EP3866562B1 - Module de compresseur, système de refroidissement et/ou de chauffage pourvu de modules de compresseur et procédé de fonctionnement d'un système de refroidissement et/ou de chauffage - Google Patents

Module de compresseur, système de refroidissement et/ou de chauffage pourvu de modules de compresseur et procédé de fonctionnement d'un système de refroidissement et/ou de chauffage Download PDF

Info

Publication number
EP3866562B1
EP3866562B1 EP21156261.6A EP21156261A EP3866562B1 EP 3866562 B1 EP3866562 B1 EP 3866562B1 EP 21156261 A EP21156261 A EP 21156261A EP 3866562 B1 EP3866562 B1 EP 3866562B1
Authority
EP
European Patent Office
Prior art keywords
compressor
cooling
interface
compressor module
modules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21156261.6A
Other languages
German (de)
English (en)
Other versions
EP3866562A1 (fr
Inventor
Bernd Gebelein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Viessmann Refrigeration Solutions GmbH
Original Assignee
Viessmann Refrigeration Solutions GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102020123657.3A external-priority patent/DE102020123657A1/de
Application filed by Viessmann Refrigeration Solutions GmbH filed Critical Viessmann Refrigeration Solutions GmbH
Publication of EP3866562A1 publication Critical patent/EP3866562A1/fr
Application granted granted Critical
Publication of EP3866562B1 publication Critical patent/EP3866562B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/0252Domestic applications
    • H05B1/0275Heating of spaces, e.g. rooms, wardrobes
    • H05B1/028Airconditioning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements

Definitions

  • a compressor module, a cooling and/or heating system with compressor modules and a method for operating a cooling and/or heating system are described.
  • the compressor output is often regulated via so-called compressor modules, with the compressor output thus having a direct influence on the cooling and/or heating output of cooling and/or heating devices.
  • cold water set or cold brine set are also often used.
  • a cooling circuit e.g. water or brine
  • each of which has its own compressor module or cold water or cold brine unit.
  • the compressor modules are connected in series for a corresponding cooling capacity.
  • the regulation can take place via a common control.
  • the control regulates the energy supply for the connected compressor modules.
  • compressor modules have a refrigerant circuit and a coolant circuit for cooling a space via a cooling device, the refrigerant circuit and the coolant circuit being connected via a heat exchanger.
  • the refrigerant circuit has a compressor that is operated in accordance with control commands and the energy provided. The compressor thus regulates the cooling of the refrigerant received in the refrigerant circuit and, via the heat exchanger, the cooling or temperature of the coolant conducted in the coolant circuit.
  • the refrigerant circuit is preferably located within the compressor module.
  • the coolant circuit extends between the heat exchanger and the cooling device.
  • the compressor module has connections for lines of the coolant circuit.
  • the cooling device can also have corresponding connections for the lines of the coolant circuit.
  • the cooling device has a further heat exchanger and a fan, which sucks in ambient air and guides it over the heat exchanger, so that the ambient air is cooled depending on the temperature of the coolant.
  • Compressor modules are used that have an interface with a three-phase current connection. Compressor modules are connected via their interfaces to a corresponding interface of a controller. For this purpose, the controller has a corresponding number of interfaces for a specific number of compressor modules.
  • Compressor modules are often used in refrigeration cells, with the associated chilled water or cold brine set being arranged outside of a refrigeration cell.
  • the associated cooling device is arranged inside the cooling cell.
  • a control device for setting the required temperature can also be arranged outside the cold store.
  • PLCs programmable logic controllers
  • a conventional system with compressor modules connected to a control unit for control and power supply is off US 2016/0245565 A1 known.
  • the compressor modules are connected in parallel and are each connected directly to the control unit. Therefore, adding compressor modules makes it necessary to replace the control unit, because only the number of compressor modules corresponding to the number of interfaces can be connected to the control unit.
  • the above-mentioned fluctuations in relation to the inrush currents and phase loading occur in the system described.
  • a tandem arrangement of compressors for heating and air conditioning devices is known.
  • two compressors are arranged in parallel and connected to a condenser.
  • the compressors are directly connected to a central controller for controlling the tandem compressor arrangement.
  • the compressors are connected in parallel with a 3-phase power supply.
  • the aim of the tandem arrangement and the parallel control is to to ensure fail-safe operation of the heating and air conditioning unit.
  • the object is to specify an improved and simpler design of modules for controlling associated components, a simplified system with such modules, which has a simple exchange and allows easy addition of modules, and a uniform phase loading in the network.
  • the compressor module is characterized in that the connection to a controller does not necessarily have to be via a direct connection between a compressor module and the controller, but only one compressor module has to be connected to the controller, and further compressor modules can be connected to an upstream compressor module , whereby the compressor modules are connected in series. Swapping the phases between the first interface and the second interface of the compressor module ensures that when several compressor modules connected in series are switched on, the inrush currents that occur do not add up and that there are no strong fluctuations even when there are changes in their performance. This is also supported by the delay circuit, which delays the transmission of a switch-on and/or control command to the next series-connected compressor module.
  • This additional compressor module forwards the switch-on and activation command via its delay circuit to at least one additional compressor module, also with a delay.
  • the phases are always reversed in each compressor module. As a result This allows the inrush currents and the phase load of a power supply network to be evenly distributed.
  • the device for controlling a cooling and/or heating device assigned to the compressor module includes such means that can provide cooling and/or heating.
  • the means include heat exchangers, fans, a refrigerant circuit with a refrigerant, a coolant circuit with a coolant and/or valves, and a compressor.
  • the compressor module can have connections for a coolant circuit between the compressor module and a cooling and/or heating device, with the coolant routed in the coolant circuit being able to be brought to an adjustable temperature directly or indirectly by the device for controlling a cooling and/or heating device assigned to the compressor module is.
