EP3870362A1 - Procede d'hydrogenation comprenant un catalyseur prepare par addition d'un compose organique en phase gazeuse - Google Patents

Procede d'hydrogenation comprenant un catalyseur prepare par addition d'un compose organique en phase gazeuse

Info

Publication number
EP3870362A1
EP3870362A1 EP19786341.8A EP19786341A EP3870362A1 EP 3870362 A1 EP3870362 A1 EP 3870362A1 EP 19786341 A EP19786341 A EP 19786341A EP 3870362 A1 EP3870362 A1 EP 3870362A1
Authority
EP
European Patent Office
Prior art keywords
organic compound
acid
porous support
carried out
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19786341.8A
Other languages
German (de)
English (en)
Inventor
Anne-Claire Dubreuil
Vincent Coupard
P-Louis Carrette
Florent Guillou
Bertrand Guichard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP3870362A1 publication Critical patent/EP3870362A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/10Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/32Selective hydrogenation of the diolefin or acetylene compounds
    • C10G45/34Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used
    • C10G45/36Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/18Carbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects

Definitions

  • the subject of the invention is a process for the selective hydrogenation of polyunsaturated compounds in a hydrocarbon feedstock, in particular in C2-C5 steam cracking cuts and steam cracking essences, or a process for the hydrogenation of at least one aromatic or polyaromatic compound contained in a hydrocarbon feedstock allowing the transformation of aromatic compounds from petroleum or petrochemical cuts by conversion of aromatic rings into naphthenic rings.
  • the process for selective hydrogenation or for hydrogenation of aromatics is carried out in the presence of a catalyst prepared according to a particular procedure.
  • Catalysts for the selective hydrogenation of polyunsaturated compounds or for the hydrogenation of aromatic compounds are generally based on group VIII metals of the periodic table, such as nickel.
  • the metal is in the form of nanometric metallic particles deposited on a support which can be a refractory oxide.
  • the group VIII metal content, the possible presence of a second metallic element, the size of the metal particles and the distribution of the active phase in the support as well as the nature and porous distribution of the support are parameters which can have a importance on the performance of catalysts.
  • the rate of the hydrogenation reaction is governed by several criteria, such as the diffusion of the reactants on the surface of the catalyst (external diffusion limitations), the diffusion of the reactants in the porosity of the support towards the active sites (internal diffusion limitations) and the intrinsic properties of the active phase such as the size of the metal particles and the distribution of the active phase within the support.
  • the catalyst As regards the size of the metal particles, it is generally accepted that the catalyst is more active the smaller the size of the metal particles. In addition, it is important to obtain a particle size distribution centered on the optimal value as well as a narrow distribution around this value.
  • the most conventional way of preparing these catalysts is the impregnation of the support with an aqueous solution of a nickel precursor, generally followed by drying and calcination. Before their use in hydrogenation reactions these catalysts are generally reduced in order to obtain the active phase which is in metallic form (that is to say in the state of zero valence).
  • the nickel-based alumina catalysts prepared by a single impregnation step generally make it possible to reach nickel contents of between 12 and 15% by weight of nickel approximately relative to the total weight of the catalyst, depending on the pore volume of the alumina used.
  • nickel contents of between 12 and 15% by weight of nickel approximately relative to the total weight of the catalyst, depending on the pore volume of the alumina used.
  • several successive impregnations are often necessary to obtain the desired nickel content, followed by at least one drying step, then optionally a calcination step between each impregnation .
  • application FR2984761 discloses a process for the preparation of a selective hydrogenation catalyst comprising a support and an active phase comprising a group VIII metal, said catalyst being prepared by a process comprising a step of impregnating a solution containing a group VIII metal precursor and an organic additive, more particularly an organic compound having one to three carboxylic acid functions, a step of drying the impregnated support, and a step of calcining the dried support in order to obtain the catalyst.
  • the processes for preparing the additive catalysts typically use an impregnation step in which the organic compound is introduced, optionally in solution in a solvent, so as to fill all the porosity of the support, whether or not it is impregnated with precursors metallic, in order to obtain a homogeneous distribution.
  • This inevitably leads to the use of large quantities of organic compound or to diluting the organic compound in a solvent.
  • a drying step is then necessary to remove the excess compound or the solvent and thus release the porosity necessary for the use of the catalyst.
  • the cost related to the excess of the compound organic or the use of a solvent is added the cost of an additional step of preparation of drying, consuming energy.
  • evaporation of the solvent can also be accompanied by a partial loss of the organic compound by vaporization and therefore a loss of catalytic activity.
  • a catalyst comprising an active phase based on at least one group VIII metal, preferably nickel, supported on an oxide matrix, prepared from a preparation process comprising at least a step of adding an organic compound to the porous support by impregnation in the gaseous phase makes it possible to obtain performance in terms of activity in selective hydrogenation of polyunsaturated compounds or in hydrogenation of aromatic compounds at least as good, or even better, than the known processes of the state of the art.
  • the gaseous addition of the organic additive during the preparation of the catalyst makes it possible to obtain performance in hydrogenation in terms of activity at least as good, or even better, than known catalysts, the preparation process of which comprises a step of adding the same organic additive by liquid means (for example by dry impregnation) even though the size of the active phase particles obtained on the catalyst (measured in their forms oxide) is equivalent.
  • the subject of the present invention is a process for the hydrogenation of at least one polyunsaturated compound containing at least 2 carbon atoms per molecule, such as diolefins and / or acetylenics and / or aromatic or polyaromatic compounds, contained in a filler of hydrocarbons having a final boiling point less than or equal to 650 ° C, which process being carried out at a temperature between 0 and 350 ° C, at a pressure between 0.1 and 20 MPa, at a hydrogen molar ratio / (compound to be hydrogenated) between 0.1 and 1000 and at an hourly volume velocity VVH of between 0.05 and 40,000 h 1 in the presence of a catalyst comprising a porous support and an active phase comprising at least one group VIII metal , said active phase not comprising any group VIB metal, said catalyst being prepared according to at least the following steps:
  • step b) the porous support obtained at the end of step b) is dried;
  • step a) is carried out before or after steps b) and c) and is carried out by bringing said porous support and said organic compound into contact under temperature, pressure and duration conditions such as fraction of said organic compound is transferred in the gaseous state to the porous support.
  • step a) is carried out by placing said porous support and said organic compound in the liquid state and without physical contact simultaneously, at a temperature below the boiling temperature of said organic compound and under conditions of pressure and duration such that a fraction of said organic compound is transferred in the gaseous state to the porous support.
  • step a) is carried out by means of an addition unit of said organic compound comprising first and second compartments in communication so as to allow the passage of a gaseous fluid between the compartments, the first compartment containing the porous support and the second compartment containing the organic compound in the liquid state.
  • the unit comprises an enclosure including the first and second compartments, the two compartments being in gas communication.
  • the unit comprises two enclosures respectively forming the first and the second compartments, the two enclosures being in communication by gas.
  • step a) is carried out in the presence of a flow of a carrier gas flowing from the second compartment into the first compartment.
  • step a) is carried out by bringing said porous support into contact with a porous solid comprising said organic compound under conditions of temperature, pressure and duration such that a fraction of said organic compound is transferred by gas from said porous solid to said porous support.
  • step a) is carried out by bringing said porous support into contact without physical contact with a porous solid comprising said organic compound.
  • the porous support and the porous solid comprising said organic compound are of different porosity and / or chemical nature (s).
  • the porous solid containing the organic compound is separated from said porous support and is returned to step a).
  • said organic compound is chosen from compounds comprising one or more chemical functions chosen from a carboxylic acid, alcohol, ester, aldehyde, ketone, ether, carbonate, amine, azo, nitrile, imine, amide, carbamate, carbamide, acid function. amine, ether, dilactone, carboxyanhydride.
  • the process is a process for the hydrogenation of at least one aromatic or polyaromatic compound contained in a hydrocarbon feed having a final boiling point less than or equal to 650 ° C, said process being carried out in the gas phase or in the liquid phase, at a temperature between 30 and 350 ° C, at a pressure between 0.1 and 20 MPa, at a hydrogen / hydrogen (aromatic compounds to be hydrogenated) ratio between 0.1 and 10 and at an hourly volume speed VVH of between 0.05 and 50 h 1 .
  • the process is a process for the selective hydrogenation of polyunsaturated compounds contained in a hydrocarbon feedstock having a final boiling point less than or equal to 300 ° C., which process being carried out at a temperature between 0 and 300 ° C, at a pressure between 0.1 and 10 MPa, at a hydrogen / hydrogen (polyunsaturated compounds to be hydrogenated) ratio between 0.1 and 10 and at an hourly volume speed between 0, 1 and 200 h 1 when the process is carried out in liquid phase, or at a hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio between 0.5 and 1000 and at an hourly volume speed between 100 and 40 000 h 1 when the process is performed in the gas phase.
  • FIG. 1 schematically illustrates an embodiment of step a) of the process for preparing the catalyst used in the context of the hydrogenation process according to the invention.
  • pores are meant pores with an opening greater than 50 nm.
  • pores are meant pores with an opening of between 2 nm and 50 nm, limits included.
  • micropores pores with an opening of less than 2 nm.
  • total pore volume of the catalyst or of the support used for the preparation of the catalyst according to the invention is meant the volume measured by intrusion with a mercury porosimeter according to standard ASTM D4284-83 at a maximum pressure of 4000 bar (400 MPa), using a surface tension of 484 dyne / cm and a contact angle of 140 °.
  • the wetting angle was taken equal to 140 ° following the recommendations of the book "Engineering techniques, treatise analysis and characterization", pages 1050-1055, written by Jean Charpin and Bernard Rasneur.
  • the value of the total pore volume corresponds to the value of the total pore volume measured by intrusion with a mercury porosimeter measured on the sample minus the value of the total pore volume measured by intrusion with the mercury porosimeter measured on the same sample for a pressure corresponding to 30 psi (about 0.2 MPa).
  • the specific surface of the catalyst or of the support used for the preparation of the catalyst according to the invention is understood to mean the specific surface B.E.T. determined by nitrogen adsorption in accordance with standard ASTM D 3663-78 established from the BRUNAUER-EMMETT-TELLER method described in the periodical "The Journal of American Society", 60, 309, (1938).
  • the size of nickel nanoparticles is understood to mean the average diameter of the nickel crystallites measured in their oxide forms.
  • the process for the preparation of the catalyst used in the context of the hydrogenation process according to the invention comprises at least the following steps:
  • step b) the porous support obtained at the end of step b) is dried;
  • step a) is carried out:
  • Steps a) to c) of the process for preparing the catalyst used in the context of the hydrogenation process according to the invention are described in more detail below.
  • Any organic compound containing oxygen and / or nitrogen but not comprising sulfur which is in the liquid state at the temperature and at the pressure used in the step of adding the organic compound to the porous support can be used in the catalyst preparation process.
  • said organic compound is chosen from a compound comprising one or more chemical functions chosen from a carboxylic acid, alcohol, ester, aldehyde, ketone, ether, carbonate, amine, azo, nitrile, imine, amide, carbamate, carbamide function, amino acid, ether, dilactone, carboxyanhydride.
  • said organic compound can be chosen from formic acid, ethanedioic acid (oxalic acid), propanedioic acid (malonic acid), pentanedioic acid (glutaric acid), hydroxyacetic acid (glycolic acid), 2-hydroxypropanoic acid (lactic acid), 2-hydroxypropanedioic acid (tartronic acid), 2-hydroxybutanedioic acid (malic acid), 2-hydroxypropane-1 acid , 2,3-tricarboxylic acid (citric acid), 2,3-dihydroxybutanedioic acid (tartaric acid), 2,2'-oxidiacetic acid (diglycolic acid), 2-oxopropanoic acid (pyruvic acid), l 4-oxopentanoic acid (levulinic acid).
  • oxalic acid propanedioic acid (malonic acid), pentanedioic acid (glutaric acid)
  • hydroxyacetic acid glycolic acid
  • said organic compound can be chosen from methanol, ethanol, phenol, ethylene glycol, propane-1, 3-diol, butane-1, 4-diol , pentane-1, 5-diol, hexane-1, 6-diol, glycerol, xylitol, mannitol, sorbitol, pyrocatechol, resorcinol, hydroquinol, diethylene glycol, triethylene glycol, polyethylene glycol having an average molar mass of less than 600 g / mol, glucose, mannose, fructose, sucrose, maltose, lactose, in any of their isomeric forms.
  • said organic compound can be chosen from a g-lactone or a d-lactone containing between 4 and 8 carbon atoms, g-butyrolactone, g-valerolactone, d-valerolactone , g- caprolactone, d-caprolactone, g-heptalactone, d-heptalactone, g-octalactone, d- octalactone, methyl methanoate, methyl acetate, methyl propanoate, butanoate methyl, methyl pentanoate, methyl hexanoate, methyl octanoate, methyl decanoate, methyl laurate, methyl dodecanoate, ethyl acetate, ethyl propanoate, butanoate d , pentanoate, ethyl hexanoate, dimethyl oxalate, di
  • organic compound comprises at least one amine function
  • said organic compound can be chosen from ethylenediamine, diaminohexane, tetramethylenediamine, hexamethylenediamine, tetramethylethylenediamine, tetraethylethylenediamine, diethylenetriamine, triethylenetetramine.
  • said organic compound can be chosen from formamide, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, acetamide, N- methylacetamide, N, N-dimethylmethanamide, N, N-diethylacetamide, N, N- dimethylpropionamide, propanamide, 2-pyrrolidone, N-methyl-2-pyrrolidone, y-lactam, caprolactam, acetylleucine, N-acetylaspartic acid, aminohippuric acid, N-acetylglutamic acid, 4-acetamidobenzoic acid, lactamide and glycolamide, urea, N-methylurea, N, N ' -dimethylurea, 1, 1 -dimethylurea, tetramethylurea according to any one of their isomeric forms.
  • organic compound comprises at least one amino acid function
  • said organic compound can be chosen from alanine, arginine, lysine, proline, serine, a threonine, EDTA (ethylene diamine tetraacetic acid).
  • organic compound comprises at least one ether function
  • said organic compound can be chosen from the group of linear ethers consisting of diethyl ether, dipropyl ether, dibutyl ether, methyl tert-butyl ether, diisopropyl ether, di -tert-butyl ether, methoxybenzene, phenyl vinyl ether, isopropyl vinyl ether and isobutyl vinyl ether, or in the group of cyclic ethers consisting of tetrahydrofuran, 1,4-dioxane, and morpholine
  • said organic compound can be chosen from the group of 4-membered cyclic dilactones constituted by 1, 2-dioxetanedione, or from the group of 5-membered cyclic dilactones constituted by 1, 3- dioxolane-4,5-dione, 1,5-dioxolane-2,4-dione, and 2,2-dibutyl-1,5-dioxolane-2,4-dione, or in the group of cyclic dilactones of 6 links consisting of 1, 3-dioxane-4,6-dione, 2,2-dimethyl-1, 3-dioxane-4,6-dione, 2,2,5-trimethyl-1, 3-dioxane- 4,6-dione, 1,4-dioxane-2,5-dione, 3,6-dimethyl-1,4-dioxane-2,5-dione, 3,6-diisopropyl
  • said organic compound When the organic compound has a carboxyanhydride function, said organic compound can be chosen from the group of O-carboxyanhydrides consisting of 5-methyl-1,3-dioxolane-2,4-dione and 2,5-dioxo- acid 1, 3-dioxolane-4-propanoic, or in the group of N-carboxyanhydrides consisting of 2,5-oxazolidinedione and 3,4-dimethyl-2,5-oxazolidinedione.
  • Carboxyanhydride is understood to mean a cyclic organic compound comprising a carboxyanhydride function, that is to say a -CO-O-CO-X- or -X-CO-O-CO- chain within the cycle with -CO- corresponding to a carbonyl function and X can be an oxygen or nitrogen atom.
  • the organic compound can be added to the porous support by two alternative embodiments described in detail below.
  • the hydrogenation process is carried out in the presence of a catalyst obtained by a preparation process in which step a) is carried out by bringing said porous support and said compound together organic in the liquid state, and without physical contact, at a temperature below the boiling temperature of said organic compound and under conditions of pressure and duration such that a fraction of said organic compound is transferred in the gaseous state to porous support.
  • the method of adding the organic compound does not involve a conventional impregnation step using a solution containing a solvent in which the organic compound is diluted. Consequently, it is not necessary to carry out a step of drying the porous support in order to remove the solvent, hence a more economical process in terms of hot utility and raw material.
  • the step of adding the organic compound is carried out at a temperature below the boiling temperature of said organic compound, hence a substantial gain from the energy point of view and in terms of safety. Indeed, for many organic compounds, such as, for example, ethylene glycol, the flash point is lower than the boiling point. There is therefore a risk of fire when working at a temperature higher than the boiling point of the organic compound.
  • a high temperature can also lead to partial or total decomposition of the organic compound greatly reducing its effect.
  • citric acid commonly used as an organic additive (US2009 / 0321320) decomposes at 175 ° C while its boiling point is 368 ° C at atmospheric pressure.
  • the preparation process is also characterized in that the addition of the organic compound to the porous support is carried out without physical contact with the organic compound in the liquid state, that is to say without impregnation of the porous support by the liquid.
  • the process is based on the principle of the existence of a vapor pressure of the organic compound which is generated by its liquid phase at a given temperature and pressure.
  • step a) of contacting is carried out for a sufficient time to reach the targeted content of organic compound in the porous solid which is used as a catalyst support.
  • the step of adding the organic compound to a porous support can be carried out in a unit for adding said organic compound.
  • the addition unit used comprises first and second compartments in communication so as to allow the passage of a gaseous fluid between the two compartments, the first compartment being able to contain the porous support and the second compartment being able to contain the organic compound in liquid form.
  • the method comprises a step a) in which the porous support and the organic compound are brought into contact in liquid form without physical contact between the porous support and the organic compound in liquid form, at a temperature below the boiling point of the organic compound and under conditions of pressure and duration such that a fraction of said organic compound is transferred by gas to the porous solid by circulation of a flow of organic compound in gaseous form from the second compartment to the first compartment, so as to ultimately provide a porous support containing the organic compound.
  • the addition unit comprises an enclosure including the first and second compartments, the compartments being in gas communication.
  • the compartments are arranged side by side and separated by a partition, for example substantially vertical, secured to the bottom of the enclosure and extending only over a fraction of the height of the enclosure so as to allow the sky to diffuse. gaseous of a compartment to the other.
  • the compartments are arranged one above the other and are in communication so as to allow the passage of the organic compound in the gaseous state between the two compartments.
  • the enclosure is closed.
  • the addition unit comprises two chambers respectively forming the first and the second compartments, the two chambers being in communication by gas, for example by means of a pipe.
  • the two enclosures are closed.
  • the compartment intended to contain the liquid organic compound comprises means for setting in motion said liquid in order to facilitate the transfer of the organic compound in the gaseous state from one compartment to the other.
  • the two compartments comprise means for respectively moving the liquid and the porous support.
  • the compartment containing the organic compound in the liquid state is equipped with internals intended to maximize the surface of the gas / liquid interface. These interns are for example porous monoliths impregnated with capillaries, falling films, linings or any other means known to the skilled person.
  • step a) is carried out in the presence of a gas (vector) flowing from the second compartment into the first compartment so as to entrain the organic molecules in the gaseous state in the compartment containing the porous support .
  • the carrier gas can be chosen from carbon dioxide, ammonia, air with controlled humidity, a rare gas such as argon, nitrogen, hydrogen, natural gas or a refrigerant gas as of the classification published by IUPAC.
  • step a) comprises a step in which a gaseous effluent containing said organic compound is withdrawn from the first compartment and the effluent is recycled in the first and / or the second compartment.
  • a gaseous effluent containing said organic compound in the gaseous state is withdrawn from the first compartment, said effluent is condensed so as to recover a liquid fraction containing the organic compound in the liquid state and said fraction is recycled liquid in the second compartment.
  • Step a) is preferably carried out at an absolute pressure of between 0.1 and 1 MPa.
  • the temperature of step a) is fixed at a lower temperature at the boiling point of the organic compound.
  • the temperature of step a) is generally less than 200 ° C, preferably between 10 ° C and 150 ° C, more preferably between 25 ° C and 120 ° C.
  • the hydrogenation process is carried out in the presence of a catalyst obtained by a preparation process in which step a) is carried out by bringing together said porous support with a solid porous (also called here “carrier solid”) comprising said organic compound under conditions of temperature, pressure and duration such that a fraction of said organic compound is transferred by gas from said solid carrier to said porous support.
