EP3887177A1 - Véhicule à guidage automatique et procédé pour accoupler un véhicule à guidage automatique avec une semi-remorque - Google Patents

Véhicule à guidage automatique et procédé pour accoupler un véhicule à guidage automatique avec une semi-remorque

Info

Publication number
EP3887177A1
EP3887177A1 EP19813772.1A EP19813772A EP3887177A1 EP 3887177 A1 EP3887177 A1 EP 3887177A1 EP 19813772 A EP19813772 A EP 19813772A EP 3887177 A1 EP3887177 A1 EP 3887177A1
Authority
EP
European Patent Office
Prior art keywords
trailer
transport vehicle
driverless transport
semi
coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19813772.1A
Other languages
German (de)
English (en)
Inventor
Dana Clauer
Thomas Irrenhauser
Josef Eckl
Marco Prüglmeier
Fabian WITTICH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Staeubli WFT GmbH
Original Assignee
Bayerische Motoren Werke AG
Staeubli WFT GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG, Staeubli WFT GmbH filed Critical Bayerische Motoren Werke AG
Publication of EP3887177A1 publication Critical patent/EP3887177A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60DVEHICLE CONNECTIONS
    • B60D1/00Traction couplings; Hitches; Draw-gear; Towing devices
    • B60D1/58Auxiliary devices
    • B60D1/62Auxiliary devices involving supply lines, electric circuits, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D53/00Tractor-trailer combinations; Road trains
    • B62D53/04Tractor-trailer combinations; Road trains comprising a vehicle carrying an essential part of the other vehicle's load by having supporting means for the front or rear part of the other vehicle
    • B62D53/08Fifth wheel traction couplings
    • B62D53/12Fifth wheel traction couplings engaging automatically
    • B62D53/125Fifth wheel traction couplings engaging automatically with simultaneous coupling of the service lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60DVEHICLE CONNECTIONS
    • B60D1/00Traction couplings; Hitches; Draw-gear; Towing devices
    • B60D1/01Traction couplings or hitches characterised by their type
    • B60D1/015Fifth wheel couplings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60DVEHICLE CONNECTIONS
    • B60D1/00Traction couplings; Hitches; Draw-gear; Towing devices
    • B60D1/58Auxiliary devices
    • B60D1/62Auxiliary devices involving supply lines, electric circuits, or the like
    • B60D1/64Couplings or joints therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/24Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being gaseous
    • B60T13/26Compressed-air systems
    • B60T13/261Compressed-air systems systems with both indirect application and application by springs or weights and released by compressed air
    • B60T13/263Compressed-air systems systems with both indirect application and application by springs or weights and released by compressed air specially adapted for coupling with dependent systems, e.g. tractor-trailer systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/24Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being gaseous
    • B60T13/26Compressed-air systems
    • B60T13/261Compressed-air systems systems with both indirect application and application by springs or weights and released by compressed air
    • B60T13/265Compressed-air systems systems with both indirect application and application by springs or weights and released by compressed air dependent systems, e.g. trailer systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/20Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger specially for trailers, e.g. in case of uncoupling of or overrunning by trailer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1701Braking or traction control means specially adapted for particular types of vehicles
    • B60T8/1708Braking or traction control means specially adapted for particular types of vehicles for lorries or tractor-trailer combinations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D53/00Tractor-trailer combinations; Road trains
    • B62D53/04Tractor-trailer combinations; Road trains comprising a vehicle carrying an essential part of the other vehicle's load by having supporting means for the front or rear part of the other vehicle
    • B62D53/08Fifth wheel traction couplings
    • B62D53/0842King pins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D53/00Tractor-trailer combinations; Road trains
    • B62D53/04Tractor-trailer combinations; Road trains comprising a vehicle carrying an essential part of the other vehicle's load by having supporting means for the front or rear part of the other vehicle
    • B62D53/08Fifth wheel traction couplings
    • B62D53/0857Auxiliary semi-trailer handling or loading equipment, e.g. ramps, rigs, coupling supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/10Automatic or semi-automatic parking aid systems

