EP3881006B1 - Système comprenant un moteur de turbine à gaz à recupérateur et chambre de combustion catalytique - Google Patents
Système comprenant un moteur de turbine à gaz à recupérateur et chambre de combustion catalytique Download PDFInfo
- Publication number
- EP3881006B1 EP3881006B1 EP19809549.9A EP19809549A EP3881006B1 EP 3881006 B1 EP3881006 B1 EP 3881006B1 EP 19809549 A EP19809549 A EP 19809549A EP 3881006 B1 EP3881006 B1 EP 3881006B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- air
- fuel
- mixture
- section
- upstream
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003197 catalytic effect Effects 0.000 title claims description 49
- 239000003054 catalyst Substances 0.000 claims description 163
- 239000000446 fuel Substances 0.000 claims description 138
- 238000011144 upstream manufacturing Methods 0.000 claims description 97
- 239000000203 mixture Substances 0.000 claims description 91
- 239000007789 gas Substances 0.000 claims description 52
- 238000000034 method Methods 0.000 claims description 39
- 238000007084 catalytic combustion reaction Methods 0.000 claims description 22
- 239000000567 combustion gas Substances 0.000 claims description 11
- 238000002156 mixing Methods 0.000 claims description 10
- 229910052763 palladium Inorganic materials 0.000 claims description 8
- 229910052697 platinum Inorganic materials 0.000 claims description 8
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 229910052741 iridium Inorganic materials 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 229910052703 rhodium Inorganic materials 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000012530 fluid Substances 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 229910052727 yttrium Inorganic materials 0.000 claims description 4
- 238000006555 catalytic reaction Methods 0.000 claims description 3
- 230000008016 vaporization Effects 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 238000004891 communication Methods 0.000 claims description 2
- 230000000977 initiatory effect Effects 0.000 claims description 2
- 229910052706 scandium Inorganic materials 0.000 claims description 2
- 238000002485 combustion reaction Methods 0.000 description 24
- 239000000758 substrate Substances 0.000 description 17
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 13
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 11
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 10
- 239000011148 porous material Substances 0.000 description 8
- 239000007788 liquid Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000011651 chromium Substances 0.000 description 5
- 239000011888 foil Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 238000013316 zoning Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- 239000010948 rhodium Substances 0.000 description 4
- -1 vapor Substances 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000010970 precious metal Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000004606 Fillers/Extenders Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000000889 atomisation Methods 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 239000002283 diesel fuel Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003502 gasoline Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Inorganic materials [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 235000012255 calcium oxide Nutrition 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000008246 gaseous mixture Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum oxide Inorganic materials [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/40—Continuous combustion chambers using liquid or gaseous fuel characterised by the use of catalytic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/22—Fuel supply systems
- F02C7/224—Heating fuel before feeding to the burner
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/26—Starting; Ignition
- F02C7/264—Ignition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/005—Combined with pressure or heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/30—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply comprising fuel prevapourising devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/213—Heat transfer, e.g. cooling by the provision of a heat exchanger within the cooling circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/99—Ignition, e.g. ignition by warming up of fuel or oxidizer in a resonant acoustic cavity
Definitions
- the present disclosure is directed to devices and methods for igniting and controlling air/fuel mixtures in a catalytic combustion chamber, especially within the combustion chamber of a recuperated gas turbine engine, where such engines may be used in power generation and propulsion applications.
- Gas turbines are used for both fixed and mobile applications for power generation and vehicle propulsion on land, sea and air.
- the need to reduce harmful exhaust emissions from all types of heat engines is well recognized, and a fundamental part of many solutions is more efficient and cleaner combustion systems.
- combustion technologies for liquid and gaseous fuels have emerged such as dry-low-NOx (DLN), rich-quench-lean (RQL) and, catalytic combustion.
- Catalytic solutions remain unsurpassed for reductions of oxides of nitrogen, but have typically required some form of pre-burner to maintain the catalyst above light-off temperature, thereby compromising emissions performance.
- recuperated gas turbines run at much leaner fuel/air mixtures than simple cycle gas turbines, they can achieve lower emissions of CO and unburned hydrocarbons. For these reasons, the combination of a recuperated gas turbine and catalytic combustion offers near zero emissions (excluding H 2 O and CO 2 ) when burning HC fuels.
- catalytic combustion systems are quite effective in reducing the amount of undesirable emissions, resulting from incomplete combustion, once steady-state operating conditions are achieved.
- the amount of emissions may be above the desired limits.
- the amounts of undesirable emissions are usually higher during start-up conditions because the catalytic combustion is temperature dependent, being more efficient at higher temperatures, and during start-up, the catalyst is not at a temperature at which it is most effective.
- a number of strategies have been employed to address this issue, but each are deficient either in terms of complexity or effectiveness. Implementations of catalytic combustors have been relatively complex.
- Recuperated gas turbines such as the Capstone range extender use DLN combustors and achieve NO x emissions below 10 ppm when operated on natural gas. Similar emissions are achieved with liquid fuels but only with the addition of air assisted atomization nozzles, which require the addition of a separate air compressor.
- Pre-compressor fuel injection is not viable in gas turbines with conventional (non-catalytic) combustors because the air/fuel ratio is too lean to sustain combustion.
- the fuel is normally injected into a chamber after the compressor in such a way that a local rich zone supports continuous combustion despite the global air/fuel ratio being too lean for to support combustion.
- catalytic combustors can sustain combustion at very lean air/fuel ratios, making complete premixing of fuel and air possible in gas turbines. This makes possible novel fuel systems offering simplification and cost reductions.
- US 6,302,683 discloses a system where two catalysts are coupled in series with the upstream catalysts being heated, including electrically heated. It is noted that the upstream unit is only used in start-up mode and can be much smaller than the downstream unit. This reduces the electrical power demands of the system but creates additional complexity and bulk because a conical diffuser section between the two catalyst cores is required.
- WO99/14071 describes a recuperated gas turbine engine system employing catalytic combustion.
- the present disclosure addresses at least some of the deficiencies of the prior art.
- the present disclosure is directed to a recuperated gas turbine engine system employing catalytic combustion according to claim 1.
- an electrical resistance heater is used as the electrical heater and it is the only ignition source in the catalytic combustor or elsewhere in the system.
- the upstream section and the downstream catalyst section are integrated in a single unit.