  • a catalyst obtained by a preparation process in which step a) is carried out by bringing together said porous support with a solid porous (also called here “carrier solid”) comprising said organic compound under conditions of temperature, pressure and duration such that a fraction of said organic compound is transferred by gas from said solid carrier to said porous support.
  • the objective of bringing the porous support into contact with the carrier solid comprising the organic compound is to allow a gaseous transfer of part of the organic compound contained in the carrier solid to the porous support.
  • This step is based on the principle of the existence of a vapor pressure of the organic compound at a given temperature and pressure.
  • part of the organic compound molecules of the solid vector comprising the organic compound passes in gaseous form (vaporization) and is then transferred (by gaseous route) to the porous support.
  • the porous solid (“carrier solid”) acts as a source of organic compound to enrich the porous support with organic compound, which preferably does not initially comprise an organic compound. This embodiment is therefore different from a simple maturation step as conventionally encountered in the prior art.
  • the use of such a contacting step, ie by gas transfer, between the porous solid comprising the organic compound and the porous support can save a drying step which would conventionally take place after an impregnation step.
  • organic compound diluted in a solvent on the porous support (monitoring optionally a maturation step) in order to remove the solvent used.
  • the porous solid (“carrier solid”) comprising the organic compound is obtained by impregnation with the organic compound in the liquid state. Unlike the prior art, the organic compound is not diluted in a solvent.
  • An advantage of this embodiment compared to the methods of the prior art therefore lies in the absence of a drying step which is conventionally used to remove the solvent after the impregnation step and therefore to be less energy-consuming by compared to conventional processes.
  • This absence of a drying step can make it possible to avoid possible losses of organic compound by vaporization or even by degradation.
  • the volume of organic compound used is strictly less than the total volume of the accessible porosity of the porous solid and of the porous support used in step a) and is fixed relative to the amount of organic compound targeted on the porous solid at the end of step a).
  • Another advantage of this embodiment is therefore the use of a smaller amount of organic compound compared to the case of the prior art where, in the absence of solvent, all the porosity should be filled with organic compound.
  • the mass ratio (porous solid comprising the organic compound) / (porous support) is a function of the porous distribution of the porous solid and the porous support and of the objective in terms of the quantity of organic compound targeted on the porous support.
  • This mass ratio is generally less than or equal to 10, preferably less than 2 and even more preferably between 0.05 and 1, limits included.
  • step a) is carried out under conditions of temperature, pressure and duration so as to achieve equilibration of the amount of organic compound on the porous solid (“carrier solid”) and the porous support.
  • the term "balancing" means the fact that at the end of step a) at least 50% by weight of the porous solid and the porous support have an amount of said organic compound equal to more or less 50% of the targeted quantity, preferably at least 80% by weight of the porous solid and the porous support have an amount of said organic compound equal to more or less 40% of the targeted quantity and even more preferably at least 90% by weight of the porous solid and of the porous support have an amount of said organic compound equal to plus or minus 20% of the targeted amount.
  • the aim is the preparation of a porous support comprising 5% by weight of organic compound
  • equilibration is achieved when at least 50% by weight of the porous solid and the porous support have an amount of said organic compound which corresponds to a content of between 2.5 and 7.5% by weight, preferably when at least 80% by weight of the porous solid and the porous support have an amount of said organic compound which corresponds to a content which is between 3 and 7% by weight, and even more preferably, when at least 90% by weight of the solid porous and porous support have an amount of said organic compound which corresponds to a content between 4 and 6% by weight.
  • the determination of these contents can be done by a statistically representative sampling for which the samples can be characterized for example by assaying carbon and / or possible heteroatoms contained in the organic compound or by thermogravimetry coupled to an analyzer, for example a spectrometer mass, or an infrared spectrometer and thus determine the respective contents of organic compounds.
  • an analyzer for example a spectrometer mass, or an infrared spectrometer
  • Step a) is preferably carried out under controlled temperature and pressure conditions and so that the temperature is lower than the boiling temperature of said organic compound to be transferred by gas.
  • the processing temperature is less than 150 ° C. and the absolute pressure is generally between 0.1 and 1 MPa, preferably between 0.1 and 0.5 MPa and more preferably between 0, 1 and 0.2 MPa. It is thus possible to operate the step of bringing into presence in an open or closed enclosure, possibly with a control of the composition of the gas present in the enclosure.
  • the step of bringing the porous solid and the porous support together takes place in an open enclosure, it will be ensured that the entrainment of the organic compound outside the enclosure is limited as much as possible.
  • the step of bringing the porous solid and the porous support into contact can be carried out in a closed enclosure, for example in a container for storing or transporting the solid which is impermeable to gas exchange with the external environment.
  • the contacting step can be carried out by controlling the composition of the gas making up the atmosphere by the introduction of one or more gaseous compounds and optionally with a controlled hygrometry.
  • the gaseous compound can be carbon dioxide, ammonia, air with hygrometry controlled gas, a rare gas such as argon, nitrogen, hydrogen, natural gas or a refrigerant gas under the classification published by IUPAC.
  • the step of bringing into contact under a controlled gaseous atmosphere implements a forced circulation of the gas in the enclosure.
  • the step of bringing the porous solid and the porous support into contact is carried out without physical contact, in an enclosure equipped with compartments capable of respectively containing the porous solid (“carrier solid”) and the porous support, the compartments being in communication so as to allow the passage of the organic compound in the gaseous state between the two compartments. It is advantageous to circulate a gas flow first through the compartment containing the porous solid comprising the organic compound and then through the compartment containing the porous support.
  • the porous solid (“carrier solid”) is different in nature from the porous solid (serving as catalyst support), that is to say that the porous solid has at least one physical characteristic which discriminates against porous support to allow for example their subsequent separation.
  • this physical characteristic can be:
  • the separation can be carried out on a sieve or by cyclone;
  • this difference in density can for example be used for separation by elutriation or by cyclone;
  • the separation is done by the application of an electrostatic field.
  • said porous support and said porous solid containing the organic compound can advantageously be of different porosity and / or chemical nature (s).
  • the porous solid can be of chemical composition adapted to disadvantage the adsorption of the compound to be impregnated compared to the adsorption of the compound to be impregnated on the porous support.
  • a similar effect can be obtained by adapting the porous structure of the porous solid so that it has an average opening of its pores which is greater than that of the porous support so as to promote the transfer of the organic compound onto the porous support, particularly in the case of capillary condensation.
  • An embodiment of step a) of bringing the organic compound and the porous support into contact is shown diagrammatically in FIG. 1.
  • This embodiment according to the invention corresponds to the case where the porous solid containing the organic compound serves as a reservoir as an organic compound for the porous support.
  • a porous solid called “vector” 1 is impregnated in an impregnation unit 2 with a liquid organic compound supplied by line 3.
  • the vector solid 4 comprising the organic compound is transferred to unit d addition 5 in which the said solid vector is brought into contact with the porous support brought by the line 6.
  • the unit is withdrawn from the line 7, a mixture of porous support and porous solid (solid vector) each containing said organic compound.
  • the mixture of solids (porous support and porous solid) is then sent to a separation unit 8 which performs physical separation of the solids (porous solid and porous support). Thanks to the implementation of the separation, two streams of solids are obtained, namely the porous solid 9 containing the organic compound and the porous support 10 also containing the organic compound. In accordance with this embodiment, the porous solid still containing the organic compound 9 is recycled to the unit for introducing the liquid organic compound for later use.
  • Step b) of bringing said porous support into contact with at least one solution containing at least one precursor salt of the phase comprising at least one group VIII metal can be carried out by impregnation, dry or in excess, according to methods well known to those skilled in the art.
  • Said step b) is preferably carried out by bringing the porous support into contact with at least one aqueous or organic solution (for example methanol or ethanol or phenol or acetone or toluene or dimethyl sulfoxide (DMSO)) or well constituted by a mixture of water and at least one organic solvent, containing at least one precursor of the active phase comprising at least one metal from group VIII at least partially in the dissolved state, or alternatively contact of a precursor of the active phase with at least one colloidal solution of at least one group VIII metal precursor, in oxidized form (nanoparticles of oxides, oxy (hydroxide) or nickel hydroxide) or in reduced form (metallic nanoparticles of group VIII metal in the reduced state).
  • aqueous or organic solution for example methanol or ethanol or phenol or acetone or toluene or dimethyl sulfoxide (DMSO)
  • DMSO dimethyl sulfoxide
  • the solution is aqueous.
  • the pH of this solution can be modified by the optional addition of an acid or a base.
  • the aqueous solution may contain ammonia or ammonium NH 4 + ions.
  • said step b) is carried out by dry impregnation, which consists in bringing the porous support into contact with at least one solution, containing at least one precursor of the active phase comprising at least one group VIII metal, the volume of the solution is between 0.25 and 1.5 times the pore volume of the support of the catalyst precursor to be impregnated.
  • the group VIII metal is chosen from nickel, palladium or platinum. More preferably, the group VIII metal is nickel.
  • a nickel precursor is advantageously used in the form of nitrate, carbonate, chloride, sulphate, hydroxide, hydroxycarbonate, formate, acetate, oxalate, complexes formed with acetylacetonates, or tetrammine or hexammine complexes, or any other inorganic derivative soluble in aqueous solution, which is brought into contact with said catalyst precursor.
  • nickel precursor nickel nitrate, nickel carbonate, nickel chloride, nickel hydroxide, nickel hydroxycarbonate.
  • the nickel precursor is nickel nitrate, nickel carbonate or nickel hydroxide.
  • the nickel content is between 1 and 65% by weight of said element relative to the total mass of the catalyst, preferably between 5 and 55% by weight, even more preferably between 8 and 40% by weight, and particularly preferred between 12 and 35% by weight.
  • the Ni content is measured by X-ray fluorescence.
  • the nickel content is advantageously between 1 and 35% by weight, preferably between 5 and 30% by weight, and more preferably between 8 and 25% by weight, and even more preferably between 12 and 23% by weight of said element relative to the total mass of the catalyst.
  • the nickel content is advantageously between 8 and 65% by weight, preferably between 12 and 55% by weight, even more preferably between 15 and 40% by weight, and more preferably between 18 and 35% by weight of said element relative to the total mass of the catalyst.
  • the molar ratio between said organic compound introduced in step a) and the group VIII metal introduced in step b) is between 0.01 and 5.0 mol / mol, preferably between 0.05 and 2.0 mol / mol, more preferably between 0.1 and 1.5 mol / mol and even more preferably between 0.3 and 1.2 mol / mol, relative to the element of the group
  • the drying step c) is carried out at a temperature below 250 ° C, preferably above 15 ° C and below 250 ° C, more preferably between 30 and 220 ° C, even more preferably between 50 and 200 ° C , and even more preferably between 70 and 180 ° C, for a period typically between 10 minutes and 24 hours. Longer durations are not excluded, but do not necessarily bring improvement.
  • the drying step can be carried out by any technique known to those skilled in the art. It is advantageously carried out under an inert atmosphere or under an atmosphere containing oxygen or under a mixture of inert gas and oxygen. It is advantageously carried out at atmospheric pressure or at reduced pressure. Preferably, this step is carried out at atmospheric pressure and in the presence of air or nitrogen.
  • a step d) of calcination is carried out. at a temperature between 250 ° C and 1000 ° C, preferably between 250 ° C and 750 ° C, under an inert atmosphere or under an atmosphere containing oxygen.
  • the duration of this heat treatment is generally between 15 minutes and 10 hours. Longer durations are not excluded, but do not necessarily bring improvement.
  • the nickel in the active phase is thus in oxide form and the catalyst no longer contains or has very little organic compound introduced during its synthesis. However, the introduction of the organic compound during its preparation has made it possible to increase the dispersion of the active phase thus leading to a more active and / or more selective catalyst.
  • At least one step of reducing treatment is advantageously carried out e) in the presence of a reducing gas after the sequence of steps a ), b) and c), optionally d), and indifferently according to the sequence of these steps (as described above), so as to obtain a catalyst comprising the metal of group VIII at least partially in the form metallic.
  • This treatment makes it possible to activate said catalyst and to form metallic particles, in particular nickel in the zero-value state.
  • Said reducing treatment can be carried out in situ or ex situ, that is to say after or before the loading of the catalyst into the hydrogenation reactor.
  • Said step e) of reduction can be implemented on the catalyst having been subjected or not to step f) of passivation, described below.
  • the reducing gas is preferably hydrogen.
  • Hydrogen can be used pure or as a mixture (for example a hydrogen / nitrogen, hydrogen / argon, hydrogen / methane mixture). In the case where hydrogen is used as a mixture, all the proportions are possible.
  • Said reducing treatment is carried out at a temperature between 120 and 500 ° C., preferably between 150 and 450 ° C.
  • the reduction treatment is carried out at a temperature between 350 and 500 ° C., preferably between 350 and 450 ° C.
  • the reducing treatment is generally carried out at a temperature between 120 and 350 ° C, preferably between 150 and 350 ° C.
  • the duration of the reducing treatment is generally between 2 and 40 hours, preferably between 3 and 30 hours.
  • the temperature rise to the desired reduction temperature is generally slow, for example fixed between 0.1 and 10 ° C / min, preferably between 0.3 and 7 ° C / min.
  • the hydrogen flow rate, expressed in L / hour / gram of catalyst is between 0.1 and 100 L / hour / gram of catalyst, preferably between 0.5 and 10 L / hour / gram of catalyst, again more preferred between 0.7 and 5 L / hour / gram of catalyst.
  • the catalyst according to the invention can optionally undergo a passivation step (step f) with a sulfur-containing or oxygenated compound or with C0 2 before or after the reducing treatment step e) .
  • This passivation step can be carried out ex-situ or in-situ.
  • the passivation step is carried out by implementing methods known to those skilled in the art.
  • the sulfur passivation stage makes it possible to improve the selectivity of the catalysts and to avoid thermal runaway during the start-up of new catalysts (“run away” according to English terminology).
  • the passivation generally consists in irreversibly poisoning the sulfur compound with the most virulent active sites of nickel which exist on the new catalyst and therefore in attenuating the activity of the catalyst in favor of its selectivity.
  • the passivation step is carried out by the implementation of methods known to those skilled in the art and in particular, by way of example by the implementation of one of the methods described in patent documents EP0466567, US5153163, FR2676184, W02004 / 098774, EP0707890.
  • the sulfur compound is for example chosen from the following compounds: thiophene, thiophane, alkylmonosulfides such as dimethylsulfide, diethylsulfide, dipropylsulfide and propylmethylsulfide or also an organic disulfide of formula HO-RrS-S-FVOH such as di-thio-di-ethanol with the formula HO-C2H4-SS-C2H4-OH (often called DEODS).
  • the sulfur content is generally between 0.1 and 2% by weight of said element relative to the mass of the catalyst.
  • the passivation step with an oxygenated compound or with C0 2 is generally carried out after a reduction treatment beforehand at high temperature, generally between 350 and 500 ° C., and makes it possible to preserve the metallic phase of the catalyst in the presence of air. .
  • the oxygenated compound is generally air or any other flow containing oxygen.
  • the catalyst obtained by the preparation process comprises a porous support and an active phase comprising, preferably consisting of, at least one metal from group VIII, preferably nickel, palladium or platinum, more preferably nickel, said active phase not containing group VIB metal. In particular, it does not include molybdenum or tungsten.
  • the metal is nickel, the nickel content being between 1 and 65% by weight of said element relative to the total weight of the catalyst, preferably between 5 and 55% by weight, even more preferably between 8 and 40 % by weight, and particularly preferably between 12 and 35% by weight.
  • the nickel content is advantageously between 1 and 35% by weight, preferably between between 5 and 30% by weight, and more preferably between 8 and 25% by weight, and even more preferably between 12 and 23% by weight of said element relative to the total mass of the catalyst.
  • the nickel content is advantageously between 8 and 65% by weight, preferably between 12 and 55% by weight, even more preferred between 15 and 40% by weight, and more preferably between 18 and 35% by weight of said element relative to the total mass of the catalyst.
  • the active phase being in the form of nickel particles having a diameter less than or equal to 18 nm
  • said catalyst comprising a total pore volume measured by mercury porosimetry of between 0.01 and 1.0 ml / g, a mesoporous volume measured by mercury porosimetry greater than 0.01 mL / g, a macroporous volume measured by mercury porosimetry less than or equal to 0.6 ml / g, a mesoporous volume median diameter between 3 and 25 nm, a macroporous median diameter by volume between 50 and 1000 nm, and an SBET specific surface between 25 and 350 m 2 / g
  • the size of the nickel particles in the catalyst according to the invention is less than 18 nm, preferably less than 15 nm, more preferably between 0.5 and 12 nm, more preferably between 1.5 and 8.0 nm .
  • the porous support on which said active phase is deposited comprises alumina (Al 2 0 3 ).
  • the alumina present in said support is a transition alumina such as a gamma, delta, theta, chi, rho or eta alumina, alone or as a mixture. More preferably, the alumina is a transition gamma, delta or theta alumina, alone or as a mixture.
  • the alumina present in said support is an alpha alumina.
  • the support can comprise another oxide different from alumina, such as silica (Si0 2 ), titanium dioxide (Ti0 2 ), cerine (Ce0 2 ), zirconia (Zr0 2 ) or P 2 0 5 .
  • the support can be a silica-alumina. Very preferably, said support consists solely of alumina.
  • Said catalyst is generally presented in all the forms known to those skilled in the art, for example in the form of balls (generally having a diameter between 1 and 8 mm), extrudates, tablets, hollow cylinders. Preferably, it consists of extrudates with a diameter generally between 0.5 and 10 mm, preferably between 0.8 and 3.2 mm and very preferably between 1.0 and 2.5 mm and of average length. between 0.5 and 20 mm.
  • the term “mean diameter” of the extrudates means the mean diameter of the circle circumscribed in the cross section of these extrudates.
  • the catalyst can advantageously be presented in the form of cylindrical, multilobed, trilobed or quadrilobed extrudates. Preferably its shape will be three-lobed or four-lobed. The shape of the lobes can be adjusted according to all the methods known from the prior art.
  • the pore volume of the support is generally between 0.1 cm 3 / g and 1.5 cm 3 / g, preferably between 0.5 cm 3 / g and 1.0 cm 3 / g.
  • the specific surface of the support is generally greater than or equal to 5 m 2 / g, preferably greater than or equal to 30 m 2 / g, more preferably between 40 m 2 / g and 500 m 2 / g, and even more preferably included between 50 m 2 / g and 400 m 2 / g.
  • the specific surface of the support is advantageously between 40 and 250 m 2 / g, preferably between 50 and 200 m 2 / g.
  • the specific surface of the support is advantageously between 60 and 500 m 2 / g, preferably between 100 and 400 m 2 / g .
  • the present invention also relates to a process for the selective hydrogenation of polyunsaturated compounds containing at least 2 carbon atoms per molecule, such as diolefins and / or acetylenics and / or alkenylaromatics, also called styrenics, contained in a charge of hydrocarbons having a final boiling point less than or equal to 300 ° C, which process being carried out at a temperature between 0 and 300 ° C, at a pressure between 0.1 and 10 MPa, at a hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio between 0.1 and 10 and at an hourly volume speed between 0.1 and 200 h 1 when the process is carried out in liquid phase, or at a hydrogen / hydrogen (polyunsaturated compounds to be hydrogenated) ratio between 0.5 and 1000 and at an hourly volume speed between 100 and 40,000 h 1 when the process is carried out in the gas phase, in the presence of a catalyst obtained by the preparation process as described above in the
  • Monounsaturated organic compounds such as ethylene and propylene, are the source of the manufacture of polymers, plastics and other value-added chemicals. These compounds are obtained from natural gas, naphtha or diesel which have been treated by steam cracking or catalytic cracking processes.
  • Selective hydrogenation is the main treatment developed to specifically remove unwanted polyunsaturated compounds from these hydrocarbon feedstocks. It allows the conversion of polyunsaturated compounds to the corresponding alkenes or aromatics while avoiding their complete saturation and therefore the formation of the corresponding alkanes or naphthenes. In the case of steam cracking essences used as a filler, selective hydrogenation also makes it possible to selectively hydrogenate alkenylaromatics to aromatics, avoiding the hydrogenation of aromatic rings.
  • the hydrocarbon feedstock treated in the selective hydrogenation process has a final boiling point less than or equal to 300 ° C and contains at least 2 carbon atoms per molecule and comprises at least one polyunsaturated compound.