  • the coolant is fed back and forth from the compressor module to a cooling and/or heating device via lines of the coolant circuit.
  • the coolant is cooled, for example, and the cooled coolant is then routed to the cooling and/or heating device.
  • the cooling liquid is then used to cool or heat the air in a room or the like, for example by means of additional devices.
  • the cooling liquid is then returned to the compressor module, with the sequence being repeated. If the temperature of the coolant is set directly, the coolant can be routed via a heat exchanger, which is cooled by (ambient) air with the aid of a fan. In the case of indirect cooling, a refrigerant circuit can also be provided.
  • the compressor module can have a refrigerant circuit, in which case a refrigerant of the refrigerant circuit can be brought to an adjustable temperature via the device for controlling a cooling and/or heating device assigned to the compressor module, and a refrigerant of the coolant circuit can be brought to an adjustable temperature via a heat exchanger connected to the coolant circuit and the refrigerant circuit can be brought to an adjustable temperature.
  • the heat exchanger serves to equalize the temperature of the coolant to the temperature or bring it relatively in the direction of the temperature value.
  • the coolant can be cooled using a chilled coolant.
  • refrigerants can be used that must not be released into the environment because they are hazardous to health or the environment, for example.
  • known coolants have the advantage over conventional coolants that they can transfer the thermal energy along the temperature gradient, which is not possible with a conventional coolant.
  • the refrigerant is only routed inside the compressor module, so that if refrigerant escapes, it remains inside the compressor module.
  • refrigerants are also known which are not hazardous to health or the environment. With these, too, the required volume of refrigerant is kept low by only routing it within the compressor module. Outside of the compressor module, the energy for cooling and/or heating is transferred via the coolant.
  • the device for controlling a cooling and/or heating device assigned to the compressor module can at least have a heat exchanger, a compressor and/or a fan.
  • the first interface and the second interface can have a connection for a control line for receiving and forwarding control commands, the delay circuit having an input which is connected to the control line. Signals received via the control line for controlling the compressor module and in particular for switching on a compressor of the compressor module are routed within the compressor module via the delay circuit. Therefore, the switch-on command or another signal is only forwarded to a further series-connected compressor module if the delay circuit forwards this signal via a corresponding output.
  • a compressor of the compressor module can be connected to one of the three phases of the connection for the three-phase current at the first interface.
  • the other phases of the three-phase connection are only passed on within the compressor module from the first interface to the second interface, with the phases also being reversed, so that, for example, a first phase (L1) from the first interface at a connection for a second Phase (L2) of the second interface is present.
  • the second phase (L2) of the first interface at a connection for a third phase (L3) of the second interface and a third phase (L3) of the first interface at a Connection for a first phase (L1) of the second interface.
  • neighboring phases are always interchanged.
  • the delay circuit can also have an output that switches the power supply via the corresponding phase to the compressor of the compressor module. This ensures that the switching on of the compressor can be fully controlled via the delay circuit.
  • the system is characterized in that the controller, e.g Interface of a series previously connected compressor module are connected.
  • the delay circuit ensures that a switch-on command and the power supply for the next compressor module are passed on with a delay, the phases for an even phase load of an energy supply network being reversed between the first interface and the second interface of each compressor module.
  • a uniform phase load is thus advantageously achieved, regardless of how many compressor modules are connected in series.
  • the first compressor module and the at least one second compressor module and the at least one cooling and/or heating device can be connected to a coolant circuit be connected, with a hydraulic balance between the at least two compressor modules in relation to the at least one cooling and/or heating device prevailing via a Tichelmann system. If the liquid lines or the coolant lines are connected according to the Tichelmann principle, the liquid or the coolant must always cover the same line length between the at least one cooling and/or heating device and the respective compressor modules. The lengths of the flow and return lines are considered together and the same pressure losses occur in each compressor module, so that the mass flow is divided evenly. This achieves a simple hydraulic balance.
  • the present invention is characterized in particular by the fact that the control does not have to be changed when compressors or compressor modules are added. For example, if a compressor module is defective, it can be replaced in just a few simple steps without having to intervene in the control.