- the catalytic matrices (cores) can be a monolithic (laminar flow), microlithic, or turbulent flow design.
- the upstream section and the downstream catalyst section each contain pores or channels which allow for the passage of a gas or a vapor through both of the upstream section and the downstream catalyst section, and from the upstream section to the downstream catalyst section.
- the upstream section is optimized for low-flow start-up conditions and the downstream catalyst section is optimized for run conditions.
- the pores or channels in the upstream section and the downstream catalyst section are in fluid communication with one another and are configured such that, when in use, a majority of combustion occurs in the downstream catalyst section.
- the upstream section may not require catalytic properties, thus, does not comprise an upstream catalyst; while the downstream catalyst section comprises a downstream catalyst.
- the upstream catalyst and the downstream catalyst may be the same or different.
- One or both of the upstream or downstream catalysts may comprise Ag, Au, Cu, Co, Cr, Fe, Ir, Mo, Mn, Ni, Pd, Pt, Rh, Sc, Ti, V, W, Y, Zn, Zr, or a combination thereof, in either metallic or oxide form.
- the recuperated gas turbine engine system may further comprise additional elements, for example one or more of:
- This disclosure further describes methods of operating the disclosed recuperated gas turbine engine system according to claim 1.
- the methods may comprise:
- Additional aspects of these methods include maintaining the increased mass flow of the mixture of air and fuel through the heated upstream catalyst, such that the heat associated with the combusting mixture of fuel and air, on contacting the downstream catalyst section, is sufficient to raise the temperature of at least a portion of the downstream catalyst section to an ignition temperature of the mixture of a fuel and air in the downstream catalyst section.
- maintaining the increased mass flow may provide heating of substantially all of the downstream catalyst section to the ignition temperature of the mixture of a fuel and air, so that the mixture of fuel and air, as it passes therethrough, is combusted throughout the downstream catalyst section.
- the flow of air/fuel may be modulated in one or both of composition and/or flow rate, in accordance with the requirement of the system.
- the electrical heater may be de-energized even though the combustor inlet temperature is less that the light-off temperature.
- these methods include maintaining the increased mass flow of the mixture of air and fuel through the heated upstream non-catalyst matrix layer, such that the heat associated with the mixture of fuel and air, on contacting the downstream catalyst section, is sufficient to raise the temperature of at least a portion of the downstream catalyst section to an ignition temperature of the mixture of a fuel and air in the downstream catalyst section.
- maintaining the increased mass flow may provide heating of substantially all of the downstream catalyst section to the ignition temperature of the mixture of a fuel and air, so that the mixture of fuel and air, as it passes therethrough, is combusted throughout the downstream catalyst section.
- the flow of air/fuel may be modulated in one or both of composition and/or flow rate, in accordance with the requirement of the system.
- the electrical heater may be de-energized even though the combustor inlet temperature is less than the light-off temperature.
- Systems and methods of the present disclosure are related to the combination of a recuperated gas turbine and an electrically heated catalytic combustor. Such systems and methods may be useful to hybrid and extended-range electric vehicles to provide near zero emissions.
- the applicant has demonstrated system embodiments where the catalytic combustor can run at low mass flow with low inlet temperature and with electrical heating only being required for a short time.
- Such systems and methods allow warm-up of the recuperator, raising combustor inlet temperature above light-off / ignition temperatures, after which the flow can be rapidly increased.
- the invention relates to combustion of liquid or gaseous fuels with low harmful emissions by using catalytic combustion, more particularly combustion as used in gas turbine engines.
- Catalytic combustion systems are already commercially available but are complex and only viable at scales of megawatts. On smaller gas turbines, reduced cost and portability dictate simpler combustor solutions. Smaller turbine engines have limited pressure ratios and high efficiencies can only be achieved by using exhaust heat recovery or "recuperation”. It has been discovered that the fundamentally different thermodynamic cycle used in recuperated gas turbines creates an opportunity for simplified implementation of catalytic combustion principles in particular, elimination of pre-heat burners.
- adjacent refers to a positioning of one object with respect to another in the standard sense of the word, including those meanings defined by or suggesting proximity, preferably in physical contact one another; i.e., having abutting surfaces.
- the two objects for example, the upstream section and the downstream catalyst section may comprise an air gap in part or all of the adjacent surfaces therebetween, either deliberately set or adventitiously resulting from incomplete mating of the adjoining surfaces.
- an air gap exists, it can be on the order of one mm thick or less, contrasting the intermediate chamber described in U.S. Patent No. 6,302,683 .
- the air gap may be 5 mm or less, 4 mm or less, 3 mm or less, 2 mm or less, 1 mm or less, 0.5 mm or less, or non-existent.
- the air gap can advantageously provide electrical insulation between the heated and down-stream sections.
- the two objects for example, the upstream section and the downstream catalyst section, may comprise a physical spacer between them (for example, a seal).
- the upstream section and the downstream catalyst section are integrated into a single unit, for example, as a monolithic or microlithic construction (for example, as described in US Patent Nos. 5,051,241 and 5,306,470 ). Close-coupling the two sections in one housing can minimize thermal losses and can result in early warm-up of the downstream catalyst section. Further, in "start-up" or “pilot” mode, radiation heat exchange between the two sections helps sustain catalytic combustion without electrical power. In this way, the upstream section and the upstream face of the downstream catalyst section can be maintained above light-off temperature of the fuel even when the combustor inlet temperature is at a much lower temperature. In this mode, the combustor can transition to low emissions when measured in %, ppm or some other ratio but because the mass flow during this mode is low, only small amounts of harmful gas emissions result in terms of a typical automotive drive cycle.
- upstream and downstream may be seen as synonyms for “first” and “second,” respectively, describing a series arrangement between the elements, until in use, wherein the terms refer to the relative serial positions of the two ends or sections with respect to the flow of gases or vapors therethrough.
- the upstream section comprising the electrical heater may be the only initiation source in the catalytic combustor and no other source or ignition system is required. While in certain embodiments, the system may or may not have separate ignition sources, it is preferred for there to be no ignition source beyond the electrical heater, within either the catalytic combustor or elsewhere in the system.
- the term "igniter" is understood to have its accepted meaning of a device for generating a spark or electric arc.
- the fuel/air mixtures may be optionally heated before entering the upstream end of the catalytic combustor. But it should be realized that these mixtures are maintained at air/fuel ratios above their ignitable lean limit.
