EP3309478B1 - Procédé de fonctionnement d'un cycle frigorifique - Google Patents

Procédé de fonctionnement d'un cycle frigorifique Download PDF

Info

Publication number
EP3309478B1
EP3309478B1 EP17195998.4A EP17195998A EP3309478B1 EP 3309478 B1 EP3309478 B1 EP 3309478B1 EP 17195998 A EP17195998 A EP 17195998A EP 3309478 B1 EP3309478 B1 EP 3309478B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
compressor
refrigerant
heat
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17195998.4A
Other languages
German (de)
English (en)
Other versions
EP3309478A1 (fr
Inventor
Simon Ahlers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teko Gesellschaft fuer Kaeltetechnik mbH
Original Assignee
Teko Gesellschaft fuer Kaeltetechnik mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teko Gesellschaft fuer Kaeltetechnik mbH filed Critical Teko Gesellschaft fuer Kaeltetechnik mbH
Priority to PL17195998T priority Critical patent/PL3309478T3/pl
Publication of EP3309478A1 publication Critical patent/EP3309478A1/fr
Application granted granted Critical
Publication of EP3309478B1 publication Critical patent/EP3309478B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Definitions

  • a refrigeration cycle is a system which serves to cool a device to a desired level, for example a food freezer.
  • a refrigerant which is moved in the closed circuit, experiences successively different states of aggregation:
  • the gaseous refrigerant is first compressed by a compressor.
  • it condenses with heat release.
  • the liquid refrigerant is due to the pressure change via a throttle body, for example, an expansion valve or a capillary, relaxed.
  • the refrigerant evaporates while absorbing heat at low temperature (boiling cooling).
  • the cycle can now start over. The process must be kept on the outside by supplying mechanical work (drive power) via the compressor.
  • throttle bodies with controllable opening degree to control the amount of refrigerant supplied to the heat-absorbing heat exchanger and to optimize the heat exchange in the heat-absorbing heat exchanger depending on the present outside temperature energetically.
  • the degree of opening is usually regulated based on the outlet temperature of the refrigerant after the heat-absorbing heat exchanger, for which a corresponding setpoint is specified.
  • liquid coolant enters the downstream compressor.
  • the EP 1856458 B1 proposes to measure the temperature of the refrigerant at the inlet of the compressor, continuously determine a comparatively safe setpoint based on this temperature and continuously track this setpoint for the control during operation.
  • the EP 1856458 B1 discloses a method of operating a refrigeration cycle according to the preamble of claim 1 and a refrigeration cycle according to the preamble of claim 7.
  • the object is achieved according to the invention in that the desired value is continuously adjusted during operation on the basis of the pressure at the inlet of the compressor and on the basis of the pressure at the outlet of the compressor.
  • the control device is connected to the data input side with a pressure sensor at the inlet of the compressor and with a pressure sensor at the outlet of the compressor and adapted to continuously adjust the setpoint based on the pressure at the pressure sensors during operation.
  • the invention is based on the consideration that a further reduction of energy consumption with simultaneous protection of the compressor would be possible if more accurate conclusions regarding the compression of the refrigerant in the Compressors would be possible. It has been found that in particular the pressure of the refrigerant at the outlet of the compressor in comparison with the pressure of the refrigerant at the inlet of the compressor allow particularly good conclusions about the compression. The combination of the two sizes can therefore - possibly better than the temperature alone - to allow particularly accurate conclusions about the compression of the refrigerant. Although this is associated with higher design effort, but allows a better control of the conditions in the compressor. If the adjustment of the desired value of the throttle body before the heat-absorbing heat exchanger therefore carried out by means of a combination of these two sizes, even more reduced energy consumption can be achieved while maintaining optimum protection of the compressor.
  • the setpoint is further adjusted based on the temperature at the outlet of the compressor.
