EP3876669B1 - Procédé de fabrication d'un dispositif de chauffage électrique et dispositif de chauffage électrique - Google Patents

Procédé de fabrication d'un dispositif de chauffage électrique et dispositif de chauffage électrique Download PDF

Info

Publication number
EP3876669B1
EP3876669B1 EP20200069.1A EP20200069A EP3876669B1 EP 3876669 B1 EP3876669 B1 EP 3876669B1 EP 20200069 A EP20200069 A EP 20200069A EP 3876669 B1 EP3876669 B1 EP 3876669B1
Authority
EP
European Patent Office
Prior art keywords
electric heating
tubular metal
metal casing
heating element
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20200069.1A
Other languages
German (de)
English (en)
Other versions
EP3876669A1 (fr
Inventor
Andreas Schlipf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tuerk and Hillinger GmbH
Original Assignee
Tuerk and Hillinger GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tuerk and Hillinger GmbH filed Critical Tuerk and Hillinger GmbH
Priority to US17/189,925 priority Critical patent/US20210298130A1/en
Priority to CN202110236277.4A priority patent/CN113365375A/zh
Publication of EP3876669A1 publication Critical patent/EP3876669A1/fr
Application granted granted Critical
Publication of EP3876669B1 publication Critical patent/EP3876669B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/44Heating elements having the shape of rods or tubes non-flexible heating conductor arranged within rods or tubes of insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/48Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/014Heaters using resistive wires or cables not provided for in H05B3/54
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/78Heating arrangements specially adapted for immersion heating