- This system offers low cost and simplicity as it may operate without any other ignition source thereby reducing capital cost and maintenance requirements.
- the upstream section and the downstream catalyst section each contain pores or channels which allow for the passage of a fluid (e.g. , gases, liquids, vapor, or mixtures thereof) entering, passing through, and exiting both of the upstream section and the downstream catalyst section.
- a fluid e.g. , gases, liquids, vapor, or mixtures thereof
- the upstream section is preferably optimized for low-flow start-up conditions and the downstream catalyst section is optimized for run conditions. This may be achieved by providing some optimized combination of the size or configuration of the pores or channels, and/or catalyst formulations.
- the pores or channels in the upstream section may be larger in size than those of the downstream catalyst section.
- the pores or channels in the upstream section may be configured to provide a more streamlined or direct pass-through of the fluids than the downstream catalyst section (e.g. , upstream section is channeled while the downstream catalyst section comprises porously interconnected matrices.
- the upstream section and downstream catalyst section may be optimized by including different levels of platinum group metals in the front and rear parts of the downstream catalyst section, such as that described in U.S. 7,998,424 or US9,341,098 .
- the up-stream catalyst section will be optimum with between 0.78 and 31 cells per square centimetre (between 5 and 200 cells per square inch) whereas the downstream catalyst section may be optimum with smaller cells, such as 31-155 cells per square centimetre (200-1000 cells per square inch).
- optimum flow lengths for the upstream section are between 5 and 20mm.
- flow lengths for the downstream catalyst section are 40-150mm. Such optimizations of the catalyst sections may provide more efficient electrical heating.
- the upstream section operates predominantly during start-up operations, with minimum energy consumption, and that the downstream catalyst section is the predominant catalytic body during full flow running operations.
- the relative size of the upstream section may typically be smaller than that of the downstream catalyst section ( i.e ., has lower cell density), both in terms of pore or channel size and in term of residence time offered to the passing gases.
- the internal surface areas associated with the two sections should be such that the ratio of the pore or channel surface areas of the upstream section to those of the downstream catalyst section are in a range of from 0.5% to 5%.
- one or both of the upstream section and the downstream catalyst section may comprise metallic and/or ceramic materials, for example rolled metal elements or porous ceramic materials, or composites thereof.
- the upstream section should show appropriate thermal and/or electrical conductivity to allow for efficient use of the electric resistance heaters attached thereto.
- Exemplary materials for one or both of the sections include chromium and aluminum-containing alloys or oxides, and one or more of silicon oxide, aluminum oxide, titanium oxide, or zirconium oxide, titanium oxide, optionally stabilized by yttria, calcia and/or magnesia.
- the upstream section may not have an upstream catalyst, while the downstream catalyst section comprises a downstream catalyst.
- the upstream section may comprise an upstream catalyst.
- the upstream catalyst may be the same or different than the downstream catalyst, as can the amounts and methods in which the catalysts are applied to the respective sections.
- one or both of the upstream or downstream catalysts comprising Ag, Au, Ce, Cu, Co, Cr, Fe, Ir, Mo, Mn, Ni, Pd, Pt, Rh, Sc, Sn, Ti, V, W, Y, Zn, Zr, or combinations thereof, in either metallic or oxide form.
- the upstream and downstream catalysts independently comprise Group VIII noble metals, platinum group metals, metals or alloys comprising Ag, Au, Co, Cu, Ir, Ni, Pd, Pt, Rh, or Zn, or combinations thereof, or oxides comprising Cr, Fe, Ir, Mo, Mn, Ti, V, W, Y, or Zr, or combinations thereof.
- the upstream and downstream catalysts each independently comprises Group VIII noble metals or the platinum group metals comprising palladium, ruthenium, rhodium, platinum, osmium, and iridium, or combinations thereof. For methane or methane containing fuels, palladium or platinum or a mixture of palladium and platinum may be preferred.
- catalysts For other fuel such as gasoline, diesel fuel, alcohol fuels or a variety of other hydrocarbon fuels, palladium and platinum may be preferred catalysts.
- less active catalysts can also be used, including base metal oxide catalysts such as copper, cobalt, manganese, chromium, nickel or other active base metal oxide catalyst either as the pure oxide, in admixture with other elements or dispersed on a second oxide.
- the catalysts may be deposited directly on the catalyst section substrate, for example by chemical or vapor deposition techniques, or may be applied using washcoat methods.
- Materials suitable for use in the washcoat include, but are not limited to, aluminum oxide optionally containing additives such as barium, lanthanum, magnesium, or silicon oxide or zirconium oxide with or without additives such as silicon.
- the washcoat preferably possesses a moderate to high surface area, for example from 2 to 200 m 2 /g.
- the catalyst, active for the reaction of fuel with oxygen, may be deposited on the surface of or within the porous wash coat layer.
- the downstream catalyst may be distributed uniformly or non-uniformly throughout the length or axial positioning of the catalyst substrate.
- the ratio of precious metal catalyst to substrate can be varied by zoning across the length of the catalyst substrate.
- the zoning includes a higher loading of the catalyst (e.g. , platinum group catalyst) in the upstream axial region of the honeycomb substrate, and a lower catalyst loading (again, e.g ., platinum group catalyst) in the downstream axial region of the substrate.
- the catalyst zoning is oppositely distributed ( i.e. , higher loading in the rear region relative to the front region).
- Catalyst promoter materials may also be used beneficially in inequivalent amounts in axial zoning of the catalyst substrate to promote either light-off activity or minimize thermal sintering.
- a system further comprises one or more mixing or flame holding devices, or bluff body, positioned downstream of the catalyst sections.
- mixing or flame holding devices or bluff body
- the purpose of such devices is to contain any gas that has passed through the catalyst sections in an environment so as to allow further combustion outside of the internal volumes of the catalysts. With some of the combustion process being completed downstream of the catalyst substrate, the maximum temperature to which the catalyst substrate is subject can be significantly reduced. Another advantage of these devices is that they allow for further reduction of HC and CO emissions and reduce the pressure drop due to the presence of the catalyst substrate.
- system may further comprise one or more of the following components:
- the compressor and the turbine are mechanically coupled by at least one shaft, though the disclosure contemplates the use of systems comprising two or three shafts for this purpose.
- the compressor is a two-stage or multi-stage compressor ( e.g ., having three or more stages), optionally with intercooling between the compressor stages.