  • the control device is furthermore advantageously connected on the data input side to a temperature sensor at the outlet of the compressor and is furthermore configured to continuously adjust the setpoint value during operation based on the pressure at the pressure sensors. This allows even better conclusions about the compression and even better protection of the compressor.
  • this comprises an internal heat exchanger whose cool side is arranged in the flow direction of the refrigerant between heat-absorbing heat exchanger and compressor, and whose warm side is arranged between the heat-emitting heat exchanger and throttle member.
  • the desired value of the temperature in the control mode is advantageously less than 1 K, preferably less than 0.3 K above the saturation temperature of the refrigerant at the outlet of the heat-absorbing heat exchanger.
  • This can either be determined directly from the pressure at the outlet of this heat-absorbing heat exchanger, if a corresponding sensor is present there, or it can be approximated by means of the pressure sensor at the inlet of the compressor, since no substantial pressure loss can be expected via the internal heat exchanger.
  • This means that liquid components may leave the heat-absorbing heat exchanger, even in larger quantities, since the compressor is protected by the following internal heat exchanger. According to experience, about 5% -10% of the liquid contents are still present at the above-mentioned temperatures. This increases the heat transfer at the heat-absorbing heat exchanger and thus the efficiency of the system.
  • the setpoint is temporarily changed to 5 K to 15 K above the saturation temperature of the refrigerant at the outlet of the heat-absorbing heat exchanger. As a result, an evaporation of liquid is achieved.
  • the saturation temperature has risen sufficiently again, the setpoint is changed back to the previous value.
  • the latter comprises a second heat-absorbing heat exchanger and a second compressor following in the flow direction of the refrigerant, the second compressor having a lower operating pressure than the first compressor and discharging on the outlet side between the first heat-absorbing heat exchanger and the first compressor.
  • the refrigeration cycle in this case comprises a second internal heat exchanger whose cool side is arranged in the flow direction of the refrigerant between the second heat-absorbing heat exchanger and the second compressor, and whose warm side is arranged between heat-emitting heat exchanger and throttle member.
  • the refrigeration cycle is adapted to be operated with refrigerant in at least temporarily supercritical state, wherein the heat-emitting heat exchanger to is designed to work as a gas cooler or condenser, and the refrigeration cycle comprises a second throttle body, which is arranged in the flow direction to the warm side of the internal heat exchanger.
  • the refrigerant is advantageously at least temporarily brought into a supercritical state during operation.
  • the refrigerant is carbon dioxide.
  • the advantages achieved by the invention are in particular that achieved by determining a target value for the control of the throttle valve in a refrigeration cycle based on at least the pressure before and after the compressor, a particularly accurate knowledge of the parameters of the compression and thus an even further reduction of Energy consumption is achieved with protection of the compressor.
  • FIG. 1 shows a first refrigeration cycle K.
  • the refrigerant circuit K comprises in the flow direction of the refrigerant (in the drawing counterclockwise) successively a heat-emitting heat exchanger 1, a throttle body 2, a heat-absorbing heat exchanger 3 and a compressor 4.
  • the degree of opening of the throttle body 2 is based on a Setpoint for the temperature at the outlet of the heat-absorbing heat exchanger 3 regulated.
  • the heat-absorbing heat exchanger 3 on a downstream temperature sensor 3.1.
  • a control device 8 is connected to the data input side with the temperature sensor 3.1 and designed to regulate the opening degree of the throttle body 2 based on a setpoint for the temperature at the temperature sensor 3.1.
  • the control device 8 is connected to the data input side with a pressure sensor 5 at the inlet of the compressor 4, a pressure sensor 6 at the outlet of the compressor 4 and a temperature sensor 7 at the outlet of the compressor 4.