Definitions

  • Electric tubular heaters are a variant of electric heating devices that has been known for many years. They are characterized by the fact that the electric heating element is arranged within a tubular metal casing, whereby it is electrically insulated in the radial direction to the tubular metal casing by embedding it in an electrically insulating but highly heat-conducting material, in many cases e.g. magnesium oxide, boron nitride or Al2O3, each in the form of a powder or granulate or also a porous molded body, in particular made of one of these materials, in order to avoid an undesirable short circuit. Furthermore, the electric heating device is compressed in many cases.
  • an electrically insulating but highly heat-conducting material in many cases e.g. magnesium oxide, boron nitride or Al2O3, each in the form of a powder or granulate or also a porous molded body, in particular made of one of these materials, in order to avoid an undesirable short circuit.
  • the electric heating device is compressed in many cases
  • the electric tubular heater In many applications of electric tubular heaters, it is desirable for the electric tubular heater to have an unheated area on at least one of its ends.
  • the heat generated in the area of the connecting bolt is reduced by choosing a material with a lower specific resistance than that of the material from which the heating element is made; for example, by using of copper or nickel as material for the connecting bolt.
  • the method according to the invention serves to produce an electrical heating device with an electrical heating element which is embedded in an electrically insulating material inside a multi-part tubular metal casing, ie is arranged in an electrically insulated manner (eg by embedding in an electrically insulating powder or granulate or by electrically insulating molded parts), wherein the electrical heating device has an unheated area within the multi-part tubular metal casing at at least one end in which, during operation of the electrical heating device, the electrical current flows at least through at least one connecting wire and/or at least one connecting sleeve and/or at least one connecting bolt which is in electrical contact with the electrical heating element.
  • the unheated region can preferably have an unheated transition region in which, when the electric heating device is in operation, the electric current flows simultaneously through the at least one connecting wire and/or the at least one connecting sleeve and/or the at least one connecting bolt and through a section of the electric heating element running in the unheated transition region, which section of the electric heating element is in electrical contact with the connecting wire or connecting bolt.
  • a section of the electric heating element and at least one section of a connecting wire or a connecting sleeve or a connecting bolt are present in the unheated transition region, whereby technically speaking, these sections are not connected in series but in parallel.
  • the electric heating device to be produced by the method has a heated region within the multi-part tubular metal casing, in which, during operation of the electric heating device, the electric current flows only through a section of the electric heating element running in the heated region.
  • tubular metal casing is made up of several parts means in particular that it is composed of several parts - preferably several pipe sections - which can, however, be firmly connected to one another, for example pressed or welded.
  • unheated area is to be interpreted in such a way that heat can nevertheless be generated in this area - which is unavoidable and therefore necessarily the case in most real embodiments - but to a significantly lesser extent than in the heated area in which the electrical heating device is intended to generate heat in order to fulfil its intended function.
  • the heated region is produced and compacted in a first part of the multi-part tubular metal casing
  • a second method step which is carried out independently of the first method step and is generally completed after this step, at least one section of the unheated region is produced in a second part of the multi-part tubular metal casing and the first part and the second part of the multi-part tubular metal casing are connected to one another.
  • the fact that the second method step is generally carried out at least partially after the first method step is due in particular to the fact that in order to connect the first part and the second part, the first part naturally already has to be present.
  • the latter step may also be carried out before, during or at the same time as the compaction of the second part of the tubular metal casing, if such compaction is provided for. It does not therefore necessarily take place at the very end of the second process step or after the second process step.
  • the compaction processes for the individual parts of the electric heating device can be carried out in an optimized manner.
  • the compaction of the heated area can be carried out using a piercing process.
  • this measure makes it much easier to fill the electrically insulating material because there is no longer any hindrance caused by the unheated area.
  • the finished heated region present after the first process step can in particular correspond to an electric heating device with a tubular metal casing, in which connections of the electric heating device protruding from the front side of the tubular metal casing are formed by a section of the electric heating element, preferably with a connecting wire and/or a connecting sleeve arranged thereon, and thus form the unheated transition section in the completely finished electric heating device according to the invention.
  • the section of the electric heating element running in the heated region i.e. the section that later forms the heated region
  • the electrically insulating material e.g. as a powder or granulate or as a molded part, is introduced into this region of the first part of the multi-part tubular metal casing, so that the section of the electric heating element arranged in the first part of the multi-part tubular metal casing is insulated, i.e. embedded, by the electrically insulating material and the first part of the multi-part tubular metal casing, in particular the heated region, is compacted.
  • At least a section of the unheated region is created by introducing a part of the electrical heating element with a connecting wire arranged thereon and/or a connecting sleeve arranged thereon and/or a connecting bolt arranged thereon into a second part of the multi-part tubular metal casing, wherein further electrically insulating material is introduced into the second part of the tubular metal casing, so that the heating element formed in the second
  • the section of the electrical heating element arranged in the tubular metal casing is electrically insulated, in particular embedded, by the electrically insulating material.
  • the second part of the multi-part tubular metal casing is then also compacted.
  • a connecting wire is brought into an electrically conductive connection with an end section of the electrical heating element, in particular by inserting it into a coiled end section of the electrical heating element and/or a connecting sleeve is brought into an electrically conductive connection with an end section of the electrical heating element, in particular by pushing it onto a coiled end section of the electrical heating element.
  • a (typically small) part of the transition region is also present within the first part of the multi-part tubular metal jacket, which has proven to be advantageous for process reliability, especially with regard to the electrical contacting of the electrical heating element.
  • the electric heating element is coiled in such a way that an end section of the electric heating element has a smaller coil diameter than a section of the electric Heating element which, in the finished electrical heating device, is located in the heated area and, in particular, is preferably not an end section.
  • This measure can, in particular, help to facilitate the filling of the first part of the multi-part tubular metal casing with the electrically insulating material.
  • This winding of the electric heating element is preferably carried out before it is inserted into the first part of the multi-part tubular metal casing.
  • the filling of the first part of the multi-part tubular metal jacket with the electrically insulating material can be facilitated particularly effectively if the electrical heating element is coiled in such a way that the end section of the electrical heating element has a smaller coil diameter than the section of the electrical heating element which lies in the heated area in the finished electrical heating device, has a coil axis which is offset relative to the coil axis of the section of the electrical heating element which lies in the heated area in the finished electrical heating device.
  • a connection-side section of the first part of the multi-part tubular metal casing and the layer of electrically insulating material adjoining this radially inward are cut off.
  • a section of the transition region that is ultimately arranged in the second part of the multi-part tubular metal jacket can be pre-compacted with the compaction parameters that are applied to the first part of the multi-part tubular metal jacket and then post-compacted with the compaction parameters that are applied to the second part of the multi-part tubular metal jacket, which can have positive effects in particular on the quality of the electrical contact between the connecting wire, connecting sleeve, connecting bolt and end section of the electrical heating element.
  • the cutting off can also help to create a more homogeneous interface or a more homogeneous transition between the electrically insulating material in the first part of the multi-part tubular metal jacket and the electrically insulating material in the second part of the multi-part tubular metal jacket.
  • a cleaning step is carried out in which insulating material residues are removed, for example by brushing, polishing and/or ultrasonic treatment, in order to improve the quality of the electrical contact.