  • polyunsaturated compounds means compounds comprising at least one acetylenic function and / or at least one diene function and / or at least one alkenylaromatic function. More particularly, the charge is selected from the group consisting of a C2 steam cracking cut, a C2-C3 steam cracking cut, a C3 steam cracking cut, a C4 steam cracking cut, a C5 steam cracking cut and a gas cracking essence also called pyrolysis essence or C5 + cut.
  • the C2 steam cracking section advantageously used for the implementation of the selective hydrogenation process according to the invention, has for example the following composition: between 40 and 95% by weight of ethylene, of the order of 0.1 to 5% by weight of acetylene, the remainder being essentially ethane and methane. In some C2 steam cracking cuts, between 0.1 and 1% by weight of C3 compounds may also be present.
  • the steam cracking cut C3, advantageously used for the implementation of the selective hydrogenation process according to the invention, has for example the following average composition: of the order of 90% by weight of propylene, of the order of 1 to 8% by weight of propadiene and methylacetylene, the rest being essentially propane. In certain C3 sections, between 0.1 and 2% by weight of C2 compounds and C4 compounds may also be present.
  • a C2 - C3 cut can also be advantageously used for the implementation of the selective hydrogenation process according to the invention. It has for example the following composition: of the order of 0.1 to 5% by weight of acetylene, of the order of 0.1 to 3% by weight of propadiene and of methylacetylene, of the order of 30% by weight ethylene, of the order of 5% by weight of propylene, the remainder being essentially methane, ethane and propane.
  • This charge can also contain between 0.1 and 2% by weight of C4 compounds.
  • the C4 steam cracking cut advantageously used for the implementation of the selective hydrogenation process according to the invention, has for example the following average mass composition: 1% by weight of butane, 46.5% by weight of butene, 51% by weight of butadiene, 1.3% by weight of vinyl acetylene and 0.2% by weight of butyne.
  • 1% by weight of butane 46.5% by weight of butene
  • 51% by weight of butadiene 1.3% by weight of vinyl acetylene
  • 0.2% by weight of butyne 0.2% by weight of butyne.
  • C3 compounds and C5 compounds may also be present.
  • the C5 steam cracking section advantageously used for the implementation of the selective hydrogenation process according to the invention, has for example the following composition: 21% by weight of pentanes, 45% by weight of pentenes, 34% by weight of pentadienes.
  • the steam cracking gasoline or pyrolysis gasoline corresponds to a hydrocarbon fraction whose boiling point is generally between 0 and 300 ° C., preferably between 10 and 250 ° C.
  • the polyunsaturated hydrocarbons to be hydrogenated present in said essence of steam cracking are in particular diolefinic compounds (butadiene, isoprene, cyclopentadiene ...), styrene compounds (styrene, alpha-methylstyrene ...) and indene compounds (indene ... ).
  • the essence of steam cracking generally comprises the C5-C12 cut with traces of C3, C4, C13, C14, C15 (for example between 0.1 and 3% by weight for each of these cuts).
  • a charge formed from pyrolysis gasoline generally has the following composition: 5 to 30% by weight of saturated compounds (paraffins and naphthenes), 40 to 80% by weight of aromatic compounds, 5 to 20% by weight of mono-olefins, 5 to 40% by weight of diolefins, 1 to 20% by weight of alkenylaromatic compounds, all of the compounds forming 100%. It also contains from 0 to 1000 ppm by weight of sulfur, preferably from 0 to 500 ppm by weight of sulfur.
  • the charge of polyunsaturated hydrocarbons treated in accordance with the selective hydrogenation process according to the invention is a C2 steam cracking cut, or a C2-C3 steam cracking cut, or a steam cracked gasoline.
  • the selective hydrogenation process according to the invention aims to eliminate said polyunsaturated hydrocarbons present in said charge to be hydrogenated without hydrogenating monounsaturated hydrocarbons.
  • the selective hydrogenation process aims to selectively hydrogenate acetylene.
  • the selective hydrogenation process aims to selectively hydrogenate propadiene and methylacetylene.
  • the aim is to eliminate butadiene, vinyl acetylene (VAC) and butyne
  • the aim is to eliminate the pentadienes.
  • the selective hydrogenation process aims to selectively hydrogenate said polyunsaturated hydrocarbons present in said charge to be treated so that the diolefinic compounds are partially hydrogenated to mono-olefins and that the styrenic and indene compounds are partially hydrogenated to the corresponding aromatic compounds, avoiding the hydrogenation of the aromatic rings.
  • the technological implementation of the selective hydrogenation process is for example carried out by injection, in upward or downward flow, of the charge of polyunsaturated hydrocarbons and hydrogen in at least one fixed bed reactor.
  • Said reactor can be of the isothermal type or of the adiabatic type.
  • An adiabatic reactor is preferred.
  • the charge of polyunsaturated hydrocarbons can advantageously be diluted by one or more re-injections) of the effluent, coming from said reactor where the hydrogenation reaction takes place selective, at various points of the reactor, located between the inlet and the outlet of the reactor in order to limit the temperature gradient in the reactor.
  • the technological implementation of the selective hydrogenation process according to the invention can also be advantageously carried out by the implantation of at least said supported catalyst in a reactive distillation column or in reactors - exchangers or in a slurry type reactor. .
  • the hydrogen flow can be introduced at the same time as the feed to be hydrogenated and / or at one or more different points of the reactor.
  • the selective hydrogenation of cuts C2, C2-C3, C3, C4, C5 and C5 + of steam cracking can be carried out in gas phase or in liquid phase, preferably in liquid phase for cuts C3, C4, C5 and C5 + and in phase gas for cuts C2 and C2-C3.
  • a liquid phase reaction lowers the energy cost and increases the catalyst cycle time.
  • the selective hydrogenation of a hydrocarbon feed containing polyunsaturated compounds containing at least 2 carbon atoms per molecule and having a final boiling point less than or equal to 300 ° C is carried out at a temperature between 0 and 300 ° C, at a pressure between 0.1 and 10 MPa, at a hydrogen / molar ratio (polyunsaturated compounds to be hydrogenated) between 0.1 and 10 and at an hourly volume velocity VVH (defined as the ratio of the charge flow rate to the volume of the catalyst) of between 0.1 and 200 h 1 for a process carried out in the liquid phase, or at a hydrogen / hydrogen (polyunsaturated compounds to be hydrogenated) ratio between 0.5 and 1000 and at an hourly volume speed VVH of between 100 and 40,000 h 1 for a process carried out in the gas phase.
  • VVH defined as the ratio of the charge flow rate to the volume of the catalyst
  • the molar ratio (hydrogen) / (polyunsaturated compounds to be hydrogenated) is generally understood between 0.5 and 10, preferably between 0.7 and 5.0 and even more preferably between 1.0 and 2.0
  • the temperature is between 0 and 200 ° C, preferably between 20 and 200 ° C and even more preferably between 30 and 180 ° C.
  • the hourly space velocity (VVH) is generally between 0.5 and 100 h 1 , preferably between 1 and 50 h 1
  • the pressure is generally between 0, 3 and 8.0 MPa, preferably between 1.0 and 7.0 MPa and even more preferably between 1.5 and 4.0 MPa.
  • a selective hydrogenation process is carried out in which the charge is a steam cracking essence comprising polyunsaturated compounds, the hydrogen / hydrogen molar ratio (polyunsaturated compounds to be hydrogenated) is between 0.7 and 5.0, the temperature is between 20 and 200 ° C, the hourly volume speed (VVH) is generally between 1 and 50 h 1 and the pressure is between 1, 0 and 7.0 MPa.
  • the charge is a steam cracking essence comprising polyunsaturated compounds
  • the hydrogen / hydrogen molar ratio (polyunsaturated compounds to be hydrogenated) is between 0.7 and 5.0
  • the temperature is between 20 and 200 ° C
  • the hourly volume speed (VVH) is generally between 1 and 50 h 1
  • the pressure is between 1, 0 and 7.0 MPa.
  • a selective hydrogenation process is carried out in which the filler is a steam cracking essence comprising polyunsaturated compounds, the hydrogen / hydrogen molar ratio (polyunsaturated compounds to be hydrogenated) is between 1.0 and 2.0, the temperature is between 30 and 180 ° C, the hourly volume speed (VVH) is generally between 1 and 50 h 1 and the pressure is between 1, 5 and 4.0 MPa.
  • the filler is a steam cracking essence comprising polyunsaturated compounds
  • the hydrogen / hydrogen molar ratio (polyunsaturated compounds to be hydrogenated) is between 1.0 and 2.0
  • the temperature is between 30 and 180 ° C
  • the hourly volume speed (VVH) is generally between 1 and 50 h 1
  • the pressure is between 1, 5 and 4.0 MPa.
  • the hydrogen flow rate is adjusted in order to have enough of it to theoretically hydrogenate all of the polyunsaturated compounds and to maintain an excess of hydrogen at the outlet of the reactor.
  • the molar ratio ( hydrogen) / (polyunsaturated compounds to be hydrogenated) is generally between 0.5 and 1000, preferably between 0.7 and 800
  • the temperature is between 0 and 300 ° C, preferably between 15 and 280 ° C
  • the speed hourly volume (VVH) is generally between 100 and 40,000 h 1 , preferably between 500 and 30,000 h 1
  • the pressure is generally between 0.1 and 6.0 MPa, preferably between 0.2 and 5.0 MPa .
  • the present invention also relates to a process for the hydrogenation of at least one aromatic or polyaromatic compound contained in a hydrocarbon feed having a final boiling point less than or equal to 650 ° C, generally between 20 and 650 ° C , and preferably between 20 and 450 ° C.
  • Said hydrocarbon feed containing at least one aromatic or polyaromatic compound can be chosen from the following petroleum or petrochemical cuts: the catalytic reforming reformate, kerosene, light diesel, heavy diesel, cracking distillates, such as FCC recycling oil, coking unit diesel, hydrocracking distillates.
  • the content of aromatic or polyaromatic compounds contained in the hydrocarbon feedstock treated in the hydrogenation process according to the invention is generally between 0.1 and 80% by weight, preferably between 1 and 50% by weight, and particularly preferably between 2 and 35% by weight, the percentage being based on the total weight of the hydrocarbon charge.
  • the aromatic compounds present in said hydrocarbon charge are, for example, benzene or alkylaromatics such as toluene, ethylbenzene, Go-xylene, m-xylene, or p-xylene, or alternatively aromatics having several aromatic rings (polyaromatics) such as naphthalene.
  • the sulfur or chlorine content of the feed is generally less than 5000 ppm by weight of sulfur or chlorine, preferably less than 100 ppm by weight, and particularly preferably less than 10 ppm by weight.
  • the technological implementation of the process for the hydrogenation of aromatic or polyaromatic compounds is for example carried out by injection, in upward or downward flow, of the hydrocarbon charge and of hydrogen in at least one fixed bed reactor.
  • Said reactor can be of the isothermal type or of the adiabatic type.
  • An adiabatic reactor is preferred.
  • the hydrocarbon charge can advantageously be diluted by one or more re-injection (s) of the effluent, coming from said reactor where the hydrogenation reaction of aromatics takes place, at various points of the reactor, located between the inlet and the outlet of the reactor in order to limit the temperature gradient in the reactor.
  • the technological implementation of the process for the hydrogenation of aromatics according to the invention can also be advantageously carried out by the implantation of at least said supported catalyst in a reactive distillation column or in reactors - exchangers or in a type reactor. slurry.
  • the hydrogen flow can be introduced at the same time as the feed to be hydrogenated and / or at one or more different points of the reactor.
  • the hydrogenation of aromatic or polyaromatic compounds can be carried out in the gas phase or in the liquid phase, preferably in the liquid phase.
  • the hydrogenation of aromatic or polyaromatic compounds is carried out at a temperature between 30 and 350 ° C, preferably between 50 and 325 ° C, at a pressure between 0.1 and 20 MPa, from preferably between 0.5 and 10 MPa, at a hydrogen / (aromatic compounds to be hydrogenated) molar ratio between 0.1 and 10 and at an hourly volume velocity VVH of between 0.05 and 50 h 1 , preferably between 0.1 and 10 h 1 of a hydrocarbon charge containing aromatic or polyaromatic compounds and having a point final boiling point less than or equal to 650 ° C, generally between 20 and 650 ° C, and preferably between 20 and 450 ° C.
  • the hydrogen flow rate is adjusted in order to have enough of it to theoretically hydrogenate all of the aromatic compounds and to maintain an excess of hydrogen at the outlet of the reactor.
  • the conversion of the aromatic or polyaromatic compounds is generally greater than 20 mol%, preferably greater than 40 mol%, more preferably greater than 80 mol%, and particularly preferably greater than 90 mol% of the aromatic compounds or polyaromatics contained in the hydrocarbon feed.
  • the conversion is calculated by dividing the difference between the total moles of aromatic or polyaromatic compounds in the hydrocarbon feedstock and in the product by the total moles of aromatic or polyaromatic compounds in the hydrocarbon feedstock.
  • a process for the hydrogenation of benzene of a hydrocarbon feedstock such as the reformate from a catalytic reforming unit, is carried out.
  • the benzene content in said hydrocarbon charge is generally between 0.1 and 40% by weight, preferably between 0.5 and 35% by weight, and particularly preferably between 2 and 30% by weight, the percentage by weight being based on the total weight of the hydrocarbon charge.
  • the sulfur or chlorine content of the feed is generally less than 10 ppm by weight of sulfur or chlorine respectively, and preferably less than 2 ppm by weight.
  • the hydrogenation of benzene contained in the hydrocarbon feed can be carried out in the gas phase or in the liquid phase, preferably in the liquid phase.
  • a solvent may be present, such as cyclohexane, heptane, octane.
  • the hydrogenation of benzene takes place at a temperature between 30 and 250 ° C, preferably between 50 and 200 ° C, and more preferably between 80 and 180 ° C, at a pressure between between 0.1 and 10 MPa, preferably between 0.5 and 4 MPa, at a hydrogen / (benzene) molar ratio between 0.1 and 10 and at an hourly volume velocity VVH of between 0.05 and 50 h 1 , preferably between 0.5 and 10 h 1 .
  • the conversion of benzene is generally greater than 50% by mole, preferably greater than 80% by mole, more preferably greater than 90% by mole and particularly preferably greater than 98% by mole.
  • All the catalysts prepared in Examples 1 to 5 are prepared with an isotomer of nickel element.
  • the support used for the preparation of each of these catalysts is a delta alumina having a pore volume of 0.67 ml_ / g and a BET specific surface area equal to 140 m 2 / g.
  • solution S1 An aqueous solution of Ni precursors (solution S1) used for the preparation of catalysts A, B, C and D is prepared at 25 ° C by dissolving 276 g of nickel nitrate Ni (N0 3 ) 2 .6H 2 0 (supplier Strem Chemicals®) in a volume of 100mL of demineralized water.
  • the solution S1 is obtained, the NiO concentration of which is 19.0% by weight (relative to the mass of the solution).
  • Example 2 comparativative: Preparation of a catalyst A by impregnation of nickel nitrate without additive
  • the solution S1 prepared in Example 1 is impregnated (7.4 ml of solution) dry on 10 g of said alumina support.
  • the solid thus obtained is then dried in an oven for 16 hours at 120 ° C, then calcined under an air flow of 1 L / h / g of catalyst at 450 ° C for 2 hours.
  • Example 3 Preparation of a catalyst B by successive impregnation of nickel nitrate then of 4-oxopentanoic acid (levulinic acid)
  • Catalyst B is prepared by impregnating Ni nitrate (7.4 ml of solution) on said alumina support and then by impregnating levulinic acid using a molar ratio ⁇ levulinic acid / nickel ⁇ equal to 0.4.
  • Example 1 the solution S1 prepared in Example 1 is impregnated dry on said alumina support.
  • the solid B1 thus obtained is then dried in an oven for 16 hours at 120 ° C.
  • an aqueous solution B ' prepared by dissolving 3.26 g of levulinic acid (CAS 123-76-2, supplier Merck®) in 20 ml of demineralized water.
  • This solution B ' is then impregnated to dryness on 10 g of the solid B1 previously prepared.
  • the solid thus obtained is then dried in an oven for 16 hours at 120 ° C, then calcined under an air flow of 1 L / h / g of catalyst at 450 ° C for 2 hours.
  • the calcined catalyst B thus prepared contains 13.8% by weight of the nickel element supported on alumina and it has nickel oxide crystallites with an average diameter of 5.2 nm.
  • Example 4 Preparation of a catalyst C by successive impregnation of nickel nitrate then of levulinic acid (4-oxopentanoic acid), with an additive molar ratio of nickel of 0.4, in the qazous phase using a solid vector (according to variant 2)
  • Catalyst C is prepared by impregnating Ni nitrate on said alumina support and then by impregnating levulinic acid in the gas phase using a molar ratio ⁇ levulinic acid / nickel ⁇ equal to 0.4. This method of preparation uses a solid vector.
  • Example 1 the solution S1 prepared in Example 1 is impregnated dry on said alumina support.
  • the solid C1 thus obtained is then dried in an oven for 16 hours at 120 ° C.
  • an aqueous solution C ’ is prepared by dissolving 3.26 g of levulinic acid (CAS 123-76-2, supplier Merck®) in 20 ml of demineralized water.
  • Solid C2 is obtained by dry impregnation of 7.4 ml of this solution C ’on said alumina support.
  • the solid C2 is then placed in a tubular reactor, for example a quartz tube of DN 50 mm provided with a sinter, on a layer of thin thickness (approximately 1 cm).
  • a low surface inert bed is then deposited (on a layer of a few cm, here SiC from AGP), then the second solid C1.
  • a carrier gas circulation (dry air in this case) is then carried out from the bottom to the top of the reactor (passing through C2 and then through C1).
  • a flow of 1 L / h / g is used, the temperature rose to 120 ° C on the zone containing the solid C2 and to 30 ° C on that containing the solid C1.
  • the system is evacuated via a vane pump placed on the head of the quartz tube.
  • the device is maintained for 8 hours with a vacuum of at least 50 mbar.
  • the conditions are chosen to transfer levulinic acid from solid C2 to solid C1 in vapor form. At the end of the time necessary for the transfer, the solid C1 having captured the levulinic acid becomes solid C.
  • the solid C thus obtained is then calcined under an air flow of 1 L / h / g of catalyst at 450 ° C for 2 hours.
  • the calcined catalyst C thus prepared contains 13.8% by weight of the nickel element supported on alumina and it has nickel oxide crystallites with an average diameter of 4.9 nm.
  • Example 5 (invention): Preparation of a catalyst D by successive impregnation of nickel nitrate then of levulinic acid (4-oxopentanoic acid), with an additive molar ratio of nickel of 0.4, in the azose phase (according to the variant 1)
  • Catalyst D is prepared by impregnation of Ni nitrate on said alumina support and then by impregnation of levulinic acid in the gas phase using a molar ratio ⁇ levulinic acid / nickel ⁇ equal to 0.4.
  • Example 1 the solution S1 prepared in Example 1 is impregnated dry on said alumina support.
  • the solid D1 thus obtained is then dried in an oven for 16 hours at 120 ° C.
  • a saturator 3.26 g of pure and undiluted levulinic acid (CAS 123-76-2, supplier Merck®) is deposited at the bottom of a saturator.
  • Said saturator is connected to a quartz reactor where the solid D1 is placed on a porous sinter in a monolayer of solid.
  • the reactor is 5.5 cm in diameter for the 10 g of solid to be treated.
  • the saturator / reactor assembly is brought into uniform temperature. Under a nitrogen flow (150 NL / h) which is injected at the base of the saturator, the temperature of the saturator / reactor assembly is adjusted to a temperature of 120 ° C. The temperature conditions are chosen so that the additive has a vapor pressure of at least 400 Pa.
  • the whole is left under a flow of nitrogen at temperature for 8 hours.
  • the system is then inerted, the saturator is bypassed, and air is then injected into the same assembly.
  • the reactor temperature only is increased (1 ° C / minute) under a flow of a 50/50 air / nitrogen mixture at 450 ° C for 2 hours.
  • the calcined catalyst D thus prepared contains 13.8% by weight of the nickel element supported on alumina and it exhibits nickel oxide crystallites with an average diameter of 4.9 nm.
  • the selective hydrogenation reaction is carried out in a 500 mL stainless steel autoclave, equipped with mechanical agitation with magnetic drive and capable of operating under a maximum pressure of 100 bar (10 MPa) and temperatures between 5 ° C and 200 ° C.
  • a quantity of 2 ml of catalyst Prior to its introduction into the autoclave, a quantity of 2 ml of catalyst is reduced ex situ under a hydrogen flow of 1 L / h / g of catalyst, at 400 ° C. for 16 hours (temperature rise ramp of 1 ° C / min), then it is transferred to the autoclave, protected from air. After adding 216 ml of n-heptane (supplier VWR®, purity> 99% chromanorm HPLC), the autoclave is closed, purged, then pressurized under 35 bar (3.5 MPa) of hydrogen, and brought to temperature of the test equal to 80 ° C.
  • toluene supplied SDS®, purity> 99.8%
  • l agitation is started at 1600 rpm.
  • the pressure is kept constant at 35 bar (3.5 MPa) in the autoclave using a reservoir bottle located upstream of the reactor.
  • the progress of the reaction is monitored by taking samples of the reaction medium at regular time intervals: the toluene is completely hydrogenated to methylcyclohexane.
  • the consumption of hydrogen is also followed over time by the reduction in pressure in a reservoir bottle located upstream of the reactor.
  • the catalytic activity is expressed in moles of H 2 consumed per minute and per gram of Ni.
  • the catalysts A to D described in the above examples are tested against the selective hydrogenation reaction of a mixture containing styrene and isoprene.
  • composition of the filler to be selectively hydrogenated is as follows: 8% by weight styrene (supplier Sigma Aldrich®, purity 99%), 8% by weight isoprene (supplier Sigma Aldrich®, purity 99%), 84% by weight n-heptane (solvent ) (supplier VWR®, purity> 99% chromanorm HPLC).
  • This feed also contains sulfur compounds in very low content: 10 ppm by weight of sulfur introduced in the form of pentanethiol (supplier Fluka®, purity> 97%) and 100 ppm by weight of sulfur introduced in the form of thiophene (supplier Merck®, purity 99 %).
  • This composition corresponds to the initial composition of the reaction mixture.
  • This mixture of model molecules is representative of a pyrolysis essence.
  • the selective hydrogenation reaction is carried out in a 500 mL stainless steel autoclave, equipped with mechanical agitation with magnetic drive and capable of operating under a maximum pressure of 100 bar (10 MPa) and temperatures between 5 ° C and 200 ° C.
  • an amount of 3 ml of catalyst Prior to its introduction into the autoclave, an amount of 3 ml of catalyst is reduced ex situ under a hydrogen flow of 1 L / h / g of catalyst, at 400 ° C. for 16 hours (temperature rise ramp of 1 ° C / min), then it is transferred to the autoclave, protected from air. After adding 214 mL of n-heptane (supplier VWR®, purity> 99% chromanorm HPLC), the autoclave is closed, purged, then pressurized under 35 bar (3.5 MPa) of hydrogen, and brought to temperature of the test equal to 30 ° C.
  • the methyl butenes are in turn hydrogenated to isopentane.
  • the consumption of hydrogen is also followed over time by the reduction in pressure in a reservoir bottle located upstream of the reactor.
  • the catalytic activity is expressed in moles of H 2 consumed per minute and per gram of Ni.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