  • the control device 8 is also designed to continuously adjust the setpoint based on the pressure at the pressure sensors 5, 6 and the temperature at the temperature sensor 7 during operation. The desired value is thus determined and adjusted continuously based on a predetermined algorithm from the mentioned input data.
  • the refrigeration cycle K according to FIG. 2 differs from the refrigeration cycle K according to FIG. 1 merely in that it additionally comprises an internal heat exchanger 9, the cool side 9.1 is arranged in the flow direction of the refrigerant between heat-absorbing heat exchanger 3 and compressor 4, and the warm side 9.2 is arranged between heat-emitting heat exchanger 1 and throttle body 2.
  • the control device 8 is designed so that the determined at the temperature sensor 3.1 and adjusted by controlling the throttle body 2 temperature is just above the local saturation temperature, namely between 0.1 and 0.3 Kelvin above. This is determined in the embodiment on the basis of the pressure at the pressure sensor 5. If, in this case, the liquid components become too high, which is also determined by an excessive lowering of the saturation temperature (for example below a predetermined threshold), the control is temporarily changed such that a setpoint temperature of approximately 10 Kelvin is set above the saturation temperature. Once the liquid fraction has dropped again, i. the saturation temperature has again risen sufficiently (for example, above a predetermined second threshold), the control is returned to the original temperature, i. between 0.1 and 0.3 K above the saturation temperature.
  • the refrigeration cycle K according to FIG. 3 differs from the refrigeration cycle K according to FIG. 1 merely in that it additionally comprises a second heat-absorbing heat exchanger 10 and a second compressor 11 following in the flow direction of the refrigerant.
  • the second heat-absorbing heat exchanger 10 is preceded by a second throttle body 2, which is connected downstream of the heat-emitting heat exchanger 1 parallel to the first throttle body 2 and whose opening degree is controlled by a control with a temperature setpoint at a temperature measuring device 10.1 after the heat exchanger 10.
  • the setpoint value for this regulation is also determined continuously on the basis of the above-mentioned input data, but does not necessarily have to be the same setpoint value as that for the first throttle element 2 in front of the heat exchanger 3.
  • the second compressor 11 has a lower operating pressure than the first compressor 4 and discharges on the outlet side between the first heat-absorbing heat exchanger 3 and the first compressor.
  • the refrigeration cycle (K) according to FIG. 4 differs from the refrigeration cycle FIG. 2 only in that it is designed to be operated with refrigerant in at least temporarily supercritical state.
  • the refrigerant may be carbon dioxide.
  • the heat-emitting heat exchanger 1 is for this purpose designed to work as a gas cooler or condenser, and the refrigeration cycle K has a second throttle body 12, which is arranged in the flow direction to the hot side 9.2 of the internal heat exchanger 9.
  • the refrigeration cycle K according to FIG. 5 connects the additional features of the refrigeration cycle K out FIG. 2 and FIG. 3 ,
  • the internal heat exchanger 13 is arranged such that its cool side 13.1 is arranged in the flow direction of the refrigerant between the heat-absorbing heat exchanger 10 and the compressor 11, and that its warm side 13.2 is arranged between the heat-emitting heat exchanger 1 and the throttle element 2.
  • the internal heat exchanger 13 is thus arranged in the parallel line system with a lower pressure range.
  • the refrigeration cycle K according to FIG. 6 finally connects the additional features of the cooling circuits K out FIG. 4 and FIG. 5 , It comprises two internal heat exchangers 9, 13.
  • the cool side 9.1 of the first internal heat exchanger 9 is arranged in the flow direction of the refrigerant between the first heat-absorbing heat exchanger 3 and the first compressor 4.
  • the cool side 13.1 of the second internal heat exchanger 13 is arranged in the flow direction of the refrigerant between the second heat-absorbing heat exchanger 10 and the second compressor 11.
  • the hot sides 9.2, 13.2 the following applies: In the flow direction follows after the heat-emitting heat exchanger 1, first the warm side 9.2 of the first internal heat exchanger 9, then the additional throttle body 12, and then the warm side 13.2 of the second internal heat exchanger 13. Then divides the Line system in the two parallel channels with the throttle bodies. 2