  • a further development of the method provides that the second part of the multi-part tubular metal casing with a clear cross-section that corresponds to the outer contour of the end section of the first part of the multi-part metal casing, at least after compaction in the first process step, is pushed onto this end section of the first part of the multi-part tubular metal casing and is secured there. In this way, any gap between the first and second parts of the multi-part tubular metal casing is particularly effectively avoided.
  • a larger clear cross-section makes it easier to fill with electrically insulating material, particularly in the area with this cross-section.
  • the second part of the multi-part tubular metal casing is connected to the first part of the multi-part tubular metal casing by pressing during compaction in the second process step.
  • a second compaction is provided which is carried out in such a way that the resulting axial pressing pressure creates an almost homogeneous transition region between the electrically insulating material in regions that were subjected to the first compaction and in regions that were subjected to the second compaction.
  • the cross-section of the second part of the multi-part tubular metal shell can be adapted to the cross-section of the first part of the multi-part tubular metal shell during compaction in the second process step.
  • An unheated connection area can be designed particularly effectively if, in the second process step, before the introduction of the electrically insulating material, a part of the electrical heating element with the connecting wire and/or the connecting sleeve arranged thereon is inserted from one side into the second part of the multi-part tubular metal casing and a connecting bolt with an opening for receiving this part of the electrical heating element with the connecting wire arranged thereon is inserted from the opposite side into the second part of the multi-part tubular metal casing and is pushed with the opening onto this part of the electrical heating element.
  • the process can now be used if at least one process step is carried out in which the intermediate product on which this process step is carried out is subjected to thermal stress and if at least the process step in which the highest thermal stress occurs is carried out before the start of the second process step.
  • the electrically insulating material that is introduced into the second part of the multi-part tubular metal casing can also be introduced as a molded part. It can also be useful to impregnate the electrically insulating material there in particular.
  • an inner conductor of this feedthrough but also another inner conductor of a differently designed second part can be machined on the side facing the first part of the tubular metal casing, provided with an annular groove or drilled in order to provide the electrical contact to the inner conductor of the first part of the tubular metal casing, i.e. the electrical heating element, directly or via its connecting wires, which can then be inserted into the hole and press-contacted - for example by means of a hexagonal press.
  • threads can also be introduced into such a hole and a connecting wire or connecting bolt of the first part of the tubular metal casing.
  • a section facing this connection can be cut off on the side of the second part of the tubular metal jacket facing away from the first part of the tubular metal jacket, together with the layer of electrically insulating material adjoining this section of the second part of the tubular metal jacket radially inwardly.
  • a cleaning step is also carried out here afterwards, in which insulating material residues, for example, by brushing, polishing and/or ultrasonic treatment to improve the quality of the electrical contact.
  • an inner conductor of the second part of the tubular metal sheath which is surrounded by the tubular metal sheath, can be drilled on the side facing the first part of the tubular metal sheath in order to insert an electrical contact for connecting the supply line into the hole and to be press-contacted - for example by means of a hexagonal press.
  • connection between the first part of the tubular metal sheath and the second part of the tubular metal sheath can be made by welding or soldering.
  • Another variant for producing this connection provides that the end sections of the first part of the tubular metal casing and the second part of the tubular metal casing are each machined so that they overlap each other with a precise fit and are then welded or soldered together. If the end section of the first or second part of the tubular metal casing, which is weakened from the outside, is longer than the end section of the second or first part of the tubular metal jacket which overlaps it, it can also be achieved that a weld or solder seam which projects beyond the outer diameter of the tubular metal jacket is avoided.
  • the electric heating device according to the invention can be produced in particular by a method according to one of claims 1 to 8, but does not necessarily have to be produced by such a method.
  • the compaction processes for the individual parts of the electric heating device can be carried out in an optimized manner. At the same time, this measure makes filling each part with the electrically insulating material much easier.
  • a part of the unheated region is formed by an unheated transition region in which, during operation of the electrical heating device, the electrical current flows simultaneously both through the at least one connecting wire and/or connecting bolt and through a section of the electrical heating element running in the unheated transition region, which section is in electrical contact with the connecting wire and/or connecting bolt.
  • a connecting wire is in an electrically conductive connection with an end section of the electrical heating element, which can in particular be introduced into a coiled end section of the electrical heating element.
  • a metal sleeve can serve as a connection sleeve in an electrically conductive connection with an end section of the electrical heating element and can be applied to a coiled end section of the electrical heating element (12, 12', 12") in particular by pushing, soldering or welding the connection sleeve.
  • a (typically small) part of the transition area may also be present within the first part of the multi-part tubular metal jacket, which has proven to be advantageous for process reliability, particularly with regard to the electrical contacting of the electrical heating element.
  • the transition area must necessarily extend into the second part of the multi-part tubular metal jacket.
  • Filling with the electrically insulating material can be simplified by coiling the electrical heating element in such a way that an end section of the electrical heating element has a smaller coil diameter than a section of the electrical heating element which lies in the heated area in the finished electrical heating device.
  • the tightness of the multi-part tubular metal casing is enhanced if the second part of the multi-part tubular metal casing with a clear cross-section which can accommodate the outer contour of the end section of the first part of the multi-part metal casing facing it, at least after compaction in the first process step, is placed on this end section of the first part of the multi-part tubular metal casing and is fixed there.
  • the cross-section of the second part of the multi-part tubular metal casing can be adapted to the cross-section of the first part of the multi-part tubular metal casing by compaction in the second process step.
  • a particularly effective design of the unheated area provides that a part of the electric heating element with the connecting wire and/or the connecting sleeve arranged thereon is inserted from one side into the second part of the multi-part tubular metal casing and a connecting bolt with an opening for receiving this part of the electric heating element with the connecting wire and/or the connecting sleeve arranged thereon on the part of the electric heating element is inserted from the opposite side into the second part of the multi-part tubular metal casing and is pushed with the opening onto this part of the electric heating element.
  • the second part of the multi-part tubular metal casing is formed from rod material of a feedthrough which has an inner conductor that is electrically insulated from an outer metal tube.
  • an inner conductor of this bushing but also another inner conductor of a second part can be on the
  • the side facing the first part of the tubular metal casing can be machined, provided with an annular groove or drilled in order to provide electrical contact to the inner conductor of the first part of the tubular metal casing, i.e. the electrical heating element, directly or via its connecting wires, which are then inserted into the hole and press-contacted, for example by means of a hexagonal press.
  • threads can also be introduced into such a hole and a connecting wire or connecting bolt of the first part of the tubular metal casing.
  • a section facing this connection can be cut out on the side of the second part of the tubular metal jacket facing away from the first part of the tubular metal jacket, together with the layer of electrically insulating material adjoining this section of the second part of the tubular metal jacket radially inwardly.
  • an inner conductor of the second part of the tubular metal sheath which is surrounded by the tubular metal sheath, can be drilled on the side facing the first part of the tubular metal sheath and provided with an electrical contact inserted into the hole and pressed in for connecting the supply line.
  • connection between the first part of the tubular metal sheath and the second part of the tubular metal sheath can be made by welding or soldering.
  • Another variant for producing this connection provides that the end sections of the first part of the tubular metal casing and the second part of the tubular metal casing are each machined so that they overlap each other with a precise fit and are then welded or soldered together. If the end section of the first or second part of the tubular metal casing that is weakened from the outside is longer than the end section of the second or first part of the tubular metal casing that overlaps it, it is also possible to avoid a weld or solder seam that protrudes beyond the outer diameter of the tubular metal casing.
  • Figure 1a shows one half of an embodiment of an electric heating device 10, the second half of which is symmetrical to the first half and Figure 1b a longitudinal section of this half, which is however slightly offset from the central plane.