- the system may further comprise one or more fuel/air injectors or mixing devices, optionally positioned upstream of the upstream section, and in some embodiments upstream of the catalytic combustor, positioned to provide or modulate a fuel/air mixture into the catalytic combustor.
- the fuel and air may be metered independently into this or these mixing device(s).
- these fuel injectors / mixers may inject the fuel and cause it to be mixed with the air using any of the designs familiar to those skilled in the art.
- the fuel injectors / mixers may inject the fuel as a spray of micronized or atomized droplets and cause the fuel to vaporize or evaporate to form a gaseous mixture at the catalyst inlet.
- the system may comprise additional ports or inline devices for injecting hydrocarbon fuel into the compressor, for premixing with air, or into passages in front of or after passing through the recuperator, but before entering the catalytic combustor, depending on the gaseous or liquid fuel type.
- the compressor and recuperator can be used variously as mixing/atomization and vaporization devices.
- the systems may further comprise a variety of sensors and control mechanisms for monitoring and controlling the operation of the systems.
- Thermocouples or resistance temperature measurement devices can be located at various locations in the catalytic combustor, and elsewhere throughout the system, including attached to the upstream section and the downstream catalyst section, or located just downstream of the catalyst sections to measure the gas temperature exiting the catalyst sections or combustor. These sensors may then be connected to one or more controllers that monitor and control the overall system.
- FIG. 1 shows a schematic of a recuperative gas turbine comprising compressor 1, catalytic combustion chamber 2, and turbine 3. Air 4 is supplied to compressor 1 which produces compressed air having a predetermined higher pressure and higher temperature. The compressed air is mixed with a suitable hydrocarbonaceous fuel in fuel mixing section 5 (A, B, or C). As shown in FIG. 1 , the fuel mixing section 5 can be located right before the combustor (5A), upstream of recuperator (5B), or right before the compressor (5C). After mixing of the fuel and air, it is passed to combustor 2 that is electrically heated in accordance with the present disclosure.
- fuel mixing section 5 can be located right before the combustor (5A), upstream of recuperator (5B), or right before the compressor (5C).
- the resulting higher temperature combustion-products gas mixture is passed to turbine 3 where the energy of this gas is converted into rotational energy of turbine shaft 6.
- the rotational energy of turbine shaft 6 is used to drive compressor 1 as well as any other output device such as generator 7.
- Generator 7 can also start the gas turbine.
- FIG. 2 shows key details of a catalytic combustor assembly, according to one embodiment of the present invention.
- Air-Fuel mixture (17) passes first through the heated upstream section (10) then through downstream catalyst section ( 11 ), coming out as hot gas ().
- the two sections ( 10 and 11 ) can be held together by a housing ( 12 ) and there can be a gap ( 13 ) between the two sections ( 10 and 11 ).
- Ceramic support pins ( 15 ) are used to bridge the gap ( 13 ).
- Electrical connection ( 16 ) can be located outside of housing in the upstream section ( 10 ).
- the front face of the downstream catalyst section ( 14 ) is separated from the upstream section ( 10 ).
- the unit in FIG. 2 is of round cross section, the combustor assembly could be embodied in other cross-sectional shapes such as oval, ellipse, polygons or annular or any other prismatic shape to suit practical engineering and application restraints.
- the single unit (assembly) can comprise a honeycomb monolith section which carries an electric current that resistively heats the foil to increase the temperature of gas that flows through the substrate core ( 11 ).
- the resistive slice ( 10 ) (upstream section) is fixed to the downstream substrate ( 11 ) with ceramic pins ( 15 ), which is fixed to the outer mantle (housing) ( 12 ) of the downstream unit (assembly).
- the main matrix (downstream catalyst section) ( 11 ) of the single unit is usually designed to have greater cell density than the resistive heating slice ( 10 ) (upstream section) in order to: maximise catalytic performance in the main matrix (downstream catalyst section), and upstream section facilitate and simplify the upstream headed matrix (core).
- the structure of metallic substrates can be enhanced through the adoption of non-laminar flow structures, such as:
- any stationary industrial, commercial, marine, automotive, or airborne power generator comprising any of the embodied systems described herein are considered within the scope of the present disclosure including as a "prime mover" or auxiliary power source for ancillary use or as a range extender.
- any mobile terrestrial, marine, or airborne vehicle comprising as a means of propulsion any of the system embodiments disclosed herein are considered within the scope of the present disclosure.
- automobiles, trucks, or off-road vehicles are considered specific embodiments of interest.
- Such systems are particularly attractive when an extension of range of endurance is required, for example where the system is used to extend the range of an EV or as the combustion engine of a plug-in hybrid vehicle.
- Systems of embodiments of the present invention may be viewed as comprising two main modes of operation - start-up and running operation.
- Certain embodiments provide methods of operating a recuperated gas turbine engine system, each method comprising one or more of the following steps:
- the catalytic reaction temperature of the fuel/air mixture is clearly defined by a number of factors, including the air/fuel blend ratio, the fuel type (e.g., including hydrogen and hydrocarbon), and the nature of the catalyst, but in each case, the temperature can be predetermined for a given condition. Additionally, the length of time that energy is provided to the electric resistance heater may be defined by a pre-determined time after the introduction of the fuel/oxygen-containing mixture, or in response to sensor feedback based on the operation of the catalyst sections (e.g ., when the heat of the catalytic reaction is sufficient to maintain the downstream catalyst section at its steady state running condition). Once these conditions are achieved, or a separate decision is made by an operator to manually do so, or at any other time, the methods may further comprise de-energizing the electrical heater, while maintaining the catalytic combustion.
- the methods may further comprise maintaining the increased mass flow of the mixture of air and fuel through the heated upstream section, such that the heat associated with the combusting mixture of fuel and air, on contacting the downstream catalyst section is sufficient to raise the temperature of at least a portion of the downstream catalyst section to a catalytic ignition temperature of the mixture of a fuel and air in the downstream catalyst section.
- the method further comprises maintaining the increased mass flow for a time sufficient to provide that substantially all of the downstream catalyst section is heated to the catalytic ignition temperature of the mixture of a fuel and air, so that the mixture of fuel and air, as it passes therethrough, is combusted substantially throughout the downstream catalyst section.
- the method includes adjusting the mass flow such that substantially all of the combustion takes place in the downstream catalyst section.