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Claims (15)

  1. Un procédé pour faire fonctionner un cycle de réfrigération (K) avec au moins les composants suivants dans le sens d'écoulement d'un réfrigérant:
    - un échangeur de chaleur à émission de chaleur (1),
    - un élément d'étranglement (2),
    - un échangeur de chaleur à absorption de chaleur (3),
    - un compresseur (4),
    dans lequel le degré d'ouverture du corps d'étranglement (2) est commandé au moyen d'une valeur de consigne de température à la sortie de l'échangeur de chaleur à absorption de chaleur (3),
    caractérisé en ce que la consigne est continuellement ajustée durant le fonctionnement au moyen de la pression à la sortie du compresseur (4).
  2. Le procédé selon la revendication 1, dans lequel le point de consigne est en outre ajustée en fonction de la température à la sortie du compresseur (4).
  3. Le procédé selon la revendication 1 ou 2, dans lequel le cycle de réfrigération (K) comprend un échangeur de chaleur interne (9), dont le côté froid (9.1) est disposé dans le sens d'écoulement du réfrigérant entre l'échangeur de chaleur à absorption de chaleur (3) et le compresseur (4), et dont le côté chaud (9.2) est disposé dans le sens d'écoulement du réfrigérant entre l'échangeur de chaleur à émission de chaleur (1) et l'élément d'étranglement (2), et dans lequel la valeur du point de consigne dans le mode de fonctionnement standard est inférieure à 1K au-dessus de la température de saturation du réfrigérant à la sortie de l'échangeur de chaleur à absorption de chaleur (3).
  4. Le procédé selon la revendication 3, dans lequel le point de consigne est temporairement modifié de 5 K à 15 K au-dessus de la température de saturation du réfrigérant à la sortie de l'échangeur de chaleur à absorption de chaleur (3).
  5. Le procédé selon l'une des revendications 1 à 4, dans lequel le réfrigérant est au moins temporairement mis dans un état supercritique pendant le fonctionnement.
  6. Le procédé selon l'une quelconque des revendications 1 à 5, dans lequel du dioxyde de carbone est utilisé en tant que réfrigérant.
  7. Un circuit de réfrigération (K) comportant au moins les éléments suivants, dans le sens d'écoulement d'un fluide frigorigène :
    - un échangeur de chaleur émettant de la chaleur (1),
    - un élément d'étranglement (2),
    - un échangeur de chaleur à absorption de chaleur (3) avec un capteur de température sur le côté de sortie (3.1.),
    - un compresseur (4)
    dans lequel le circuit de réfrigération (K) comprend un dispositif de commande (8) qui est connecté côté d'entrée de donnée au capteur de température (3.1) et est adapté pour commander le degré d'ouverture de l'élément d'étranglement (2) au moyen d'une valeur de point de consigne pour une température au capteur de température (3.1.),
    caractérisé en ce que
    le dispositif de commande (8) est connecté côté entrée de données à un capteur de pression (5) à l'entrée du compresseur (4) et à un capteur de pression (6) à la sortie du compresseur (4) et est adapté pour régler en permanence le point de consigne durant le fonctionnement au moyen de la pression au niveau des capteurs de pression (5, 6).
  8. Le circuit de réfrigération (K) selon la revendication 7, dans lequel le dispositif de commande (8), est en outre raccordé, côté entrée de données, à un capteur de température (7) à la sortie du compresseur (4) et est en outre adapté pour régler en permanence le point de consigne durant le fonctionnement au moyen de la pression au niveau des capteurs de pression (5, 6).
  9. Le circuit de réfrigération (K) selon la revendication 7 ou 8, comprenant un échangeur de chaleur interne (9), dont le côté froid (9.1) est disposé dans le sens d'écoulement du réfrigérant entre l'échangeur de chaleur à absorption (3) et le compresseur (4), et dont le côté chaud (9.2) entre disposé entre l'échangeur de chaleur émettant de la chaleur (1) et l'élément d'étranglement (2).
  10. Le circuit de réfrigération (K) selon la revendication 9, dans lequel le point de consigne en mode standard est inférieur de 1 K au-dessus de la température de saturation du réfrigérant à la sortie de l'échangeur de chaleur à absorption (3).
  11. Le circuit de réfrigération (K) selon la revendication 10, dans lequel le dispositif de commande (8) est adapté pour modifier temporairement la valeur de consigne de 5 K à 15 K au-dessus de la température de saturation du réfrigérant à la sortie de l'échangeur de chaleur à absorption (3).
  12. Le circuit de réfrigération (K) selon l'une des revendications 7 à 11, comprenant un deuxième échangeur de chaleur à absorption de chaleur (10) et un second compression (11) dans la direction d'écoulement du réfrigérant, le second compresseur (11) ayant une pression de fonctionnement plus basse que celle du premier compresseur (4) et s'ouvrant sur le côté de sortie entre le premier échangeur de chaleur à absorption de chaleur (3) et le premier compresseur (4).
  13. Le circuit de réfrigération (K) selon la revendication 12, comprenant un deuxième échangeur de chaleur interne (13), dont le côté froid (13.1) est disposé dans le sens d'écoulement du réfrigérant entre le deuxième échangeur de chaleur à absorption de chaleur (10) et le deuxième compresseur (11), et dont le côté chaud (13.2) est disposé entre l'échangeur de chaleur émettant de la chaleur (1) et l'élément d'étranglement (2).
  14. Le circuit de réfrigération (K) selon au moins la revendication 11, qui est adapté pour fonctionner avec un réfrigérant dans un état au moins temporairement supercritique, l'échangeur de chaleur émettant de la chaleur (1) étant adapté pour fonctionner comme refroidisseur de gaz ou condenseur, et le circuit de réfrigération (K) ayant un second élément d'étranglement (12) qui est disposé dans le sens de l'écoulement vers le côté chaud (9.2) de l'échangeur de chaleur interne (9).
  15. Le circuit de réfrigération (K) selon la revendication 14, dans lequel le réfrigérant est du dioxyde de carbone.
EP17195998.4A 2016-10-11 2017-10-11 Procédé de fonctionnement d'un cycle frigorifique Active EP3309478B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL17195998T PL3309478T3 (pl) 2016-10-11 2017-10-11 Sposób zasilania obiegu chłodniczego

