré sur la figure 2, l'oreille 48 s ' étende depuis la ramification 40, l'oreille 48 peut s'étendre depuis une portion différente du conduit de passage 28 , par exemple la portion tubulaire 30.
L'oreille de fixation 48 est prévue pour permettre une fixation du conduit de passage 28 sur le carter-cylindres 4. L'oreille de fixation 48 permet de fixer le conduit 28 de manière simple, par exemple au moyen d'une vis coopérant avec un alésage fileté correspondant pratiquée dans le carter-cylindres 4. L'oreille de fixation 48 permet d'empêcher la transmission des vibrations du carter- cylindres 4 au conduit de passage 28. Toutefois, on ne sort pas du cadre de l'invention en envisageant un conduit de passage 28 dépourvu d'une telle oreille de fixation.
Comme cela est représenté sur la figure 2, le conduit de passage 28 comporte en outre quatre protubérances locales 50 s'étendant depuis la portion tubulaire 30. Chaque protubérance s ' étend sensiblement en saillie radiale hors de la portion tubulaire 30. Une vue en coupe d'une protubérance lo cale 50 est représentée sur la figure 3 . Chaque protubérance 50 est destinée à recevoir un élément de chauffage du liquide de refroidissement circulant dans le conduit de passage 28. En l'espèce, le moyen de chauffage est une bougie électrique de préchauffage (non représentée) . En d'autres termes, quatre bougies électriques de préchauffage sont destinées à être respectivement montées dans les quatre protubérances locales 50.
En vue de chauffer efficacement le liquide de refroidissement tout en limitant l ' encombrement occasionné, on préférera des bougies de préchauffage alimentées à une puissance électrique selon le besoin. A titre d' exemple, la puissance électrique est comprise entre 250 W et 350 W pour chaque bougie, et encore plus préférentiellement de sensiblement 300 W chacune. En utilisant quatre bougies de préchauffage de ce type, une énergie de l ' ordre de 1 200 W doit être fournie aux bougies pour mettre en œuvre le chauffage du liquide de refroidissement. La présence d'un consommateur électrique ayant besoin de 1 200 W permet de faire augmenter la charge moteur lors des régénérations du filtre à particules. Il en résulte une plus grande efficacité du fonctionnement de ce filtre et donc une diminution des émissions de polluants .
Les quatre protubérances 50 s ' étendent depuis la portion tubulaire 30 sensiblement selon une même direction. Chaque protubérance 50 comprend une paroi frontale 49 opposée à la portion tubulaire 30.
En référence à la figure 3 , une protubérance lo cale 50 comporte un orifice de réception 52 apte à recevoir une bougie de préchauffage.
Plus particulièrement, l'orifice de réception 52 est traversant. En d'autres termes, l'orifice de réception 52 s'étend depuis une paro i interne 5 1 de la portion tubulaire 30, traverse la portion tubulaire 30 sur toute son épaisseur, traverse la protubérance locale 50 et débouche à l'extérieur de la portion tubulaire 30 et de la protubérance 50, au niveau de la paroi 49. L'orifice de réception 52 a une forme globalement axisymétrique autour d'un axe de cylindricité 53 et est constitué de plusieurs alésages successifs cylindriques et/ou tronconiques autour de l ' axe 53. Dans l ' exemple illustré, l ' axe 53 coïncide avec la direction selon laquelle s ' étend la protubérance 50 correspondante.
Plus particulièrement, l'orifice de réception 52 comprend un premier alésage cylindrique 54 adj acent à la paroi inférieure 5 1 . L ' axe de cylindricité de l ' alésage 54 coïncide avec l ' axe 53. À l'opposé de la paroi intérieure 5 1 , l'alésage 54 se prolonge par un premier alésage tronconique 56. L ' axe de cylindricité de l' alésage 56 coïncide également avec l ' axe 53. L'alésage tronconique 56 a la forme d'un tronc de cylindre dont les génératrices forment un angle a par rapport à l'axe 53. Dans l'exemple illustré, l'angle a est compris entre 58 ° et 66°, de manière préférentielle entre 60° et 64° et de manière encore plus préférentielle est sensiblement égal à 60° .
À l'opposé du premier alésage cylindrique 54, l'alésage tronconique 56 se prolonge par un deuxième alésage cylindrique 58. L ' axe de cylindricité de l ' alésage 58 coïncide avec l ' axe 53 . L'alésage 58 a un diamètre supérieur à celui de l'alésage 54. En outre, l'alésage 58 comprend un taraudage 59 apte à coopérer avec un filetage correspondant pratiqué sur une paroi cylindrique complémentaire de la bougie de préchauffage . À l'opposé du premier alésage tronconique 56, l'alésage cylindrique 58 se prolonge par un second alésage tronconique 60. L'alésage tronconique 60 forme un tronc de cylindre dont les génératrices forment un angle β avec l ' axe 53 . Dans l'exemp le illustré, l'angle β est sensiblement égal à 45 ° .