Definitions

  • a driverless transport vehicle for moving a semi-trailer is specified. Furthermore, a method for coupling a driverless
  • Transport vehicle specified with a semi-trailer.
  • trailers in the form of semi-trailers or trailers are transported in production plants with a classic tractor. If a trailer is ready for collection, the brake is usually released. Thus, the trailer must be prevented from rolling away by swelling on the ground; this is very cumbersome.
  • the tractors are also designed for long-distance use on the road. The factory often has to be maneuvered, but the tractors are not very manoeuvrable. A is also used to drive the operating machines
  • a disadvantage of the known tractors is that at least one employee is required to drive the tractor. Furthermore, tractors are not ideally suited for factory premises.
  • Another object is to provide a method for moving a semi-trailer by an automated guided vehicle.
  • a driverless transport vehicle described here has a coupling device which is set up to establish a connection with a braking system and / or an electronic system of a semi-trailer.
  • trailers that are parked on a factory site can thus be moved automatically with the aid of flat-movable driverless transport systems (AGVs).
  • AGVs flat-movable driverless transport systems
  • the transport system moves under the trailer and lifts the trailer.
  • the trailer is automatically transported to the destination and parked there.
  • the driverless transport vehicle can also be called an automated guided vehicle (AGV) or an automated guided vehicle (AGV).
  • AGV automated guided vehicle
  • AGV automated guided vehicle
  • the measures according to the invention thus ensure that access to the brakes of the trailer and / or to the lighting of the trailer is made possible, so that the problems that existed up to now can be avoided that due to the lack of ambient lighting the trailer can only be found on marked paths and Daylight may be moved. Rather, the trailer can therefore be used with a corresponding
  • the trailers can be moved at higher speeds, since the braking power for braking the semitrailer can be applied not only by the driverless transport vehicle, but also by the brakes of the trailer.
  • the container can also be changed from the container chassis of the trailer.
  • the flat, driverless transport system is used in particular for the transport of a trailer on the factory premises.
  • the driverless lifts are used in particular for the transport of a trailer on the factory premises.
  • Transport system on the trailer at the front end and can move it using the wheels at the rear end of the trailer.
  • the driverless transport system picks up the trailer at the storage location and automatically brings it to the desired workshop
  • the driverless transport system can use sensors to detect obstacles in the vicinity of the platform and the semi-trailer that may be attached, and possibly drive or stop around them.
  • the driverless transport system can preferably carry loads of up to 40 t
  • Transport vehicle suitable for indoor and outdoor use and has an omnidirectional drive.
  • the driverless transport vehicle preferably also has the latest sensor and navigation technology.
  • the driverless transport system can be used to operate different types of semi-trailers, for example tarpaulin trailers,
  • the coupling device can preferably be connected automatically to the braking system and / or to the electronic system of the semi-trailer. This results in a particularly fast and automated connection of the driverless transport vehicle to the semi-trailer.
  • Automated means in particular that corresponding sensors or the like are provided, by means of which a relative position of respective connections, plugs or the like on the driverless side
  • Transport vehicle and the trailer determined and depending on the connections, plugs or the like are connected to each other by - by means of
  • the coupling device has at least one compressed air connection.
  • the trailer can be supplied with compressed air which is generated and / or stored in the driverless transport vehicle.
  • an air suspension system can be operated with compressed air.
  • the coupling device has two
  • Compressed air connections in particular a compressed air connection for a brake line and a compressed air connection for a supply line or supply line.
  • connection and / or the connections can, for example, via an adapter, e.g. can have a magnetic holder can be coupled. This enables particularly fast and reliable coupling and uncoupling of the connection or connections.
  • the coupling device has a plug, in particular a multi-pole plug.
  • the plug can be 15-pin.