- the normal steady-state, operating temperature of the catalyst(s) may be in the range of about 300° C to about 1000°C. These operating temperatures depend in large part on the nature and configuration of the catalyst and catalyst sections.
- the electrical power is first applied to the electric resistance heater to preheat the upstream section to within about 100°C, or preferably within about 50°C of the desired steady-state operating temperature, or to a higher temperature.
- the electrical heater e.g ., electrical resistance heater
- the electrical heater may be de-energized when any of the following conditions occur: (i) the heat of reaction released by the reaction of the fuel and air in the upstream catalytic section is sufficient to raise the temperature of at least a portion of the downstream catalyst section to an ignition temperature of the mixture of a fuel and air in the downstream catalyst section; and/or (ii) the fuel/air-containing mixture at the combustor outlet reaches a predetermined temperature limit; and/or (iii) a predetermined period of time has elapsed; and/or (iv) the fuel/air mixture entering the upstream section is above the catalyst light-off temperature.
- the electrical power is first applied to the electrical heater (e.g ., electrical resistant heater) to preheat an upstream non-catalytic section to within about 100°C, or preferably within about 50°C of the desired steady-state operating temperature, or to a higher temperature.
- the electrical heater e.g., electrical resistant heater
- electrical resistant heater may be de-energized when any of the following conditions occur: (i) the heat of reaction released by the reaction of the fuel and air in the downstream catalyst section is sufficient to spread the reaction through an increasing portion of the downstream catalyst section, (ii) the fuel/air-containing mixture at the combustor outlet reaches a predetermined temperature limit; and/or (iii) a predetermined period of time has elapsed; and/or (iv) the fuel/air mixture entering the upstream section is above the catalyst light-off temperature.
- the methods may further comprise modulating the mass flow or the ratio of air and fuel in the mixture of air and fuel to accommodate load requirements of the recuperated gas turbine engine system. These may be adjusted manually, but in some embodiments it is more efficient to do so by a control system within the turbine system.
- the operation of the recuperated gas turbine system generally, and the upstream section and the downstream catalyst section specifically, may depend as well on the nature of the fuels employed, for example, the nature of the composition of the mixture of fuel and air being introduced to the sections.
- the ratio between the amount of air and fuel being supplied to the catalytic combustion chamber is specified as the ⁇ -value.
- the ⁇ -value is a measure of the relative air/fuel ratio and constitutes the ratio between the real air/fuel ratio and the stoichiometric air/fuel ratio.
- Low ⁇ -values mean a "rich" fuel mixture with a large proportion of fuel in relation to the amount of air, while a high ⁇ -value means a "lean" air/fuel mixture with a relatively higher amount of air in the mixture.
- the air/fuel mixture has a ⁇ -value of greater than 1, preferably in a range of from 1.5 to 8, more preferably from 4 to 8, where the ⁇ -value is a ratio of the real air/fuel ratio and the stoichiometric air/fuel ratio.
- This ⁇ -value can be modulated during the course of combustion depending on needs of the system.
- the catalyst When used as part of a recuperated gas turbine, the catalyst can sustain combustion despite a low inlet temperature. This is achieved by using a low velocity, typically 5-10 times lower than the velocity that occurs at engine running conditions. In this start-up mode, ⁇ is maintained typically between 1.5 and 7 whereas the recuperated gas turbine will run with ⁇ between 4 and 8 depending on the degree of recuperation. By maintaining flow and ⁇ within these limits, electrical power is only required for a short period of time. This allows warm-up of the recuperator and raising combustor inlet temperature above ignition temperature, after which the flow can be rapidly increased to gas turbine operating conditions.
- Some embodiments of the present disclosure include the methods of operating a recuperative gas turbine engine, as described herein, the methods comprising one or more steps of:
- FIG. 3 A typical start-up sequence of the combustor is shown in FIG. 3 , which is taken from a test where the combustor is used as part of a recuperated gas turbine. Several parameters are shown against time including air and fuel flow as well as electrical power and several temperatures. Three phases occur during the start-up sequence: Electrical Mode, Pilot Mode and Normal Running mode. Initially at ( 20 ) power is applied to the up-stream heater layer or heated catalytic layer and a small air flow quantity applied. Once the upstream end of the downstream catalyst reaches the catalytic light-off temperature, initial fueling is applied ( 21 ). The power is turned off ( 23 ) once the catalytic combustion is established and increasing in the downstream catalyst ( 22 ).
- Air and fuel are then ramped up in a controlled manner ( 24 ) in pilot mode in an optimized sequence until target combustor exit (turbine inlet) temperature is reached ( 26 ).
- the ramp-up is controlled as to minimizing gaseous emissions while the main thermal mass of the gas turbine, the recuperate, increases in temperature.
- the recuperator reaches a temperature where it can supply air to the combustor above the catalytic light-of temperature.
- fuel and air can be ramped up more rapidly ( 27 ) in an optimum ratio yielding the desired turbine inlet temperature ( 26 ). This is continued until steady state power generation is achieved. It can be seen from the traces that sustained combustion can be achieve in "Pilot Mode" after the electric power is switched off but while the inlet temperature is below the light-off temperature of the catalytic combustion element.
- Embodiments described in terms of the phrase “comprising” also provide, as embodiments, those which are independently described in terms of “consisting of” and “consisting essentially” of.
- the basic and novel characteristic(s) is the ability of the systems to combust fuels efficiently, without the need for separate igniters or heating the fuel mixtures above ignition temperatures prior to introducing them to the catalysts. Materials or steps which do not detract from such operability would be considered within the scope of such embodiments.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
Claims (15)
- Système comprenant un moteur à turbine à gaz récupéré avec une chambre de combustion catalytique (2), la chambre de combustion catalytique (2) comprenant :(a) une section amont (10) comprenant un dispositif de chauffage électrique et(b) une section de catalyseur aval (11), dans lequel la section amont (10) et la section de catalyseur aval (11) sont disposées adjacentes et en communication fluidique l'une avec l'autre ; et
dans lequel la section amont (10) et la section de catalyseur aval (11) sont intégrées dans une seule unité. - Système selon la revendication 1, dans lequel la section amont (10) comprend en outre un catalyseur amont.
- Système selon la revendication 2, dans lequel la section de catalyseur aval (11) comprend un catalyseur aval et dans lequel le catalyseur aval et le catalyseur amont peuvent être identiques ou différents.