  • the entire wiring is done, for example, via coded plug connections, which are formed by the interfaces and appropriately designed (power/signal) lines.
  • the activation (e.g. a cooling command) of a next (e.g. second) compressor module is delayed by a timing relay (delay circuit).
  • phase on the output connector which is formed by the second interface, is clamped from L1 to L2, from L2 to L3 and from L3 to L1.
  • the "twisting" of the phases ensures that there is an even phase load. This also applies in particular if an assigned compressor (e.g. devices for controlling the cooling and/or heating devices) is only operated in one phase.
  • an assigned compressor e.g. devices for controlling the cooling and/or heating devices
  • Additional compressor modules can be added via their first interface by simply plugging them into the second interface of a series-connected compressor module. Correspondingly designed lines with corresponding connections can be used for this purpose. Newly added compressor modules therefore do not have to be connected directly to the controller or a control device. In the prior art, it is customary for this to have a control unit for each module Provide interface, so that this results in strong restrictions and a high cost when connecting modules. The number of compressor modules is often limited as a result, so that when changes are made, a control unit also has to be replaced simply because the number of interfaces or connections is no longer sufficient. The invention, on the other hand, does not require any physical modification of the controller or a control device. Additional compressor modules are added by connecting the additional compressor module to a compressor module with a free second interface.
  • FIG. 1 shows a schematic representation of a cooling system 10 according to the prior art with a control unit 12, a cooling device 14 and a plurality of compressor modules 16.
  • the cooling system 10 is used to regulate the temperature in a refrigeration cell and has the compressor modules 16 for this purpose.
  • the compressor modules 16 have compressors that are connected to a refrigerant circuit, the refrigerant circuit running inside the compressor modules 16 .
  • the coolant circuit is thermally connected via a heat exchanger to a coolant circuit 15 which is connected to the compressor modules 16 and the cooling device 14 .
  • the coolant conducted in the coolant circuit 15 is brought to an adjustable temperature via the compressor modules 16 and conveyed to the cooling device 14 .
  • the cooling device 14 is arranged inside the cooling cell and has a fan that guides the air in the cooling cell via a heat exchanger that is in thermal contact with the coolant circuit 15 . It is thus possible via the compressor modules 16 to cool the air within the cold cell by means of the cooling device 14 or to bring it to an adjustable temperature.
  • the control unit 12 is used to regulate the compressor modules 16 and is connected to a power supply network for this purpose.
  • the control unit 12 uses this to provide the power supply for the connected compressor modules 16 .
  • the control unit 12 has a number of interfaces 13 via which a number of compressor modules 16 with corresponding interfaces 18 are connected.
  • the lines for the energy supply run between the interfaces 13 and the interfaces 18 .
  • the compressor modules 16 are connected to a three-phase network and therefore have connections for the 3 phases of the three-phase current at the interfaces 18 .
  • the interfaces 13 are designed accordingly.
  • the switch-on command for the compressor modules 16 generated via the control unit 12 also causes all the compressor modules 16 to be switched on at the same time.
  • the design of the control unit 12 and the interfaces 13 is designed in such a way that the power supply to all connected compressor modules 16 is identical, with the respective phases (L1, L2, L3) being connected to one another at the interfaces 18. The consequence of this is that when the compressor modules 16 are switched on, the inrush currents add up and thus a high phase load occurs in the energy supply network.
  • the known design of a cooling system 10 with compressor modules 16 therefore has the disadvantage that the number of compressor modules 16 depends on the number of interfaces 13 on the control unit 12 and when the compressor modules 16 are switched on, there is a high phase load in the power supply network.
  • a compressor module 100 which has a delay circuit 130 for the delayed forwarding of switch-on commands and a first interface 110 and a second interface 120, wherein the phases at the interfaces 110 and 120 are reversed.
  • FIG. 2 shows a schematic representation of such a compressor module 100 in an exemplary embodiment.
  • the compressor module 100 has a housing which has a connection for the first interface 110 and a connection for the second interface 120 .
  • the compressor module 100 has other components that are accommodated in the housing.
  • the compressor module 100 has, for example, the delay circuit 130, a compressor 140, a fan 150 and other switches and components, which are not shown in an exhaustive manner.
  • the representation of the components themselves is only of an exemplary nature.
  • the breakers shown in the circuit of 2 and also in 4 be realized by closers.
  • the compressor 140 is designed as a speed-controlled pump. In this way, the refrigeration or cooling capacity in a refrigerant circuit can be changed depending on the speed of the pump.