  • the electric heating device 10 has a multi-part tubular metal casing 11 with a first part 11.1 of the multi-part tubular metal casing 11 and a second part 11.2 of the multi-part tubular metal casing 11, which has a larger clear cross-section than the first part 11.1 of the multi-part tubular metal casing, overlaps it in sections and is connected to it, as can be seen in particular from the detailed representation of the Figure 1d clarified.
  • the heated area B which is formed by the section of an electrical heating element 12, in which only this is traversed by the electrical current during operation.
  • An electrically insulating material 16, shown here as transparent, ensures the electrical insulation from the multi-part tubular metal casing 11.
  • an unheated area U is present at the end, which includes an unheated transition area Ü1.
  • the unheated transition area Ü1 is formed by a section 12.1 of the electric heating element 12, which is coiled more tightly than the electric heating element 12 in the heated area, into which a connecting wire 13 is inserted and onto which a connecting sleeve 14 is pushed, which in turn is received in an opening 15.1 of a connecting bolt 15, the solid end section of which is in the unheated area U.
  • This structure is, for example, the synopsis of the Figures 1a and 1c easy to remove.
  • connecting wire 13 can be used, as shown in Figure 8b shown, or the connection sleeve 14, as in Figure 8a shown, can be omitted.
  • the unheated region U when the electrical heating device 10 is operating, the electrical current flows at least through at least one connecting wire 13, a connecting sleeve 14 and/or a connecting bolt 15, which is in electrical contact with the electrical heating element 12, and the unheated region U also has an unheated transition region Ü1, in which, when the electrical heating device 10 is operating, the electrical current simultaneously flows both through the at least one connecting wire 13, the at least one connecting sleeve 14 and/or the at least one connecting bolt 15 and through a section 12.1 of the electrical heating element 12 running in the unheated transition region Ü1, which section is in electrical contact with the connecting wire 13 and/or connecting bolt and has a smaller coil diameter.
  • the unheated transition region extends into the first part 11.1 of the multi-part tubular metal casing 11.
  • a transparent electrically insulating material 17 is arranged inside the second part 11.2 of the multi-part tubular metal casing 11, which ensures the insulation of the multi-part tubular metal casing 11.
  • a plug 18 closes the front of the second part 11.2 of the multi-part tubular metal casing 11.
  • the metal casing 11 with the components of the electric heating device 11 arranged therein are each compacted, but in different ways, in particular to different degrees, preferably with a weaker compaction of the second part 11.2 of the multi-part tubular metal casing 11.
  • the invention also covers embodiments in which the second part 11.2 of the multi-part tubular metal casing 11 with the components arranged therein is no longer compacted.
  • a coiled electrical heating element 12 is provided, which in this embodiment has a coiled end section 12.1 with a smaller coil diameter, into which a connecting wire 13, e.g. made of Cu or Ni, is inserted and which in the Figure 7a is shown again in cross section.
  • the electrical heating element 12 prepared in this way with connecting wire 13 and connecting sleeve 14 is now inserted into the first part 11.1 of the multi-part tubular metal casing 11.
  • Electrically insulating material 16 is sprinkled in the form of a powder or granulate and the arrangement is compacted, which leads to the intermediate stage according to Figure 4 which already represents a "finished" electric tubular heater of conventional design, in which - unlike in known tubular heaters - the connections of the electric heating device protruding from the front side of the tubular metal casing are formed by a section of the electric heating element with a connecting wire and/or a connecting sleeve arranged thereon, and thus form the unheated transition section in the completely finished electric heating device according to the invention.
  • an end part of the first part 11.1 of the multi-part tubular metal casing 11 is cut off together with the electrically insulating material 16.
  • the reason for this is in particular that during the compression process of the first part 11.1 of the multi-part tubular metal casing 11, higher pressures can be used, which leads to a desirable intimate press contact of the pressed section 12.1 of the electrical heating element 12 with the connecting wire 13 and the connecting sleeve 14. Accordingly, it may be useful to initially carry out this pressing in a longer section, provided that a sufficiently good fillability with the electrically insulating material 16 is provided. This is also the reason why the entire section 12.1 of the electrical heating element 12 is not initially simply embedded and pressed; in this case, the improvement in the fillability with the electrically insulating material 16 would be largely negated.
  • the connecting bolt 15 with its opening 15.1 is pushed onto the arrangement from section 12.1 of the electrical heating element 12 with inserted connecting wire 13 and pushed-on connecting sleeve 14.
  • the finished electric heating device 1 shown is obtained from the intermediate stage according to Figure 6 in that the second part 11.2 of the multi-part tubular metal jacket 11 is pushed on until it overlaps with and is fastened to the first part 11.1 of the multi-part metal jacket 11 and this part is then filled with electrically insulating material 17, closed with the plug 18 and preferably suitably compacted.
  • FIGS. 9a to 9f show different views of a section of a second embodiment of an electric heating device 100 with a multi-part tubular metal casing 101.
  • the section not shown is constructed essentially identically.
  • the Figures 9a and 9b the electric heating device 100 in a first intermediate stage of its manufacture before assembling the first part 111 of the tubular metal jacket 101 and the second part 121 of the tubular metal jacket 101.
  • the first part 111 of the tubular metal casing 101 is here part of an electrical heating device 110 produced in a known manner, in the interior of which an electrical heating element 112 in the form of a coiled resistance wire is arranged, which is insulated from the first part 111 of the tubular metal casing 101 by electrically insulating material 116.
  • an electrical heating element 112 in the form of a coiled resistance wire is arranged, which is insulated from the first part 111 of the tubular metal casing 101 by electrically insulating material 116.
  • a connecting wire 113 which protrudes from the front of the electrical heating element 112, is inserted into the end coils of the electrical heating element 112 and, in this example, is connected to it at the welding point 114.
  • the inserted section of the connecting wire 113 thus defines an unheated transition region Ü1, and the section of the connecting wire 113 that runs within the first part 111 of the tubular metal casing 101 forms a first part U1 of the unheated region U of the electrical heating device 100.
  • the second part 121 of the tubular metal casing 101 is part of the second part U2 of the unheated area U of the electrical heating device 100.
  • the second part U2 of the unheated area U is made in this example from a section of a feedthrough 120, the outer metal casing of which serves as the second part 121 of the tubular metal casing 101 of the electrical heating device 100, wherein an inner conductor 122 is arranged in the interior of which is electrically insulated from the outer metal casing of the feedthrough 120 by an electrically insulating material 125.
  • the inner conductor can preferably be made of nickel or copper. Note It should be noted that such a feedthrough can also include mineral-insulated cables.
  • the feedthrough 120 which in this example is made from a rod or continuous material, was cut off from this rod or continuous material to a length that corresponds to the sum of the desired length of the second part U2 of the unheated area and the desired length A of a connection of the electrical heating device 100. Furthermore, a bore 123 was made in the end face of the inner conductor 122 facing the first part 111 of the tubular metal jacket 101 to accommodate the section of the connecting wire 113 that projects beyond the end face of the first part 111 of the tubular metal jacket, and on the opposite side, to form the connection of length A, the outer metal jacket of the feedthrough 120 and the electrically insulating material 125 were cut off over this length and the surface of the inner conductor 122 was preferably cleaned, e.g. by brushing, polishing or ultrasound. The order in which these steps are carried out is not important.
  • Figure 9c shows a view of the longitudinal section Figure 9b after joining the first part 111 and the second part 121 of the tubular metal casing 101.
  • the first part 111 and the second part 121 of the tubular metal casing 101 were positioned against each other at the end and welded or soldered at the connection point 131.
  • the electric heating device 100 as shown in Figure 9c shown, a further processing step is carried out, the result of which is Figure 9d and Figure 9f becomes clear: further compaction, which is also known as local grouting or re-compaction, in the region of the second part 121 of the tubular metal casing, preferably in the region in which the bore 123 with the section of the connecting wire 113 arranged therein is located, but at a distance from the connection point 131.
  • This processing step can be carried out in concrete terms, for example, as a hexagonal compaction, in particular by hammering, and has two advantages:
  • the first advantage is that the electrical contact between the connecting wire 113 and the inner conductor 122 is improved by a press contact.
  • the second advantage which is particularly noticeable when comparing the detail enlargements of the Figures 9e and 9f with each other is that the resulting axial pressing pressure creates an almost homogeneous transition region between the electrically insulating material 115 and the electrically insulating material 125 and in particular fills cavities 132 and breakouts on the joined end faces.
  • a first variant of the electric heating device 100 which is shown in the Figures 10a and 10b