- Système selon l'une quelconque des revendications précédentes, dans lequel la section amont (10) comprenant le dispositif de chauffage électrique est la seule source d'amorçage dans la chambre de combustion catalytique (2) et aucune autre source ou système d'allumage n'est nécessaire.
- Système selon l'une quelconque des revendications précédentes, dans lequel l'un ou les deux des catalyseurs amont ou aval comprennent indépendamment un catalyseur comprenant Ag, Au, Cu, Co, Cr, Fe, Ir, Mo, Mn, Ni, Pd, Pt, Rh, Sc, Ti, V, W, Y, Zn, Zr, ou une combinaison de ceux-ci, sous forme métallique ou d'oxyde.
- Système selon l'une quelconque des revendications précédentes, comprenant un dispositif de mélange carburant/air ou de vaporisation positionné en amont de la chambre de combustion catalytique (2), positionné de sorte à fournir ou moduler un mélange carburant/air dans la chambre de combustion catalytique (2).
- Système selon l'une quelconque des revendications précédentes, comprenant en outre :(a) un compresseur (1) disposé de sorte à recevoir de l'air et à comprimer l'air ;(b) un système d'alimentation en carburant servant à alimenter en carburant le compresseur (1), de sorte qu'un mélange d'air comprimé et de carburant puisse être/soit évacué du compresseur (1) ;(c) une turbine (3) disposée de sorte à recevoir des gaz de combustion, lorsqu'ils sont présents, à partir de la chambre de combustion catalytique (2) et à détendre les gaz afin de produire une puissance mécanique qui entraîne partiellement le compresseur (1) ;(d) un échangeur de chaleur ou « récupérateur » disposé de sorte à recevoir des gaz d'échappement à partir de la turbine (3) et de l'air ou un mélange évacué à partir du compresseur (1) et à provoquer un échange de chaleur entre ceux-ci de sorte que l'air ou le mélange puisse être/soit préchauffé avant d'entrer dans la chambre de combustion catalytique (2).
- Générateur de puissance mobile terrestre, industriel, commercial, marin ou aérien comprenant le système selon l'une quelconque des revendications 1 à 7.
- Procédé de fonctionnement du système de moteur à turbine à gaz récupéré selon l'une quelconque des revendications 1 à 7, le procédé comprenant :(a) la fourniture de l'énergie au dispositif de chauffage électrique afin de chauffer la section amont (10) à une température au moins égale à la température de réaction catalytique d'un mélange de carburant et d'air,(b) l'introduction d'un débit massique du mélange d'air et de carburant dans la section amont (10) chauffée, de manière à amorcer une combustion catalytique, et(c) le maintien ou l'augmentation du débit massique du mélange d'air et de carburant à travers le catalyseur, de manière à fournir un mélange en combustion de carburant et d'air dans la seconde section, le mélange en combustion ayant une chaleur associée.
- Procédé selon la revendication 9, comprenant en outre une étape consistant à maintenir ou à augmenter le débit massique du mélange d'air et de carburant à travers le catalyseur chauffé, de sorte que la chaleur associée au mélange en combustion de carburant et d'air, lors du contact avec la section de catalyseur aval (11), est suffisante pour élever la température d'au moins une partie de la section de catalyseur aval (11) à une température d'allumage du mélange de carburant et d'air dans la section de catalyseur aval (11).
- Procédé selon la revendication 10, comprenant en outre une étape consistant à maintenir le débit massique augmenté pendant une durée suffisante pour que la quasi-totalité de la section de catalyseur aval (11) soit chauffée au moins à la température de combustion catalytique du mélange de carburant et d'air, de sorte qu'une combustion catalytique stable soit maintenue et puisse être augmentée.
- Procédé selon la revendication 11, comprenant en outre une étape consistant à maintenir ou à augmenter le débit massique jusqu'à ce que le récupérateur soit chauffé dans la mesure où de l'air ou un mélange air-carburant soit fourni à la chambre de combustion (2) à une température supérieure à la température d'allumage de noyau de chambre de combustion.
- Procédé selon l'une quelconque des revendications 9 à 12, comprenant en outre une étape consistant à moduler le débit massique et le mélange d'air et de carburant afin de répondre à des exigences de charge du système de moteur à turbine à gaz récupéré.
- Procédé selon l'une quelconque des revendications 9 à 13, comprenant en outre une étape consistant à mettre hors tension le dispositif de chauffage électrique, tout en maintenant une combustion catalytique stable.
- Procédé de fonctionnement d'un moteur à turbine à gaz à récupération selon la revendication 14, le procédé comprenant :(a) la compression d'au moins l'air dans le compresseur (1) ;(b) la fourniture d'énergie au dispositif de chauffage électrique afin de chauffer la section amont (10) à une température au moins égale à une température d'allumage d'un mélange de carburant et d'air ;(c) l'introduction d'un débit massique du mélange de carburant et d'air dans la section amont (10) chauffée, de manière à ce que le mélange de carburant et d'air soit soumis à une combustion dans la section amont (10) ;(d) l'augmentation du débit massique du mélange de carburant et d'air de sorte que le débit du mélange en combustion chauffe la section de catalyseur aval (11) à une température supérieure à la température d'allumage de la section de catalyseur aval (11) ;(e) le maintien du débit massique du mélange de carburant et d'air à travers la section amont (10) et la section de catalyseur aval (11) de sorte que le mélange de carburant et d'air, lorsqu'il traverse la section de catalyseur aval (11), soit soumis à une combustion dans celle-ci afin de former des gaz de combustion chauffés qui sortent de la section de catalyseur aval (11) ;(f) la direction d'au moins une partie des gaz de combustion chauffés sortant de la section de catalyseur aval (11) et de la chambre de combustion catalytique (2) à travers la turbine (3) afin de produire une puissance mécanique, et l'utilisation de la puissance mécanique en partie pour entraîner le compresseur (1) ;(g) la direction d'une partie ou de la totalité des gaz de combustion chauffés traversant la turbine (3) vers le récupérateur ; et(h) l'utilisation des gaz de combustion chauffés dans le récupérateur pour préchauffer le mélange de combustible et d'air introduit dans la section amont (10) chauffée.