  • the control is carried out via a controller of a control unit 300.
  • the speed of the fan 150 can be regulated in order to influence the cooling capacity according to control commands depending on operating commands or parameters (coolant temperature, coolant temperature, cold room temperature, cooling requirement, etc.).
  • the schematic representation of 2 shows the solution according to the invention, where at the interfaces 110 and 120 the phases L1-L3 from the first interface 110 interchanged and forwarded to the second interface 120.
  • the consequence of this is that when several compressor modules 100 connected in series are switched on, the compressors 140 and the components of the compressor modules 100 are not all fed by the same phase.
  • the delay circuit 130 is provided, which has an input for a signal line.
  • the signal line receives from an in 3 and 4 illustrated control unit 300 the switch-on command.
  • This switch-on command is forwarded to the second interface 120 with a delay via the delay circuit 130 .
  • a compressor module 100 which is subsequently connected in series thus receives the switch-on command for switching on the components, such as a compressor 140, with a delay.
  • the current is then supplied for a further compressor module 100 not via phase L1 but via phase L3.
  • Compressor modules 100 are connected in series in such a way that further compressor modules 100 can be connected to a compressor module 100 via the second interfaces 120, with the first interface 110 of a further compressor module 100 being connected to the second interface 120 of a series-connected compressor module 100.
  • the first compressor module 100 of a series connection of compressor modules 100 is connected to a second interface 320 of the control unit 300 via the first interface 110 .
  • a corresponding interface 320 for the control unit 300 is sufficient to connect any number of compressor modules 100 without converting or replacing the control unit 300, wherein when the compressor modules 100 are switched on, the phase load in Energy supply or power grid remains essentially the same and there are no strong differences or fluctuations.
  • In 2 is indicated schematically that the signal line is connected to the phase L1.
  • the connection is in a control unit 300, with the connection of phase L1 to the signal line being regulated by a controller in the control unit.
  • This means that a signal for switching on the compressor modules 100 is only passed on via the signal line if a connection has been established via the control unit 300 between phase L1 and the signal line.
  • the signal via the control line also causes the corresponding switching means to be triggered so that the current-carrying phase is routed to the compressor 140 and the other components (see 4 ). It is therefore not sufficient that, for example, phase L1 enables a power supply.
  • FIG 3 shows a schematic representation of a cooling system 400 with a control unit 300, a cooling device 200 and a plurality of compressor modules 100 according to the embodiment of FIG 2 .
  • the control unit 300 has a first interface 310 .
  • the control unit 300 is connected to an energy supply or electricity network via the first interface 310 .
  • the control unit 300 also has a controller which provides the switch-on command for connected compressor modules 100 via appropriate switching means.
  • the controller can have a program for this purpose, which controls the compressor modules 100 and the cooling device 200 according to user inputs and/or parameters of the connected components and a cooling cell to be cooled via the cooling device 200 .
  • the control unit 300 has a further interface 330, via which the cooling device 200 is connected to the control unit 300 both for supplying energy and for receiving control signals.
  • the cooling device 200 can, for example, as in the embodiment of FIG 4 shown, be designed as a ceiling air cooler and is used to cool the air in a cold room.
  • the ceiling air cooler has a compressor, heat exchanger and a fan as well as other components that are not and 4 are only partially shown. So are in the Figures 2 to 4 for all components, the connections to a refrigerant circuit and a coolant circuit 410 and a refrigerant circuit and the coolant circuit 410 are not shown or only shown schematically.
  • the control unit 100 requires only a single interface 320 for the compressor modules 100, since the compressor modules 100 are connected in series via their first and second interfaces 110, 120. Due to the design of the compressor modules 100, a switch-on command is passed on with a delay via the respective delay circuits 130 in the compressor modules 100 and the phases L1-L3 are passed on reversed at the second interfaces 120, so that a power supply with 3 compressor modules 100 connected in series for the respective Compressor modules 100 takes place in such a way that the first Compressor module 100 is supplied with phase L1 with electricity, the next, second compressor module 100 is supplied with phase L3 with electricity and the next, third compressor module 100 with phase L2 is supplied with electricity. Further subsequent compressor modules 100 are then supplied with current in accordance with the above-mentioned sequence via the respective phases L1-L3 due to the design of the compressor modules 100.
  • cooling system 400 changes with regard to the number of compressor modules 100, no reprogramming of the controller of the control unit 300 or replacement of the control unit 300 is necessary, because the control unit 300 can be operated independently of the number of compressor modules 100 connected in series.