  • the connecting wire 113 has a thread 113a and the bore 123 has a counter thread 123a cut into it. Accordingly, a connection is made by screwing in before the first part 111 of the tubular metal jacket 101 and the second part 121 of the tubular metal jacket 101 are welded or soldered together. The entire other structure is identical, which is why identical reference numerals are used.
  • end region 111a is longer than the end region 121a, which means that the weld or solder seam that fixes the connection is arranged in a recess and does not increase the diameter of the electric heating device.
  • the entire other structure is identical, which is why identical reference numerals are used.
  • a third variant of the electric heating device 100 which is shown in the Figure 12 is the only difference to the one shown in Figure 9d shown representation that the connection between the first part 111 of the tubular metal jacket 101 and the second part 121 of the tubular metal jacket 101 by sliding on a ring 133 and welding or soldering the ring 133 at its one edge to the second part 121 of the tubular metal jacket 101 and at its other edge to the first part 121 of the tubular metal jacket 101.
  • This also leads to improved protection against the penetration of moisture.
  • the Figures 13a to 13c each show a longitudinal section through a portion of a third embodiment of an electric heating device 200, wherein the Figure 13 a shows the state before joining the first and second parts of the tubular metal casing, the Figure 13b shows the state after joining the first and second parts of the tubular metal casing and Fig.13c after a further local compaction step, e.g. hammering into a hexagon shape.
  • a further local compaction step e.g. hammering into a hexagon shape.
  • the first part 211 of the tubular metal casing 201 is part of an electric heating device 210 produced in a known manner, with an electric heating element 212 arranged in the interior in the form of a coiled resistance wire, which is insulated from the first part 211 of the tubular metal casing 201 by electrically insulating material 216.
  • a connecting wire 213, which protrudes from the front of the electric heating element 212 is inserted into the end coils of the electric heating element 212 and, in this example, is connected to it at the welding point 214.
  • the inserted section of the connecting wire 213 thus defines an unheated transition region Ü1, and the section of the connecting wire 213 which runs within the first part 211 of the tubular metal jacket 201 forms a first part U1 of the unheated region U of the electrical heating device 200.
  • the second part 221 of the tubular metal casing 201 is part of the second part U2 of the unheated area U of the electric heating device 200.
  • the second part U2 of the unheated area U is also in this example made of a section a feedthrough 220, the outer metal casing of which serves as the second part 221 of the tubular metal casing 201 of the electric heating device 200, wherein an inner conductor 222 is arranged in the interior of which is electrically insulated from the outer metal casing of the feedthrough by an electrically insulating material 225.
  • the inner conductor can preferably be made of nickel or copper.
  • the feedthrough 220 which in this example is also made of a rod or continuous material, was here, however, unlike the electric heating device 100, cut off from this rod or continuous material over a length that corresponds to the desired length of the second part U2 of the unheated area.
  • holes 223, 224 were made in both end faces of the inner conductor 222, into which on one end face the section of the connecting wire 213 projecting beyond the end face of the first part 211 of the tubular metal jacket 201 is made and on the opposite side serves to form the connection 226, which is simply inserted into the hole and, as in Figure 13c shown, is press-contacted and fixed by a pressing or compaction step. The order in which these steps are carried out is not important.
  • Figure 13b shows a view of the longitudinal section Figure 13a after joining the first part 211 and the second part 221 of the tubular metal casing 201.
  • the first part 211 and the second part 221 of the tubular metal casing 201 were positioned against each other at the end and welded or soldered at the connection point 231.
  • a further processing step is carried out, the result of which is Figure 13c becomes clear: a further compaction, which can also be referred to as local pressing or re-compaction, in the region of the second part 221 of the tubular metal casing, preferably in the region in which the bore 223 with the section of the connecting wire 213 arranged therein is located, but at a distance from the connection point 231.
  • This processing step can be carried out specifically, for example, as a hexagonal compaction, in particular by hammering, and brings with it the advantages already discussed above.
  • the Figures 14 to 17 show different intermediate stages in carrying out another method for producing an electric heating device 300.
  • the electric heating device 300 differs fundamentally from the previously discussed electric heating devices 10, 100 and 200 in that here the first part 311 of the tubular metal casing 301 has no first unheated section U1 and in particular no unheated transition section Ü1. In its interior, it therefore only forms the heated area over its entire length with an electric heating element 312 formed here by a coiled resistance wire and electrically insulating material 315.
  • the coiled heating element with electrically insulating material and tubular metal casing as a rod material and cutting a piece of it with a length that corresponds to the length of the desired heated area. plus the length of the unheated transition sections and then the tubular metal casing and the surrounding electrically insulating material are cut off at the end on the length corresponding to the respective unheated transition sections with a tool 350, so that a part of the coiled electrical heating element used to form the unheated transition area Ü1 protrudes at the front, as shown in Figure 14 is shown.
  • a connecting wire 313 and a feedthrough 320 the metal sheath of which forms the second part of the tubular metal sheath of the electric heating device 300, with inner conductor 322, bore 323 and electrically insulating material 325 are then provided, which can be manufactured as explained above in connection with the electric heating devices 100 and 200, respectively.
  • the connecting wire 313 is inserted into the end section of the electric heating element 312; this section of the electric heating element 312 with the inserted connecting wire is inserted into the hole 323 of the inner conductor 322 and the first part 311 of the tubular metal jacket 301 is butt welded or soldered to the second part 321 of the tubular metal jacket 301, which leads to the Figure 16 shown intermediate stage.
  • a further local compaction process e.g. by hammering in a hexagonal shape, is then carried out in the unheated transition area Ü1, whereby on the one hand the homogenization of the electrically insulating material in the transition area between the first part 311 of the tubular metal jacket 301 and the second part 321 of the tubular metal jacket 301 and on the other hand an intimate press contact between electrical Heating element 312, connecting bolt 313 and inner conductor 322, as can be seen in the Figure 17a can recognize.
  • FIGs 15b and 17b will be the Figures 15a or 17a, respectively, in a second variant, which differs from the variant of the Figures 15a and 17a only differs in that a stepped connecting bolt 313' is used instead of the connecting bolt 313 and accordingly the bore 323 is replaced by a stepped bore 323'.
  • the thinner section 313a' of the stepped connecting bolt 313' is also subjected to a local compaction process after it has been introduced into the section 323a' of the stepped bore 323' and is thereby directly press-contacted, while in the other section of the stepped connecting bolt 313' a press contact to the bore 323' only takes place indirectly via the electrical heating element 312.
  • the Figures 18 to 21 show different intermediate stages in carrying out another method for producing an electric heating device 400.
  • the first part 411 of the tubular metal casing 401 has no first unheated section U1 and in particular no unheated transition section Ü1. It therefore only forms over its entire length the heated area with electrical heating element 412 formed here by a coiled resistance wire and electrically insulating material 415.
  • the coiled heating element with electrically insulating material and tubular metal jacket is provided as a bar material and then the tubular metal jacket and the surrounding electrically insulating material are cut off at the end with a tool 450 to the length corresponding to the respective unheated transition sections, so that a part of the coiled electrical heating element, which is used to form the unheated transition region Ü1, protrudes at the end, as shown in Figure 18 is shown.
  • a feedthrough 420 is then provided, the metal casing of which forms the second part 421 of the tubular metal casing 401 of the electric heating device 400, with an inner conductor 422, an annular groove 423 introduced into the front side of the inner conductor 422 and electrically insulating material 425.
  • the metal casing of which forms the second part 421 of the tubular metal casing 401 of the electric heating device 400 with an inner conductor 422, an annular groove 423 introduced into the front side of the inner conductor 422 and electrically insulating material 425.
  • no separate connecting wire is required.
  • the end portion of the electric heating element 412 is inserted into the bore 423 of the inner conductor 422 and the first part 411 of the tubular metal jacket 401 is butt welded or soldered to the second part 421 of the tubular metal jacket 401, resulting in the Figure 20 shown intermediate stage.
  • a further local compaction process e.g. by hammering in a hexagonal shape, is then carried out in the unheated transition area Ü1, which on the one hand causes the homogenization of the electrically insulating material in the transition area between the first part 411 and the second part 421 of the tubular metal jacket and on the other hand an intimate press contact between the electrical heating element 412 and the inner conductor 422, as can also be seen in the Figure 21 can recognize.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Resistance Heating (AREA)