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862760452P | 2018-11-13 | 2018-11-13 | |
PCT/GB2019/053215 WO2020099867A1 (fr) | 2018-11-13 | 2019-11-13 | Chambre de combustion catalytique chauffée électriquement |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3881006A1 EP3881006A1 (fr) | 2021-09-22 |
EP3881006B1 true EP3881006B1 (fr) | 2024-08-07 |
Family
ID=68696453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19809549.9A Active EP3881006B1 (fr) | 2018-11-13 | 2019-11-13 | Système comprenant un moteur de turbine à gaz à recupérateur et chambre de combustion catalytique |
Country Status (6)
Country | Link |
---|---|
US (1) | US11873994B2 (fr) |
EP (1) | EP3881006B1 (fr) |
JP (1) | JP7545389B2 (fr) |
CN (1) | CN113167475B (fr) |
BR (1) | BR112021008125A2 (fr) |
WO (1) | WO2020099867A1 (fr) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7545389B2 (ja) * | 2018-11-13 | 2024-09-04 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニー | 電気加熱式触媒燃焼器 |
CN114753925A (zh) * | 2022-05-12 | 2022-07-15 | 沈阳漠南动力科技有限公司 | 电能源涡轮发动机 |
US11905900B1 (en) | 2022-12-15 | 2024-02-20 | Saudi Arabian Oil Company | Exhaust system combustion for rapid catalyst heating |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3762532B2 (ja) * | 1997-12-22 | 2006-04-05 | カルソニックカンセイ株式会社 | 触媒燃焼器 |
US20090123885A1 (en) * | 2005-07-05 | 2009-05-14 | Zemission Ba | Catalytic Combustor And Method Thereof |
Family Cites Families (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA978377A (en) * | 1971-12-17 | 1975-11-25 | Engelhard Minerals And Chemicals Corporation | Process for combusting carbonaceous fuel |
AR207091A1 (es) * | 1975-09-29 | 1976-09-09 | Westinghouse Electric Corp | Disposicion de camara de combustion para turbina de gas |
MX3874E (es) * | 1975-12-29 | 1981-08-26 | Engelhard Min & Chem | Mejoras en metodo para iniciar un sistema de combustion utilizando un catalizador |
US5051241A (en) * | 1988-11-18 | 1991-09-24 | Pfefferle William C | Microlith catalytic reaction system |
US5634784A (en) * | 1991-01-09 | 1997-06-03 | Precision Combustion, Inc. | Catalytic method |
US5246672A (en) | 1992-04-23 | 1993-09-21 | Williams International Corporation | Spiral wound microlith catalyst bed |
JPH05332160A (ja) | 1992-06-03 | 1993-12-14 | Ishikawajima Harima Heavy Ind Co Ltd | 触媒燃焼ガスタービン |
GB2268694A (en) | 1992-07-14 | 1994-01-19 | Rolls Royce Plc | A catalytic combustion chamber |
US5685156A (en) * | 1996-05-20 | 1997-11-11 | Capstone Turbine Corporation | Catalytic combustion system |
SE9602688L (sv) * | 1996-07-08 | 1998-01-09 | Volvo Ab | Katalytisk brännkammare, samt förfarande för tändning och reglering av den katalytiska brännkammaren |
US6109018A (en) | 1996-07-26 | 2000-08-29 | Catalytica, Inc. | Electrically-heated combustion catalyst structure and method for start-up of a gas turbine using same |
CA2303379A1 (fr) | 1997-09-11 | 1999-03-18 | Catalytica, Inc. | Structure de catalyseur chauffe electriquement a combustion et procede de demarrage d'une turbine a gaz utilisant cette structure |
US6107693A (en) | 1997-09-19 | 2000-08-22 | Solo Energy Corporation | Self-contained energy center for producing mechanical, electrical, and heat energy |
JPH11130405A (ja) | 1997-10-28 | 1999-05-18 | Ngk Insulators Ltd | 改質反応装置、触媒装置、それらに用いる発熱・触媒体、及び改質反応装置の運転方法 |
US6141953A (en) | 1998-03-04 | 2000-11-07 | Solo Energy Corporation | Multi-shaft reheat turbine mechanism for generating power |
US20040119291A1 (en) * | 1998-04-02 | 2004-06-24 | Capstone Turbine Corporation | Method and apparatus for indirect catalytic combustor preheating |
US20020166324A1 (en) * | 1998-04-02 | 2002-11-14 | Capstone Turbine Corporation | Integrated turbine power generation system having low pressure supplemental catalytic reactor |
US6098396A (en) * | 1998-05-27 | 2000-08-08 | Solar Turbines Inc. | Internal combustion engine having a catalytic reactor |
US6205768B1 (en) * | 1999-05-05 | 2001-03-27 | Solo Energy Corporation | Catalytic arrangement for gas turbine combustor |
US6718772B2 (en) * | 2000-10-27 | 2004-04-13 | Catalytica Energy Systems, Inc. | Method of thermal NOx reduction in catalytic combustion systems |
US20020139119A1 (en) * | 2001-04-02 | 2002-10-03 | Touchton George L. | Combustor with inlet temperature control |
EP1485593A1 (fr) * | 2002-02-22 | 2004-12-15 | Catalytica Energy Systems, Inc. | Systeme de combustion pilote par voie catalytique et procedes de fonctionnement |
AU2002951703A0 (en) * | 2002-09-27 | 2002-10-17 | Commonwealth Scientific And Industrial Research Organisation | A method and system for a combustion of methane |
US20040148942A1 (en) | 2003-01-31 | 2004-08-05 | Capstone Turbine Corporation | Method for catalytic combustion in a gas- turbine engine, and applications thereof |