  • the coupling device can be designed to couple the semitrailer or its connection or connections from below or from the front. Both types of connection enable simple and reliable automatic coupling of the connections on the driverless transport vehicle side and on the trailer side.
  • the driverless transport vehicle can have a coupling device which has an adapter unit for positive and / or non-positive connection with the kingpin of the semi-trailer.
  • the coupling device comprises a fifth wheel coupling with a fifth wheel plate, which is carried by the driverless transport system.
  • the fifth wheel coupling serves on the one hand to support and carry the trailer with the help of the kingpin, and on the other hand to
  • the coupling device can be a device for lifting the
  • the device can be arranged, for example, between the fifth wheel coupling and the body / frame of the driverless transport system, so that the fifth wheel coupling (and thus the front area of the semi-trailer / trailer) is relative to the driverless transport system
  • the body / frame of the driverless transport system can be raised and lowered can.
  • the chassis of the driverless transport system could also be provided with air suspension or the like as said device, as is usually also the case with tractor units, so that the front part of the semi-trailer / trailer is raised and lowered by adjusting the height of the body / frame of the driverless transport system and thus also the fifth wheel coupling.
  • the driverless transport vehicle has a plurality of sensors for environmental detection.
  • the driverless transport vehicle can have a substantially cuboid base body, on which at least four laser sensors are arranged. For example, at four different corners or edges of the main body of the driverless
  • Transport vehicle at least one laser sensor for environmental detection
  • driverless transport vehicle points in another
  • the fifth wheel coupling can be aligned and coupled to the kingpin in a simple manner.
  • the driverless one is used in particular as a function of the data determined by the corresponding sensors
  • Transport vehicle moved relative to the kingpin. Alternatively, it would be
  • the fifth wheel in the vehicle transverse direction and / or in the vehicle longitudinal direction relatively movable to the body / frame of the driverless
  • the driverless transport vehicle has a plurality of drive wheels which can be controlled in such a way that the driverless transport vehicle can be moved omnidirectionally.
  • at least two drive wheels can be acted upon with different drive torques and / or drive torques oriented in opposite directions and / or directions of rotation oriented in opposite directions.
  • the driverless transport system has at least one front axle and at least one rear axle or corresponding drive wheels which are assigned to the axles and which have different
  • a driverless transport vehicle which can have one or more features of the aforementioned embodiments, and a semi-trailer or so-called trailer are provided.
  • the coupling device of the driverless transport vehicle is connected to a braking system and / or an electronic system of the semi-trailer.
  • connection is preferably automated.
  • the coupling device can have one or more compressed air connections and / or an electrical connection which is or are connected to one or more compressed air connections or an electrical connection of the semi-trailer.
  • the driverless transport vehicle or the method described here can advantageously be used to access the air brake and the electronics of the trailer. This means that it is possible to use the road or travel on the entire factory premises. It can also be used at night as the lighting system of the semi-trailer can be activated.
  • Transport vehicle with a semi-trailer result from the embodiments described below in connection with FIGS. 1 to 4. Show it:
  • Fig. 1 is a schematic representation of the connection of a driverless
  • Fig. 2 shows a further schematic representation of the connection of a driverless
  • Fig. 3 is a schematic representation of the connection of a driverless
  • 4 shows a further schematic illustration of the connection of a driverless transport vehicle to the braking system and electronic system of a semi-trailer according to the second exemplary embodiment.
  • a driverless transport vehicle 1 which moves a semi-trailer 2.
  • a coupling device 4 of the driverless transport vehicle 1 is connected to a kingpin 3 of the semi-trailer 2. It should be noted that in principle other combinations can also be formed with the driverless transport vehicle 1, that is to say trailer combinations or the like.