Claims (14)

  1. Procédé de réalisation d'un dispositif de chauffage électrique (10, 100, 200, 300, 400) avec un élément de chauffage électrique (12, 12', 12", 112, 212, 312, 412) qui est à l'intérieur d'une enveloppe métallique tubulaire en plusieurs parties (11, 101, 201, 301, 401) dans une matière électro-isolante (16, 17, 115, 125, 215, 225, 315, 325, 415, 425),
    - le dispositif de chauffage électrique (10, 100, 200, 300, 400) étant dans l'enveloppe métallique tubulaire en plusieurs parties (11, 101, 201, 301, 401),
    - comportant au moins une extrémité d'une zone non chauffée (U), dans laquelle pour le fonctionnement du dispositif de chauffage électrique (10, 100, 200, 300, 400) passe un courant électrique également par au moins un fil de raccordement (13, 113, 213, 313) et/ou par au moins une douille de raccordement (14) et/ou au moins une broche de raccordement (15) qui est en contact électrique avec l'élément de chauffage électrique (12, 12', 12", 112, 212, 312, 412) et ainsi que,
    - une zone chauffante (B), dans laquelle, en fonctionnement du dispositif de chauffage électrique (10, 100, 200, 300, 400), le courant électrique passe uniquement par le segment de l'élément de chauffage électrique (12, 112, 212, 312, 412) dans la zone chauffante (B),
    procédé selon lequel
    - dans une première étape de procédé, on réalise dans une première partie (11.1, 111, 211, 311, 411) de l'enveloppe métallique tubulaire en plusieurs parties (11, 101, 201, 301, 401) la zone chauffante (B) et on la comprime,
    - dans une seconde étape de procédé exécutée indépendamment de la première étape de procédé, on réalise au moins un segment de la zone non chauffante (U) dans une deuxième partie (11.2, 121, 221, 321, 421) de l'enveloppe métallique tubulaire en plusieurs parties (11, 101, 201, 301, 401) et on relie entre elles la première partie (11.1, 111, 211, 311, 411) et la deuxième partie (11.2, 121, 221, 321, 421) de l'enveloppe métallique tubulaire en plusieurs parties (11, 101, 201, 301, 401), procédé caractérisé en ce que
    dans la seconde étape de procédé, on comprime la deuxième partie (11.2, 121, 221, 321, 421) de l'enveloppe métallique tubulaire en plusieurs parties (11, 101, 201, 301, 401) avec les composants de celui-ci,
    * on effectue la seconde compression de façon que la pression axiale produite forme une zone transitoire pratiquement homogène entre le matière électro-isolante (16, 115, 215, 315, 415) dans les zones qui ont été soumises à la compression dans la première étape de procédé et le matière électro-isolante (17, 125, 225, 325, 425) dans les zones qui sont soumises à la deuxième compression dans la seconde étape de procédé.
  2. Procédé de réalisation d'un dispositif de chauffage électrique (10, 100, 200, 300, 400) selon la revendication 1,
    caractérisé en ce que
    dans la première étape de procédé :
    - on positionne dans la zone chauffante (B) le segment de l'élément de chauffage électrique (12, 12', 12", 112, 212, 312, 412) dans une première partie (11.1, 111, 211, 311, 411) de l'enveloppe métallique tubulaire en plusieurs parties (11, 101, 201, 301, 401),
    - on introduit la matière électro-isolante (16, 115, 215, 315, 415) dans cette zone de la première partie (11.1, 111, 211, 311, 411) de l'enveloppe métallique tubulaire en plusieurs parties (11, 101, 201, 301, 401) pour isoler par la matière électro-isolante (16, 115, 215, 315, 415) le segment de l'élément de chauffage électrique (12, 12', 12", 112, 212, 312, 412) dans la première partie (11.1, 111, 211, 311, 411) de l'enveloppe métallique tubulaire en plusieurs parties (11, 101, 201, 301, 401), et
    - on comprime la première partie (11.1, 111, 211, 311, 411) de l'enveloppe métallique tubulaire en plusieurs parties (11, 101, 201, 301, 401).
  3. Procédé de réalisation d'un dispositif de chauffage électrique (10, 100, 200, 300, 400) selon la revendication 1 ou 2,
    caractérisé en ce que
    - on réalise un dispositif de chauffage électrique (10, 100, 200, 300, 400) dont la zone non chauffante (U) comprend une zone transitoire (Ü1) dans laquelle, pour le fonctionnement du dispositif de chauffage électrique (10, 100, 200, 300, 400), le courant électrique passe à la fois par au moins un fil de raccordement (13, 113, 213, 313) et/ou la broche (15) et aussi par le segment (12.1, 12.1") de l'élément chauffant électrique (12, 12', 12") dans la zone transitoire (Ü1), qui est en contact électrique avec le fil de raccordement (13, 113, 213, 313) et/ou la douille (14) et/ou la broche de raccordement (15), et
    en ce que dans le procédé, dans la seconde étape de procédé exécutée indépendamment de la première étape de procédé, on réalise au moins un segment de la zone non chauffante (U) y compris au moins une partie de la zone transitoire non chauffante (Ü1), en ce qu'on introduit dans une deuxième partie (11.2, 121, 221, 321, 421) de l'enveloppe métallique tubulaire (11) en plusieurs parties, un segment (12.1, 12.1") de l'élément électrique chauffant (12, 12', 12") avec le fil de raccordement (13, 113, 213, 313) relié et/ou la douille (14) reliée et/ou la broche (15) reliée en ce qu'on introduit la matière électro-isolante (17, 125, 225, 325, 425) dans la deuxième partie (11.2, 121, 221, 321, 421) de l'enveloppe métallique tubulaire en plusieurs parties (11, 101, 201, 301, 401) pour que le segment (12.1, 12.1") dans la deuxième partie (11.2, 12, 221, 321, 421) de l'enveloppe métallique tubulaire en plusieurs parties (11, 101, 201, 301, 401) de l'élément chauffant électrique (12, 12', 12") soit enrobée dans la matière électro-isolante (17, 125, 225, 325, 425).
  4. Procédé de réalisation d'un dispositif de chauffage électrique (10, 100, 200, 300, 400) selon l'une des revendications 1 à 3,
    caractérisé en ce que
    dans la première étape de procédé, on introduit un fil de raccordement (13, 113, 213, 313) dans un branchement électrique avec un segment d'extrémité de l'élément de chauffage électrique (12, 12', 12", 112, 212, 312, 412), et/ou
    dans la première étape de procédé, on met une douille (14) en métal dans un branchement électro-conducteur avec un segment d'extrémité de l'élément de chauffage électrique (12, 12', 12", 112, 212, 312, 412).
  5. Procédé de réalisation d'un dispositif de chauffage électrique (10, 100, 200, 300, 400) selon l'une des revendications 1 à 4,
    caractérisé en ce que
    on enroule en hélice un élément de chauffage électrique (12, 12', 12", 112, 212, 312, 412) de façon qu'un segment d'extrémité (12.1, 12.1', 12.1") de l'élément de chauffage électrique (12, 12', 12", 112, 212, 312, 412) présente un diamètre d'enroulement plus petit qu'un segment de l'élément de chauffage électrique (12, 12', 12", 112, 212, 312, 412) et qui, dans le dispositif de chauffage électrique (10, 100, 200, 300, 400) terminé, se situe dans la zone chauffante (B).
  6. Procédé de réalisation d'un dispositif de chauffage électrique (10, 100, 200, 300, 400) selon l'une des revendications 1 à 5,
    caractérisé en ce que
    pour réaliser la deuxième partie (11.2, 121, 221, 321, 421) de l'enveloppe métallique tubulaire en plusieurs parties (11, 101, 201, 301, 401), on utilise un passage (120, 220, 320, 420) qui présente un conducteur intérieur isolé (122, 222, 322, 422) par un tube extérieur métallique.
  7. Procédé de réalisation d'un dispositif de chauffage électrique (10, 100, 200, 300, 400) selon l'une des revendications 1 à 6,
    caractérisé en ce que
    - on munit un conducteur intérieur (122, 222, 322, 422) de la deuxième partie (11.2, 121, 221, 321, 421) de l'enveloppe métallique tubulaire en plusieurs parties (11, 101, 201, 301, 401) sur le côté tourné vers la première partie (11.1, 111, 211, 311, 411) de l'enveloppe métallique tubulaire en plusieurs parties (11, 101, 201, 301, 401) d'une rainure annulaire par usinage avec enlèvement de copeaux ou par perçage, et