Procédé d'hydrogénation d'un composé polyinsaturé contenu dans une charge d'hydrocarbures en présence d'un catalyseur comprenant un support poreux et une phase active comprenant un métal du groupe VIII, ledit catalyseur étant préparé selon les étapes suivantes : a) on additionne au support poreux un composé organique contenant de l'oxygène et/ou de l'azote mais ne comprenant pas de soufre; b) mise en contact dudit support poreux avec une solution contenant un sel de précurseur de la phase active; c) on sèche le support poreux obtenu à l'issue de l'étape b); caractérisé en ce que l'étape a) est réalisée avant ou après les étapes b) et c) et est réalisée par mise en présence dudit support poreux et dudit composé organique dans des conditions de température, de pression et de durée telles qu'une fraction dudit composé organique est transférée à l'état gazeux au support poreux.

Description

PROCEDE D’HYDROGENATION COMPRENANT UN CATALYSEUR PREPARE PAR ADDITION D’UN COMPOSE ORGANIQUE EN PHASE GAZEUSE
Domaine technique
L'invention a pour objet un procédé d’hydrogénation sélective de composés polyinsaturés dans une charge hydrocarbonée, notamment dans les coupes C2-C5 de vapocraquage et les essences de vapocraquage, ou un procédé d’hydrogénation d’au moins un composé aromatique ou polyaromatique contenu dans une charge hydrocarbonée permettant la transformation des composés aromatiques de coupes pétrolières ou pétrochimiques par conversion des noyaux aromatiques en noyaux naphténiques. Le procédé d’hydrogénation sélective ou d’hydrogénation des aromatiques est réalisé en présence d’un catalyseur préparé selon un mode opératoire particulier.
Etat de la technique
Les catalyseurs d'hydrogénation sélective de composés polyinsaturés ou d'hydrogénation de composés aromatiques sont généralement à base de métaux du groupe VIII de la classification périodique des éléments tel que le nickel. Le métal se présente sous la forme de particules métalliques nanométriques déposées sur un support qui peut être un oxyde réfractaire. La teneur en métal du groupe VIII, la présence éventuelle d'un deuxième élément métallique, la taille des particules de métal et la répartition de la phase active dans le support ainsi que la nature et distribution poreuse du support sont des paramètres qui peuvent avoir une importance sur les performances des catalyseurs.
La vitesse de la réaction d’hydrogénation est gouvernée par plusieurs critères, tels que la diffusion des réactifs à la surface du catalyseur (limitations diffusionnelles externes), la diffusion des réactifs dans la porosité du support vers les sites actifs (limitations diffusionnelles internes) et les propriétés intrinsèques de la phase active telles que la taille des particules métalliques et la répartition de la phase active au sein du support.
En ce qui concerne la taille des particules métalliques, il est généralement admis que le catalyseur est d’autant plus actif que la taille des particules métalliques est petite. De plus, il est important d’obtenir une répartition en taille des particules centrée sur la valeur optimale ainsi qu’une répartition étroite autour de cette valeur. La voie la plus classique de préparation de ces catalyseurs est l'imprégnation du support par une solution aqueuse d'un précurseur de nickel, suivie généralement d'un séchage et d'une calcination. Avant leur utilisation dans des réactions d'hydrogénation ces catalyseurs sont généralement réduits afin d'obtenir la phase active qui est sous forme métallique (c'est-à-dire à l'état de valence zéro). Les catalyseurs à base de nickel sur alumine préparés par une seule étape d'imprégnation permettent généralement d'atteindre des teneurs en nickel comprises entre 12 et 15 % poids de nickel environ par rapport au poids total du catalyseur, selon le volume poreux de l'alumine utilisée. Lorsqu'on souhaite préparer des catalyseurs ayant une teneur en nickel plus élevée, plusieurs imprégnations successives sont souvent nécessaires pour obtenir la teneur en nickel souhaitée, suivie d'au moins une étape de séchage, puis éventuellement d'une étape de calcination entre chaque imprégnation.
Par ailleurs, en vue d’obtenir de meilleures performances catalytiques, notamment une meilleure sélectivité et/ou activité, il est connu dans l’état de la technique d’utiliser des additifs de type composés organiques pour la préparation de catalyseurs métalliques, notamment pour des catalyseurs qui ont été préparés par imprégnation suive éventuellement d’une étape de maturation et suivie d’une étape de séchage. De nombreux documents décrivent l’utilisation de différentes gammes de composés organiques tels que des composés organiques contenant de l’azote et/ou des composés organiques contenant de l’oxygène. Par exemple, la demande FR2984761 divulgue un procédé de préparation d’un catalyseur d’hydrogénation sélective comprenant un support et une phase active comprenant un métal du groupe VIII, ledit catalyseur étant préparé par un procédé comprenant une étape de d’imprégnation d’une solution contenant un précurseur du métal du groupe VIII et un additif organique, plus particulièrement un composé organique présentant une à trois fonctions acides carboxyliques, une étape de séchage du support imprégné, et une étape de calcination du support séché afin d’obtenir le catalyseur.
Les procédés de préparation des catalyseurs additivés mettent en oeuvre typiquement une étape d’imprégnation dans laquelle le composé organique est introduit, éventuellement en solution dans un solvant, de manière à remplir toute la porosité du support, qu’il soit imprégné ou non de précurseurs métalliques, afin d’obtenir une répartition homogène. Cela conduit inévitablement à utiliser de grandes quantités de composé organiques ou à diluer le composé organique dans un solvant. Après imprégnation, une étape de séchage est alors nécessaire pour éliminer l’excédent de composé ou le solvant et ainsi libérer la porosité nécessaire à la mise en oeuvre du catalyseur. Au surcoût lié à l’excédent du composé organique ou à l’utilisation d’un solvant s’ajoute le coût d’une étape unitaire de préparation supplémentaire de séchage, consommatrice d’énergie. Lors de l’étape de séchage, l’évaporation du solvant peut aussi s’accompagner d’une perte partielle du composé organique par vaporisation et donc d’une perte d’activité catalytique.
La Demanderesse a découvert de manière surprenante qu’un catalyseur comprenant une phase active à base d’au moins un métal du groupe VIII, de préférence le nickel, supportée sur une matrice oxyde, préparé à partir d’un procédé de préparation comprenant au moins une étape d’addition d’un composé organique sur le support poreux par imprégnation en phase gazeuse permet l’obtention de performances en terme d'activité en hydrogénation sélective de composés polyinsaturés ou en hydrogénation des composés aromatiques au moins aussi bonnes, voire meilleures, que les procédés connus de l’état de la technique. Sans vouloir se lier à aucune théorie, il semble que l’addition par voie gazeuse de l’additif organique lors de la préparation du catalyseur permet d’obtenir des performances en hydrogénation en terme d'activité au moins aussi bonnes, voire meilleures, que des catalyseurs connus dont le procédé de préparation comprend une étape d’addition d’un même additif organique par voie liquide (par exemple par imprégnation à sec) quand bien même la taille des particules de phase active obtenues sur le catalyseur (mesurées sous leurs formes oxyde) est équivalente.
Objets de l’invention
La présente invention a pour objet un procédé d’hydrogénation d’au moins un composé polyinsaturé contenant au moins 2 atomes de carbone par molécule, tels que les dioléfines et/ou les acétyléniques et/ou les composés aromatiques ou polyaromatiques, contenu dans une charge d’hydrocarbures ayant un point d’ébullition final inférieur ou égal à 650°C, lequel procédé étant réalisé à une température comprise entre 0 et 350°C, à une pression comprise entre 0,1 et 20 MPa, à un ratio molaire hydrogène/(composé à hydrogéner) entre 0,1 et 1000 et à une vitesse volumique horaire V.V.H. comprise entre 0,05 et 40000 h 1 en présence d’un catalyseur comprenant un support poreux et une phase active comprenant au moins un métal du groupe VIII, ladite phase active ne comprenant pas de métal du groupe VIB, ledit catalyseur étant préparé selon au moins les étapes suivantes :
a) on additionne au support poreux au moins un composé organique contenant de l’oxygène et/ou de l’azote mais ne comprenant pas de soufre ; b) on réalise une étape de mise en contact dudit support poreux avec au moins une solution contenant au moins un sel de précurseur de la phase comprenant au moins un métal du groupe VIII ;
c) on sèche le support poreux obtenu à l’issue de l’étape b) ;
caractérisé en ce que l’étape a) est réalisée avant ou après les étapes b) et c) et est réalisée par mise en présence dudit support poreux et dudit composé organique dans des conditions de température, de pression et de durée telles qu’une fraction dudit composé organique est transférée à l’état gazeux au support poreux.
Dans un mode de réalisation selon l’invention, l’étape a) est réalisée par mise en présence simultanée dudit support poreux et dudit composé organique à l’état liquide et sans contact physique, à une température inférieure à la température d’ébullition dudit composé organique et dans des conditions de pression et de durée telles qu’une fraction dudit composé organique est transférée à l’état gazeux au support poreux.
Avantageusement, l’étape a) est réalisée au moyen d’une unité d’addition dudit composé organique comprenant un premier et un second compartiments en communication de manière à permettre le passage d’un fluide gazeux entre les compartiments, le premier compartiment contenant le support poreux et le second compartiment contenant le composé organique à l’état liquide.
Avantageusement, l’unité comprend une enceinte incluant les premier et second compartiments, les deux compartiments étant en communication par voie gazeuse.
Avantageusement, l’unité comprend deux enceintes formant respectivement le premier et le second compartiments, les deux enceintes étant en communication par voie gazeuse.
Avantageusement, l’étape a) est réalisée en présence d’un flux d’un gaz vecteur circulant du second compartiment dans le premier compartiment. Dans un deuxième mode de réalisation selon l’invention, l’étape a) est réalisée par mise en présence dudit support poreux avec un solide poreux comprenant ledit composé organique dans des conditions de température, de pression et de durée telles qu’une fraction dudit composé organique est transférée par voie gazeuse dudit solide poreux audit support poreux. De préférence, l’étape a) est réalisée par mise en présence sans contact physique dudit support poreux avec un solide poreux comprenant ledit composé organique.
De préférence, à l’étape a), le support poreux et le solide poreux comprenant ledit composé organique sont de porosité et/ou de nature chimique différente(s).
De préférence, à l’issue de l’étape a), le solide poreux contenant du composé organique est séparée dudit support poreux et est renvoyée à l’étape a).
Avantageusement, ledit composé organique est choisi parmi les composés comportant une ou plusieurs fonctions chimiques choisies parmi une fonction acide carboxylique, alcool, ester, aldéhyde, cétone, éther, carbonate, amine, azo, nitrile, imine, amide, carbamate, carbamide, acide aminé, éther, dilactone, carboxyanhydride.
Dans un mode de réalisation selon l’invention, le procédé est un procédé d’hydrogénation d’au moins un composé aromatique ou polyaromatique contenu dans une charge d’hydrocarbures ayant un point d’ébullition final inférieur ou égal à 650°C, ledit procédé étant réalisé en phase gazeuse ou en phase liquide, à une température comprise entre 30 et 350°C, à une pression comprise entre 0,1 et 20 MPa, à un ratio molaire hydrogène/(composés aromatiques à hydrogéner) entre 0,1 et 10 et à une vitesse volumique horaire V.V.H. comprise entre 0,05 et 50 h 1.
Dans un mode de réalisation selon l’invention, le procédé est un procédé d’hydrogénation sélective de composés polyinsaturés contenus dans une charge d’hydrocarbures ayant un point d'ébullition final inférieur ou égal à 300°C, lequel procédé étant réalisé à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0,1 et 200 h 1 lorsque le procédé est réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire entre 100 et 40000 h 1 lorsque le procédé est réalisé en phase gazeuse.
Brève description des figures
La figure 1 illustre de manière schématique un mode de réalisation de l’étape a) du procédé de préparation du catalyseur utilisé dans le cadre du procédé d’hydrogénation selon l’invention. Description détaillée
Définitions
Par « macropores », on entend des pores dont l’ouverture est supérieure à 50 nm.
Par « mésopores », on entend des pores dont l’ouverture est comprise entre 2 nm et 50 nm, bornes incluses.
Par « micropores », on entend des pores dont l’ouverture est inférieure à 2 nm.
On entend par volume poreux total du catalyseur ou du support utilisé pour la préparation du catalyseur selon l'invention le volume mesuré par intrusion au porosimètre à mercure selon la norme ASTM D4284-83 à une pression maximale de 4000 bar (400 MPa), utilisant une tension de surface de 484 dyne/cm et un angle de contact de 140°. L'angle de mouillage a été pris égal à 140° en suivant les recommandations de l'ouvrage « Techniques de l'ingénieur, traité analyse et caractérisation », pages 1050-1055, écrit par Jean Charpin et Bernard Rasneur.
Afin d'obtenir une meilleure précision, la valeur du volume poreux total correspond à la valeur du volume poreux total mesuré par intrusion au porosimètre à mercure mesurée sur l'échantillon moins la valeur du volume poreux total mesuré par intrusion au porosimètre à mercure mesurée sur le même échantillon pour une pression correspondant à 30 psi (environ 0,2 MPa).
On entend par la surface spécifique du catalyseur ou du support utilisé pour la préparation du catalyseur selon l'invention, la surface spécifique B.E.T. déterminée par adsorption d’azote conformément à la norme ASTM D 3663-78 établie à partir de la méthode BRUNAUER-EMMETT-TELLER décrite dans le périodique « The Journal of American Society », 60, 309, (1938).
On entend par taille des nanoparticules de nickel, le diamètre moyen des cristallites de nickel mesurée sous leurs formes oxyde. Le diamètre moyen des cristallites de nickel sous forme oxyde est déterminé par diffraction des rayons X, à partir de la largeur de la raie de diffraction située à l’angle 2thêta=43° (c’est-à-dire selon la direction cristallographique [200]) à l’aide de la relation de Scherrer. Cette méthode, utilisée en diffraction des rayons X sur des poudres ou échantillons polycristallins qui relie la largeur à mi-hauteur des pics de diffraction à la taille des particules, est décrite en détail dans la référence : Appl. Cryst. (1978), 1 1 , 102- 1 13 « Scherrer after sixty years: A survey and some new results in the détermination of crystallite size», J. I. Langford and A. J. C. Wilson. Dans la suite, les groupes d'éléments chimiques sont donnés selon la classification CAS (CRC Handbook of Chemistry and Physics, éditeur CRC press, rédacteur en chef D.R. Lide, 81 ème édition, 2000-2001 ). Par exemple, le groupe VIII selon la classification CAS correspond aux métaux des colonnes 8, 9 et 10 selon la nouvelle classification IUPAC. Description du procédé de préparation du catalyseur
D’une manière générale, le procédé de préparation du catalyseur utilisé dans le cadre du procédé d’hydrogénation selon l’invention comprend au moins les étapes suivantes :
a) on additionne sur un support poreux au moins un composé organique contenant de l’oxygène et/ou de l’azote, mais ne comprenant pas de soufre ;
b) on réalise une étape de mise en contact dudit support poreux avec au moins une solution contenant au moins un sel de précurseur de la phase active comprenant au moins un métal du groupe VIII ;
c) on sèche le support poreux obtenu à l’issue de l’étape b) ;
caractérisé en ce que l’étape a) est réalisée :
- avant ou après les étapes b) et c) ; et
- par mise en présence dudit support poreux et dudit composé organique, dans des conditions de température, de pression et de durée telles qu’une fraction dudit composé organique est transférée à l’état gazeux au support poreux.
Les étapes a) à c) du procédé de préparation du catalyseur utilisé dans le cadre du procédé d’hydrogénation selon l’invention sont décrites plus en détail ci-après.
Etape a)
Tout composé organique contenant de l’oxygène et/ou de l’azote mais ne comprenant pas de soufre qui est à l'état liquide à la température et à la pression mises en oeuvre à l'étape d'addition du composé organique sur le support poreux peut être utilisé dans le procédé de préparation du catalyseur.
De préférence, ledit composé organique est choisi parmi un composé comportant une ou plusieurs fonctions chimiques choisies parmi une fonction acide carboxylique, alcool, ester, aldéhyde, cétone, éther, carbonate, amine, azo, nitrile, imine, amide, carbamate, carbamide, acide aminé, éther, dilactone, carboxyanhydride. Lorsque ledit composé organique comporte au moins une fonction carboxylique, ledit composé organique peut être choisi parmi l’acide formique, l’acide éthanedioïque (acide oxalique), l’acide propanedioïque (acide malonique), l’acide pentanedioïque (acide glutarique), l’acide hydroxyacétique (acide glycolique), l’acide 2-hydroxypropanoïque (acide lactique), l’acide 2-hydroxypropanedioïque (acide tartronique), l’acide 2- hydroxybutanedioïque (acide malique), l’acide 2-hydroxypropane-1 ,2,3-tricarboxylique (acide citrique), l’acide 2,3-dihydroxybutanedioïque (acide tartrique), l’acide 2,2’-oxydiacétique (acide diglycolique), l’acide 2-oxopropanoïque (acide pyruvique), l’acide 4-oxopentanoïque (acide lévulinique).
Lorsque ledit composé organique comporte au moins une fonction alcool, ledit composé organique peut être choisi parmi le méthanol, l’éthanol, le phénol, l’éthylène glycol, le propane-1 ,3-diol, le butane-1 ,4-diol, le pentane-1 ,5-diol, l’hexane-1 ,6-diol, le glycérol, le xylitol, le mannitol, le sorbitol, le pyrocatéchol, le résorcinol, l’hydroquinol, le diéthylène glycol, le triéthylène glycol, les polyéthylène glycol ayant une masse molaire moyenne inférieure à 600 g/mol, le glucose, le mannose, le fructose, le sucrose, le maltose, le lactose, sous l’une quelconque de leurs formes isomères.
Lorsque ledit composé organique comporte au moins une fonction ester, ledit composé organique peut être choisi parmi une g-lactone ou une d-lactone contenant entre 4 et 8 atomes de carbone, la g-butyrolactone, la g-valérolactone, la d-valérolactone, la g- caprolactone, la d-caprolactone, la g-heptalactone, la d-heptalactone, la g-octalactone, la d- octalactone, le méthanoate de méthyle, l’acétate de méthyle, le propanoate de méthyle, le butanoate de méthyle, le pentanoate de méthyle, l’hexanoate de méthyle, l’octanoate de méthyle, le décanoate de méthyle, le laurate de méthyle, le dodécanoate de méthyle, l’acétate d’éthyle, le propanoate d’éthyle, le butanoate d’éthyle, le pentanoate d’éthyle, l’hexanoate d’éthyle, l’oxalate de diméthyle, le malonate de diméthyle, le succinate de diméthyle, le glutarate de diméthyle, l’adipate de diméthyle, l’oxalate de diéthyle, le malonate de diéthyle, le succinate de diéthyle, le glutarate de diéthyle, l’adipate de diéthyle, le méthylsuccinate de diméthyle, le 3-méthylglutarate de diméthyle, le glycolate de méthyle, le glycolate d’éthyle, le glycolate de butyle, le glycolate de benzyle, le lactate de méthyle, le lactate d’éthyle, le lactate de butyle, le lactate de tert-butyle, le 3-hydroxybutyrate d’éthyle, le mandélate d’éthyle, le malate de diméthyle, le malate de diéthyle, le malate de diisopropyle, le tartrate de diméthyle, le tartrate de diéthyle, le tartrate de diisopropyle, le citrate de triméthyle, le citrate de triéthyle, le carbonate de d’éthylène, le carbonate de propylène, le carbonate de triméthylène, le carbonate de diéthyle, le carbonate de diphényle, le dicarbonate de diméthyle, le dicarbonate de diéthyle, le dicarbonate de di-tert-butyle, sous l’une quelconque de leur forme isomère.
Lorsque le composé organique comporte au moins une fonction amine, ledit composé organique peut être choisi parmi l’éthylènediamine, le diaminohexane, la tétraméthylènediamine, l’hexaméthylènediamine, la tétraméthyléthylènediamine, la tétraéthyléthylènediamine, la diéthylènetriamine, la triéthylènetétramine.
Lorsque le composé organique comporte au moins une fonction amide, ledit composé organique peut être choisi parmi la formamide, la N-méthylformamide, la N,N- diméthylformamide, la N-éthylformamide, la N,N-diéthylformamide, l’acétamide, la N- méthylacétamide, la N,N-diméthylméthanamide, la N,N-diéthylacétamide, la N,N- diméthylpropionamide, la propanamide, la 2-pyrrolidone, la N-méthyl-2-pyrrolidone, la y- lactame, la caprolactame, l'acétylleucine, l’acide N-acétylaspartique, l'acide aminohippurique, l’acide N-acétylglutamique, l’acide 4-acétamidobenzoïque, la lactamide et la glycolamide, l’urée, la N-méthylurée, la N,N'-diméthylurée, la 1 ,1 -diméthylurée, la tétraméthylurée selon l’une quelconque de leurs formes isomères.
Lorsque le composé organique comporte au moins une fonction acide aminé, ledit composé organique peut être choisi parmi l’alanine, l’arginine, la lysine, la proline, la sérine, a thréonine, l’EDTA (acide éthylène diamine tétraacétique).
Lorsque le composé organique comporte au moins une fonction éther, ledit composé organique peut être choisi dans le groupe des éthers linéaires constitué par le diéthyl éther, le dipropyl éther, le dibutyl éther, le methyl tert-butyl éther, le diisopropyl éther, le di-tert-butyl éther, le méthoxybenzène, le phényl vinyl éther, l’isopropyl vinyl éther et l’isobutyl vinyl éther, ou dans le groupe des éthers cycliques constitué par le tétrahydrofurane, 1 ,4-dioxane, et la morpholine