  • the driverless transport vehicle 1 is used to move the semi-trailer 2, in particular within a factory site. It has been shown that the previous method on factory premises, at which one
  • Tractor unit provided the driverless transport vehicle 1, which can be automatically coupled to the semi-trailer 2.
  • the driverless transport vehicle 1 has the coupling device 4, which can be connected to the kingpin 3 of the semi-trailer 2 or is connected in FIG. 2.
  • the coupling device 4 has an adapter unit for positive and / or non-positive connection with the kingpin 3, which here comprises a fifth wheel coupling used in a conventional manner.
  • the fifth wheel coupling here has a fifth wheel plate 6, which is supported by a structure or frame 7 of the driverless transport system 1.
  • a locking device 8 is integrated in the saddle plate 6, by means of which the kingpin 3 can be locked on the saddle plate 6.
  • the fifth wheel coupling thus serves, among other things, to support and carry the trailer 2 through the intermediary of the kingpin 3, and secondly to lock the kingpin 3 on the fifth wheel plate 6.
  • a standardized fifth wheel coupling 5 and fifth wheel plate 6 is used to get as many common semi-trailers 2 as possible to be able to record and maneuver.
  • the driverless transport vehicle 1 comprises a plurality of drive wheels, of which respective front and rear drive wheels 9, 10 are shown in FIGS. 1 and 2. These can be controlled here in such a way that the driverless transport vehicle 1 can be moved omnidirectionally.
  • at least two drive wheels 9, 10 can be designed such that they can be acted on with different drive torques and / or drive torques oriented in opposite directions and / or directions of rotation oriented in opposite directions.
  • the driverless transport vehicle 1 comprises a plurality of drive wheels, of which respective front and rear drive wheels 9, 10 are shown in FIGS. 1 and 2. These can be controlled here in such a way that the driverless transport vehicle 1 can be moved omnidirectionally.
  • at least two drive wheels 9, 10 can be designed such that they can be acted on with different drive torques and / or drive torques oriented in opposite directions and / or directions of rotation oriented in opposite directions.
  • the driverless drive wheels 9, 10 can be designed such that they can be acted on with different drive torques and / or drive torques oriented
  • Transport system 1 have at least one front axle 11 and at least one rear axle 12 or corresponding associated drive wheels 9, 10, which are oriented with different drive torques and / or in opposite directions
  • the driverless transport vehicle 1 is thus omnidirectional, for example
  • driverless transport vehicle 1 can also have rigid and / or non-driven wheels.
  • the driverless transport vehicle 1 comprises a device 13 for lifting the front end of the semi-trailer 2, so that it can be moved with the aid of its wheels 14, 15 at the rear end of the trailer 2.
  • This device 13 can be, for example, a hydraulic device, by means of which the trailer 2 can be raised immediately before and / or during and / or immediately after the coupling of the kingpin 3 with the fifth wheel coupling, so that it can be moved by the driverless transport vehicle 1.
  • Structure / frame 7 arranged by means of which the saddle plate 6 can be raised and lowered relative to the structure / frame 7 in the vertical direction of the vehicle.
  • the driverless transport vehicle 1 also has a plurality of sensors for environmental detection.
  • the driverless transport vehicle 1 can have a structure 7 with an essentially cuboid base body, on which at least four laser sensors or the like sensors are arranged.
  • respective sensors can be arranged at four different corners or edges 16, 17 of the base body 7 of the driverless transport vehicle 1.
  • the driverless transport system 1 can use the sensors to detect obstacles in the vicinity of the vehicle 1 and the optionally attached semi-trailer 2 and, if appropriate, drive or stop around them.
  • the driverless transport vehicle 1 can also be connected, for example by means of a transmitter and / or receiver unit 18, to a central control of the factory premises, in order to thus, for example, to the corresponding trailers 1
  • the driverless transport vehicle 1 or driverless transport system also enables automatic coupling of the transport system 1 to the trailer 2 or the like trailer, a connection being established to the brake system 19 and / or to the electronics 20 of the trailer 2. For this, the driverless
  • Transport vehicle 1 has a coupling device 21, which is set up to connect to a brake system 19 and / or the electronics system
  • Compressed air connections 23 on the trailer 2 side can be coupled. This coupling should in particular take place automatically.