    - on réalise le contact électrique avec l'élément de chauffage électrique (12, 12', 12", 112, 212, 312, 412) directement ou par ses fils de raccordement (13, 113, 213, 313) en ce qu'on introduit et qu'on met en contact par pression, un segment de élément de chauffage électrique (12, 12', 12", 112, 212, 312, 412) ou de son fil de raccordement (13, 113, 213, 313) dans le segment ainsi usiné du conducteur intérieur isolant (122, 222, 322, 422) de la première partie (11.2, 121, 221, 321, 421) de l'enveloppe métallique tubulaire en plusieurs parties (11, 101, 201, 301, 401).
  8. Dispositif de chauffage électrique (10, 100, 200, 300, 400) selon le procédé de l'une des revendications 1 à 7,
    comprenant un élément de chauffage électrique (12, 12', 12", 112, 212, 312, 412) qui comporte dans une enveloppe métallique tubulaire en plusieurs parties (11, 101, 201, 301, 401), une première partie (11.1, 111, 211, 311, 411) et une deuxième partie (11.2, 121, 221, 321, 421), intégrées dans une matière électro-isolante (16, 17, 115, 125, 215, 225, 315, 325, 415, 425),
    - le dispositif de chauffage électrique (10, 100, 200, 300, 400) étant dans l'enveloppe métallique tubulaire en plusieurs parties (11, 101, 201, 301, 401),
    - ayant à une extrémité au moins une zone non chauffée (U) dans laquelle, pendant le fonctionnement du dispositif de chauffage électrique (10, 100, 200, 300, 400), le courant électrique passe aussi au moins par un fil de raccordement (13, 113, 213, 313) et/ou au moins une douille de raccordement (14) et/ou au moins une broche de raccordement (15) qui sont en contact électrique avec l'élément de chauffage électrique (12, 12', 12", 112, 212, 312, 412) et en outre,
    - comportant une zone chauffée (B) dans laquelle pendant le fonctionnement du dispositif de chauffage électrique (10, 100, 200, 300, 400), le courant électrique passe uniquement dans un segment de l'élément de chauffage électrique (12, 12', 12", 112, 212, 312, 412) de la zone chauffante (B),
    la zone chauffante (B) étant dans la première partie (11.1) de l'enveloppe métallique tubulaire en plusieurs parties (11, 101, 201, 301, 401) et la zone non chauffante (U) étant dans une deuxième partie (11.2, 121, 221, 321, 421) de l'enveloppe métallique tubulaire en plusieurs parties (11, 101, 201, 301, 401),
    dispositif caractérisé en ce que
    la deuxième partie (11.2, 121, 221, 321, 421) de l'enveloppe métallique tubulaire en plusieurs parties (11, 101, 201, 301, 401) est comprimée avec les composants qu'il contient, de façon à réaliser une zone transitoire pratiquement homogène entre la matière électro-isolante (16, 115, 215, 315, 415) dans la première partie (11.1, 111, 211, 311, 411) de l'enveloppe métallique tubulaire en plusieurs parties (11, 101, 201, 301, 401) et la matière électro-isolante dans la deuxième partie (11.2, 121, 221, 321, 421) de l'enveloppe métallique tubulaire en plusieurs parties (11, 101, 201, 301, 401).
  9. Dispositif de chauffage électrique (10, 100, 200, 300, 400) selon la revendication 8,
    caractérisé en ce que
    la zone non chauffante (U) a une zone transitoire non chauffante (Ü1) dans laquelle pendant le fonctionnement du dispositif de chauffage électrique (10, 100, 200, 300, 400), le courant électrique passe à la fois par au moins un fil de raccordement (13, 113, 213, 313, 413) et/ou au moins une douille de raccordement (14) et/ou au moins une broche de raccordement (15) ainsi que par un segment (12.1) de l'élément de chauffage électrique (12, 12', 12", 112, 212, 312, 412) dans la zone transitoire non chauffée (Ü1), et qui est en contact électrique avec le fil de raccordement (13, 113, 213, 313, 413) et/ou la douille de raccordement (14) et/ou la broche de raccordement (15).
  10. Procédé de réalisation d'un dispositif de chauffage électrique (10, 100, 200, 300, 400) selon l'une des revendications 8 ou 9,
    caractérisé en ce que
    le fil de raccordement (13) est en liaison électrique avec une zone d'extrémité de l'élément de chauffage électrique (12, 12', 12", 112, 212, 312, 412).
  11. Procédé de réalisation d'un dispositif de chauffage électrique (10, 100, 200, 300, 400) selon l'une des revendications 8 à 10,
    caractérisé en ce que
    une douille de raccordement (14) en métal est en liaison électrique avec un segment d'extrémité de l'élément de chauffage électrique (12, 12', 12", 112, 212, 312, 412).
  12. Procédé de réalisation d'un dispositif de chauffage électrique (10, 100, 200, 300, 400) selon l'une des revendications 8 à 11,
    caractérisé en ce que
    l'élément de chauffage électrique (12, 12', 12", 112, 212, 312, 412) est enroulé en spires de façon qu'un segment d'extrémité (12.1, 12.1") de l'élément de chauffage électrique (12, 12', 12", 112, 212, 312, 412) a un diamètre d'enroulement plus petit que le segment de l'élément de chauffage électrique (12, 12', 12", 112, 212, 312, 412) et qui pour le dispositif de chauffage électrique (10, 100, 200, 300, 400) terminé se situe dans la zone chauffante (B).
  13. Procédé de réalisation d'un dispositif de chauffage électrique (10, 100, 200, 300, 400) selon l'une des revendications 8 à 12,
    caractérisé en ce que
    la deuxième partie (11.2, 121, 221, 321, 421) de l'enveloppe métallique tubulaire en plusieurs parties (11, 101, 201, 301, 401) a une section libre qui peut recevoir le contour extérieur du segment d'extrémité, en regard, de la première partie (11.1, 111, 211, 311, 411) de l'enveloppe métallique tubulaire en plusieurs parties (11, 101, 201, 301, 401) après compression dans la première étape de procédé en étant emmanché et fixé sur ce segment d'extrémité de la première partie (11.1, 111, 211, 311, 411) de l'enveloppe métallique tubulaire en plusieurs parties (11, 101, 201, 301, 401).
  14. Procédé de réalisation d'un dispositif de chauffage électrique (10, 100, 200, 300, 400) selon l'une des revendications 8 à 13,
    caractérisé en ce que
    une partie de l'élément de chauffage électrique (12, 12', 12", 112, 212, 312, 412) avec le fil de raccordement (13, 113, 213, 313) raccordé et/ou la douille de raccordement (14) est introduite à partir d'un côté dans la deuxième partie (11.2, 121, 221, 321, 421) de l'enveloppe métallique tubulaire en plusieurs parties (11, 101, 201, 301, 401) et une broche de raccordement (15) avec une ouverture (15.1) pour recevoir cette partie de l'élément de chauffage électrique (12, 12', 12", 112, 212, 312, 412) avec le fil de raccordement (13, 113, 213, 313) raccordé et/ou avec la douille de raccordement (14) reliée est engagée par le côté opposé dans la deuxième partie (11.2, 121, 221, 321, 421) de l'enveloppe métallique tubulaire en plusieurs parties (11, 101, 201, 301, 401) et est emmanchée par l'ouverture (15.1) sur cette partie de l'élément chauffant électrique munie du fil de raccordement (13, 113, 213, 313, 413) et/ou de la douille de raccordement (14).
EP20200069.1A 2020-03-04 2020-10-05 Procédé de fabrication d'un dispositif de chauffage électrique et dispositif de chauffage électrique Active EP3876669B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/189,925 US20210298130A1 (en) 2020-03-04 2021-03-02 Method of manufacturing an electric heater and electric heater
CN202110236277.4A CN113365375A (zh) 2020-03-04 2021-03-03 用于制造电加热装置的方法和电加热装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102020105782.2A DE102020105782A1 (de) 2020-03-04 2020-03-04 Verfahren zur Herstellung einer elektrischen Heizvorrichtung und elektrische Heizvorrichtung