Lorsque le composé organique comporte une fonction dilactone, ledit composé organique peut être choisi dans le groupe des dilactones cycliques de 4 chaînons constitué par la 1 ,2- dioxétanedione, ou dans le groupe des dilactones cycliques de 5 chaînons constitué par la 1 ,3-dioxolane-4,5-dione, la 1 ,5-dioxolane-2,4-dione, et la 2,2-dibutyl-1 ,5-dioxolane-2,4-dione, ou dans le groupe des dilactones cycliques de 6 chaînons constitué par la 1 ,3-dioxane-4,6- dione, la 2,2-diméthyl-1 ,3-dioxane-4,6-dione, la 2,2,5-triméthyl-1 ,3-dioxane-4,6-dione, la 1 ,4- dioxane-2,5-dione, la 3,6-diméthyl-1 ,4-dioxane-2,5-dione, la 3,6-diisopropyl-1 ,4-dioxane-2,5- dione, et la 3,3-ditoluyl-6,6-diphényl-1 ,4-dioxane-2,5-dione, ou dans le groupe des dilactones cycliques de 7 chaînons constitué par la 1 ,2-dioxépane-3,7-dione, la 1 ,4-dioxépane-5,7- dione, la 1 ,3-dioxépane-4,7-dione, et la 5-hydroxy-2,2-diméthyl-1 ,3-dioxépane-4,7-dione. Lorsque le composé organique comporte une fonction carboxyanhydride, ledit composé organique peut être choisi dans le groupe des O-carboxyanhydrides constitué par la 5- méthyl-1 ,3-dioxolane-2,4-dione et l’acide 2,5-dioxo-1 ,3-dioxolane-4-propanoïque, ou dans le groupe des N-carboxyanhydrides constitué par la 2,5-oxazolidinedione et la 3,4-diméthyl-2,5- oxazolidinedione. On entend par carboxyanhydride un composé organique cyclique comportant une fonction carboxyanhydride, c’est-à-dire un enchaînement -CO-O-CO-X- ou -X-CO-O-CO- au sein du cycle avec -CO- correspondant à une fonction carbonyle et X pouvant être un atome d’oxygène ou d’azote. Pour X = O on parle d’O-carboxyanhydride et quand X = N on parle de A/-carboxyanhydride.
L’addition du composé organique sur le support poreux peut être réalisé par deux variantes de réalisation décrites en détail ci-après.
Variante 1
Selon un premier mode de réalisation selon l’invention, le procédé d’hydrogénation est réalisé en présence d’un catalyseur obtenu par un procédé de préparation dans lequel l’étape a) est réalisée par mise en présence simultanée dudit support poreux et dudit composé organique à l’état liquide, et sans contact physique, à une température inférieure à la température d’ébullition dudit composé organique et dans des conditions de pression et de durée telles qu’une fraction dudit composé organique est transférée à l’état gazeux au support poreux.
Dans ce mode de réalisation, le procédé d’addition du composé organique ne fait pas intervenir d’étape classique d’imprégnation au moyen d’une solution contenant un solvant dans lequel est dilué le composé organique. Par conséquent, il n’est pas nécessaire de procéder à une étape de séchage du support poreux en vue d’éliminer le solvant d’où un procédé plus économique en termes d’utilité chaude et de matière première. De plus, selon ce mode de réalisation, l'étape d'addition du composé organique est conduite à une température inférieure à la température d'ébullition dudit composé organique d'où un gain substantiel du point de vue énergétique et en terme de sécurité. En effet, pour de nombreux composés organiques, comme par exemple l’éthylène glycol, le point d’inflammation est inférieur au point d’ébullition. Il y a donc un risque d’incendie à travailler à une température supérieure à la température d’ébullition du composé organique. De plus, une température élevée peut aussi conduire à une décomposition partielle ou totale du composé organique réduisant fortement son effet. Par exemple, l’acide citrique, couramment utilisé comme additif organique (US2009/0321320) se décomposé à 175°C alors que son point d’ébullition est de 368°C à pression atmosphérique. Le procédé de préparation se caractérise également par le fait que l'addition du composé organique sur le support poreux est réalisée sans contact physique avec le composé organique à l'état liquide, c'est-à-dire sans imprégnation du support poreux par le liquide. Le procédé repose sur le principe de l'existence d'une pression de vapeur du composé organique qui est générée par sa phase liquide à une température et à une pression données. Ainsi une partie des molécules de composé organique à l'état liquide passe à l'état gazeux (vaporisation) et est alors transférée (par voie gazeuse) au support poreux. Cette étape a) de mise en présence est réalisée pendant une durée suffisante pour atteindre la teneur ciblée en composé organique dans le solide poreux qui est utilisé en tant que support de catalyseur.
Dans ce mode de réalisation, l’étape d’addition du composé organique à un support poreux peut être réalisée dans une unité d'addition dudit composé organique. L'unité d'addition mise en oeuvre comprend un premier et un second compartiments en communication de manière à autoriser le passage d'un fluide gazeux entre les deux compartiments, le premier compartiment étant apte à contenir le support poreux et le second compartiment étant apte à contenir le composé organique sous forme liquide. Dans ce mode de réalisation, le procédé comprend une étape a) dans laquelle on met en présence le support poreux et le composé organique sous forme liquide sans contact physique entre le support poreux et le composé organique sous forme liquide, à une température inférieure à la température d'ébullition du composé organique et dans des conditions de pression et de durée telles qu'une fraction dudit composé organique est transférée par voie gazeuse au solide poreux par circulation d'un flux de composé organique sous forme gazeuse du second compartiment dans le premier compartiment, de manière à fournir in fine un support poreux contenant le composé organique.
Selon un mode de réalisation, l'unité d'addition comprend une enceinte incluant les premier et second compartiments, les compartiments étant en communication par voie gazeuse. Par exemple les compartiments sont disposés côte à côté et séparés par une cloison, par exemple sensiblement verticale, solidaire du fond de l'enceinte et ne s'étendant que sur une fraction de la hauteur de l'enceinte de manière à laisser diffuser le ciel gazeux d'un compartiment à l'autre. Alternativement, les compartiments sont disposés l'un au-dessus de l'autre et sont en communication de manière à permettre le passage du composé organique à l'état gazeux entre les deux compartiments. De préférence l'enceinte est fermée.
Selon un autre mode de réalisation, l'unité d'addition comprend deux enceintes formant respectivement le premier et le second compartiments, les deux enceintes étant en communication par voie gazeuse, par exemple au moyen d'une conduite. De préférence, les deux enceintes sont fermées.
De préférence, le compartiment destiné à contenir le composé organique liquide comprend des moyens pour mettre en mouvement ledit liquide afin de faciliter le transfert du composé organique à l'état gazeux d'un compartiment à l'autre. Selon un mode de réalisation préféré, les deux compartiments comprennent des moyens pour mettre en mouvement respectivement le liquide et le support poreux. Avantageusement le compartiment contenant le composé organique à l'état liquide est équipé d'internes destinés à maximiser la surface de l’interface gaz/liquide. Ces internes sont par exemple des monolithes poreux imprégnés par capillarités, des films tombants, des garnissages ou tout autre moyen connu de l’Homme du métier.
Dans un mode de réalisation préféré, l'étape a) est réalisée en présence d'un gaz (vecteur) circulant du second compartiment dans le premier compartiment de manière à entraîner les molécules organiques à l'état gazeux dans le compartiment contenant le support poreux. Par exemple le gaz vecteur peut être choisi parmi le dioxyde de carbone, l’ammoniac, l’air à hygrométrie contrôlée, un gaz rare comme l’argon, l’azote, l’hydrogène, du gaz naturel ou un gaz réfrigérant au titre de la classification éditée par l’IUPAC.
Selon un mode de réalisation préféré, l'étape a) comprend une étape dans laquelle on soutire du premier compartiment un effluent gazeux contenant ledit composé organique et on recycle l'effluent dans le premier et/ou le second compartiment.
Selon un autre mode de réalisation, on soutire du premier compartiment un effluent gazeux contenant ledit composé organique à l'état gazeux, on condense ledit effluent de manière à récupérer une fraction liquide contenant le composé organique à l'état liquide et on recycle ladite fraction liquide dans le second compartiment.
L'étape a) est réalisée de préférence à une pression absolue comprise entre 0,1 et 1 MPa. Comme précisé plus haut, la température de l'étape a) est fixée à une température inférieure à la température d'ébullition du composé organique. La température de l'étape a) est généralement inférieure à 200°C, de préférence comprise entre 10°C et 150°C, de manière plus préférée comprise entre 25°C et 120°C.
Variante 2
Selon un second mode de réalisation selon l’invention, le procédé d’hydrogénation est réalisé en présence d’un catalyseur obtenu par un procédé de préparation dans lequel l’étape a) est réalisée par mise en présence, dudit support poreux avec un solide poreux (appelé aussi ici « solide vecteur ») comprenant ledit composé organique dans des conditions de température, de pression et de durée telles qu’une fraction dudit composé organique est transférée par voie gazeuse dudit solide vecteur audit support poreux.
L'objectif de cette mise en présence du support poreux et du solide vecteur comprenant le composé organique est de permettre un transfert gazeux d'une partie du composé organique contenu dans le solide vecteur vers le support poreux. Cette étape repose sur le principe de l'existence d'une pression de vapeur du composé organique à une température et une pression données. Ainsi une partie des molécules de composé organique du solide vecteur comprenant le composé organique passe sous forme gazeuse (vaporisation) et est alors transférée (par voie gazeuse) au support poreux. Selon ce mode de réalisation, le solide poreux (« solide vecteur ») joue le rôle de source en composé organique pour enrichir en composé organique le support poreux, qui de préférence ne comprend pas initialement de composé organique. Ce mode de réalisation est donc différent d’une simple étape de maturation telle que classiquement rencontrée dans l’art antérieur. En effet, la diffusion du composé organique du solide vecteur vers le support poreux est réalisée sous forme condensée à l’intérieur de chaque grain du solide (de manière inter-granulaire), contrairement à une maturation classique pour laquelle la diffusion du composé organique est réalisée de manière intragranulaire (à l’intérieur de chaque grain du support). Un telle définition de la maturation est illustrée dans la thèse de Jonathan Moreau ; « Rationalisation de l’étape d’imprégnation de catalyseurs à base d’hétéropolyanions de molybdène supportés sur alumine » ; page 56 ; Université Claude Bernard - Lyon I, 2012.
De plus, le recours à une telle étape de mise en contact, i.e. par transfert gazeux, entre le solide poreux comprenant le composé organique et le support poreux peut permettre d’économiser une étape de séchage qui aurait classiquement lieu après une étape d’imprégnation du composé organique dilué dans un solvant sur le support poreux (suivi éventuellement d’une étape de maturation) afin d’éliminer le solvant utilisé. En effet, dans ce mode de réalisation, le solide poreux (« solide vecteur ») comprenant le composé organique est obtenu par imprégnation avec le composé organique à l'état liquide. Contrairement à l'art antérieur, le composé organique n'est pas dilué dans un solvant. Un avantage de ce mode de réalisation par rapport aux procédés de l'art antérieur réside donc en l'absence d'étape de séchage qui est classiquement utilisée pour éliminer le solvant après l'étape d'imprégnation et donc d'être moins énergivore par rapport aux procédés classiques. Cette absence d'étape de séchage peut permettre d'éviter d'éventuelles pertes en composé organique par vaporisation voire par dégradation.
Le volume de composé organique mis en oeuvre est strictement inférieur au volume total de la porosité accessible du solide poreux et du support poreux mis en oeuvre à l'étape a) et est fixé par rapport à la quantité en composé organique visée sur le solide poreux à l'issue de l'étape a). Un autre avantage de ce mode de réalisation est donc l’utilisation d’une quantité plus réduite de composé organique par rapport au cas de l’art antérieur où, en absence de solvant, toute la porosité devrait être remplie de composé organique.
Le ratio massique (solide poreux comprenant le composé organique) / (support poreux ) est fonction de la distribution poreuse du solide poreux et du support poreux et de l’objectif en terme de quantité visée en composé organique sur le support poreux. Ce ratio massique est généralement inférieur ou égal à 10, de préférence inférieur à 2 et de manière encore plus préférée compris entre 0,05 et 1 , bornes comprises.
Dans ce mode de réalisation, l'étape a) est conduite dans des conditions de température, de pression et de durée de manière à atteindre un équilibrage de la quantité en composé organique sur le solide poreux (« solide vecteur ») et le support poreux. On entend par le terme "équilibrage" désigner le fait qu'à l'issue de l'étape a) au moins 50% poids du solide poreux et du support poreux présentent une quantité en ledit composé organique égale à plus ou moins 50% de la quantité ciblée, de manière préférée au moins 80% poids du solide poreux et du support poreux présentent une quantité en ledit composé organique égale à plus ou moins 40% de la quantité ciblée et encore plus préférentiellement au moins 90% poids du solide poreux et du support poreux présentent une quantité en ledit composé organique égale à plus ou moins 20% de la quantité ciblée.
A titre d’exemple non limitatif, dans le cas où l’on vise la préparation d’un support poreux comportant 5% poids de composé organique, on peut mettre en présence dans une même quantité un solide poreux contenant 10% poids de composé organique avec le support poreux exempt dudit composé organique. On considérera dans ce cas que l’équilibrage est atteint lorsqu'au moins 50% poids du solide poreux et du support poreux ont une quantité en ledit composé organique qui correspond à une teneur comprise entre 2,5 et 7,5% poids, préférentiellement lorsqu'au moins 80% poids du solide poreux et du support poreux ont une quantité en ledit composé organique qui correspond à une teneur qui est comprise entre 3 et 7% poids, et encore plus préférentiellement, lorsqu'au moins 90% poids du solide poreux et du support poreux présentent une quantité en ledit composé organique qui correspond à une teneur comprise entre 4 et 6% poids.
La détermination de ces teneurs peut se faire par un échantillonnage statistiquement représentatif pour lequel les échantillons peuvent être caractérisés par exemple par dosage du carbone et/ou d’éventuels hétéroatomes contenus dans le composé organique ou par thermogravimétrie couplée à un analyseur, par exemple un spectromètre de masse, ou un spectromètre Infra-Rouge et ainsi déterminer les teneurs respectives en composés organiques.
L'étape a) est de préférence menée dans des conditions de température et de pression contrôlées et de sorte que la température soit inférieure à la température d'ébullition dudit composé organique à transférer par voie gazeuse.
De préférence, la température de mise en oeuvre est inférieure à 150°C et la pression absolue est généralement comprise entre 0,1 et 1 MPa, de préférence entre 0,1 et 0,5 MPa et de manière plus préférée comprise entre 0,1 et 0,2 MPa. On peut ainsi opérer l'étape de mise en présence dans une enceinte ouverte ou fermée, avec éventuellement un contrôle de la composition du gaz présent dans l'enceinte.
Lorsque l'étape de mise en présence du solide poreux et du support poreux se fait dans une enceinte ouverte, on s'assurera que l'entrainement du composé organique hors de l'enceinte soit limité autant que possible. Alternativement l'étape de mise en présence du solide poreux et du support poreux peut être réalisée dans une enceinte fermée par exemple dans un container de stockage ou de transport du solide étanche aux échanges gazeux avec le milieu extérieur. Dans ce mode de réalisation, l'étape de mise en présence peut se faire en contrôlant la composition du gaz composant l’atmosphère par l’introduction d’un ou plusieurs composés gazeux et éventuellement avec une hygrométrie contrôlée. A titre d’exemple non limitatif, le composé gazeux peut être le dioxyde de carbone, l’ammoniac, l’air à hygrométrie contrôlée, un gaz rare comme l’argon, l’azote, l’hydrogène, du gaz naturel ou un gaz réfrigérant au titre de la classification éditée par l’IUPAC. Selon un mode de réalisation avantageux, l'étape de mise en présence sous atmosphère gazeuse contrôlée met en œuvre une circulation forcée du gaz dans l'enceinte. Dans un mode de réalisation de cette variante de réalisation, l'étape de mise en présence du solide poreux et du support poreux se fait sans contact physique, dans une enceinte équipée de compartiments aptes à contenir respectivement le solide poreux (« solide vecteur ») et le support poreux, les compartiments étant en communication de manière à autoriser le passage du composé organique à l'état gazeux entre les deux compartiments. Il est avantageux de faire circuler un flux gazeux d’abord au travers du compartiment contenant le solide poreux comprenant le composé organique puis au travers du compartiment contenant le support poreux.
De préférence, le solide poreux (« solide vecteur ») est de nature différente du solide poreux (servant de support de catalyseur), c’est-à-dire que le solide poreux a au moins une caractéristique physique discriminante vis-à-vis du support poreux afin de permettre par exemple leur séparation ultérieure. Par exemple et de manière non limitative, cette caractéristique physique peut être :
- la taille des particules du solide : la séparation peut être effectuée sur un tamis ou par cyclone ;
- le magnétisme : la séparation se fait par l’application d’un champ magnétique ;
- la densité du solide : en conjonction ou pas avec la taille des particules, cette différence de densité peut par exemple être utilisée pour une séparation par élutriation ou par cyclone;
- la constante diélectrique : la séparation se fait par l’application d’un champ électrostatique.
Par ailleurs, ledit support poreux et ledit solide poreux contenant le composé organique peuvent être avantageusement de porosité et/ou de nature chimique différente(s). En effet, le solide poreux peut être de composition chimique adaptée pour défavoriser l’adsorption du composé à imprégner par rapport à l’adsorption du composé à imprégner sur le support poreux. Un effet similaire peut être obtenu en adaptant la structure poreuse du solide poreux de sorte qu’il présente une ouverture moyenne de ses pores qui soit supérieure à celle du support poreux de sorte à favoriser le transfert du composé organique sur le support poreux, particulièrement dans le cas d’une condensation capillaire. Un mode de réalisation de l’étape a) de mise en présence du composé organique et du support poreux est schématisé à la figure 1. Ce mode de réalisation selon l’invention correspond au cas où le solide poreux contenant le composé organique sert de réservoir en composé organique pour le support poreux. Comme indiqué sur la figure 1 , un solide poreux dit "vecteur" 1 est imprégné dans une unité d'imprégnation 2 avec un composé organique liquide apporté par la ligne 3. Le solide vecteur 4 comprenant le composé organique est transféré dans l'unité d’addition 5 dans laquelle ledit solide vecteur est mis en présence du support poreux amené par la ligne 6. A l'issue de l'étape de mise en présence du solide poreux et du support poreux, on soutire de l'unité par la ligne 7, un mélange de support poreux et solide poreux (solide vecteur) contenant chacun ledit composé organique. Le mélange de solides (support poreux et solide poreux) est ensuite envoyé à une unité de séparation 8 qui réalise une séparation physique des solides (solide poreux et support poreux). Grâce à la mise en oeuvre de la séparation on obtient deux flux de solides à savoir le solide poreux 9 contenant le composé organique et le support poreux 10 contenant également du composé organique. Conformément à ce mode de réalisation, le solide poreux contenant encore le composé organique 9 est recyclé à l'unité d'introduction du composé organique liquide en vue d'une utilisation ultérieure.
L’étape b) de mise en contact dudit support poreux avec au moins une solution contenant au moins un sel de précurseur de la phase comprenant au moins un métal du groupe VIII peut être réalisée par imprégnation, à sec ou en excès, selon des méthodes bien connues de l'Homme du métier. Ladite étape b) est préférentiellement réalisée par mise en contact du support poreux avec au moins une solution, aqueuse ou organique (par exemple le méthanol ou l'éthanol ou le phénol ou l’acétone ou le toluène ou le diméthylsulfoxyde (DMSO)) ou bien constituée d'un mélange d'eau et d'au moins un solvant organique, contenant au moins un précurseur de la phase active comprenant au moins un métal du groupe VIII au moins partiellement à l'état dissous, ou encore en la mise en contact d’un précurseur de la phase active avec au moins une solution colloïdale d'au moins un précurseur de métal du groupe VIII, sous forme oxydée (nanoparticules d’oxydes, d’oxy(hydroxyde) ou d’hydroxyde du nickel) ou sous forme réduite (nanoparticules métalliques du métal du groupe VIII à l'état réduit). De préférence, la solution est aqueuse. Le pH de cette solution peut être modifié par l'ajout éventuel d'un acide ou d’une base. Selon une autre variante préférée, la solution aqueuse peut contenir de l’ammoniaque ou des ions ammonium NH4 +. De manière préférée, ladite étape b) est réalisée par imprégnation à sec, laquelle consiste à mettre en contact le support poreux avec au moins une solution, contenant au moins un précurseur de la phase active comprenant au moins un métal du groupe VIII, dont le volume de la solution est compris entre 0,25 et 1 ,5 fois le volume poreux du support du précurseur de catalyseur à imprégner.
De préférence, le métal du groupe VIII est choisi parmi le nickel, le palladium ou le platine. Plus préférentiellement, le métal du groupe VIII est le nickel.