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016119351.8A DE102016119351A1 (de) 2016-10-11 2016-10-11 Verfahren zum Betreiben eines Kältekreislaufs

Publications (2)

Publication Number Publication Date
EP3309478A1 EP3309478A1 (fr) 2018-04-18
EP3309478B1 true EP3309478B1 (fr) 2019-04-17

Family

ID=58282116

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17195998.4A Active EP3309478B1 (fr) 2016-10-11 2017-10-11 Procédé de fonctionnement d'un cycle frigorifique

Country Status (5)

Country Link
EP (1) EP3309478B1 (fr)
DE (1) DE102016119351A1 (fr)
DK (1) DK3309478T3 (fr)
ES (1) ES2730555T3 (fr)
PL (1) PL3309478T3 (fr)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6711911B1 (en) * 2002-11-21 2004-03-30 Carrier Corporation Expansion valve control
US8096141B2 (en) * 2005-01-25 2012-01-17 Trane International Inc. Superheat control by pressure ratio
AU2005327828B2 (en) 2005-02-18 2010-09-30 Carrier Corporation Control of a refrigeration circuit with an internal heat exchanger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102016119351A1 (de) 2017-03-30
EP3309478A1 (fr) 2018-04-18
ES2730555T3 (es) 2019-11-11
DK3309478T3 (da) 2019-06-24
PL3309478T3 (pl) 2019-09-30