  • the compressor modules 100 each have a refrigerant circuit.
  • the refrigerant circuit is coupled to a heat exchanger that is thermally coupled to the coolant circuit 410 .
  • the compressor modules 100 have connections for lines of the coolant circuit 410 .
  • the cooling device 200 also has connections for lines of the coolant circuit 410 .
  • a coolant is conducted in the coolant circuit 410 , which coolant is cooled by the coolant in the coolant circuit and absorbs heat from the ambient air in the cooling cell in the cooling device 200 .
  • the temperature in the cooling cell is thus influenced as a function of the temperature of the refrigerant and the coolant.
  • the compressor output of the compressors 140 and the speed of the fans 150 in the compressor modules 100 influence the temperature of the refrigerant and thus the coolant.
  • the compressor of the cooling device serves as a pump, which conveys the coolant in the coolant circuit.
  • the speed of the pump can be regulated to regulate the cooling capacity.
  • the series connection of the compressor modules 100 enables rapid cooling of the refrigerant and thus of the coolant. Since, as a rule, no different activation of essentially identically designed compressor modules 100 is required for cooling, with a series connection of the compressor modules 100 and due to the design of the compressor modules 100 compared to the prior art, simpler, variable and resource-saving cooling of a cold cell or another refrigeration device (e.g. refrigerated cabinets, etc.).
  • the cooling system 400 described herein can also be correspondingly transferred to a heating system without deviating from the concept described herein.
  • the individual compressor modules 100 connected in series are connected to one another in relation to the cooling device 200 according to a Tichelmann circuit, so that the total length of the flow and return for each compressor module 100 in relation to the cooling device 200 is the same length.
  • a hydraulic balancing of the compressor modules 100 is thus achieved in a simple manner.
  • the cooling device 200 designed as a ceiling air cooler can be interconnected with other ceiling air coolers in order to be able to provide a greater cooling capacity.
  • the circuit can relate to the control via the signal line 420 and energy supply and/or the connection to the coolant circuit 410 .
  • the cooling system 400 can additionally have a membrane expansion vessel, a venting device and, for filling, a filling unit for the coolant.
  • FIG. 4 shows a schematic circuit diagram of part of a cooling system 400 according to a further embodiment with a cooling device 200 and a compressor module 100, which is connected via a first interface 110 to a control unit 300 and via a second interface 120 with further compressor modules 100 can be connected in series.
  • the cooling system 400 shown is designed to cool a space, such as a cold store.
  • the part of the cooling system 400 shown has a control unit 300, which contains the controller for operating cooling devices 200, a compressor module 100 and a cooling device 200 designed as a ceiling air cooler.
  • the control unit 300 has a three-phase connection.
  • the control unit 300 has at least one controller, which controls the operation of cooling components, such as the ceiling air cooler and cooling devices, which are regulated via the compressor module 100 .
  • control unit 300 has corresponding connections or interfaces 310, 320 (phases L1-L3, PE, N and signal line).
  • the compressor module 100 has a first interface 110 and a second interface 120 .
  • the compressor module 100 is connected to a corresponding via the first interface 110 and correspondingly designed lines Interface 320 of the control unit 300 connected. Both the energy supply for the compressor module 100 and a compressor 140 and the transmission of control commands take place via the first interface 110 .
  • An additional compressor module 100 can be connected via the second interface 120 . Further compressor modules 100 are advantageously connected via a series connection of the compressor modules 100. As a result, no additional connections need to be provided on the control unit 300, which would also necessitate reprogramming when further compressor modules 100 are connected.
  • Control commands for cooling the space of the cold cell are transmitted via the control unit 300 to a first compressor module 100, which then controls an associated compressor 140 accordingly.
  • the control command is applied to the second interface 120 via a delay circuit 130 of the compressor module 100 and a signal line.
  • the control command is thus forwarded to a further compressor module 100 with a delay, which is connected to the first compressor module 100 via the second interface 120 .
  • the phases are additionally swapped, with phase L1 being placed on L2, phase L2 on L3 and phase L3 on L1.
  • the compressors 140 themselves use their speed to control the delivery of a refrigerant, so that the cooling capacity of cooling devices, such as the cooling device 200, can be controlled or at least additionally influenced by the speed.
  • the invention is characterized in particular by the simplicity and the ability to expand the cooling system 400 and the compressor modules 100 as desired.
  • the power supply is reliably regulated and strong fluctuations and high inrush currents are avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Claims (10)