Lorsque le précurseur de la phase active est introduit en solution aqueuse et lorsque le métal du groupe VIII est le nickel, on utilise avantageusement un précurseur de nickel sous forme de nitrate, de carbonate, de chlorure, de sulfate, d’hydroxyde, d’hydroxycarbonate, de formiate, d'acétate, d’oxalate, de complexes formés avec les acétylacétonates, ou encore de complexes tétrammine ou hexammine, ou de tout autre dérivé inorganique soluble en solution aqueuse, laquelle est mise en contact avec ledit précurseur de catalyseur. On utilise avantageusement comme précurseur de nickel, le nitrate de nickel, le carbonate de nickel, le chlorure de nickel, l’hydroxyde de nickel, le hydroxycarbonate de nickel. De manière très préférée, le précurseur de nickel est le nitrate de nickel, le carbonate de nickel ou l’hydroxyde de nickel.
La teneur en nickel est comprise entre 1 et 65% poids dudit élément par rapport à la masse totale du catalyseur, de préférence comprise entre 5 et 55% poids, de manière encore plus préférée comprise entre 8 et 40% poids, et de manière particulièrement préférée comprise entre 12 et 35% poids. La teneur en Ni est mesurée par fluorescence X.
Lorsqu’on souhaite utiliser le catalyseur selon l’invention dans une réaction d’hydrogénation sélective de molécules polyinsaturées telles que les dioléfines, les acétyléniques ou les alcénylaromatiques, la teneur en nickel est avantageusement comprise entre 1 et 35% poids, de préférence comprise entre 5 et 30% poids, et plus préférentiellement comprise entre 8 et 25% poids, et de façon encore plus préférée comprise entre 12 et 23% poids dudit élément par rapport à la masse totale du catalyseur.
Lorsqu’on souhaite utiliser le catalyseur selon l’invention dans une réaction d’hydrogénation d’aromatiques, la teneur en nickel est avantageusement comprise entre 8 et 65% poids, de préférence comprise entre 12 et 55% poids, de façon encore plus préférée comprise entre 15 et 40% poids, et plus préférentiellement comprise entre 18 et 35% poids dudit élément par rapport à la masse totale du catalyseur. Avantageusement, le rapport molaire entre ledit composé organique introduit à l’étape a) et le métal du groupe VIII introduit à l’étape b) est compris entre 0,01 et 5,0 mol/mol, de préférence entre 0,05 et 2,0 mol/mol, plus préférentiellement entre 0,1 et 1 ,5 mol/mol et encore plus préférentiellement entre 0,3 et 1 ,2 mol/mol, par rapport à l’élément du groupe
Etape c) Séchage
L’étape de séchage c) est effectuée à une température inférieure à 250°C, de préférence supérieure à 15°C et inférieure à 250°C, plus préférentiellement entre 30 et 220°C, encore plus préférentiellement entre 50 et 200°C, et de manière encore plus préférentielle entre 70 et 180°C, pendant une durée typiquement comprise entre 10 minutes et 24 heures. Des durées plus longues ne sont pas exclues, mais n’apportent pas nécessairement d’amélioration.
L’étape de séchage peut être effectuée par toute technique connue de l’Homme du métier. Elle est avantageusement effectuée sous une atmosphère inerte ou sous une atmosphère contenant de l’oxygène ou sous un mélange de gaz inerte et d’oxygène. Elle est avantageusement effectuée à pression atmosphérique ou à pression réduite. De manière préférée, cette étape est réalisée à pression atmosphérique et en présence d’air ou d’azote.
Etape d) Calcination (optionnelle)
Optionnellement, à l’issue de l’enchaînement des étapes a), b) et c), et indifféremment selon l’ordre d’enchaînement de ces étapes (tel que décrit ci-avant), on effectue une étape d) de calcination à une température comprise entre 250°C et 1000°C, de préférence comprise entre 250°C et 750°C, sous une atmosphère inerte ou sous une atmosphère contenant de l’oxygène. La durée de ce traitement thermique est généralement comprise entre 15 minutes et 10 heures. Des durées plus longues ne sont pas exclues, mais n’apportent pas nécessairement d’amélioration. Après ce traitement, le nickel de la phase active se trouve ainsi sous forme oxyde et le catalyseur ne contient plus ou très peu de composé organique introduit lors de sa synthèse. Cependant, l’introduction du composé organique lors de sa préparation a permis d’augmenter la dispersion de la phase active menant ainsi à un catalyseur plus actif et/ou plus sélectif. un qaz réducteur
Préalablement à l’utilisation du catalyseur dans le réacteur catalytique et la mise en œuvre d’un procédé d'hydrogénation, on effectue avantageusement au moins une étape de traitement réducteur e) en présence d’un gaz réducteur après l’enchaînement des étapes a), b) et c), optionnellement d), et indifféremment selon l’ordre d’enchaînement de ces étapes (tel que décrit ci-avant), de manière à obtenir un catalyseur comprenant le métal du groupe VIII au moins partiellement sous forme métallique.
Ce traitement permet d'activer ledit catalyseur et de former des particules métalliques, en particulier du nickel à l'état zéro valent. Ledit traitement réducteur peut être réalisé in-situ ou ex-situ c'est-à-dire après ou avant le chargement du catalyseur dans le réacteur d'hydrogénation. Ladite étape e) de réduction peut être mise en œuvre sur le catalyseur ayant été soumis ou non à l'étape f) de passivation, décrite par la suite.
Le gaz réducteur est de préférence l'hydrogène. L'hydrogène peut être utilisé pur ou en mélange (par exemple un mélange hydrogène/azote, hydrogène/argon, hydrogène/méthane). Dans le cas où l'hydrogène est utilisé en mélange, toutes les proportions sont envisageables.
Ledit traitement réducteur est réalisé à une température comprise entre 120 et 500°C, de préférence entre 150 et 450°C. Lorsque le catalyseur ne subit pas de passivation, ou subit un traitement réducteur avant passivation, le traitement réducteur est effectué à une température comprise entre 350 et 500°C, de préférence entre 350 et 450 °C. Lorsque le catalyseur a subi au préalable une passivation, le traitement réducteur est généralement effectué à une température comprise entre 120 et 350°C, de préférence entre 150 et 350°C. La durée du traitement réducteur est généralement comprise entre 2 et 40 heures, de préférence entre 3 et 30 heures. La montée en température jusqu'à la température de réduction désirée est généralement lente, par exemple fixée entre 0,1 et 10°C/min, de préférence entre 0,3 et 7°C/min.
Le débit d'hydrogène, exprimé en L/heure/gramme de catalyseur est compris entre 0,1 et 100 L/heure/gramme de catalyseur, de préférence entre 0,5 et 10 L/heure/gramme de catalyseur, de façon encore plus préférée entre 0,7 et 5 L/heure/gramme de catalyseur. Etape f) Passivation (optionnelle)
Préalablement à sa mise en oeuvre dans le réacteur catalytique, le catalyseur selon l'invention peut éventuellement subir une étape de passivation (étape f) par un composé soufré ou oxygéné ou par le C02 avant ou après l'étape de traitement réducteur e). Cette étape de passivation peut être effectuée ex-situ ou in-situ. L'étape de passivation est réalisée par la mise en oeuvre de méthodes connues de l'Homme du métier.
L'étape de passivation par le soufre permet d'améliorer la sélectivité des catalyseurs et d'éviter les emballements thermiques lors des démarrages de catalyseurs neufs (« run away » selon la terminologie anglo-saxonne). La passivation consiste généralement à empoisonner irréversiblement par le composé soufré les sites actifs les plus virulents du nickel qui existent sur le catalyseur neuf et donc à atténuer l’activité du catalyseur en faveur de sa sélectivité. L'étape de passivation est réalisée par la mise en oeuvre de méthodes connues de l'Homme du métier et notamment, à titre d'exemple par la mise en oeuvre de l'une des méthodes décrites dans les documents de brevets EP0466567, US5153163, FR2676184, W02004/098774, EP0707890. Le composé soufré est par exemple choisi parmi les composés suivants: thiophène, thiophane, alkylmonosulfures tels que diméthylsulfure, diéthylsulfure, dipropylsulfure et propylméthylsulfure ou encore un disulfure organique de formule HO-RrS-S-FVOH tel que le di-thio-di-éthanol de formule HO-C2H4-S-S-C2H4-OH (appelé souvent DEODS). La teneur en soufre est généralement comprise entre 0,1 et 2 % poids dudit élément par rapport à la masse du catalyseur.
L'étape de passivation par un composé oxygéné ou par le C02 est généralement effectuée après un traitement réducteur au préalable à température élevée, généralement comprise entre 350 et 500°C, et permet de préserver la phase métallique du catalyseur en présence d’air. Un deuxième traitement réducteur à température plus basse généralement entre 120 et 350°C, est ensuite généralement effectué. Le composé oxygéné est généralement l’air ou tout autre flux contenant de l’oxygène.
Caractéristiques du catalyseur
Le catalyseur obtenu par le procédé de préparation comprend un support poreux et une phase active comprenant, de préférence constituée de, au moins un métal du groupe VIII, de préférence le nickel, le palladium ou le platine, plus préférentiellement le nickel, ladite phase active ne comprenant pas de métal du groupe VIB. Elle ne comprend notamment pas de molybdène ou de tungstène. Lorsque le métal est le nickel, la teneur en nickel étant comprise entre 1 et 65% en poids dudit élément par rapport au poids total du catalyseur, de préférence comprise entre 5 et 55% poids, de manière encore plus préférée comprise entre 8 et 40% poids, et de manière particulièrement préférée comprise entre 12 et 35% poids. Lorsque qu’on souhaite utiliser le catalyseur selon l’invention dans une réaction d’hydrogénation sélective de molécules polyinsaturées telles que les dioléfines, les acétyléniques ou les alcénylaromatiques, la teneur en nickel est avantageusement comprise entre 1 et 35% poids, de préférence comprise entre 5 et 30% poids, et plus préférentiellement comprise entre 8 et 25% poids, et de façon encore plus préférée comprise entre 12 et 23% poids dudit élément par rapport à la masse totale du catalyseur.
Lorsque qu’on souhaite utiliser le catalyseur selon l’invention dans une réaction d’hydrogénation d’aromatiques, la teneur en nickel est avantageusement comprise entre 8 et 65% poids, de préférence comprise entre 12 et 55% poids, de façon encore plus préférée comprise entre 15 et 40% poids, et plus préférentiellement comprise entre 18 et 35% poids dudit élément par rapport à la masse totale du catalyseur.
La phase active se présentant sous la forme de particules de nickel ayant un diamètre inférieur ou égal à 18 nm, ledit catalyseur comprenant un volume poreux total mesuré par porosimétrie au mercure compris entre 0,01 et 1 ,0 mL/g, un volume mésoporeux mesuré par porosimétrie au mercure supérieur à 0,01 mL/g, un volume macroporeux mesuré par porosimétrie au mercure inférieur ou égal à 0,6 ml/g, un diamètre médian mésoporeux en volume compris entre 3 et 25 nm, un diamètre médian macroporeux en volume compris entre 50 et 1000 nm, et une surface spécifique SBET compris entre 25 et 350 m2/g
La taille des particules de nickel dans le catalyseur selon l’invention est inférieure à 18 nm, de préférence inférieure à 15 nm, plus préférentiellement comprise entre 0,5 et 12 nm, de manière préférée comprise entre 1 ,5 et 8,0 nm.
Le support poreux sur lequel est déposée ladite phase active comprend de l’alumine (Al203). De manière préférée, l’alumine présente dans ledit support est une alumine de transition telle qu’une alumine gamma, delta, thêta, chi, rho ou êta, seule ou en mélange. De manière plus préférée, l’alumine est une alumine de transition gamma, delta ou thêta, seule ou en mélange.
Dans une seconde variante de réalisation, l’alumine présenta dans ledit support est une alumine alpha. Le support peut comprendre un autre oxyde différent de l’alumine, tel que la silice (Si02), le dioxyde de titane (Ti02), la cérine (Ce02), la zircone (Zr02) ou le P205. Le support peut être une silice-alumine. De manière très préférée, ledit support est constitué uniquement d’alumine.
Ledit catalyseur est généralement présenté sous toutes les formes connues de l'Homme du métier, par exemple sous forme de billes (ayant généralement un diamètre compris entre 1 et 8 mm), d’extrudés, de tablettes, de cylindres creux. De préférence, il est constitué d'extrudés de diamètre généralement compris entre 0,5 et 10 mm, de préférence entre 0,8 et 3,2 mm et de manière très préférée entre 1 ,0 et 2,5 mm et de longueur moyenne comprise entre 0,5 et 20 mm. On entend par « diamètre moyen » des extrudés le diamètre moyen du cercle circonscrit à la section droite de ces extrudés. Le catalyseur peut être avantageusement présenté sous la forme d'extrudés cylindriques, multilobés, trilobés ou quadrilobés. De préférence sa forme sera trilobée ou quadrilobée. La forme des lobes pourra être ajustée selon toutes les méthodes connues de l'art antérieur.
Le volume poreux du support est généralement compris entre 0,1 cm3/g et 1 ,5 cm3/g, de préférence compris entre 0,5 cm3/g et 1 ,0 cm3/g. La surface spécifique du support est généralement supérieure ou égale à 5 m2/g, de préférence supérieure ou égale à 30 m2/g, plus préférentiellement comprise entre 40 m2/g et 500 m2/g, et encore plus préférentiellement comprise entre 50 m2/g et 400 m2/g.
Lorsque qu’on souhaite utiliser le catalyseur selon l’invention dans une réaction d’hydrogénation sélective de molécules polyinsaturées telles que les dioléfines, les acétyléniques ou les alcénylaromatiques, la surface spécifique du support est avantageusement comprise entre 40 et 250 m2/g, de façon préférée entre 50 et 200 m2/g.
Lorsque qu’on souhaite utiliser le catalyseur selon l’invention dans une réaction d’hydrogénation d’aromatiques, la surface spécifique du support est avantageusement comprise entre 60 et 500 m2/g, de façon préférée entre 100 et 400 m2/g.
Description du procédé d’hydrogénation sélective de composés polyinsaturés
La présente invention a également pour objet un procédé d’hydrogénation sélective de composés polyinsaturés contenant au moins 2 atomes de carbone par molécule, tels que les dioléfines et/ou les acétyléniques et/ou les alcénylaromatiques, aussi appelés styréniques, contenus dans une charge d’hydrocarbures ayant un point d'ébullition final inférieur ou égal à 300°C, lequel procédé étant réalisé à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0,1 et 200 h 1 lorsque le procédé est réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire entre 100 et 40000 h 1 lorsque le procédé est réalisé en phase gazeuse, en présence d’un catalyseur obtenu par le procédé de préparation tel que décrit ci- avant dans la description.
Les composés organiques mono-insaturés tels que par exemple l’éthylène et le propylène, sont à la source de la fabrication de polymères, de matières plastiques et d'autres produits chimiques à valeur ajoutée. Ces composés sont obtenus à partir du gaz naturel, du naphta ou du gazole qui ont été traités par des procédés de vapocraquage ou de craquage catalytique. Ces procédés sont opérés à haute température et produisent, en plus des composés mono-insaturés recherchés, des composés organiques polyinsaturés tels que l'acétylène, le propadiène et le méthylacétylène (ou propyne), le 1 -2-butadiène et le 1 -3- butadiène, le vinylacétylène et l'éthylacétylène, et d’autres composés polyinsaturés dont le point d’ébullition correspond à la coupe C5+ (composés hydrocarbonés ayant au moins 5 atomes de carbone), en particulier des composés dioléfiniques ou styréniques ou indéniques. Ces composés polyinsaturés sont très réactifs et conduisent à des réactions parasites dans les unités de polymérisation. Il est donc nécessaire de les éliminer avant de valoriser ces coupes.
L'hydrogénation sélective est le principal traitement développé pour éliminer spécifiquement les composés polyinsaturés indésirables de ces charges d'hydrocarbures. Elle permet la conversion des composés polyinsaturés vers les alcènes ou aromatiques correspondants en évitant leur saturation totale et donc la formation des alcanes ou naphtènes correspondants. Dans le cas d'essences de vapocraquage utilisées comme charge, l'hydrogénation sélective permet également d'hydrogéner sélectivement les alcénylaromatiques en aromatiques en évitant l’hydrogénation des noyaux aromatiques.
La charge d'hydrocarbures traitée dans le procédé d’hydrogénation sélective a un point d'ébullition final inférieur ou égal à 300°C et contient au moins 2 atomes de carbone par molécule et comprend au moins un composé polyinsaturé. On entend par « composés polyinsaturés » des composés comportant au moins une fonction acétylénique et/ou au moins une fonction diénique et/ou au moins une fonction alcénylaromatique. Plus particulièrement, la charge est sélectionnée dans le groupe constitué par une coupe C2 de vapocraquage, une coupe C2-C3 de vapocraquage, une coupe C3 de vapocraquage, une coupe C4 de vapocraquage, une coupe C5 de vapocraquage et une essence de vapocraquage encore appelée essence de pyrolyse ou coupe C5+.
La coupe C2 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition suivante : entre 40 et 95 % poids d'éthylène, de l'ordre de 0,1 à 5 % poids d'acétylène, le reste étant essentiellement de l'éthane et du méthane. Dans certaines coupes C2 de vapocraquage, entre 0,1 et 1 % poids de composés en C3 peut aussi être présent.
La coupe C3 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition moyenne suivante : de l’ordre de 90 % poids de propylène, de l’ordre de 1 à 8 % poids de propadiène et de méthylacétylène, le reste étant essentiellement du propane. Dans certaines coupes C3, entre 0,1 et 2 % poids de composés en C2 et de composés en C4 peut aussi être présent.
Une coupe C2 - C3 peut aussi être avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention. Elle présente par exemple la composition suivante : de l'ordre de 0,1 à 5 % poids d'acétylène, de l’ordre de 0,1 à 3 % poids de propadiène et de méthylacétylène, de l’ordre de 30 % poids d'éthylène, de l’ordre de 5 % poids de propylène, le reste étant essentiellement du méthane, de l’éthane et du propane. Cette charge peut aussi contenir entre 0,1 et 2 % poids de composés en C4.
La coupe C4 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition massique moyenne suivante : 1 % poids de butane, 46,5 % poids de butène, 51 % poids de butadiène, 1 ,3 % poids de vinylacétylène et 0,2 % poids de butyne. Dans certaines coupes C4, entre 0,1 et 2 % poids de composés en C3 et de composés en C5 peut aussi être présent.
La coupe C5 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition suivante : 21 % poids de pentanes, 45 % poids de pentènes, 34 % poids de pentadiènes.
L'essence de vapocraquage ou essence de pyrolyse, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, correspond à une coupe hydrocarbonée dont la température d'ébullition est généralement comprise entre 0 et 300°C, de préférence entre 10 et 250°C. Les hydrocarbures polyinsaturés à hydrogéner présents dans ladite essence de vapocraquage sont en particulier des composés dioléfiniques (butadiène, isoprène, cyclopentadiène...), des composés styréniques (styrène, alpha- méthylstyrène...) et des composés indéniques (indène...). L'essence de vapocraquage comprend généralement la coupe C5-C12 avec des traces de C3, C4, C13, C14, C15 (par exemple entre 0,1 et 3% poids pour chacune de ces coupes). Par exemple, une charge formée d'essence de pyrolyse a généralement une composition suivante: 5 à 30 % poids de composés saturés (paraffines et naphtènes), 40 à 80 % poids de composés aromatiques, 5 à 20 % poids de mono-oléfines, 5 à 40 % poids de dioléfines, 1 à 20 % poids de composés alcénylaromatiques, l'ensemble des composés formant 100 %. Elle contient également de 0 à 1000 ppm poids de soufre, de préférence de 0 à 500 ppm poids de soufre.
De manière préférée, la charge d'hydrocarbures polyinsaturés traitée conformément au procédé d'hydrogénation sélective selon l'invention est une coupe C2 de vapocraquage, ou une coupe C2-C3 de vapocraquage, ou une essence de vapocraquage.
Le procédé d'hydrogénation sélective selon l'invention vise à éliminer lesdits hydrocarbures polyinsaturés présents dans ladite charge à hydrogéner sans hydrogéner les hydrocarbures monoinsaturés. Par exemple, lorsque ladite charge est une coupe C2, le procédé d'hydrogénation sélective vise à hydrogéner sélectivement l'acétylène. Lorsque ladite charge est une coupe C3, le procédé d'hydrogénation sélective vise à hydrogéner sélectivement le propadiène et le méthylacétylène. Dans le cas d'une coupe C4, on vise à éliminer le butadiène, le vinylacétylène (VAC) et le butyne, dans le cas d'une coupe C5, on vise à éliminer les pentadiènes. Lorsque ladite charge est une essence de vapocraquage, le procédé d'hydrogénation sélective vise à hydrogéner sélectivement lesdits hydrocarbures polyinsaturés présents dans ladite charge à traiter de manière à ce que les composés dioléfiniques soient partiellement hydrogénés en mono-oléfines et que les composés styréniques et indéniques soient partiellement hydrogénés en composés aromatiques correspondants en évitant l’hydrogénation des noyaux aromatiques.
La mise en œuvre technologique du procédé d’hydrogénation sélective est par exemple réalisée par injection, en courant ascendant ou descendant, de la charge d'hydrocarbures polyinsaturés et de l’hydrogène dans au moins un réacteur à lit fixe. Ledit réacteur peut être de type isotherme ou de type adiabatique. Un réacteur adiabatique est préféré. La charge d'hydrocarbures polyinsaturés peut avantageusement être diluée par une ou plusieurs ré injections) de l'effluent, issu dudit réacteur où se produit la réaction d'hydrogénation sélective, en divers points du réacteur, situés entre l'entrée et la sortie du réacteur afin de limiter le gradient de température dans le réacteur. La mise en œuvre technologique du procédé d’hydrogénation sélective selon l'invention peut également être avantageusement réalisée par l'implantation d’au moins dudit catalyseur supporté dans une colonne de distillation réactive ou dans des réacteurs - échangeurs ou dans un réacteur de type slurry. Le flux d'hydrogène peut être introduit en même temps que la charge à hydrogéner et/ou en un ou plusieurs points différents du réacteur.