  • the compressed air connections 22 of the trailer 2 are different from those compressed air connections 5 by means of which the trailer 2 is connected to compressed air connections of a tractor unit
  • the coupling device 21 of the embodiment according to FIG. 1 is arranged on the underside of the body of the trailer 2 or on the top of the body / frame of the driverless transport vehicle 1. This results in a particularly simple coupling, in particular if the trailer 2 is already lowered with its front end for connection to the kingpin.
  • a respective brake line 24 and supply line 25 are coupled.
  • a respective brake line 24 and supply line 25 are coupled.
  • Transport vehicle 1 a compressor or storage for compressed air is provided in order to be able to supply the air pressure systems of the trailer 2.
  • an air suspension of the trailer 2 can also be supplied with compressed air, for example to lift the trailer for changing containers or to lift individual lifting axles, which can improve the maneuverability of the trailer 2 for maneuvering.
  • other consumers within the trailer 2 would also be able to be supplied with compressed air from the driverless transport vehicle 1.
  • Compressed air connections 5 of the trailer 2 for connection to the truck and the
  • Coupling device 21 can be used for connection to the driverless transport vehicle 1. This is done - as this is shown schematically using the circuit diagram according to FIG.
  • the driverless transport system 1 drives under the trailer 2, for example, and lifts it.
  • the driverless transport system 1 automatically couples to the Trailer 2 on.
  • both the brake system 19 and the electronic system of the trailer 2 are coupled.
  • the brake of the trailer 2 is released and the trailer 2 can be moved across the factory premises.
  • a two-line compressed air connection is required to control the brake.
  • the brake line 24 and the supply line 25 must therefore be connected to a compressed air coupling 21.
  • the automatic coupling is possible, for example, from below (Fig. 1).
  • the compressed air connection between trailer 2 and driverless transport vehicle 1 is established with the aid of a multicoupler (FIG. 2).
  • a coupling from the front is possible (Fig. 3).
  • the compressed air lines are coupled with the aid of an adapter with, for example, a magnetic holder (FIG. 4).
  • the coupling device also connects the driverless transport vehicle 1 to the electronic system of the trailer 2.
  • the ambient lighting, brake light, direction indicator and the electronic braking system can be used when the trailer 2 is used as a team using the driverless transport vehicle 1
  • Transport vehicle 1 can be transported on the road or on the factory premises. Trailer 1 can also be moved at night. Trailer 2 is parked at the destination and the brake can be locked again.
  • a multi-pin, in particular 15-pin connector is automatically coupled.
  • the various electronic systems of the trailer 2 can be coupled by means of a corresponding control device, which is accommodated, for example, in the driverless transport vehicle 1, and the trailer 2 can also be supplied with electrical energy.
  • the coupling devices 4, 21 have, for example, respective sensors for automated coupling. This allows, for example, the position of the fifth wheel coupling relative to the kingpin 3 or the connections of the coupling device for the brake and electronics on the driverless side
  • Transport system 1 and the divider 2 are determined. It would be conceivable here for the fifth wheel 5 to be relatively movable in relation to the body / frame 7 of the driverless vehicle in the vehicle transverse direction and / or in the vehicle longitudinal direction
  • the fifth wheel 5 can be adjusted (fine) relative to the kingpin 3 until the coupling position between fifth wheel 5 and kingpin 3 is reached. If, in particular, a rough adjustment between the fifth wheel coupling 5 and the kingpin 3 is required, this can be done by moving the driverless transport vehicle 1 relative to the kingpin 3. If necessary, the positioning of the
  • Fifth wheel coupling 5 relative to the kingpin 3 can also be carried out exclusively by moving the driverless transport vehicle 1. After reaching
  • the coupling device 21 for the braking and / or electronic system of the trailer 2 can also be displaced, for example, with sensor monitoring and sensor control, by providing corresponding adjustment actuators or the like.
  • the connection and locking of the respective connections, plugs or the like can thus also take place automatically.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Regulating Braking Force (AREA)
  • Vehicle Body Suspensions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)