Similar Documents

Publication Publication Date Title
EP3833562B1 (fr) Procédé de fonctionnement d'une installation de refroidissement pour un véhicule comportant un circuit d'agent réfrigérant comprenant une fonction de pompe à chaleur
EP3417213B1 (fr) Appareil de froid pourvu d'une pluralité de compartiments de stockage
WO2019076615A1 (fr) Procédé servant à faire fonctionner un circuit frigorifique ainsi qu'installation de réfrigération de véhicule
EP2199706B1 (fr) Appareil de climatisation d'un dispositif de commutation et une méthode d'utilisation de l'appareil
EP3597019B1 (fr) Procédé de refroidissement d'un convertisseur, en particulier d'un convertisseur de fréquence dans un circuit de pompe à chaleur
EP3511695A1 (fr) Chambre d'essai
EP3595919B1 (fr) Installation frigorifique d'un véhicule avec un circuit de réfrigérant pouvant fonctionner comme un circuit frigorifique pour un mode ac et comme circuit de pompe à chaleur pour un mode de chauffage
DE102014108989A1 (de) Verzweiger für einen Kältemittelstrom eines Kältemittelkreislaufs
DE102014108993A1 (de) Batteriekühlersystem
EP3584512B1 (fr) Chambre d'essai et procédé
EP3699515A1 (fr) Chambre de mise en température et procédé
EP1957894B1 (fr) Procede d'utilisation d'un refrigerateur et refrigerateur dote d'un raccordement avec retard du compresseur
DE112019003520T5 (de) Kältevorrichtung und hierauf bezogenes betriebsverfahren
AT522875B1 (de) Verfahren zur Regelung eines Expansionsventils
EP3309478B1 (fr) Procédé de fonctionnement d'un cycle frigorifique
EP1350068B1 (fr) Procede pour reguler un appareil de refroidissement
DE102014007853B3 (de) Verfahren und Vorrichtung zum Temperieren eines Wärmeaustauschers
DE102014108999A1 (de) Verfahren zum Betrieb eines Batteriekühlersystems und Batteriekühlersystem
EP3810999B1 (fr) Procédé de fonctionnement d'une pompe à chaleur et machine frigorifique
DE102013203240A1 (de) Kältemaschine und Verfahren zum Betreiben einer Kältemaschine
EP0866291A1 (fr) Pompe de chaleur à compression ou machine de refroidissement à compression et sa méthode de régulation
DE19620105A1 (de) Verfahren zum Betrieb einer Kälteanlage
DE112009000657B4 (de) Verfahren zum Betrieb eines Kühlgeräts sowie Kühlgerät zum Durchführen eines solchen Verfahrens
DE202016107081U1 (de) Kälteanlage sowie Anlage mit einer Kälteanlage
EP3866562B1 (fr) Module de compresseur, système de refroidissement et/ou de chauffage pourvu de modules de compresseur et procédé de fonctionnement d'un système de refroidissement et/ou de chauffage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181011

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 49/02 20060101AFI20181130BHEP

INTG Intention to grant announced

Effective date: 20181221

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017001137

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1121991

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: VALIPAT S.A. C/O BOVARD SA NEUCHATEL, CH

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20190617

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20190417

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190817

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2730555

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20191111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190718

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190817

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017001137

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

26N No opposition filed

Effective date: 20200120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171011

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20220929

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20220929

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20221003

Year of fee payment: 6

Ref country code: NO

Payment date: 20221020

Year of fee payment: 6

Ref country code: IT

Payment date: 20221031

Year of fee payment: 6

Ref country code: FI

Payment date: 20221018

Year of fee payment: 6

Ref country code: ES

Payment date: 20221118

Year of fee payment: 6

Ref country code: DK

Payment date: 20221021

Year of fee payment: 6

Ref country code: SE

Payment date: 20221020

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20221027

Year of fee payment: 6

Ref country code: BE

Payment date: 20221020

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230807

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231023

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231031

Year of fee payment: 7

Ref country code: DE

Payment date: 20231031

Year of fee payment: 7

Ref country code: AT

Payment date: 20231019

Year of fee payment: 7

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20231031