  1. Module de compresseur pour la régulation d'un compresseur d'un système de chauffage et/ou de refroidissement, dans lequel
    - le module de compresseur (100) présente au moins une première interface (110), une deuxième interface (120), un circuit de temporisation (130) et un dispositif pour la régulation d'un dispositif de refroidissement et/ou de chauffage (200) associé au module de compresseur (100), lequel sert à régler une puissance de refroidissement et/ou de chauffage pouvant être prédéfinie par l'intermédiaire d'instructions de commande,
    - le module de compresseur (100) peut être relié à une commande ou un module de compresseur (100) prémonté en série pour la réception d'instructions de commande et pour l'alimentation en énergie par l'intermédiaire de la première interface (110), et un montage en série avec d'autres modules de compresseur (100) peut être établi par l'intermédiaire de la deuxième interface (120),
    - une instruction de commande pour un module de compresseur (100) monté en aval peut être transmise de manière différée par l'intermédiaire du circuit de temporisation (130), et
    - la première interface (110) et la deuxième interface (120) présentent des connexions pour un courant triphasé, et les phases sur la deuxième interface (120) sont permutées.
  2. Module de compresseur selon la revendication 1, dans lequel le module de compresseur (100) présente des connexions pour un circuit de refroidissement (410) entre le module de compresseur (100) et un dispositif de refroidissement et/ou de chauffage (200), dans lequel le liquide de refroidissement guidé dans le circuit de refroidissement (410) peut être amené directement ou indirectement à une température réglable par le dispositif pour la régulation d'un dispositif de refroidissement et/ou de chauffage (200) associé au module de compresseur (100).
  3. Module de compresseur selon la revendication 2, présentant un circuit frigorifique, dans lequel un fluide frigorifique du circuit frigorifique peut être amené à une température réglable par l'intermédiaire du dispositif pour la régulation d'un dispositif de refroidissement et/ou de chauffage (200) associé au module de compresseur (100) et un liquide de refroidissement du circuit de refroidissement (410) peut être amené à une température réglable par l'intermédiaire d'un échangeur de chaleur en liaison avec le circuit de refroidissement (410) et le circuit frigorifique.
  4. Module de compresseur selon l'une quelconque des revendications 1 à 3, dans lequel le dispositif pour la régulation d'un dispositif de refroidissement et/ou de chauffage (200) associé au module de compresseur (100) présente au moins un échangeur de chaleur, un compresseur (140) et/ou un ventilateur (150).
  5. Module de compresseur selon l'une quelconque des revendications 1 à 4, dans lequel la première interface (110) et la deuxième interface (120) présentent une connexion pour une ligne de commande pour la réception et pour la transmission d'instructions de commande, et dans lequel le circuit de temporisation (130) présente une entrée qui est reliée à la ligne de commande.
  6. Module de compresseur selon l'une quelconque des revendications 1 à 5, dans lequel un compresseur (140) du module de compresseur (100) est relié à une des trois phases de la connexion pour le courant triphasé sur la première interface (110).
  7. Module de compresseur selon la revendication 6, dans lequel le circuit de temporisation (130) présente une sortie, qui commute l'amenée de courant par l'intermédiaire de la phase correspondante au compresseur (140) du module de compresseur (100).
  8. Système de refroidissement et/ou de chauffage avec une commande, au moins deux modules de compresseur (100) selon l'une quelconque des revendications 1 à 7 et au moins un dispositif de refroidissement et/ou de chauffage (200) associé, dans lequel les modules de compresseur (100) sont réalisés pour réguler la puissance de refroidissement et/ou de chauffage du au moins un dispositif de refroidissement et/ou de chauffage (200), dans lequel
    - les modules de compresseur (100) présentent respectivement au moins une première interface (110), une deuxième interface (120), un circuit de temporisation (130) et des dispositifs pour la régulation du au moins un dispositif de refroidissement et/ou de chauffage (200), lesquels servent à régler une puissance de refroidissement et/ou de chauffage pouvant être prédéfinie par l'intermédiaire d'instructions de commande,
    - les au moins deux modules de compresseur (100) sont montés en série,
    - un premier module de compresseur (100) est relié à la commande par l'intermédiaire de la première interface (110) et reçoit de la commande des instructions de commande par l'intermédiaire de la première interface (110) et une alimentation en énergie s'effectue,
    - un deuxième module de compresseur (100) est connecté à la deuxième interface (120) du premier module de compresseur (100) par l'intermédiaire de la première interface (110) de celui-ci,
    - les instructions de commande reçues par l'unité de commande pour le au moins un deuxième module de compresseur (100) sont transmises de manière différée par l'intermédiaire du circuit de temporisation (130) du premier module de compresseur (100), et
    - les première et deuxième interfaces (110, 120) présentent des connexions pour un courant triphasé, et les phases sur les deuxièmes interfaces (120) sont permutées par rapport aux premières interfaces (110) pour chaque module de compresseur (100).
  9. Système de refroidissement et/ou de chauffage selon la revendication 8, dans lequel le premier module de compresseur (100) et le au moins un deuxième module de compresseur (100) ainsi que le au moins un dispositif de refroidissement et/ou de chauffage (200) sont connectés à un circuit de refroidissement (410), et un équilibrage hydraulique prédomine entre les au moins deux modules de compresseur (100) par rapport à le au moins un dispositif de refroidissement et/ou de chauffage (200) par l'intermédiaire d'un système Tichelmann.
  10. Procédé pour faire fonctionner un système de refroidissement et/ou de chauffage (400) selon la revendication 8 ou 9, présentant au moins deux modules de compresseur (100) selon l'une quelconque des revendications 1 à 7, dans lequel
    - une instruction de commande pour au moins un deuxième module de compresseur (100) est transmise par le circuit de temporisation (130) d'un premier module de compresseur (100) ou d'un monté en série devant celui-ci de manière différée par l'intermédiaire des interfaces (110, 120) correspondantes, et
    - les phases du courant triphasé sont transmises de manière permutée par l'intermédiaire de la deuxième interface (120).
EP21156261.6A 2020-02-12 2021-02-10 Module de compresseur, système de refroidissement et/ou de chauffage pourvu de modules de compresseur et procédé de fonctionnement d'un système de refroidissement et/ou de chauffage Active EP3866562B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020103642 2020-02-12
DE102020123657.3A DE102020123657A1 (de) 2020-02-12 2020-09-10 Verdichtermodul, Kühl- und/oder Heizsystem mit Verdichtermodulen und Verfahren zum Betreiben eines Kühl- und/oder Heizsystems