Grâce à cet arrangement de l'orifice de réception 52, une bougie de préchauffage (non représentée) peut être introduite dans les alésages 60, 58 , 56 et 54. L ' alésage 60 fournit un chanfrein d' entrée de l ' orifice 52 afin de faciliter l 'insertion de la bougie de préchauffage. De préférence, la bougie de préchauffage présente un épaulement de conception complémentaire à celle de l' alésage tronconique 56. De cette manière, l'épaulement de la bougie de préchauffage vient en butée contre l' alésage tronconique 56. On renforce ainsi l'étanchéité fournie au niveau de l'orifice de réception 52 et de la bougie de préchauffage vis-à-vis du liquide de refroidissement circulant dans le conduit de passage 28. En particulier, l ' étanchéité est renforcée grâce à la forme optimale de l ' alésage 56 et à la valeur de l ' angle a formé par ses génératrices. En outre, grâce au filetage pratiqué sur l'alésage 58 , on fixe de manière simp le et fiable la bougie de préchauffage dans l'orifice de réception 52.
Ainsi, dans l ' exemple illustré, les orifices de réception 52 s ' étendent entre la paroi interne 5 1 du conduit 28 et la paro i frontale 49 des protubérances 50. Cet arrangement est notamment avantageux en ce qu' il permet une installation fiable et étanche des bougies de préchauffage. On ne sort toutefois pas du cadre de l' invention en envisageant des orifices de réception différents, par exemple s ' étendant entre la paroi interne 5 1 et une paroi externe (non référencée) de la portion tubulaire 30. Dans une telle variante, l ' épaisseur de la portion tubulaire 30 doit être plus importante si l'on souhaite obtenir une installation fiable et étanche. Le mode de réalisation illustré sur les figures, comprenant notamment les orifices 52 partiellement situés dans les protubérances locales 50 , permet ainsi d' économiser de la matière et de limiter l ' encombrement et la masse du conduit de passage 28.
De nouveau en référence à la figure 2, les quatre protubérances lo cales 50 et les quatre orifices de réception 52 sont disposés approximativement en quinconce les uns par rapport aux autres. Une telle disposition est particulièrement avantageuse car elle permet l'alimentation des bougies de préchauffage avec un câble électrique (non représenté) permettant la circulation d'un courant de puissance, en limitant l'encombrement occasionné par la présence du câble électrique.
Par ailleurs, la conception du conduit de passage 28 en une seule pièce réalisée par moulage est avantageuse en ce qu'elle facilite la réalisation du conduit de passage 28 , de sorte à limiter les coûts, en ce qu' elle réduit les risques de fuite du circuit de refroidissement et en ce qu'elle augmente la conductivité thermique au travers du conduit 28. De la sorte, lorsque le liquide de refroidissement du circuit 6 est réchauffé lors de la phase de montée en température du moteur 2, on minimise les pertes thermiques occasionnées lors du transfert de chaleur depuis le liquide de refroidissement vers le moteur 2. Dans l'exemple illustré, on accentue encore cet effet en choisissant un matériau approprié pour réaliser par moulage le conduit de passage 28 , c ' est-à-dire un matériau à forte conductivité thermique comme par exemple de l'aluminium.
Au vu de ce qui précède, le conduit de passage 28 permet de faire transiter le liquide de refroidissement du circuit de refroidissement 6 de manière simple et économique, de sorte à améliorer le fonctionnement du moteur lors des phases de montée en température et de régénération du filtre à particules, tout en optimisant la consommation énergétique des composants électroniques tels que des bougies de préchauffage et en limitant l'encombrement occasionné au niveau du compartiment moteur.
En particulier, l 'invention permet de mettre en œuvre plus tôt une recirculation des gaz d' échappement, d' activer plus rapidement un refroidisseur d' air de suralimentation du moteur et d' augmenter la charge du moteur d'une manière optimale pendant les phases de régénération du filtre à particules.