Abstract

L'invention concerne un véhicule à guidage automatique (1) pour déplacer une semi-remorque (2). Ce véhicule à guidage automatique (1) présente un dispositif d'accouplement (21) qui est conçu pour établir une liaison avec un système de freinage (19) et/ou un système électronique d'une semi-remorque (2). L'invention concerne en outre un procédé pour accoupler un véhicule à guidage automatique (1) avec une semi-remorque (2).
EP19813772.1A 2018-11-30 2019-11-29 Véhicule à guidage automatique et procédé pour accoupler un véhicule à guidage automatique avec une semi-remorque Pending EP3887177A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018130586.9A DE102018130586A1 (de) 2018-11-30 2018-11-30 Fahrerloses Transportfahrzeug sowie Verfahren zum Koppeln eines fahrerlosen Transportfahrzeugs mit einem Sattelauflieger
PCT/EP2019/083082 WO2020109549A1 (fr) 2018-11-30 2019-11-29 Véhicule à guidage automatique et procédé pour accoupler un véhicule à guidage automatique avec une semi-remorque

Publications (1)

Publication Number Publication Date
EP3887177A1 true EP3887177A1 (fr) 2021-10-06

Family

ID=68771636

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19813772.1A Pending EP3887177A1 (fr) 2018-11-30 2019-11-29 Véhicule à guidage automatique et procédé pour accoupler un véhicule à guidage automatique avec une semi-remorque

Country Status (4)

Country Link
US (1) US20220017162A1 (fr)
EP (1) EP3887177A1 (fr)
DE (1) DE102018130586A1 (fr)
WO (1) WO2020109549A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021110564A1 (de) 2021-04-26 2022-10-27 Zf Cv Systems Global Gmbh Verfahren und Vorrichtung zum assistierten oder automatischen Ankoppeln eines Anhängerfahrzeuges an ein Zugfahrzeug sowie Zugfahrzeug, elektronische Verarbeitungseinheit und Computerprogramm
DE102021209167B4 (de) 2021-08-20 2023-07-06 Zf Friedrichshafen Ag Verbindungssystem und Zugmaschinenverbund

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10335264B4 (de) * 2003-08-01 2006-11-30 Man Nutzfahrzeuge Ag Vorrichtung zur Stromversorgung wenigstens eines elektrischen Verbrauchers, der in einem von einem Zugfahrzeug gezogenen Trailer angeordnet ist
DE102004024333B4 (de) * 2004-05-14 2019-05-16 Jost-Werke Deutschland Gmbh Steckverbindungen
DE102004047492B4 (de) * 2004-09-23 2006-07-20 Jost-Werke Gmbh & Co. Kg Verfahren zum Übertragen von elektrischer, pneumatischer oder hydraulischer Energie sowie ein Energieübertragungssystem
US8840128B2 (en) * 2010-09-03 2014-09-23 Joseph Karl Glazner Systems and methods for connecting a power supply to a trailer
US9080367B2 (en) * 2013-03-07 2015-07-14 Lift Tech Holdings, Llc Automatic door opener for delivery trucks
GB201616253D0 (en) * 2016-09-24 2016-11-09 Webster Gary R Automatic car trailer hitching and unhitching system
DE102016218603A1 (de) * 2016-09-27 2018-03-29 Jost-Werke Deutschland Gmbh Vorrichtung zur Positionserkennung eines ersten oder zweiten miteinander zu kuppelnden Fahrzeugs
US11820181B2 (en) * 2017-03-06 2023-11-21 Volvo Truck Corporation Methods for assisting automatic uncoupling/coupling of a trailer
DE202018104542U1 (de) * 2018-08-07 2018-08-28 Hamburger Patent Schmiede Gmbh Schmutzdeckelanordnung sowie Schmutzdeckelvorrichtung für diese Anordnung
US11358660B2 (en) * 2018-11-28 2022-06-14 Cargotec Patenter Ab Autonomous vehicle having rotatable fifth wheel