L'hydrogénation sélective des coupes C2, C2-C3, C3, C4, C5 et C5+ de vapocraquage peut être réalisée en phase gazeuse ou en phase liquide, de préférence en phase liquide pour les coupes C3, C4, C5 et C5+ et en phase gazeuse pour les coupes C2 et C2-C3. Une réaction en phase liquide permet d’abaisser le coût énergétique et d’augmenter la durée de cycle du catalyseur.
D'une manière générale, l'hydrogénation sélective d’une charge d'hydrocarbures contenant des composés polyinsaturés contenant au moins 2 atomes de carbone par molécule et ayant un point d'ébullition final inférieur ou égal à 300°C s'effectue à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire V.V.H. (définie comme le rapport du débit volumique de charge sur le volume du catalyseur) comprise entre 0,1 et 200 h 1 pour un procédé réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire V.V.H. comprise entre 100 et 40000 h 1 pour un procédé réalisé en phase gazeuse.
Dans un mode de réalisation selon l’invention, lorsqu’on effectue un procédé d'hydrogénation sélective dans lequel la charge est une essence de vapocraquage comportant des composés polyinsaturés, le ratio molaire (hydrogène)/(composés polyinsaturés à hydrogéner) est généralement compris entre 0,5 et 10, de préférence entre 0,7 et 5,0 et de manière encore plus préférée entre 1 ,0 et 2,0, la température est comprise entre 0 et 200°C, de préférence entre 20 et 200 °C et de manière encore plus préférée entre 30 et 180°C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 0,5 et 100 h 1, de préférence entre 1 et 50 h 1 et la pression est généralement comprise entre 0,3 et 8,0 MPa, de préférence entre 1 ,0 et 7,0 MPa et de manière encore plus préférée entre 1 ,5 et 4,0 MPa. Plus préférentiellement, on effectue un procédé d’hydrogénation sélective dans lequel la charge est une essence de vapocraquage comportant des composés polyinsaturés, le ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) est compris entre 0,7 et 5,0, la température est comprise entre 20 et 200 °C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 1 et 50 h 1 et la pression est comprise entre 1 ,0 et 7,0 MPa.
Encore plus préférentiellement, on effectue un procédé d’hydrogénation sélective dans lequel la charge est une essence de vapocraquage comportant des composés polyinsaturés, le ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) est compris entre 1 ,0 et 2,0, la température est comprise entre 30 et 180°C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 1 et 50 h 1 et la pression est comprise entre 1 ,5 et 4,0 MPa.
Le débit d’hydrogène est ajusté afin d’en disposer en quantité suffisante pour hydrogéner théoriquement l’ensemble des composés polyinsaturés et de maintenir un excès d’hydrogène en sortie de réacteur.
Dans un autre mode de réalisation selon l’invention, lorsqu’on effectue un procédé d'hydrogénation sélective dans lequel la charge est une coupe C2 de vapocraquage et/ou une coupe C2-C3 de vapocraquage comportant des composés polyinsaturés, le ratio molaire (hydrogène)/(composés polyinsaturés à hydrogéner) est généralement compris entre 0,5 et 1000, de préférence entre 0,7 et 800, la température est comprise entre 0 et 300°C, de préférence entre 15 et 280 °C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 100 et 40000 h 1 , de préférence entre 500 et 30000 h 1 et la pression est généralement comprise entre 0,1 et 6,0 MPa, de préférence entre 0,2 et 5,0 MPa.
Description du des aromatiques
La présente invention a également pour objet un procédé d’hydrogénation d’au moins un composé aromatique ou polyaromatique contenu dans une charge d’hydrocarbures ayant un point d’ébullition final inférieur ou égal à 650°C, généralement entre 20 et 650°C, et de préférence entre 20 et 450°C. Ladite charge d’hydrocarbures contenant au moins un composé aromatique ou polyaromatique peut être choisi parmi les coupes pétrolières ou pétrochimiques suivantes : le reformat du reformage catalytique, le kérosène, le gazole léger, le gazole lourd, les distillais de craquage, tels que l’huile de recyclage de FCC, le gazole d’unité de cokéfaction, les distillais d’hydrocraquage. La teneur en composés aromatiques ou polyaromatiques contenus dans la charge d’hydrocarbures traitée dans le procédé d’hydrogénation selon l’invention est généralement compris entre 0,1 et 80% en poids, de préférence entre 1 et 50% en poids, et de manière particulièrement préférée entre 2 et 35% en poids, le pourcentage étant basé sur le poids total de la charge d’hydrocarbures. Les composés aromatiques présents dans ladite charge d’hydrocarbures sont par exemple le benzène ou des alkylaromatiques tels que le toluène, l'éthylbenzène, Go-xylène, le m-xylène, ou le p-xylène, ou encore des aromatiques ayant plusieurs noyaux aromatiques (polyaromatiques) tels que le naphtalène.
La teneur en soufre ou en chlore de la charge est généralement inférieure à 5000 ppm poids de soufre ou de chlore, de préférence inférieure à 100 ppm poids, et de manière particulièrement préférée inférieure à 10 ppm poids.
La mise en œuvre technologique du procédé d’hydrogénation des composés aromatiques ou polyaromatiques est par exemple réalisée par injection, en courant ascendant ou descendant, de la charge d'hydrocarbures et de l’hydrogène dans au moins un réacteur à lit fixe. Ledit réacteur peut être de type isotherme ou de type adiabatique. Un réacteur adiabatique est préféré. La charge d'hydrocarbures peut avantageusement être diluée par une ou plusieurs ré-injection(s) de l'effluent, issu dudit réacteur où se produit la réaction d'hydrogénation des aromatiques, en divers points du réacteur, situés entre l'entrée et la sortie du réacteur afin de limiter le gradient de température dans le réacteur. La mise en œuvre technologique du procédé d’hydrogénation des aromatiques selon l'invention peut également être avantageusement réalisée par l'implantation d’au moins dudit catalyseur supporté dans une colonne de distillation réactive ou dans des réacteurs - échangeurs ou dans un réacteur de type slurry. Le flux d'hydrogène peut être introduit en même temps que la charge à hydrogéner et/ou en un ou plusieurs points différents du réacteur.
L'hydrogénation des composés aromatiques ou polyaromatiques peut être réalisée en phase gazeuse ou en phase liquide, de préférence en phase liquide. D'une manière générale, l'hydrogénation des composés aromatiques ou polyaromatiques s'effectue à une température comprise entre 30 et 350°C, de préférence entre 50 et 325°C, à une pression comprise entre 0,1 et 20 MPa, de préférence entre 0,5 et 10 MPa, à un ratio molaire hydrogène/(composés aromatiques à hydrogéner) entre 0,1 et 10 et à une vitesse volumique horaire V.V.H. comprise entre 0,05 et 50 h 1, de préférence entre 0,1 et 10 h 1 d’une charge d'hydrocarbures contenant des composés aromatiques ou polyaromatiques et ayant un point d'ébullition final inférieur ou égal à 650°C, généralement entre 20 et 650°C, et de préférence entre 20 et 450°C.
Le débit d’hydrogène est ajusté afin d’en disposer en quantité suffisante pour hydrogéner théoriquement l’ensemble des composés aromatiques et de maintenir un excès d’hydrogène en sortie de réacteur.
La conversion des composés aromatiques ou polyaromatiques est généralement supérieure à 20% en mole, de préférence supérieure à 40% en mole, de manière plus préférée supérieure à 80% en mole, et de manière particulièrement préférée supérieure à 90 % en mole des composés aromatiques ou polyaromatiques contenus dans la charge hydrocarbonée. La conversion se calcule en divisant la différence entre les moles totales des composés aromatiques ou polyaromatiques dans la charge d'hydrocarbures et dans le produit par les moles totales des composés aromatiques ou polyaromatiques dans la charge d'hydrocarbures.
Selon une variante particulière du procédé selon l’invention, on réalise un procédé d’hydrogénation du benzène d’une charge d’hydrocarbures, tel que le reformat issu d’une unité de reformage catalytique. La teneur en benzène dans ladite charge d’hydrocarbures est généralement comprise entre 0,1 et 40% poids, de préférence entre 0,5 et 35% poids, et de manière particulièrement préférée entre 2 et 30% poids, le pourcentage en poids étant basé sur le poids total de la charge d’hydrocarbures.
La teneur en soufre ou en chlore de la charge est généralement inférieure à 10 ppm poids de soufre ou chlore respectivement, et de préférence inférieure à 2 ppm poids.
L'hydrogénation du benzène contenu dans la charge d’hydrocarbures peut être réalisée en phase gazeuse ou en phase liquide, de préférence en phase liquide. Lorsqu’elle est réalisée en phase liquide, un solvant peut être présent, tel que le cyclohexane, l’heptane, l’octane. D'une manière générale, l'hydrogénation du benzène s'effectue à une température comprise entre 30 et 250°C, de préférence entre 50 et 200°C, et de manière plus préférée entre 80 et 180°C, à une pression comprise entre 0,1 et 10 MPa, de préférence entre 0,5 et 4 MPa, à un ratio molaire hydrogène/(benzène) entre 0,1 et 10 et à une vitesse volumique horaire V.V.H. comprise entre 0,05 et 50 h 1, de préférence entre 0,5 et 10 h 1.
La conversion du benzène est généralement supérieure à 50% en mole, de préférence supérieure à 80% en mole, de manière plus préférée supérieure à 90% en mole et de manière particulièrement préférée supérieure à 98 % en mole. Exemples
Les exemples qui suivent précisent l’intérêt de l’invention sans toutefois en limiter la portée.
L'ensemble des catalyseurs préparés dans les exemples 1 à 5 sont préparés à isoteneur en élément nickel. Le support utilisé pour la préparation de chacun de ces catalyseurs est une alumine delta ayant un volume poreux de 0,67 ml_/g et une surface spécifique BET égale à 140 m2/g.
Exemple 1 : Préparation de la solution aqueuses de précurseurs de Ni
Une solution aqueuse de précurseurs de Ni (solution S1 ) utilisée pour la préparation des catalyseurs A, B, C et D est préparée à 25°C en dissolvant 276 g de nitrate de nickel Ni(N03)2.6H20 (fournisseur Strem Chemicals®) dans un volume de 100mL d’eau déminéralisée. On obtient la solution S1 dont la concentration en NiO est de 19,0 %poids (par rapport à la masse de la solution). Exemple 2 (comparatif) : Préparation d'un catalyseur A par imprégnation de nitrate de nickel sans additif
La solution S1 préparée à l’exemple 1 est imprégnée (7,4 mL de solution) à sec sur 10 g dudit support d'alumine. Le solide ainsi obtenu est ensuite séché en étuve pendant 16 heures à 120°C, puis calciné sous un flux d’air de 1 L/h/g de catalyseur à 450°C pendant 2 heures.
Le catalyseur calciné A ainsi préparé contient 13,8 %poids de l'élément nickel supporté sur alumine et il présente des cristallites d’oxyde de nickel dont le diamètre moyen (déterminé par diffraction des rayons X à partir de la largeur de la raie de diffraction située à l’angle 2thêta=43°) est de 15,2 nm.
Exemple 3 (comparatif) : Préparation d'un catalyseur B par imprégnation successive de nitrate de nickel puis d’acide acide 4-oxopentanoïaue (acide lévulinique)
Le catalyseur B est préparé par imprégnation de nitrate de Ni (7,4 mL de solution) sur ledit support d’alumine puis par imprégnation d’acide lévulinique en utilisant un ratio molaire {acide lévulinique / nickel} égal à 0,4.
Pour ce faire, la solution S1 préparée à l’exemple 1 est imprégnée à sec sur ledit support d'alumine. Le solide B1 ainsi obtenu est ensuite séché en étuve pendant 16 heures à 120°C. Puis, une solution aqueuse B’ est préparée par dissolution de 3,26 g d’acide lévulinique (CAS 123-76-2, fournisseur Merck®) dans 20 mL d'eau déminéralisée. Cette solution B’ est ensuite imprégnée à sec sur 10 g du solide B1 préalablement préparé. Le solide ainsi obtenu est ensuite séché en étuve pendant 16 heures à 120°C, puis calciné sous un flux d’air de 1 L/h/g de catalyseur à 450°C pendant 2 heures.
Le catalyseur calciné B ainsi préparé contient 13,8 %poids de l'élément nickel supporté sur alumine et il présente des cristallites d’oxyde de nickel dont le diamètre moyen est de 5,2 nm.
Exemple 4 (invention) : Préparation d'un catalyseur C par imprégnation successive de nitrate de nickel puis d’acide lévulinique (acide 4-oxopentanoïque), avec un ratio molaire additif sur nickel de 0,4, en phase qazeuse en utilisant un solide vecteur (selon la variante 2)
Le catalyseur C est préparé par imprégnation de nitrate de Ni sur ledit support d’alumine puis par imprégnation d’acide lévulinique en phase gazeuse en utilisant un ratio molaire {acide lévulinique / nickel} égal à 0,4. Ce mode de préparation met en œuvre un solide vecteur.
Pour ce faire, la solution S1 préparée à l’exemple 1 est imprégnée à sec sur ledit support d'alumine. Le solide C1 ainsi obtenu est ensuite séché en étuve pendant 16 heures à 120°C. Puis, une solution aqueuse C’ est préparée par dissolution de 3,26 g d’acide lévulinique (CAS 123-76-2, fournisseur Merck®) dans 20 mL d'eau déminéralisée. Le solide C2 est obtenu par imprégnation à sec de 7,4mL de cette solution C’ sur ledit support d’alumine.
On dispose ensuite dans un réacteur tubulaire, par exemple un tube en quartz de DN 50 mm muni d’un fritté, le solide C2 sur une couche d’épaisseur fine (1 cm environ). Un lit d’inertes de basse surface est ensuite déposé (sur une couche de quelques cm, ici du SiC de la société AGP), puis le second solide C1 . Une circulation de gaz vecteur (air sec dans ce cas) est ensuite réalisée de bas en haut du réacteur (en passant par C2 puis par C1 ). Un flux de 1 L /h/g est utilisé, la température est montée à 120°C sur la zone contenant le solide C2 et à 30°C sur celle contenant le solide C1 . Le système est tiré au vide via une pompe à palette placée sur la tête du tube en quartz. Le dispositif est maintenu 8 heures avec un vide d’au moins 50 mbar. Les conditions sont choisies pour transférer sous forme vapeur l’acide lévulinique du solide C2 au solide C1. A l’issu de la durée nécessaire au transfert, le solide C1 ayant capté l’acide lévulinique devient le solide C.
Le solide C ainsi obtenu est ensuite calciné sous un flux d’air de 1 L/h/g de catalyseur à 450°C pendant 2 heures.
Le catalyseur calciné C ainsi préparé contient 13,8 %poids de l'élément nickel supporté sur alumine et il présente des cristallites d’oxyde de nickel dont le diamètre moyen est de 4,9 nm. Exemple 5 (invention) : Préparation d'un catalyseur D par imprégnation successive de nitrate de nickel puis d’acide lévulinique (acide 4-oxopentanoïque), avec un ratio molaire additif sur nickel de 0,4, en phase qazeuse (selon la variante 1 )
Le catalyseur D est préparé par imprégnation de nitrate de Ni sur ledit support d’alumine puis par imprégnation d’acide lévulinique en phase gazeuse en utilisant un ratio molaire {acide lévulinique / nickel} égal à 0,4.
Pour ce faire, la solution S1 préparée à l’exemple 1 est imprégnée à sec sur ledit support d'alumine. Le solide D1 ainsi obtenu est ensuite séché en étuve pendant 16 heures à 120°C.
Puis, on dépose de 3,26 g d’acide lévulinique (CAS 123-76-2, fournisseur Merck®) pur et non dilué au fond d’un saturateur. Ledit saturateur est relié à un réacteur en quartz où l’on place le solide D1 sur un fritté poreux en monocouche de solide. Le réacteur fait 5,5 cm de diamètre pour les 10g de solide à traiter. On réalise une mise en température homogène de l’ensemble saturateur / réacteur. Sous flux d’azote (150 NL/h) qui est injecté à la base du saturateur, on ajuste la température de l’ensemble saturateur / réacteur à une température de 120°C. Les conditions de températures sont choisies pour que l’additif ait une pression de vapeur d’au moins 400 Pa. L’ensemble est laissé sous flux d’azote en température pendant 8 heures. Le système est ensuite inerté, le saturateur est bypassé, et de l’air est ensuite injecté dans le même montage. La température du réacteur uniquement est augmentée (1 °C/minute) sous flux d’un mélange 50/50 air/azote à 450°C durant 2 heures.
Le catalyseur calciné D ainsi préparé contient 13,8 %poids de l'élément nickel supporté sur alumine et il présente des cristallites d’oxyde de nickel dont le diamètre moyen est de 4,9 nm.
Exemple 6 : Évaluation des propriétés catalytiques des catalyseurs A à D en hydrogénation du toluène
Les catalyseurs A à D décrits dans les exemples ci-dessus sont testés vis-à-vis de la réaction d'hydrogénation du toluène.
La réaction d'hydrogénation sélective est opérée dans un autoclave de 500 mL en acier inoxydable, muni d’une agitation mécanique à entraînement magnétique et pouvant fonctionner sous une pression maximale de 100 bar (10 MPa) et des températures comprises entre 5°C et 200°C.
Préalablement à son introduction dans l’autoclave, une quantité de 2 mL de catalyseur est réduite ex situ sous un flux d'hydrogène de 1 L/h/g de catalyseur, à 400 °C pendant 16 heures (rampe de montée en température de 1 °C/min), puis elle est transvasée dans l’autoclave, à l'abri de l'air. Après ajout de 216 ml_ de n-heptane (fournisseur VWR®, pureté > 99% chromanorm HPLC), l’autoclave est fermé, purgé, puis pressurisé sous 35 bar (3,5 MPa) d’hydrogène, et porté à la température du test égale à 80°C. Au temps t=0, environ 26 g de toluène (fournisseur SDS®, pureté > 99.8%) sont introduits dans l’autoclave (la composition initiale du mélange réactionnel est alors toluène 6 %pds / n-heptane 94 %pds) et l’agitation est mise en route à 1600 tr/min. La pression est maintenue constante à 35 bar (3,5 MPa) dans l’autoclave à l’aide d’une bouteille réservoir située en amont du réacteur. L’avancement de la réaction est suivi par prélèvement d’échantillons du milieu réactionnel à intervalles de temps réguliers : le toluène est totalement hydrogéné en méthylcyclohexane. La consommation d'hydrogène est également suivie au cours du temps par la diminution de pression dans une bouteille réservoir située en amont du réacteur. L’activité catalytique est exprimée en moles de H2 consommées par minute et par gramme de Ni.
Les activités catalytiques mesurées pour les catalyseurs A à D sont reportées dans le Tableau 1 ci-dessous. Elles sont rapportées à l’activité catalytique mesurée pour le catalyseur A (AHYDI )·
Tableau 1
Les résultats figurant dans le tableau 1 démontrent que les catalyseurs B, C et D, préparés en présence d’un composé organique (ayant au moins une fonction de type acide carboxylique), sont plus actifs que le catalyseur A préparé en l'absence de ce type de composé organique. Cet effet est lié à la diminution de la taille des particules de Ni. La méthode d’introduction de l’additif a également un effet, qui n’est pas lié à la taille des particules de Ni, sur l’activité du catalyseur. Une réduction de la teneur en aluminate de nickel est observée suite à ce mode d’introduction de l’additif en phase gazeuse.
Exemple 7 : Évaluation des propriétés catalytiques des catalyseurs A à D en hydrogénation sélective d'un mélange contenant du styrène et de l'isoprène
Les catalyseurs A à D décrits dans les exemples ci-dessus sont testés vis-à-vis de la réaction d'hydrogénation sélective d'un mélange contenant du styrène et de l’isoprène.
La composition de la charge à hydrogéner sélectivement est la suivante : 8 %pds styrène (fournisseur Sigma Aldrich®, pureté 99%), 8 %pds isoprène (fournisseur Sigma Aldrich®, pureté 99%), 84 %pds n-heptane (solvant) (fournisseur VWR®, pureté > 99% chromanorm HPLC). Cette charge contient également des composés soufrés en très faible teneur : 10 ppm pds de soufre introduits sous forme de pentanethiol (fournisseur Fluka®, pureté > 97%) et 100 ppm pds de soufre introduits sous forme de thiophène (fournisseur Merck®, pureté 99%). Cette composition correspond à la composition initiale du mélange réactionnel. Ce mélange de molécules modèles est représentatif d’une essence de pyrolyse.
La réaction d'hydrogénation sélective est opérée dans un autoclave de 500 mL en acier inoxydable, muni d’une agitation mécanique à entraînement magnétique et pouvant fonctionner sous une pression maximale de 100 bar (10 MPa) et des températures comprises entre 5°C et 200°C.
Préalablement à son introduction dans l’autoclave, une quantité de 3 mL de catalyseur est réduite ex situ sous un flux d'hydrogène de 1 L/h/g de catalyseur, à 400 °C pendant 16 heures (rampe de montée en température de 1 °C/min), puis elle est transvasée dans l’autoclave, à l'abri de l'air. Après ajout de 214 mL de n-heptane (fournisseur VWR®, pureté > 99% chromanorm HPLC), l’autoclave est fermé, purgé, puis pressurisé sous 35 bar (3,5 MPa) d’hydrogène, et porté à la température du test égale à 30°C. Au temps t=0, environ 30 g d'un mélange contenant du styrène, de l’isoprène, du n-heptane, du pentanethiol et du thiophène sont introduits dans l’autoclave. Le mélange réactionnel a alors la composition décrite ci-dessus et l’agitation est mise en route à 1600 tr/min. La pression est maintenue constante à 35 bar (3,5 MPa) dans l’autoclave à l’aide d’une bouteille réservoir située en amont du réacteur. L’avancement de la réaction est suivi par prélèvement d’échantillons du milieu réactionnel à intervalles de temps réguliers : le styrène est hydrogéné en éthylbenzène, sans hydrogénation du cycle aromatique, et l’isoprène est hydrogéné en méthyl-butènes. Si la réaction est prolongée plus longtemps que nécessaire, les méthyl-butènes sont à leur tour hydrogénés en isopentane. La consommation d'hydrogène est également suivie au cours du temps par la diminution de pression dans une bouteille réservoir située en amont du réacteur. L’activité catalytique est exprimée en moles de H2 consommées par minute et par gramme de Ni.
Les activités catalytiques mesurées pour les catalyseurs A à D sont reportées dans le Tableau 2 ci-dessus. Elles sont rapportées à l’activité catalytique mesurée pour le catalyseur A (AHYD2
Tableau 2
Les résultats figurant dans le tableau 2 démontrent que les catalyseurs B, C et D, préparés en présence d’un composé organique (ayant au moins une fonction de type acide carboxylique), sont plus actifs que le catalyseur A préparé en l'absence de ce type de composé organique. Cet effet est lié à la diminution de la taille des particules de Ni. La méthode d’introduction de l’additif a également un effet, qui n’est pas lié à la taille des particules de Ni, sur l’activité du catalyseur. Une réduction de la teneur en aluminate de nickel est observée suite à ce mode d’introduction de l’additif en phase gazeuse.