Claims

REVENDICATIONS
1 . Conduit de passage (28) de liquide de refroidissement pour moteur à combustion interne (2) de véhicule automobile, comprenant une portion tubulaire (30) pour permettre le passage d'un liquide de refroidissement d'un circuit de refroidissement (6) du moteur (2), ladite portion tubulaire (30) comportant une extrémité amont (32) prévue pour être raccordée à un premier organe fonctionnel du moteur (2), et une extrémité aval (34) opposée à l' extrémité amont (32) et prévue pour être raccordée à un second organe fonctionnel du moteur (2), caractérisé en ce que la portion tubulaire (30) comprend au moins un orifice de réception (52) apte à recevoir au moins un élément de chauffage du liquide de refroidissement, ledit conduit de passage (28) comprenant une ramification (40) destinée à être raccordée à un aérotherme ( 12) du circuit de refroidissement (6) du moteur (2) .
2. Conduit de passage (28) selon la revendication 1 , dans lequel le premier organe fonctionnel du moteur est un refroidisseur d' huile ( 16) et/ou dans lequel le second organe fonctionnel du moteur est un carter-cylindres (4) du moteur ou une pompe de liquide de refroidissement (8) .
3. Conduit de passage (28) selon la revendication 1 ou 2, caractérisé en ce qu' il est constitué d'une seule pièce réalisée par moulage, de préférence en aluminium.
4. Conduit de passage (28) selon l'une quelconque des revendications 1 à 3 , comprenant au moins quatre orifices de réception
(52) chacun apte à recevoir une bougie de préchauffage.
5. Conduit de passage (28) selon la revendication 4, dans lequel lesdits au moins quatre orifices de réception (52) sont disposés en quinconce.
6. Conduit de passage (28) selon l'une quelconque des revendications 1 à 5 , dans lequel ledit au moins un orifice de réception (52) comprend un alésage cylindrique (54) de petit diamètre s ' étendant vers l ' extérieur depuis une paroi interne (5 1 ) de la portion tubulaire (30), et un alésage cylindrique (58) de grand diamètre s ' étendant vers l' intérieur depuis une paroi (49) située à l ' extérieur de la portion tubulaire (30), les deux alésages cylindriques (54, 58) étant coaxiaux, les deux alésages cylindriques (54, 58) étant reliés par un alésage tronconique (56) dont les génératrices forment un angle (a) compris entre 58° et 66° avec la direction axiale (53) desdits deux alésages cylindriques (54 , 58) .
7. Conduit de passage (26) selon l'une quelconque des revendications 1 à 6, comprenant une oreille de fixation (48) à un carter-cylindres (4) du moteur.
8. Moteur à combustion interne (2) pour véhicule automobile comprenant un carter-cylindres (4), un circuit de refroidissement (6), un premier organe fonctionnel, un second organe fonctionnel et un conduit de passage (28) de liquide de refroidissement selon l 'une quelconque des revendications 1 à 7.
9. Moteur (2) selon la revendication 8 , comprenant une pompe de liquide de refroidissement (8) délimitée par un carter de pompe ( 1 0), ledit carter de pompe ( 10) étant au moins partiellement formé par une portion du carter-cylindres (4) .
EP17825423.1A 2016-12-16 2017-12-12 Conduit de passage de liquide de refroidissement pour moteur à combustion interne de véhicule automobile Active EP3555457B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1662596A FR3060666B1 (fr) 2016-12-16 2016-12-16 Conduit de passage de liquide de refroidissement pour moteur a combustion interne de vehicule automobile
PCT/EP2017/082390 WO2018108887A1 (fr) 2016-12-16 2017-12-12 Conduit de passage de liquide de refroidissement pour moteur à combustion interne de véhicule automobile

Publications (2)

Publication Number Publication Date
EP3555457A1 true EP3555457A1 (fr) 2019-10-23
EP3555457B1 EP3555457B1 (fr) 2023-10-25

Family

ID=58162845

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17825423.1A Active EP3555457B1 (fr) 2016-12-16 2017-12-12 Conduit de passage de liquide de refroidissement pour moteur à combustion interne de véhicule automobile

Country Status (4)

Country Link
EP (1) EP3555457B1 (fr)
ES (1) ES2968435T3 (fr)
FR (1) FR3060666B1 (fr)
WO (1) WO2018108887A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3096404B1 (fr) * 2019-05-24 2021-04-23 Renault Sas Dispositif de régulation de la température d’au moins un élément d'un moteur thermique suralimenté
DE102019219056A1 (de) * 2019-12-06 2021-06-10 Volkswagen Aktiengesellschaft Kühlkreislaufanordnung eines Kraftfahrzeugs
FR3132936B1 (fr) * 2022-02-18 2024-01-19 Renault Sas Procédé de fabrication d’un circuit pour une automobile