Also Published As

Publication number Publication date
US20220017162A1 (en) 2022-01-20
DE102018130586A1 (de) 2020-06-04
WO2020109549A1 (fr) 2020-06-04

Similar Documents

Publication Publication Date Title
EP3619586B1 (fr) Procédé et système servant à faire fonctionner un véhicule de transport à pilotage automatique pour des conteneurs
DE102016011324A1 (de) Verfahren zur Steuerung eines Zugfahrzeugs bei dessen Heranfahren und Ankuppeln an ein Anhängerfahrzeug
DE102016218603A1 (de) Vorrichtung zur Positionserkennung eines ersten oder zweiten miteinander zu kuppelnden Fahrzeugs
DE102009052382A1 (de) Verfahren und Güterumschlagterminal zum Umschlagen von Sattelaufliegern von der Schiene auf die Straße und umgekehrt sowie Zugfahrzeug für Sattelauflieger und Sattelzuggespann dafür, sowie Verfahren zum Umschlagen von Sattelaufliegern von der Schiene auf die Straße und umgekehrt und zum Transport der Sattelauflieger auf der Schiene
WO2020016420A2 (fr) Système de couplage par enfichage ainsi que système de couplage
DE102017220576B4 (de) Transportsystem zum automatisierten Transportieren eines Fahrzeugs mit mindestens einem Transportroboter
EP3305633B1 (fr) Combinaison véhicule couplé-véhicule routier comportant un engin moteur et une remorque en tant que semi-remorque
DE102009011606A1 (de) Vorrichtung und Verfahren zum Durchführen einer Radstandregelung für Nutzfahrzeuge
EP3915831B1 (fr) Attelage et véhicule tracté doté d'un dispositif de traitement du signal
EP3698992A1 (fr) Dispositif de liaison, système de liaison ainsi que semi-remorque
WO2020109549A1 (fr) Véhicule à guidage automatique et procédé pour accoupler un véhicule à guidage automatique avec une semi-remorque
DE102011012551A1 (de) Fahrzeugkombination in Bergbaubetrieben, bestehend aus einem fahrergesteuertem Leitfahrzeug und aus mindestens einem virtuell angekoppelten, fahrerlosen Schwerlastkraftwagen, und deren Einsatzmethoden
DE102007048069A1 (de) Vorrichtung und Verfahren zum Rangieren von Anhängern
DE102017220584A1 (de) Transportsystem und Verfahren zum Transportieren eines Fahrzeugs
WO2020109545A1 (fr) Véhicule à guidage automatique et procédé pour déplacer une semi-remorque au moyen d'un véhicule à guidage automatique
DE69014648T2 (de) Zugmaschine.
WO2020052887A1 (fr) Procédé de direction transversale et dispositif de direction transversale pour le déplacement d'un véhicule dans une position cible, et véhicule approprié
WO2020109548A1 (fr) Véhicule à guidage automatique et procédé pour déplacer une semi-remorque au moyen d'un véhicule à guidage automatique
DE102019000853A1 (de) Verfahren zum Betrieb eines Kraftfahrzeugs mit Liftachse sowie entsprechendes Kraftfahrzeug
DE102020004193B4 (de) Hebesystem für einen Sattelauflieger eines Sattelzugs, Logistikbetriebshof für eine Lastkraftwagenflotte sowie Logistiksystem
DE4119014A1 (de) Transportfahrzeug zum transport von raumzellen, wie stahlbeton-fertiggaragen
DE102019005932A1 (de) Sensoreinrichtung für ein Zugfahrzeug eines Gespanns und Gespann mit einer solchen Sensoreinrichtung
DE3610254A1 (de) Fahrzeugverband fuer grossraeumige lasten und verfahren zur steuerung des fahrzeugverbands
DE10144604B4 (de) Transportwagen
DE10031024A1 (de) Kombinationstransportzug zum Transport von Lang-oder Kurzmaterial

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210528

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)