Claims

REVENDICATIONS
1. Procédé d’hydrogénation d’au moins un composé polyinsaturé contenant au moins 2 atomes de carbone par molécule, tels que les dioléfines et/ou les acétyléniques et/ou les composés aromatiques ou polyaromatiques, contenu dans une charge d’hydrocarbures ayant un point d’ébullition final inférieur ou égal à 650°C, lequel procédé étant réalisé à une température comprise entre 0 et 350°C, à une pression comprise entre 0,1 et 20 MPa, à un ratio molaire hydrogène/(composé à hydrogéner) entre 0,1 et 1000 et à une vitesse volumique horaire V.V.H. comprise entre 0,05 et 40000 h 1 en présence d’un catalyseur comprenant un support poreux et une phase active comprenant au moins un métal du groupe VIII, ladite phase active ne comprenant pas de métal du groupe VIB, ledit catalyseur étant préparé selon au moins les étapes suivantes :
a) on additionne au support poreux au moins un composé organique contenant de l’oxygène et/ou de l’azote mais ne comprenant pas de soufre ;
b) on réalise une étape de mise en contact dudit support poreux avec au moins une solution contenant au moins un sel de précurseur de la phase comprenant au moins un métal du groupe VIII ;
c) on sèche le support poreux obtenu à l’issue de l’étape b) ;
caractérisé en ce que l’étape a) est réalisée avant ou après les étapes b) et c) et est réalisée par mise en présence dudit support poreux et dudit composé organique dans des conditions de température, de pression et de durée telles qu’une fraction dudit composé organique est transférée à l’état gazeux au support poreux.
2. Procédé selon la revendication 1 , dans lequel l’étape a) est réalisée par mise en présence simultanée dudit support poreux et dudit composé organique à l’état liquide et sans contact physique, à une température inférieure à la température d’ébullition dudit composé organique et dans des conditions de pression et de durée telles qu’une fraction dudit composé organique est transférée à l’état gazeux au support poreux.
3. Procédé selon la revendication 2, dans lequel l’étape a) est réalisée au moyen d’une unité d’addition dudit composé organique comprenant un premier et un second compartiments en communication de manière à permettre le passage d’un fluide gazeux entre les compartiments, le premier compartiment contenant le support poreux et le second compartiment contenant le composé organique à l’état liquide.
4. Procédé selon la revendication 3, dans lequel l’unité comprend une enceinte incluant les premier et second compartiments, les deux compartiments étant en communication par voie gazeuse.
5. Procédé selon la revendication 3, dans lequel l’unité comprend deux enceintes formant respectivement le premier et le second compartiments, les deux enceintes étant en communication par voie gazeuse.
6. Procédé selon l’une quelconque des revendications 3 à 5, dans lequel l’étape a) est réalisée en présence d’un flux d’un gaz vecteur circulant du second compartiment dans le premier compartiment.
7. Procédé selon la revendication 1 , dans lequel l’étape a) est réalisée par mise en présence dudit support poreux avec un solide poreux comprenant ledit composé organique dans des conditions de température, de pression et de durée telles qu’une fraction dudit composé organique est transférée par voie gazeuse dudit solide poreux audit support poreux.
8. Procédé selon la revendication 7, dans lequel l’étape a) est réalisée par mise en présence sans contact physique dudit support poreux avec ledit solide poreux comprenant ledit composé organique.
9. Procédé selon l’une quelconque des revendications 7 à 8, dans lequel à l’étape a) le support poreux et le solide poreux comprenant ledit composé organique sont de porosité et/ou de nature chimique différente(s).
10. Procédé selon l’une quelconque des revendications 7 à 9, dans lequel à l’issue de l’étape a), le solide poreux contenant le composé organique est séparée dudit support poreux et est renvoyée à l’étape a).
1 1. Procédé selon l’une quelconque des revendications 1 à 10, dans lequel ledit composé organique est choisi parmi les composés comportant une ou plusieurs fonctions chimiques choisies parmi une fonction acide carboxylique, alcool, ester, aldéhyde, cétone, éther, carbonate, amine, azo, nitrile, imine, amide, carbamate, carbamide, acide aminé, éther, dilactone, carboxyanhydride.
12. Procédé selon la revendication 1 1 , dans lequel ledit composé organique comporte au moins une fonction carboxylique choisi parmi l’acide formique, l’acide éthanedioïque (acide oxalique), l’acide propanedioïque (acide malonique), l’acide pentanedioïque (acide glutarique), l’acide hydroxyacétique (acide glycolique), l’acide 2- hydroxypropanoïque (acide lactique), l’acide 2-hydroxypropanedioïque (acide tartronique), l’acide 2-hydroxybutanedioïque (acide malique), l’acide 2-hydroxypropane- 1 ,2,3-tricarboxylique (acide citrique), l’acide 2,3-dihydroxybutanedioïque (acide tartrique), l’acide 2,2’-oxydiacétique (acide diglycolique), l’acide 2-oxopropanoïque (acide pyruvique), l’acide 4-oxopentanoïque (acide lévulinique).
13. Procédé selon la revendication 1 1 , dans lequel ledit composé organique comporte au moins une fonction alcool choisi parmi le méthanol, l’éthanol, le phénol, l’éthylène glycol, le propane-1 ,3-diol, le butane-1 ,4-diol, le pentane-1 ,5-diol, l’hexane-1 ,6-diol, le glycérol, le xylitol, le mannitol, le sorbitol, le pyrocatéchol, le résorcinol, l’hydroquinol, le diéthylène glycol, le triéthylène glycol, les polyéthylène glycol ayant une masse molaire moyenne inférieure à 600 g/mol, le glucose, le mannose, le fructose, le sucrose, le maltose, le lactose, sous l’une quelconque de leurs formes isomères.
14. Procédé selon la revendication 1 1 , dans lequel ledit composé organique comporte au moins une fonction ester choisi parmi une g-lactone ou une d-lactone contenant entre 4 et 8 atomes de carbone, la g-butyrolactone, la g-valérolactone, la d-valérolactone, la g- caprolactone, la d-caprolactone, la g-heptalactone, la d-heptalactone, la g-octalactone, la d-octalactone, le méthanoate de méthyle, l’acétate de méthyle, le propanoate de méthyle, le butanoate de méthyle, le pentanoate de méthyle, l’hexanoate de méthyle, l’octanoate de méthyle, le décanoate de méthyle, le laurate de méthyle, le dodécanoate de méthyle, l’acétate d’éthyle, le propanoate d’éthyle, le butanoate d’éthyle, le pentanoate d’éthyle, l’hexanoate d’éthyle, l’oxalate de diméthyle, le malonate de diméthyle, le succinate de diméthyle, le glutarate de diméthyle, l’adipate de diméthyle, l’oxalate de diéthyle, le malonate de diéthyle, le succinate de diéthyle, le glutarate de diéthyle, l’adipate de diéthyle, le méthylsuccinate de diméthyle, le 3-méthylglutarate de diméthyle, le glycolate de méthyle, le glycolate d’éthyle, le glycolate de butyle, le glycolate de benzyle, le lactate de méthyle, le lactate d’éthyle, le lactate de butyle, le lactate de tert-butyle, le 3-hydroxybutyrate d’éthyle, le mandélate d’éthyle, le malate de diméthyle, le malate de diéthyle, le malate de diisopropyle, le tartrate de diméthyle, le tartrate de diéthyle, le tartrate de diisopropyle, le citrate de triméthyle, le citrate de triéthyle, le carbonate de d’éthylène, le carbonate de propylène, le carbonate de triméthylène, le carbonate de diéthyle, le carbonate de diphényle, le dicarbonate de diméthyle, le dicarbonate de diéthyle, le dicarbonate de di-tert-butyle, sous l’une quelconque de leur forme isomère.
15. Procédé selon la revendication 1 1 , dans lequel ledit composé organique comporte au moins une fonction amine choisi parmi l’éthylènediamine, le diaminohexane, la tétraméthylènediamine, l’hexaméthylènediamine, la tétraméthyléthylènediamine, la tétraéthyléthylènediamine, la diéthylènetriamine, la triéthylènetétramine.
16. Procédé selon la revendication 1 1 , dans lequel ledit composé organique comporte au moins une fonction amide choisi parmi la formamide, la N-méthylformamide, la N,N- diméthylformamide, la N-éthylformamide, la N,N-diéthylformamide, l’acétamide, la N- méthylacétamide, la N,N-diméthylméthanamide, la N,N-diéthylacétamide, la N,N- diméthylpropionamide, la propanamide, la 2-pyrrolidone, la N-méthyl-2-pyrrolidone, la y- lactame, la caprolactame, l'acétylleucine, l’acide N-acétylaspartique, l'acide aminohippurique, l’acide N-acétylglutamique, l’acide 4-acétamidobenzoïque, la lactamide et la glycolamide, l’urée, la N-méthylurée, la N,N'-diméthylurée, la 1 ,1 - diméthylurée, la tétraméthylurée selon l’une quelconque de leurs formes isomères.
17. Procédé selon la revendication 1 1 , dans lequel ledit composé organique comporte au moins un fonction carboxyanhydrides choisi dans le groupe des O-carboxyanhydrides constitué par la 5-méthyl-1 ,3-dioxolane-2,4-dione et l’acide 2,5-dioxo-1 ,3-dioxolane-4- propanoïque, ou dans le groupe des N-carboxyanhydrides constitué par la 2,5- oxazolidinedione et la 3,4-diméthyl-2,5-oxazolidinedione.
18. Procédé selon la revendication 1 1 , dans lequel ledit composé organique comporte au moins une fonction dilactone choisi dans le groupe des dilactones cycliques de 4 chaînons constitué par la 1 ,2-dioxétanedione, ou dans le groupe des dilactones cycliques de 5 chaînons constitué par la 1 ,3-dioxolane-4,5-dione, la 1 ,5-dioxolane-2,4- dione, et la 2,2-dibutyl-1 ,5-dioxolane-2,4-dione, ou dans le groupe des dilactones cycliques de 6 chaînons constitué par la 1 ,3-dioxane-4,6-dione, la 2,2-diméthyl-1 ,3- dioxane-4,6-dione, la 2,2,5-triméthyl-1 ,3-dioxane-4,6-dione, la 1 ,4-dioxane-2,5-dione, la 3,6-diméthyl-1 ,4-dioxane-2,5-dione, la 3,6-diisopropyl-1 ,4-dioxane-2,5-dione, et la 3,3- ditoluyl-6,6-diphényl-1 ,4-dioxane-2,5-dione, ou dans le groupe des dilactones cycliques de 7 chaînons constitué par la 1 ,2-dioxépane-3,7-dione, la 1 ,4-dioxépane-5,7-dione, la 1 ,3-dioxépane-4,7-dione, et la 5-hydroxy-2,2-diméthyl-1 ,3-dioxépane-4,7-dione.
19. Procédé selon la revendication 1 1 , dans lequel ledit composé organique comporte au moins une fonction éther choisi dans le groupe des éthers linéaires constitué par le diéthyl éther, le dipropyl éther, le dibutyl éther, le methyl tert-butyl éther, le diisopropyl éther, le di-tert-butyl éther, le méthoxybenzène, le phényl vinyl éther, l’isopropyl vinyl éther et l’isobutyl vinyl éther, ou dans le groupe des éthers cycliques constitué par le tétrahydrofurane, 1 ,4-dioxane, et la morpholine.
20. Procédé selon l’une quelconque des revendications 1 à 19, ledit procédé étant un procédé d’hydrogénation d’au moins un composé aromatique ou polyaromatique contenu dans une charge d’hydrocarbures ayant un point d’ébullition final inférieur ou égal à 650°C, ledit procédé étant réalisé en phase gazeuse ou en phase liquide, à une température comprise entre 30 et 350°C, à une pression comprise entre 0,1 et 20 MPa, à un ratio molaire hydrogène/(composés aromatiques à hydrogéner) entre 0,1 et 10 et à une vitesse volumique horaire V.V.H. comprise entre 0,05 et 50 h 1.
21. Procédé selon l’une quelconque des revendications 1 à 19, dans lequel ledit procédé est un procédé d’hydrogénation sélective de composés polyinsaturés contenus dans une charge d’hydrocarbures ayant un point d'ébullition final inférieur ou égal à 300°C, lequel procédé étant réalisé à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0,1 et 200 h 1 lorsque le procédé est réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire entre 100 et 40000 h 1 lorsque le procédé est réalisé en phase gazeuse.
EP19786341.8A 2018-10-25 2019-10-15 Procede d'hydrogenation comprenant un catalyseur prepare par addition d'un compose organique en phase gazeuse Withdrawn EP3870362A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1871300A FR3087787B1 (fr) 2018-10-25 2018-10-25 Procede d’hydrogenation comprenant un catalyseur prepare par addition d’un compose organique en phase gazeuse
PCT/EP2019/078006 WO2020083714A1 (fr) 2018-10-25 2019-10-15 Procede d'hydrogenation comprenant un catalyseur prepare par addition d'un compose organique en phase gazeuse

Publications (1)

Publication Number Publication Date
EP3870362A1 true EP3870362A1 (fr) 2021-09-01

Family

ID=65444259

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19786341.8A Withdrawn EP3870362A1 (fr) 2018-10-25 2019-10-15 Procede d'hydrogenation comprenant un catalyseur prepare par addition d'un compose organique en phase gazeuse

Country Status (5)

Country Link
US (1) US20210331145A1 (fr)
EP (1) EP3870362A1 (fr)
CN (1) CN113242766A (fr)
FR (1) FR3087787B1 (fr)
WO (1) WO2020083714A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11292973B2 (en) * 2019-11-01 2022-04-05 Exxonmobil Chemical Patents Inc. Process and system for upgrading a hydrocarbon feed
FR3115794B1 (fr) * 2020-10-29 2023-01-13 Ifp Energies Now Procede d’hydrogenation selective mettant en œuvre un catalyseur de forme mousse
CN115624710B (zh) * 2022-09-30 2023-09-15 洪湖市一泰科技有限公司 一种光催化降解处理草铵膦废盐中有机膦的方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2664507B1 (fr) 1990-07-13 1995-04-14 Eurecat Europ Retrait Catalys Procede de pretraitement d'un catalyseur par un melange d'un agent soufre et d'un agent reducteur organique.
FR2664610A1 (fr) 1990-07-13 1992-01-17 Inst Francais Du Petrole Hydrogenation selective des essences de vapocraquage sur des catalyseurs a base d'un metal supporte dans lesquels un compose organique a ete incorpore avant chargement dans le reacteur.
FR2676184B1 (fr) 1991-05-06 1995-04-14 Eurecat Europ Retrait Catalys Procede de pretraitement d'un catalyseur par un melange d'un agent soufre et d'un agent reducteur organique.
FR2725381B1 (fr) 1994-10-07 1996-12-13 Eurecat Europ Retrait Catalys Procede de pretraitement hors site d'un catalyseur de traitement d'hydrocarbures
GB0227086D0 (en) * 2002-11-20 2002-12-24 Exxonmobil Res & Eng Co Hydrogenation processes
FR2854335B1 (fr) 2003-04-30 2009-03-20 Eurecat Sa Traitement hors site de catalyseurs d'hydrogenation
WO2007084437A2 (fr) 2006-01-17 2007-07-26 Exxonmobil Research And Engineering Company Catalyseurs sélectifs à support d'alumine haute température pour l'hydrodésulfuration de naphta
CN102463151B (zh) * 2010-11-04 2014-05-21 中国石油化工股份有限公司 加氢处理催化剂的制备方法
FR2984761B1 (fr) * 2011-12-21 2014-12-26 IFP Energies Nouvelles Procede de preparation d'un catalyseur a base d'un metal du groupe viii prepare au moyen d'au moins un additif organique et procede d'hydrogenation selective mettant en oeuvre ledit catalyseur
FR3023184B1 (fr) * 2014-07-04 2019-12-27 IFP Energies Nouvelles Catalyseur d'hydrotraitement a densite de molybdene elevee et methode de preparation.
FR3061195B1 (fr) * 2016-12-22 2019-06-28 IFP Energies Nouvelles Procede d'hydrogenation selective mettant en œuvre un catalyseur de nickel prepare au moyen d'un additif comprenant une fonction amine, amide, ou un acide amine
FR3061197A1 (fr) * 2016-12-22 2018-06-29 IFP Energies Nouvelles Procede d'hydrogenation selective mettant en œuvre un catalyseur a base de nickel prepare au moyen d'un additif comprenant une fonction ester
FR3061194B1 (fr) * 2016-12-22 2019-06-28 IFP Energies Nouvelles Procede d'hydrogenation selective mettant en œuvre un catalyseur a base de nickel prepare au moyen d'un additif comprenant une fonction acide carboxylique
FR3065888B1 (fr) * 2017-05-04 2020-05-29 IFP Energies Nouvelles Procede d'addition indirecte d'un compose organique a un solide poreux.

Also Published As

Publication number Publication date
FR3087787B1 (fr) 2020-12-18
FR3087787A1 (fr) 2020-05-01
US20210331145A1 (en) 2021-10-28
WO2020083714A1 (fr) 2020-04-30
CN113242766A (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
EP3191221B1 (fr) Catalyseur mesoporeux a base de nickel et son utilisation en hydrogenation d'hydrocarbures
EP3154685B1 (fr) Catalyseur mesoporeux et macroporeux a base de nickel ayant un diametre median macroporeux compris entre 50 nm et 200 nm et son utilisation en hydrogenation d'hydrocarbures
EP3154684B1 (fr) Catalyseur a base de nickel mesoporeux et macroporeux ayant un diametre median macroporeux superieur a 200 nm et son utilisation en hydrogenation d'hydrocarbures
EP3740309B1 (fr) Procede de preparation d'un catalyseur particulier d'hydrogenation selective et d'hydrogenation des aromatiques par malaxage
EP3870362A1 (fr) Procede d'hydrogenation comprenant un catalyseur prepare par addition d'un compose organique en phase gazeuse
EP4003587B1 (fr) Catalyseur comprenant une phase active de nickel sous forme de petites particules repartie en croute et un alliage nickel cuivre
EP3781310B1 (fr) Procede de preparation d'un catalyseur bimetallique d'hydrogenation selective a base de nickel et de cuivre
FR3080298A1 (fr) Procede de preparation d’un catalyseur bimetallique a base de nickel et de cuivre pour l’hydrogenation de composes aromatiques
EP4003588B1 (fr) Procede de preparation d'un catalyseur comprenant une phase active de nickel repartie en croute
WO2021018601A1 (fr) Catalyseur comprenant une phase active de nickel repartie en croute et un alliage nickel cuivre
WO2021018599A1 (fr) Catalyseur comprenant une phase active de nickel sous forme de petites particules et un alliage nickel cuivre
WO2021018602A1 (fr) Catalyseur comprenant une phase active de nickel sous forme de petites particules repartie en croute
WO2019011569A1 (fr) Procede d'hydrogenation des aromatiques mettant en œuvre un catalyseur obtenu par impregnation comprenant un support specifique
WO2018114399A1 (fr) Procede d'hydrogenation selective mettant en œuvre un catalyseur a base de nickel prepare au moyen d'un additif comprenant une fonction ester
WO2018114398A1 (fr) Procede d'hydrogenation selective mettant en œuvre un catalyseur a base de nickel prepare au moyen d'un additif comprenant une fonction alcool
FR3068983B1 (fr) Procede d'hydrogenation selective mettant en œuvre un catalyseur obtenu par impregnation comprenant un support specifique
WO2021018603A1 (fr) Catalyseur comprenant une phase active de nickel soufre repartie en croute
FR3061195B1 (fr) Procede d'hydrogenation selective mettant en œuvre un catalyseur de nickel prepare au moyen d'un additif comprenant une fonction amine, amide, ou un acide amine
EP4157517A1 (fr) Procede de preparation d'un catalyseur comprenant une phase active de nickel repartie en croute et un alliage nickel cuivre
EP4373611A1 (fr) Procede de preparation d'un catalyseur comprenant une phase active de nickel repartie en croute via impregnation d'hexanol
WO2021239491A1 (fr) Procede de preparation d'un catalyseur comprenant une phase active de nickel repartie en croute obtenu a partir de sels fondus
EP4157521A1 (fr) Procede de preparation d'un catalyseur comprenant une phase active de nickel repartie en croute
FR3068982A1 (fr) Procede d'hydrogenation selective mettant en œuvre un catalyseur obtenu par comalaxage comprenant un support specifique
FR3068985A1 (fr) Procede d’hydrogenation des aromatiques mettant en oeuvre un catalyseur obtenu par comalaxage comprenant un support specifique

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210525

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220302

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20220713