Publications (2)

Publication Number Publication Date
EP3866562A1 EP3866562A1 (fr) 2021-08-18
EP3866562B1 true EP3866562B1 (fr) 2022-06-01

Family

ID=74586886

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21156261.6A Active EP3866562B1 (fr) 2020-02-12 2021-02-10 Module de compresseur, système de refroidissement et/ou de chauffage pourvu de modules de compresseur et procédé de fonctionnement d'un système de refroidissement et/ou de chauffage

Country Status (2)

Country Link
EP (1) EP3866562B1 (fr)
ES (1) ES2924230T3 (fr)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7000422B2 (en) * 2000-03-14 2006-02-21 Hussmann Corporation Refrigeration system and method of configuring the same
US10197304B2 (en) * 2014-05-23 2019-02-05 Lennox Industries Inc. Tandem compressor discharge pressure and temperature control logic
US20160245565A1 (en) * 2014-09-02 2016-08-25 CSM Energy Solutions, LLC Modular Heat Recovery System

Also Published As

Publication number Publication date
ES2924230T3 (es) 2022-10-05
EP3866562A1 (fr) 2021-08-18

Similar Documents

Publication Publication Date Title
DE19838880C5 (de) Einrichtung zum Kühlen eines Innenraumes eines Kraftfahrzeugs
DE69330614T2 (de) Klimagerät
DE69807895T2 (de) Verfahren und vorrichtung zur anwendung eines doppelkreiselverdichters in einer kühlereinheit
DE102005061599A1 (de) Modulares Kühlsystem und Kälteerzeugungseinrichtung für ein solches Kühlsystem
EP2199706B1 (fr) Appareil de climatisation d'un dispositif de commutation et une méthode d'utilisation de l'appareil
EP3417213B1 (fr) Appareil de froid pourvu d'une pluralité de compartiments de stockage
EP2246634A1 (fr) Refroidissement direct libre
EP3715726A1 (fr) Installation de chauffage de l'eau et procédé pour son opération
EP1394482B1 (fr) Installation de pompe à chaleur
EP3690594B1 (fr) Procédé de régulation pour un appareil de réfrigération d'armoire de distribution
DE102007063009B4 (de) Verfahren zur Belüftung von Objekten und Vorrichtung zur Belüftung von Objekten, insbesondere raumlufttechnische Anlage
EP3866562B1 (fr) Module de compresseur, système de refroidissement et/ou de chauffage pourvu de modules de compresseur et procédé de fonctionnement d'un système de refroidissement et/ou de chauffage
DE102015117851B4 (de) Fluidsystem und Verfahren zur Steuerung eines Fluidsystems
EP4265981A1 (fr) Chauffage et/ou refroidissement de bâtiment à l'aide d'une pompe à chaleur
DE102020123657A1 (de) Verdichtermodul, Kühl- und/oder Heizsystem mit Verdichtermodulen und Verfahren zum Betreiben eines Kühl- und/oder Heizsystems
DE102019119884A1 (de) Die Temperatur einer Mehrzahl unterschiedlicher Betriebsmodule regelndes Fluidkreislaufsystem
EP3076110A1 (fr) Systeme fluidique et procede de commande d'un systeme fluidique
DE102017208231B4 (de) Kälteanlage für ein Fahrzeug mit einem Kältemittelkreislauf
AT6001U1 (de) Heizanlage oder kühlanlage mit mindestens einer wärmequelle
EP4012301A1 (fr) Procédé et dispositifs de régulation de la température d'une électronique de puissance dans une installation de climatisation et/ou de chauffage
EP0037843A1 (fr) Dispositif de climatisation pour une multitude de locaux, spécialement pour des cabines de bateau
DE102021204342A1 (de) Fluidmanagement-Modul und Baukasten-System
DE2704857C2 (de) Verfahren und Einrichtung zur Kühlung und Heizung von Gebäuden mit Zweirohr-Wassernetzen mittels Kältemaschinen mit wassergekühlten Kondensatoren und Warmwasser-Heizregistern
EP3587968B1 (fr) Système fluidique
EP3309478B1 (fr) Procédé de fonctionnement d'un cycle frigorifique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210921

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220128

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 49/02 20060101ALI20220114BHEP

Ipc: F25B 1/10 20060101ALI20220114BHEP

Ipc: H05B 1/02 20060101AFI20220114BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1496280

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220615

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021000038

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220601

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2924230

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20221005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220901

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220902

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221003

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221001

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502021000038

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

26N No opposition filed

Effective date: 20230302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230210

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240301

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231227

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240229

Year of fee payment: 4

Ref country code: FR

Payment date: 20240227

Year of fee payment: 4

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240229