US7007487B2 (en) * | 2003-07-31 | 2006-03-07 | Mes International, Inc. | Recuperated gas turbine engine system and method employing catalytic combustion |
ATE389852T1 (de) * | 2004-03-30 | 2008-04-15 | Alstom Technology Ltd | Vorrichtung und verfahren zur flammenstabilisierung in einem brenner |
GB0600130D0 (en) | 2006-01-06 | 2006-02-15 | Johnson Matthey Plc | Exhaust system comprising zoned oxidation catalyst |
CN100507255C (zh) * | 2006-01-27 | 2009-07-01 | 北京中新能信科技有限公司 | 一种激光扫描电原子谐振式碳氢催化方法及装置 |
DE102006021436A1 (de) | 2006-05-09 | 2007-11-15 | Mtu Aero Engines Gmbh | Gasturbinentriebwerk |
RU2342601C1 (ru) | 2007-06-14 | 2008-12-27 | Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" | Газотурбинная установка регенеративного цикла с каталитической камерой сгорания |
EP2235345A4 (fr) * | 2007-12-20 | 2013-05-29 | Volvo Aero Corp | Moteur à turbine à gaz |
US8307653B2 (en) * | 2009-02-02 | 2012-11-13 | Siemens Energy, Inc. | Combined catalysts for the combustion of fuel in gas turbines |
US8683804B2 (en) * | 2009-11-13 | 2014-04-01 | General Electric Company | Premixing apparatus for fuel injection in a turbine engine |
US8984886B2 (en) * | 2010-02-12 | 2015-03-24 | General Electric Company | Systems and methods of operating a catalytic reforming assembly for use with a gas turbine engine system |
JP4841679B2 (ja) | 2010-04-15 | 2011-12-21 | 川崎重工業株式会社 | ガスタービンの制御装置 |
GB201121468D0 (en) * | 2011-12-14 | 2012-01-25 | Johnson Matthey Plc | Improvements in automotive catalytic aftertreatment |
SE536578C2 (sv) * | 2012-05-15 | 2014-03-04 | Reformtech Heating Holding Ab | Bränsleinsprutningssystem för användning i en katalytisk värmare och reaktor för utförande av katalytisk förbränning avflytande bränslen |
CN102661200A (zh) * | 2012-05-17 | 2012-09-12 | 沈阳航空航天大学 | 带有催化燃烧室的燃料电池/燃气轮机混合动力系统 |
WO2014154931A1 (fr) * | 2013-03-27 | 2014-10-02 | Oilon Oy | Procédé et appareil pour brûler des hydrocarbures et d'autres liquides et gaz |
CN103277193A (zh) * | 2013-06-20 | 2013-09-04 | 中煤科工集团重庆研究院 | 一种利用低热值气体进行催化燃烧的燃气轮机发电方法 |
CN103912896B (zh) * | 2014-03-26 | 2015-11-18 | 沈阳航空航天大学 | 航空发动机催化-预混分级燃烧室及运行方法 |
US10041668B2 (en) * | 2014-06-30 | 2018-08-07 | Tubitak | Hybrid homogenous-catalytic combustion system |
US20160284445A1 (en) * | 2015-03-28 | 2016-09-29 | Y Generation Technologies Company Limited | Energy efficient copper wire production system |
US11161622B2 (en) * | 2018-11-02 | 2021-11-02 | General Electric Company | Fuel oxygen reduction unit |
JP7545389B2 (ja) * | 2018-11-13 | 2024-09-04 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニー | 電気加熱式触媒燃焼器 |
-
2019
- 2019-11-13 JP JP2021523702A patent/JP7545389B2/ja active Active
- 2019-11-13 WO PCT/GB2019/053215 patent/WO2020099867A1/fr unknown
- 2019-11-13 CN CN201980073045.2A patent/CN113167475B/zh active Active
- 2019-11-13 EP EP19809549.9A patent/EP3881006B1/fr active Active
- 2019-11-13 BR BR112021008125-9A patent/BR112021008125A2/pt unknown
- 2019-11-13 US US17/309,248 patent/US11873994B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3762532B2 (ja) * | 1997-12-22 | 2006-04-05 | カルソニックカンセイ株式会社 | 触媒燃焼器 |
US20090123885A1 (en) * | 2005-07-05 | 2009-05-14 | Zemission Ba | Catalytic Combustor And Method Thereof |
Also Published As
Publication number | Publication date |
---|---|
CN113167475A (zh) | 2021-07-23 |
EP3881006A1 (fr) | 2021-09-22 |
JP7545389B2 (ja) | 2024-09-04 |
CN113167475B (zh) | 2022-11-29 |
BR112021008125A2 (pt) | 2021-08-03 |
US20210396391A1 (en) | 2021-12-23 |
WO2020099867A1 (fr) | 2020-05-22 |
US11873994B2 (en) | 2024-01-16 |
JP2022506373A (ja) | 2022-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3881006B1 (fr) | Système comprenant un moteur de turbine à gaz à recupérateur et chambre de combustion catalytique | |
US6302683B1 (en) | Catalytic combustion chamber and method for igniting and controlling the catalytic combustion chamber | |
TWI291515B (en) | Method and apparatus for generating power by combustion of vaporized fuel | |
US20040255588A1 (en) | Catalytic preburner and associated methods of operation | |
EP1650499A2 (fr) | Procédé et dispositif de combustion catalytique riche/pauvre | |
JPS6361723A (ja) | 触媒燃焼装置 | |
JP3875395B2 (ja) | 触媒燃焼装置 | |
US20050198900A1 (en) | Method and apparatus for fuel/air preparation for a hydrocarbon reformer | |
WO2011101896A1 (fr) | Dispositif de purification des gaz d'échappement pour moteur à combustion interne | |
Sadamori et al. | Development of a high-temperature combustion catalyst system and prototype catalytic combustor turbine test results | |
GB2268694A (en) | A catalytic combustion chamber | |
JP4538429B2 (ja) | ディーゼルエンジンの排気装置 | |
JPH0156324B2 (fr) | ||
JPS6380848A (ja) | 高圧メタン系燃料の燃焼用触媒システムおよびそれを用いた燃焼方法 | |
EP1649158B1 (fr) | Generateur de puissance et systeme de vaporisation de combustible hybride correspondant | |
Anson et al. | Catalytic combustion for industrial gas turbines | |
JPS59170622A (ja) | ガスタ−ビン用燃焼装置 | |
JPH07217499A (ja) | タービンエンジン | |
JP2002106810A (ja) | 触媒燃焼器 | |
JP4155692B2 (ja) | ハイブリッド触媒燃焼装置 | |
JP3868167B2 (ja) | ハイブリッド触媒燃焼装置及びガスファンヒータ | |
Touchton et al. | Design of a catalytic combustor for heavy-duty gas turbines | |
JPH04123320U (ja) | 触媒加熱用バーナ | |
JPH07243325A (ja) | 触媒方法 | |
JPS634852A (ja) | 燃焼用触媒体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210518 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20221125 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230724 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20240226 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DELTA COSWORTH LIMITED Owner name: JOHNSON MATTHEY PUBLIC LIMITED COMPANY |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602019056665 Country of ref document: DE |