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2722839B1 (fr) * 1994-07-21 1996-11-15 Harang Alain Michel Dispositif pour mettre un moteur a combustion interne a une teperature compatible avec un fonctionnement intensif
FR2763361B1 (fr) * 1997-05-15 1999-08-20 Europalu Bloc de prechauffage du liquide de refroidissement pour vehicule a moteur thermique
EP1008472B1 (fr) * 1998-12-10 2002-09-11 Ford-Werke Aktiengesellschaft Procédé de fabrication d'un élément de chauffage auxiliaire de bougie à incandescence pour véhicules à moteur
JP4068309B2 (ja) * 2001-03-02 2008-03-26 日本特殊陶業株式会社 ヒータ及びその製造方法
US8933372B2 (en) * 2006-06-29 2015-01-13 Dynacurrent Technologies, Inc. Engine pre-heater system
CA2857765C (fr) * 2014-07-24 2023-09-26 Ray King Systeme de chauffage auxiliaire

Also Published As

Publication number Publication date
EP3555457B1 (fr) 2023-10-25
ES2968435T3 (es) 2024-05-09
FR3060666A1 (fr) 2018-06-22
ES2968435T8 (es) 2024-05-29
WO2018108887A1 (fr) 2018-06-21
FR3060666B1 (fr) 2019-08-02

Similar Documents

Publication Publication Date Title
EP3555457B1 (fr) Conduit de passage de liquide de refroidissement pour moteur à combustion interne de véhicule automobile
EP2069620A2 (fr) Dispositif de distribution de liquide de refroidissement dans un moteur de vehicule automobile
FR2745033A1 (fr) Systeme de refroidissement pour un moteur a combustion interne
WO2004042310A1 (fr) Echangeur de chaleur a plusieurs fluides, notamment pour un vehicule automobile, et systeme de gestion de l’energie thermique associe
EP2187016A1 (fr) Circuit de refroidissement moteur
EP0374038A1 (fr) Dispositif de refroidissement d'un moteur à combustion interne
EP2981769B1 (fr) Dispositif de prechauffage de fluide notamment de fluide de refroidissement de moteur a combustion
EP0986706B1 (fr) Systeme de vaporisateur de gaz de petrole liquefie chauffe par l'huile de graissage du moteur
FR2983525A1 (fr) Ensemble comportant un deflecteur pour vanne thermostatique dans un boitier de sortie d'eau
FR2851315A1 (fr) Vanne de regulation d'un fluide equipee d'un dispositif de chauffage
FR2920706A1 (fr) Module multifonctionnel pour moteur a combustion interne
FR2949509A1 (fr) Moteur a combustion interne presentant un circuit de refroidissement muni d'un conduit de derivation
EP3236041B1 (fr) Système de refroidissement d'un moteur thermique
FR3039856B1 (fr) Canalisation chauffee de recyclage des gaz de carter
FR2842250A1 (fr) Module pour circuit de refroidissement et circuit comprenant un tel module
EP2090763B1 (fr) Circuit de refroidissement moteur
FR3020413A1 (fr) Raccord de circuit de reaspiration de gaz de blow-by pour moteur a combustion interne, notamment a essence
FR3012212A1 (fr) Echangeur de chaleur pour turbomachine
WO2019002732A1 (fr) Ensemble comportant un réceptacle et une vanne de régulation de débit d'un gaz destines a être assembles
EP2187015B1 (fr) Circuit de refroidissement moteur
FR2991393A1 (fr) Structure de ligne de recyclage des gaz d'echappement d'un moteur thermique
FR3007081A1 (fr) Unite de rechauffage electrique de fluide dans une conduite ou un reservoir
FR3086976A1 (fr) Systeme de refroidissement pour moteur a combustion interne et procede de pilotage associe
FR2905422A1 (fr) Systeme de refroidissement d'un vehicule automobile
FR2875885A1 (fr) Dispositif de refroidissement d'une boite de vitesses automatique de vehicule automobile et procede associe

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190613

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RENAULT S.A.S

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220513

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RENAULT S.A.S

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230525

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230608

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017075767

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231222

Year of fee payment: 7

Ref country code: DE

Payment date: 20231214

Year of fee payment: 7

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231025

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: NEW H POWERTRAIN HOLDING, S.L.U.

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1624891

Country of ref document: AT

Kind code of ref document: T

Effective date: 20231025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240130

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240225

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240126

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240125

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240226

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2968435

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20240509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240125

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017075767

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20231231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231212

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240726

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025