Publications (2)

Publication Number Publication Date
EP3876669A1 EP3876669A1 (fr) 2021-09-08
EP3876669B1 true EP3876669B1 (fr) 2024-05-08

Family

ID=72752331

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20200069.1A Active EP3876669B1 (fr) 2020-03-04 2020-10-05 Procédé de fabrication d'un dispositif de chauffage électrique et dispositif de chauffage électrique

Country Status (4)

Country Link
US (1) US20210298130A1 (fr)
EP (1) EP3876669B1 (fr)
CN (1) CN113365375A (fr)
DE (1) DE102020105782A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019127692A1 (de) * 2019-10-15 2021-04-15 Türk & Hillinger GmbH Elektrischer Rohrheizkörper und Verfahren zu dessen Herstellung
DE102019127691A1 (de) * 2019-10-15 2021-04-15 Türk & Hillinger GmbH Elektrisches Heizelement, elektrische Heizvorrichtung und Verfahren zur Herstellung einer elektrischen Heizvorrichtung mit einem solchen Heizelement

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2491688A (en) * 1945-03-30 1949-12-20 George W Pickels Method of connecting sheaths enclosing electrical elements
US3225321A (en) * 1961-06-30 1965-12-21 Thermo Electric Co Inc Electrical connection for a resistance heater
DE1765324B2 (de) * 1968-04-30 1979-06-21 Fa. Fritz Eichenauer, 6744 Kandel Wasserdichter Anschluß für Rohrheizkörper
US4346287A (en) 1980-05-16 1982-08-24 Watlow Electric Manufacturing Company Electric heater and assembly
US5034595A (en) * 1990-05-09 1991-07-23 Ogden Manufacturing Co. Cartridge heater assembly
US5864941A (en) 1996-05-22 1999-02-02 Watlow Electric Manufacturing Company Heater assembly method
KR100639161B1 (ko) * 2004-09-08 2006-10-30 김상수 축열식 전기온돌에의 히팅케이블 구조
DE102006005322B4 (de) * 2006-02-06 2010-04-29 Bleckmann Gmbh & Co. Kg Rohrheizkörper mit Isoliermasse im Anschlussendenbereich
DE202011105348U1 (de) * 2011-09-06 2011-11-02 Türk & Hillinger GmbH Elektrische Heizvorichtung mit Anschlussdraht
US10477622B2 (en) 2012-05-25 2019-11-12 Watlow Electric Manufacturing Company Variable pitch resistance coil heater
US9301341B2 (en) * 2013-03-14 2016-03-29 Chromalox, Inc. Medium voltage heating element assembly
DE102013212205B4 (de) * 2013-06-26 2024-02-08 Türk & Hillinger GmbH Verfahren zur Herstellung einer elektrischen Heizpatrone
DE202017100531U1 (de) * 2017-02-01 2017-02-16 Türk & Hillinger GmbH Rohrwendelpatrone
DE102017102912B4 (de) * 2017-02-14 2018-12-13 Türk & Hillinger GmbH Verfahren zum Verbinden einer elektrischen Vorrichtung mit einem Anschlusskabel und elektrische Vorrichtung mit einem Anschlusskabel
DE202017100786U1 (de) 2017-02-14 2017-03-02 Türk & Hillinger GmbH Heizpatrone

Also Published As

Publication number Publication date
DE102020105782A1 (de) 2021-09-09
EP3876669A1 (fr) 2021-09-08
CN113365375A (zh) 2021-09-07
US20210298130A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
DE3153393C2 (fr)
DE102006016566B4 (de) Zusammengesetzter Leiter, insbesondere für Glühkerzen für Dieselmotoren
EP3189561B1 (fr) Contact a sertir
DE102018009206B3 (de) Verbindungsbauteil zur Verbindung von elektrischen Leitern einer hairpin-Wicklung eines Stators einer Elektromaschine sowie Verfahren zur Herstellung dieser Verbindung
EP2962369A1 (fr) Procédé pour réaliser un assemblage par liaison de matière sur une extrémité de câble et câble configuré
EP3876669B1 (fr) Procédé de fabrication d'un dispositif de chauffage électrique et dispositif de chauffage électrique
DE102015225585A1 (de) Wicklung für eine elektrische Maschine und Verfahren zu deren Herstellung
EP2362491A1 (fr) Procédé de connexion d'une conduite électrique avec un élément de raccordement électrique
DE102019127691A1 (de) Elektrisches Heizelement, elektrische Heizvorrichtung und Verfahren zur Herstellung einer elektrischen Heizvorrichtung mit einem solchen Heizelement
DE102012108276A1 (de) Elektrische Heizvorrichtung mit Anschlussdraht
EP3361826A1 (fr) Cartouche de chauffage
DE19913298A1 (de) Anordnung und Verfahren zum Verbinden ummantelter Leitungen
EP2725659B1 (fr) Manchon de câble coaxial
AT519980B1 (de) Statorkomponente für eine elektrische Maschine
EP3840910B1 (fr) Procédé de soudage de pièces conductrices dans un élément constitutif d'un convertisseur électromécanique et élément constitutif d'un convertisseur électromécanique à pièces conductrices soudées
DE102019112328A1 (de) Elektrische Anschlusskonsole für KFZ Bordnetzleitung
EP3454420B1 (fr) Procédé de raccordement d'une conduite d'aluminium électrique à un tube d'aluminium
DE202018006090U1 (de) Verbindungsbauteil zur Verbindung von elektrischen Leitern einer hairpin-Wicklung eines Stator einer Elektromaschine
WO2018050392A1 (fr) Rotor électrique et procédé d'établissement d'un contact électrique entre un enroulement de rotor et une patte de contact
EP3631912B1 (fr) Procédé de contact pour conducteurs isolés au vernis
DE102019127692A1 (de) Elektrischer Rohrheizkörper und Verfahren zu dessen Herstellung
DE10355779B3 (de) HF-Steckverbinder für Koaxialkabel
DE102019127689A1 (de) Elektrischer Rohrheizkörper mit Anschlussbolzen und Herstellungsverfahren für elektrische Rohrheizkörper mit Anschlussbolzen
DE102020126009A1 (de) Verfahren zur Herstellung einer elektrische Heizvorrichtung und elektrische Heizvorrichtung
EP2463080B1 (fr) Elément de chauffage, procédé de soudage de composants en matière synthétique tubulaires avec un élément de chauffage et système constitué de composants tubulaires et d'un élément de chauffage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220307

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240103

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020007922

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN