EP3309478B1 - Method for operating a cooling circuit - Google Patents

Method for operating a cooling circuit Download PDF

Info

Publication number
EP3309478B1
EP3309478B1 EP17195998.4A EP17195998A EP3309478B1 EP 3309478 B1 EP3309478 B1 EP 3309478B1 EP 17195998 A EP17195998 A EP 17195998A EP 3309478 B1 EP3309478 B1 EP 3309478B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
compressor
refrigerant
heat
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17195998.4A
Other languages
German (de)
French (fr)
Other versions
EP3309478A1 (en
Inventor
Simon Ahlers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teko Gesellschaft fuer Kaeltetechnik mbH
Original Assignee
Teko Gesellschaft fuer Kaeltetechnik mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teko Gesellschaft fuer Kaeltetechnik mbH filed Critical Teko Gesellschaft fuer Kaeltetechnik mbH
Priority to PL17195998T priority Critical patent/PL3309478T3/en
Publication of EP3309478A1 publication Critical patent/EP3309478A1/en
Application granted granted Critical
Publication of EP3309478B1 publication Critical patent/EP3309478B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Definitions

  • a refrigeration cycle is a system which serves to cool a device to a desired level, for example a food freezer.
  • a refrigerant which is moved in the closed circuit, experiences successively different states of aggregation:
  • the gaseous refrigerant is first compressed by a compressor.
  • it condenses with heat release.
  • the liquid refrigerant is due to the pressure change via a throttle body, for example, an expansion valve or a capillary, relaxed.
  • the refrigerant evaporates while absorbing heat at low temperature (boiling cooling).
  • the cycle can now start over. The process must be kept on the outside by supplying mechanical work (drive power) via the compressor.
  • throttle bodies with controllable opening degree to control the amount of refrigerant supplied to the heat-absorbing heat exchanger and to optimize the heat exchange in the heat-absorbing heat exchanger depending on the present outside temperature energetically.
  • the degree of opening is usually regulated based on the outlet temperature of the refrigerant after the heat-absorbing heat exchanger, for which a corresponding setpoint is specified.
  • liquid coolant enters the downstream compressor.
  • the EP 1856458 B1 proposes to measure the temperature of the refrigerant at the inlet of the compressor, continuously determine a comparatively safe setpoint based on this temperature and continuously track this setpoint for the control during operation.
  • the EP 1856458 B1 discloses a method of operating a refrigeration cycle according to the preamble of claim 1 and a refrigeration cycle according to the preamble of claim 7.
  • the object is achieved according to the invention in that the desired value is continuously adjusted during operation on the basis of the pressure at the inlet of the compressor and on the basis of the pressure at the outlet of the compressor.
  • the control device is connected to the data input side with a pressure sensor at the inlet of the compressor and with a pressure sensor at the outlet of the compressor and adapted to continuously adjust the setpoint based on the pressure at the pressure sensors during operation.
  • the invention is based on the consideration that a further reduction of energy consumption with simultaneous protection of the compressor would be possible if more accurate conclusions regarding the compression of the refrigerant in the Compressors would be possible. It has been found that in particular the pressure of the refrigerant at the outlet of the compressor in comparison with the pressure of the refrigerant at the inlet of the compressor allow particularly good conclusions about the compression. The combination of the two sizes can therefore - possibly better than the temperature alone - to allow particularly accurate conclusions about the compression of the refrigerant. Although this is associated with higher design effort, but allows a better control of the conditions in the compressor. If the adjustment of the desired value of the throttle body before the heat-absorbing heat exchanger therefore carried out by means of a combination of these two sizes, even more reduced energy consumption can be achieved while maintaining optimum protection of the compressor.
  • the setpoint is further adjusted based on the temperature at the outlet of the compressor.
  • the control device is furthermore advantageously connected on the data input side to a temperature sensor at the outlet of the compressor and is furthermore configured to continuously adjust the setpoint value during operation based on the pressure at the pressure sensors. This allows even better conclusions about the compression and even better protection of the compressor.
  • this comprises an internal heat exchanger whose cool side is arranged in the flow direction of the refrigerant between heat-absorbing heat exchanger and compressor, and whose warm side is arranged between the heat-emitting heat exchanger and throttle member.
  • the desired value of the temperature in the control mode is advantageously less than 1 K, preferably less than 0.3 K above the saturation temperature of the refrigerant at the outlet of the heat-absorbing heat exchanger.
  • This can either be determined directly from the pressure at the outlet of this heat-absorbing heat exchanger, if a corresponding sensor is present there, or it can be approximated by means of the pressure sensor at the inlet of the compressor, since no substantial pressure loss can be expected via the internal heat exchanger.
  • This means that liquid components may leave the heat-absorbing heat exchanger, even in larger quantities, since the compressor is protected by the following internal heat exchanger. According to experience, about 5% -10% of the liquid contents are still present at the above-mentioned temperatures. This increases the heat transfer at the heat-absorbing heat exchanger and thus the efficiency of the system.
  • the setpoint is temporarily changed to 5 K to 15 K above the saturation temperature of the refrigerant at the outlet of the heat-absorbing heat exchanger. As a result, an evaporation of liquid is achieved.
  • the saturation temperature has risen sufficiently again, the setpoint is changed back to the previous value.
  • the latter comprises a second heat-absorbing heat exchanger and a second compressor following in the flow direction of the refrigerant, the second compressor having a lower operating pressure than the first compressor and discharging on the outlet side between the first heat-absorbing heat exchanger and the first compressor.
  • the refrigeration cycle in this case comprises a second internal heat exchanger whose cool side is arranged in the flow direction of the refrigerant between the second heat-absorbing heat exchanger and the second compressor, and whose warm side is arranged between heat-emitting heat exchanger and throttle member.
  • the refrigeration cycle is adapted to be operated with refrigerant in at least temporarily supercritical state, wherein the heat-emitting heat exchanger to is designed to work as a gas cooler or condenser, and the refrigeration cycle comprises a second throttle body, which is arranged in the flow direction to the warm side of the internal heat exchanger.
  • the refrigerant is advantageously at least temporarily brought into a supercritical state during operation.
  • the refrigerant is carbon dioxide.
  • the advantages achieved by the invention are in particular that achieved by determining a target value for the control of the throttle valve in a refrigeration cycle based on at least the pressure before and after the compressor, a particularly accurate knowledge of the parameters of the compression and thus an even further reduction of Energy consumption is achieved with protection of the compressor.
  • FIG. 1 shows a first refrigeration cycle K.
  • the refrigerant circuit K comprises in the flow direction of the refrigerant (in the drawing counterclockwise) successively a heat-emitting heat exchanger 1, a throttle body 2, a heat-absorbing heat exchanger 3 and a compressor 4.
  • the degree of opening of the throttle body 2 is based on a Setpoint for the temperature at the outlet of the heat-absorbing heat exchanger 3 regulated.
  • the heat-absorbing heat exchanger 3 on a downstream temperature sensor 3.1.
  • a control device 8 is connected to the data input side with the temperature sensor 3.1 and designed to regulate the opening degree of the throttle body 2 based on a setpoint for the temperature at the temperature sensor 3.1.
  • the control device 8 is connected to the data input side with a pressure sensor 5 at the inlet of the compressor 4, a pressure sensor 6 at the outlet of the compressor 4 and a temperature sensor 7 at the outlet of the compressor 4.
  • the control device 8 is also designed to continuously adjust the setpoint based on the pressure at the pressure sensors 5, 6 and the temperature at the temperature sensor 7 during operation. The desired value is thus determined and adjusted continuously based on a predetermined algorithm from the mentioned input data.
  • the refrigeration cycle K according to FIG. 2 differs from the refrigeration cycle K according to FIG. 1 merely in that it additionally comprises an internal heat exchanger 9, the cool side 9.1 is arranged in the flow direction of the refrigerant between heat-absorbing heat exchanger 3 and compressor 4, and the warm side 9.2 is arranged between heat-emitting heat exchanger 1 and throttle body 2.
  • the control device 8 is designed so that the determined at the temperature sensor 3.1 and adjusted by controlling the throttle body 2 temperature is just above the local saturation temperature, namely between 0.1 and 0.3 Kelvin above. This is determined in the embodiment on the basis of the pressure at the pressure sensor 5. If, in this case, the liquid components become too high, which is also determined by an excessive lowering of the saturation temperature (for example below a predetermined threshold), the control is temporarily changed such that a setpoint temperature of approximately 10 Kelvin is set above the saturation temperature. Once the liquid fraction has dropped again, i. the saturation temperature has again risen sufficiently (for example, above a predetermined second threshold), the control is returned to the original temperature, i. between 0.1 and 0.3 K above the saturation temperature.
  • the refrigeration cycle K according to FIG. 3 differs from the refrigeration cycle K according to FIG. 1 merely in that it additionally comprises a second heat-absorbing heat exchanger 10 and a second compressor 11 following in the flow direction of the refrigerant.
  • the second heat-absorbing heat exchanger 10 is preceded by a second throttle body 2, which is connected downstream of the heat-emitting heat exchanger 1 parallel to the first throttle body 2 and whose opening degree is controlled by a control with a temperature setpoint at a temperature measuring device 10.1 after the heat exchanger 10.
  • the setpoint value for this regulation is also determined continuously on the basis of the above-mentioned input data, but does not necessarily have to be the same setpoint value as that for the first throttle element 2 in front of the heat exchanger 3.
  • the second compressor 11 has a lower operating pressure than the first compressor 4 and discharges on the outlet side between the first heat-absorbing heat exchanger 3 and the first compressor.
  • the refrigeration cycle (K) according to FIG. 4 differs from the refrigeration cycle FIG. 2 only in that it is designed to be operated with refrigerant in at least temporarily supercritical state.
  • the refrigerant may be carbon dioxide.
  • the heat-emitting heat exchanger 1 is for this purpose designed to work as a gas cooler or condenser, and the refrigeration cycle K has a second throttle body 12, which is arranged in the flow direction to the hot side 9.2 of the internal heat exchanger 9.
  • the refrigeration cycle K according to FIG. 5 connects the additional features of the refrigeration cycle K out FIG. 2 and FIG. 3 ,
  • the internal heat exchanger 13 is arranged such that its cool side 13.1 is arranged in the flow direction of the refrigerant between the heat-absorbing heat exchanger 10 and the compressor 11, and that its warm side 13.2 is arranged between the heat-emitting heat exchanger 1 and the throttle element 2.
  • the internal heat exchanger 13 is thus arranged in the parallel line system with a lower pressure range.
  • the refrigeration cycle K according to FIG. 6 finally connects the additional features of the cooling circuits K out FIG. 4 and FIG. 5 , It comprises two internal heat exchangers 9, 13.
  • the cool side 9.1 of the first internal heat exchanger 9 is arranged in the flow direction of the refrigerant between the first heat-absorbing heat exchanger 3 and the first compressor 4.
  • the cool side 13.1 of the second internal heat exchanger 13 is arranged in the flow direction of the refrigerant between the second heat-absorbing heat exchanger 10 and the second compressor 11.
  • the hot sides 9.2, 13.2 the following applies: In the flow direction follows after the heat-emitting heat exchanger 1, first the warm side 9.2 of the first internal heat exchanger 9, then the additional throttle body 12, and then the warm side 13.2 of the second internal heat exchanger 13. Then divides the Line system in the two parallel channels with the throttle bodies. 2

Description

Die Erfindung betrifft ein Verfahren zum Betreiben eines Kältekreislaufs mit mindestens folgenden, in Strömungsrichtung eines Kältemittels aufeinander folgenden Bauteilen:

  • einem wärmeabgebenden Wärmeübertrager,
  • einem Drosselorgan,
  • einem wärmeaufnehmenden Wärmeübertrager,
  • einem Verdichter,
wobei der Öffnungsgrad des Drosselorgans anhand eines Sollwerts für eine Temperatur am Austritt des wärmeaufnehmenden Wärmeüberträgers geregelt wird. Sie betrifft weiter einen derartigen Kältekreislauf, wobei der Kältekreislauf eine Regelungseinrichtung aufweist, die dateneingangsseitig mit einem Temperatursensor am Austritt des wärmeaufnehmenden Wärmeüberträgers verbunden ist und dafür ausgebildet ist, den Öffnungsgrad des Drosselorgans anhand eines Sollwerts für eine Temperatur am Temperatursensor zu regeln.The invention relates to a method for operating a refrigeration cycle with at least the following, in the flow direction of a refrigerant successive components:
  • a heat-emitting heat exchanger,
  • a throttle body,
  • a heat-absorbing heat exchanger,
  • a compressor,
wherein the opening degree of the throttle body is controlled by means of a setpoint for a temperature at the outlet of the heat-absorbing heat exchanger. It further relates to such a refrigeration cycle, wherein the refrigeration cycle has a control device which is connected to the data input side with a temperature sensor at the outlet of the heat-absorbing heat exchanger and is adapted to regulate the opening degree of the throttle body based on a setpoint for a temperature at the temperature sensor.

Ein Kältekreislauf ist ein System, das dazu dient, eine Einrichtung auf ein gewünschtes Maß abzukühlen, beispielsweise eine Kühltruhe für Lebensmittel. Ein Kältemittel, das in dem geschlossenen Kreislauf bewegt wird, erfährt nacheinander verschiedene Aggregatzustandsänderungen: Das gasförmige Kältemittel wird zunächst durch einen Verdichter komprimiert. Im folgenden Wärmeübertrager kondensiert es unter Wärmeabgabe. Anschließend wird das flüssige Kältemittel aufgrund der Druckänderung über ein Drosselorgan, zum Beispiel ein Expansionsventil oder ein Kapillarrohr, entspannt. Im nachgeschalteten zweiten Wärmeüberträger (Verdampfer) verdampft das Kältemittel unter Wärmeaufnahme bei niedriger Temperatur (Siedekühlung). Der Kreislauf kann nun von vorne beginnen. Der Prozess muss von außen durch Zufuhr von mechanischer Arbeit (Antriebsleistung) über den Verdichter in Gang gehalten werden.A refrigeration cycle is a system which serves to cool a device to a desired level, for example a food freezer. A refrigerant, which is moved in the closed circuit, experiences successively different states of aggregation: The gaseous refrigerant is first compressed by a compressor. In the following heat exchanger, it condenses with heat release. Subsequently, the liquid refrigerant is due to the pressure change via a throttle body, for example, an expansion valve or a capillary, relaxed. In the downstream second heat exchanger (evaporator), the refrigerant evaporates while absorbing heat at low temperature (boiling cooling). The cycle can now start over. The process must be kept on the outside by supplying mechanical work (drive power) via the compressor.

Bei derartigen Kältekreisläufen ist es bekannt, Drosselorgane mit steuerbarem Öffnungsgrad einzusetzen, um die dem wärmeaufnehmenden Wärmeüberträger zugeführte Kältemittelmenge zu steuern und den Wärmeaustausch im wärmeaufnehmenden Wärmeüberträger je nach vorliegender Außentemperatur energetisch zu optimieren. Der Öffnungsgrad wird hierbei in der Regel anhand der Austrittstemperatur des Kältemittels nach dem wärmeaufnehmendem Wärmeüberträger geregelt, wofür ein entsprechender Sollwert vorgegeben wird. Hierbei sollte jedoch vermieden werden, dass flüssiges Kühlmittel in den nachgeschalteten Verdichter gelangt.In such refrigeration circuits, it is known to use throttle bodies with controllable opening degree to control the amount of refrigerant supplied to the heat-absorbing heat exchanger and to optimize the heat exchange in the heat-absorbing heat exchanger depending on the present outside temperature energetically. The degree of opening is usually regulated based on the outlet temperature of the refrigerant after the heat-absorbing heat exchanger, for which a corresponding setpoint is specified. However, it should be avoided that liquid coolant enters the downstream compressor.

Die EP 1856458 B1 schlägt hierzu vor, die Temperatur des Kältemittels am Eintritt des Verdichters zu messen, anhand dieser Temperatur kontinuierlich einen vergleichsweise sicheren Sollwert zu bestimmen und im Betrieb kontinuierlich diesen Sollwert für die Regelung nachzuführen. Die EP 1856458 B1 offenbart ein Verfahren zum Betreiben eines Kältekreislaufs gemäß dem Oberbegriff des Anspruchs 1 und ein Kältekreislauf gemäß dem Oberbegriff des Anspruchs 7.The EP 1856458 B1 proposes to measure the temperature of the refrigerant at the inlet of the compressor, continuously determine a comparatively safe setpoint based on this temperature and continuously track this setpoint for the control during operation. The EP 1856458 B1 discloses a method of operating a refrigeration cycle according to the preamble of claim 1 and a refrigeration cycle according to the preamble of claim 7.

Davon ausgehend ist es Aufgabe der Erfindung, ein eingangs genanntes Verfahren und einen Kältekreislauf anzugeben, die einerseits hinsichtlich der Reduzierung des Energieverbrauchs und andererseits hinsichtlich des Schutzes des Verdichters im Betrieb weiter verbessert sind.On this basis, it is an object of the invention to provide an aforementioned method and a refrigeration cycle, which are further improved on the one hand in terms of reducing energy consumption and on the other hand with respect to the protection of the compressor during operation.

Hinsichtlich des Verfahrens wird die Aufgabe erfindungsgemäß dadurch gelöst, dass der Sollwert anhand des Drucks am Eintritt des Verdichters und anhand des Drucks am Austritt des Verdichters im Betrieb kontinuierlich angepasst wird. Hinsichtlich des Kältekreislaufs wird die Aufgabe dadurch gelöst, dass die Regelungseinrichtung dateneingangsseitig mit einem Drucksensor am Eintritt des Verdichters und mit einem Drucksensor am Austritt des Verdichters verbunden ist und dafür ausgebildet ist, den Sollwert anhand des Drucks an den Drucksensoren im Betrieb kontinuierlich anzupassen.With regard to the method, the object is achieved according to the invention in that the desired value is continuously adjusted during operation on the basis of the pressure at the inlet of the compressor and on the basis of the pressure at the outlet of the compressor. With regard to the refrigeration cycle, the object is achieved in that the control device is connected to the data input side with a pressure sensor at the inlet of the compressor and with a pressure sensor at the outlet of the compressor and adapted to continuously adjust the setpoint based on the pressure at the pressure sensors during operation.

Die Erfindung geht dabei von der Überlegung aus, dass eine weitere Reduzierung des Energieverbrauchs bei gleichzeitigem Schutz des Verdichters möglich wäre, wenn genauere Rückschlüsse hinsichtlich der Verdichtung des Kältemittels im Verdichter möglich wären. Hierbei hat sich herausgestellt, dass insbesondere der Druck des Kältemittels am Austritt des Verdichters im Vergleich mit dem Druck des Kältemittels am Eintritt des Verdichters besonders gute Rückschlüsse auf die Verdichtung ermöglichen. Die Kombination beider Größen vermag daher - ggf. besser als die Temperatur allein - besonders exakte Rückschlüsse auf die Verdichtung des Kältemittels zuzulassen. Dies ist zwar mit konstruktiv höherem Aufwand verbunden, ermöglicht aber eine bessere Kontrolle der Zustände im Verdichter. Wird die Anpassung des Sollwerts des Drosselorgans vor dem wärmeaufnehmenden Wärmeüberträger daher mittels einer Kombination dieser beiden Größen durchgeführt, lässt sich ein noch reduzierterer Energieverbrauch bei gleichzeitig optimalem Schutz des Verdichters erzielen.The invention is based on the consideration that a further reduction of energy consumption with simultaneous protection of the compressor would be possible if more accurate conclusions regarding the compression of the refrigerant in the Compressors would be possible. It has been found that in particular the pressure of the refrigerant at the outlet of the compressor in comparison with the pressure of the refrigerant at the inlet of the compressor allow particularly good conclusions about the compression. The combination of the two sizes can therefore - possibly better than the temperature alone - to allow particularly accurate conclusions about the compression of the refrigerant. Although this is associated with higher design effort, but allows a better control of the conditions in the compressor. If the adjustment of the desired value of the throttle body before the heat-absorbing heat exchanger therefore carried out by means of a combination of these two sizes, even more reduced energy consumption can be achieved while maintaining optimum protection of the compressor.

In vorteilhafter Ausgestaltung des Verfahrens wird der Sollwert weiterhin anhand der Temperatur am Austritt des Verdichters angepasst. Bezüglich des Kältekreislaufs ist vorteilhafterweise die Regelungseinrichtung weiterhin dateneingangsseitig mit einem Temperatursensor am Austritt des Verdichters verbunden und weiterhin dafür ausgebildet, den Sollwert anhand des Drucks an den Drucksensoren im Betrieb kontinuierlich anzupassen. Dies ermöglicht noch bessere Rückschlüsse auf die Verdichtung und einen noch besseren Schutz des Verdichters.In an advantageous embodiment of the method, the setpoint is further adjusted based on the temperature at the outlet of the compressor. With regard to the refrigeration cycle, the control device is furthermore advantageously connected on the data input side to a temperature sensor at the outlet of the compressor and is furthermore configured to continuously adjust the setpoint value during operation based on the pressure at the pressure sensors. This allows even better conclusions about the compression and even better protection of the compressor.

In einer ersten vorteilhaften Ausgestaltung des Kältekreislaufs umfasst dieser einen internen Wärmeüberträger, dessen kühle Seite in Strömungsrichtung des Kältemittels zwischen wärmeaufnehmendem Wärmeüberträger und Verdichter angeordnet ist, und dessen warme Seite zwischen wärmeabgebendem Wärmeüberträgerund Drosselorgan angeordnet ist.In a first advantageous embodiment of the refrigeration cycle, this comprises an internal heat exchanger whose cool side is arranged in the flow direction of the refrigerant between heat-absorbing heat exchanger and compressor, and whose warm side is arranged between the heat-emitting heat exchanger and throttle member.

In einem derartigen Kältekreislauf mit internem Wärmeüberträger liegt der Sollwert der Temperatur im Regelbetrieb vorteilhafterweise weniger als 1 K, vorzugsweise weniger als 0,3 K oberhalb der Sättigungstemperatur des Kältemittels am Austritt des wärmeaufnehmenden Wärmeüberträgers. Diese kann entweder direkt anhand des Drucks am Austritt dieses wärmeaufnehmenden Wärmeüberträgers bestimmt werden, wenn ein entsprechender Sensor dort vorhanden ist, oder sie kann mittels des Drucksensors am Eintritt des Verdichters angenähert werden, da über den internen Wärmeüberträger kein substanzieller Druckverlust zu erwarten ist. Es dürfen nämlich Flüssigkeitsanteile auch in größeren Mengen den wärmeaufnehmenden Wärmeüberträger verlassen, da der Verdichter durch den nachfolgenden internen Wärmeübertrager geschützt wird. Bei den o.g. Temperaturen liegen erfahrungsgemäß noch ca. 5%-10% Flüssigkeitsanteile vor. Dies erhöht den Wärmeübertrag am wärmeaufnehmenden Wärmeüberträger und damit die Effizienz des Systems.In such a refrigeration cycle with internal heat exchanger, the desired value of the temperature in the control mode is advantageously less than 1 K, preferably less than 0.3 K above the saturation temperature of the refrigerant at the outlet of the heat-absorbing heat exchanger. This can either be determined directly from the pressure at the outlet of this heat-absorbing heat exchanger, if a corresponding sensor is present there, or it can be approximated by means of the pressure sensor at the inlet of the compressor, since no substantial pressure loss can be expected via the internal heat exchanger. This means that liquid components may leave the heat-absorbing heat exchanger, even in larger quantities, since the compressor is protected by the following internal heat exchanger. According to experience, about 5% -10% of the liquid contents are still present at the above-mentioned temperatures. This increases the heat transfer at the heat-absorbing heat exchanger and thus the efficiency of the system.

Wird dabei eine übermäßige Absenkung der Sättigungstemperatur am Verdampfereintritt festgestellt, z.B. unter eine vorgegebene Schwelle, was auf einen zu hohen Flüssigkeitsanteil schließen lässt, so wird vorteilhafterweise der Sollwert vorübergehend auf 5 K bis 15 K oberhalb der Sättigungstemperatur des Kältemittels am Austritt des wärmeaufnehmenden Wärmeüberträgers verändert. Hierdurch wird eine Verdampfung von Flüssigkeit erreicht. Wenn die Sättigungstemperatur wieder ausreichend angestiegen ist, wird der Sollwert wieder auf den vorherigen Wert verändert.If it detects an excessive lowering of the saturation temperature at the evaporator inlet, e.g. below a predetermined threshold, which suggests a high liquid content, so advantageously the setpoint is temporarily changed to 5 K to 15 K above the saturation temperature of the refrigerant at the outlet of the heat-absorbing heat exchanger. As a result, an evaporation of liquid is achieved. When the saturation temperature has risen sufficiently again, the setpoint is changed back to the previous value.

In einer zweiten zusätzlichen oder alternativen Ausgestaltung des Kältekreislaufs umfasst dieser einen zweiten wärmeaufnehmenden Wärmeüberträger und einen in Strömungsrichtung des Kältemittels folgenden zweiten Verdichter, wobei der zweite Verdichter einen geringeren Betriebsdruck als der erste Verdichter aufweist und austrittsseitig zwischen dem ersten wärmeaufnehmenden Wärmeüberträger und dem ersten Verdichter mündet.In a second additional or alternative embodiment of the refrigeration cycle, the latter comprises a second heat-absorbing heat exchanger and a second compressor following in the flow direction of the refrigerant, the second compressor having a lower operating pressure than the first compressor and discharging on the outlet side between the first heat-absorbing heat exchanger and the first compressor.

Vorteilhafterweise umfasst der Kältekreislauf dabei einen zweiten internen Wärmeüberträger, dessen kühle Seite in Strömungsrichtung des Kältemittels zwischen zweitem wärmeaufnehmendem Wärmeüberträger und zweitem Verdichter angeordnet ist, und dessen warme Seite zwischen wärmeabgebendem Wärmeüberträger und Drosselorgan angeordnet ist.Advantageously, the refrigeration cycle in this case comprises a second internal heat exchanger whose cool side is arranged in the flow direction of the refrigerant between the second heat-absorbing heat exchanger and the second compressor, and whose warm side is arranged between heat-emitting heat exchanger and throttle member.

In weiterer zusätzlicher oder alternativer vorteilhafter Ausgestaltung ist der Kältekreislauf dazu ausgebildet, mit Kältemittel in zumindest zeitweise überkritischem Zustand betrieben zu werden, wobei der wärmeabgebende Wärmeüberträger dazu ausgebildet ist, als Gaskühler oder Verflüssiger zu arbeiten, und der Kältekreislauf ein zweites Drosselorgan aufweist, welches in Strömungsrichtung nach der warmen Seite des internen Wärmeüberträgers angeordnet ist. Bezüglich des Verfahrens wird vorteilhafterweise das Kältemittel im Betrieb zumindest zeitweise in einen überkritischen Zustand gebracht.In a further additional or alternative advantageous embodiment of the refrigeration cycle is adapted to be operated with refrigerant in at least temporarily supercritical state, wherein the heat-emitting heat exchanger to is designed to work as a gas cooler or condenser, and the refrigeration cycle comprises a second throttle body, which is arranged in the flow direction to the warm side of the internal heat exchanger. With regard to the method, the refrigerant is advantageously at least temporarily brought into a supercritical state during operation.

Vorteilhafterweise ist das Kältemittel Kohlenstroffdioxid.Advantageously, the refrigerant is carbon dioxide.

Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass durch die Ermittlung eines Sollwerts für die Regelung des Drosselventils in einem Kältekreislauf auf Basis zumindest des Druckes vor und nach dem Verdichter eine besonders genaue Kenntnis der Parameter der Verdichtung erreicht und damit eine noch weitere Reduzierung des Energieverbrauchs bei Schutz des Verdichters erreicht wird.The advantages achieved by the invention are in particular that achieved by determining a target value for the control of the throttle valve in a refrigeration cycle based on at least the pressure before and after the compressor, a particularly accurate knowledge of the parameters of the compression and thus an even further reduction of Energy consumption is achieved with protection of the compressor.

Ausführungsbeispiele der Erfindung werden anhand von Zeichnungen näher erläutert. Darin zeigen:

  • FIG 1 einen ersten Kältekreislauf,
  • FIG 2 einen zweiten Kältekreislauf mit internem Wärmeüberträger,
  • FIG 3 einen dritten Kältekreislauf mit zweitem Wärmeüberträger und Verdichter auf niedrigerem Druckniveau,
  • FIG 4 einen vierten Kältekreislauf, der für einen überkritischen Betrieb ausgelegt ist,
  • FIG 5 einen fünften Kältekreislauf mit internem Wärmeüberträger und zweitem Wärmeüberträger und Verdichter auf niedrigerem Druckniveau, und
  • FIG 6 einen sechsten Kältekreislauf mit zwei internen Wärmeüberträgern und zweitem Wärmeüberträger und Verdichter auf niedrigerem Druckniveau, der für einen überkritischen Betrieb ausgelegt ist.
Embodiments of the invention will be explained in more detail with reference to drawings. Show:
  • FIG. 1 a first refrigeration cycle,
  • FIG. 2 a second refrigeration circuit with internal heat exchanger,
  • FIG. 3 a third refrigeration circuit with a second heat exchanger and compressor at a lower pressure level,
  • FIG. 4 a fourth refrigeration cycle designed for supercritical operation,
  • FIG. 5 a fifth refrigeration circuit with internal heat exchanger and second heat exchanger and compressor at a lower pressure level, and
  • FIG. 6 a sixth refrigeration cycle with two internal heat exchangers and a second heat exchanger and compressor at a lower pressure level designed for supercritical operation.

Gleiche Teile sind in allen Zeichnungen mit denselben Bezugszeichen versehen.Like parts are given the same reference numerals in all drawings.

FIG 1 zeigt einen ersten Kältekreislauf K. Der Kältekreislauf K umfasst in Strömungsrichtung des Kältemittels (in der Zeichnung gegen den Uhrzeigersinn) aufeinander folgend einen wärmeabgebenden Wärmeübertrager 1, ein Drosselorgan 2, einen wärmeaufnehmenden Wärmeübertrager 3 und einen Verdichter 4. Der Öffnungsgrad des Drosselorgans 2 wird anhand eines Sollwerts für die Temperatur am Austritt des wärmeaufnehmenden Wärmeüberträgers 3 geregelt. Hierfür weist der wärmeaufnehmende Wärmeübertrager 3 einen austrittseitigen Temperatursensor 3.1 auf. Eine Regelungseinrichtung 8 ist dateneingangsseitig mit dem Temperatursensor 3.1 verbunden und dafür ausgebildet, den Öffnungsgrad des Drosselorgans 2 anhand eines Sollwerts für die Temperatur am Temperatursensor 3.1 zu regeln. FIG. 1 shows a first refrigeration cycle K. The refrigerant circuit K comprises in the flow direction of the refrigerant (in the drawing counterclockwise) successively a heat-emitting heat exchanger 1, a throttle body 2, a heat-absorbing heat exchanger 3 and a compressor 4. The degree of opening of the throttle body 2 is based on a Setpoint for the temperature at the outlet of the heat-absorbing heat exchanger 3 regulated. For this purpose, the heat-absorbing heat exchanger 3 on a downstream temperature sensor 3.1. A control device 8 is connected to the data input side with the temperature sensor 3.1 and designed to regulate the opening degree of the throttle body 2 based on a setpoint for the temperature at the temperature sensor 3.1.

Hierbei soll einerseits ein besonders geringer Energieverbrauch des Gesamtsystems erreicht werden, andererseits der Verdichter vor Eintritt von flüssigem Kältemittel geschützt werden. Dazu ist die Regelungseinrichtung 8 dateneingangsseitig mit einem Drucksensor 5 am Eintritt des Verdichters 4, einem Drucksensor 6 am Austritt des Verdichters 4 und einem Temperatursensor 7 am Austritt des Verdichters 4 verbunden. Die Regelungseinrichtung 8 ist zudem dafür ausgebildet, den Sollwert anhand des Drucks an den Drucksensoren 5, 6 und der Temperatur am Temperatursensor 7 im Betrieb kontinuierlich anzupassen. Der Sollwert wird also anhand eines vorbestimmten Algorithmus aus den genannten Eingangsdaten kontinuierlich bestimmt und angepasst.Here, on the one hand, a particularly low energy consumption of the entire system should be achieved, on the other hand, the compressor to be protected from the entry of liquid refrigerant. For this purpose, the control device 8 is connected to the data input side with a pressure sensor 5 at the inlet of the compressor 4, a pressure sensor 6 at the outlet of the compressor 4 and a temperature sensor 7 at the outlet of the compressor 4. The control device 8 is also designed to continuously adjust the setpoint based on the pressure at the pressure sensors 5, 6 and the temperature at the temperature sensor 7 during operation. The desired value is thus determined and adjusted continuously based on a predetermined algorithm from the mentioned input data.

Der Kältekreislauf K gemäß FIG 2 unterscheidet sich vom Kältekreislauf K gemäß FIG 1 lediglich dadurch, dass er zusätzlich einen internen Wärmeüberträger 9 umfasst, dessen kühle Seite 9.1 in Strömungsrichtung des Kältemittels zwischen wärmeaufnehmendem Wärmeüberträger 3 und Verdichter 4 angeordnet ist, und dessen warme Seite 9.2 zwischen wärmeabgebendem Wärmeüberträger 1 und Drosselorgan 2 angeordnet ist.The refrigeration cycle K according to FIG. 2 differs from the refrigeration cycle K according to FIG. 1 merely in that it additionally comprises an internal heat exchanger 9, the cool side 9.1 is arranged in the flow direction of the refrigerant between heat-absorbing heat exchanger 3 and compressor 4, and the warm side 9.2 is arranged between heat-emitting heat exchanger 1 and throttle body 2.

Im Kältekreislauf K gemäß FIG 2 und auch in allen anderen Kühlkreisläufen K in den Ausführungsbeispielen der FIG 4 und 5 ist am Temperatursensor 3.1 am Austritt des wärmeaufnehmenden Wärmeüberträgers 3 keine starke Überhitzung notwendig, da der interne Wärmeüberträger 9 noch für eine Verdampfung von Restflüssigkeit sorgt. Flüssigkeitsanteile dürfen somit auch in größeren Mengen den wärmeaufnehmenden Wärmeüberträger 3 verlassen, was den Wärmeübertrag am wärmeaufnehmenden Wärmeüberträger 3 und damit die Effizienz des Systems erhöht. Der interne Wärmeübertrager 9 ist dabei so konzipiert, das der Verdichter 4 trotz der Flüssigkeitsanteile geschützt wird.In the refrigeration cycle K according to FIG. 2 and in all other cooling circuits K in the embodiments of the FIG. 4 and 5 is at the temperature sensor 3.1 at the outlet of the heat-absorbing heat exchanger 3 no strong overheating necessary because the internal heat exchanger 9 still provides for evaporation of residual liquid. Liquid portions may thus leave the heat-absorbing heat exchanger 3 even in larger quantities, which increases the heat transfer to the heat-absorbing heat exchanger 3 and thus the efficiency of the system. The internal heat exchanger 9 is designed so that the compressor 4 is protected despite the liquid portions.

Konkret ist in Ausführungsformen die Regelungseinrichtung 8 so ausgebildet, dass die am Temperatursensor 3.1 ermittelte und mittels Ansteuerung des Drosselorgans 2 eingeregelte Temperatur nur knapp oberhalb der dortigen Sättigungstemperatur liegt, nämlich zwischen 0,1 und 0,3 Kelvin darüber. Diese wird im Ausführungsbeispiel anhand des Drucks am Drucksensor 5 bestimmt. Werden dabei die Flüssigkeitsanteile zu hoch, was ebenfalls anhand eines übermäßigen Absinkens der Sättigungstemperatur festzustellen ist (beispielsweise unter eine vorgegebene Schwelle), wird die Regelung vorübergehend derart geändert, dass eine Solltemperatur von ca. 10 Kelvin oberhalb der Sättigungstemperatur eingestellt wird. Sobald der Flüssigkeitsanteil wieder gesunken ist, d.h. die Sättigungstemperatur wieder ausreichend angestiegen ist (beispielsweise über eine vorgegebene zweite Schwelle), wird die Regelung wieder auf die ursprüngliche Temperatur umgestellt, d.h. zwischen 0,1 und 0,3 K über der Sättigungstemperatur.Specifically, in embodiments, the control device 8 is designed so that the determined at the temperature sensor 3.1 and adjusted by controlling the throttle body 2 temperature is just above the local saturation temperature, namely between 0.1 and 0.3 Kelvin above. This is determined in the embodiment on the basis of the pressure at the pressure sensor 5. If, in this case, the liquid components become too high, which is also determined by an excessive lowering of the saturation temperature (for example below a predetermined threshold), the control is temporarily changed such that a setpoint temperature of approximately 10 Kelvin is set above the saturation temperature. Once the liquid fraction has dropped again, i. the saturation temperature has again risen sufficiently (for example, above a predetermined second threshold), the control is returned to the original temperature, i. between 0.1 and 0.3 K above the saturation temperature.

Der Kältekreislauf K gemäß FIG 3 unterscheidet sich vom Kältekreislauf K gemäß FIG 1 lediglich dadurch, dass er zusätzlich einen zweiten wärmeaufnehmenden Wärmeüberträger 10 und einen in Strömungsrichtung des Kältemittels folgenden zweiten Verdichter 11 umfasst. Dem zweiten wärmeaufnehmenden Wärmeüberträger 10 ist ein zweites Drosselorgan 2 vorgeschaltet, das dem wärmeabgebenden Wärmeüberträger 1 parallel zum ersten Drosselorgan 2 nachgeschaltet ist und dessen Öffnungsgrad anhand einer Regelung mit einem Temperatursollwert an einer Temperaturmesseinrichtung 10.1 nach dem Wärmeüberträger 10 gesteuert wird. Auch der Sollwert für diese Regelung wird anhand der o.g. Eingangsdaten kontinuierlich ermittelt, muss aber nicht notwendigerweise derselbe Sollwert wie der für das erste Drosselorgan 2 vor den Wärmeüberträger 3 sein. Der zweite Verdichter 11 weist einen geringeren Betriebsdruck als der erste Verdichter 4 auf und mündet austrittsseitig zwischen dem ersten wärmeaufnehmenden Wärmeüberträger 3 und dem ersten Verdichter.The refrigeration cycle K according to FIG. 3 differs from the refrigeration cycle K according to FIG. 1 merely in that it additionally comprises a second heat-absorbing heat exchanger 10 and a second compressor 11 following in the flow direction of the refrigerant. The second heat-absorbing heat exchanger 10 is preceded by a second throttle body 2, which is connected downstream of the heat-emitting heat exchanger 1 parallel to the first throttle body 2 and whose opening degree is controlled by a control with a temperature setpoint at a temperature measuring device 10.1 after the heat exchanger 10. The setpoint value for this regulation is also determined continuously on the basis of the above-mentioned input data, but does not necessarily have to be the same setpoint value as that for the first throttle element 2 in front of the heat exchanger 3. The second compressor 11 has a lower operating pressure than the first compressor 4 and discharges on the outlet side between the first heat-absorbing heat exchanger 3 and the first compressor.

Der Kältekreislauf (K) gemäß FIG 4 unterscheidet sich vom Kältekreislauf nach FIG 2 lediglich dadurch, dass er dazu ausgebildet ist, mit Kältemittel in zumindest zeitweise überkritischem Zustand betrieben zu werden. Das Kältemittel kann hierbei Kohlenstoffdioxid sein. Der wärmeabgebende Wärmeüberträger 1 ist hierfür dazu ausgebildet ist, als Gaskühler oder Verflüssiger zu arbeiten, und der Kältekreislauf K weist ein zweites Drosselorgan 12 auf, welches in Strömungsrichtung nach der warmen Seite 9.2 des internen Wärmeüberträgers 9 angeordnet ist.The refrigeration cycle (K) according to FIG. 4 differs from the refrigeration cycle FIG. 2 only in that it is designed to be operated with refrigerant in at least temporarily supercritical state. The refrigerant may be carbon dioxide. The heat-emitting heat exchanger 1 is for this purpose designed to work as a gas cooler or condenser, and the refrigeration cycle K has a second throttle body 12, which is arranged in the flow direction to the hot side 9.2 of the internal heat exchanger 9.

Der Kältekreislauf K gemäß FIG 5 verbindet die zusätzlichen Merkmale des Kältekreislaufs K aus FIG 2 und FIG 3. Der interne Wärmeüberträger 13 ist derart angeordnet, dass seine kühle Seite 13.1 in Strömungsrichtung des Kältemittels zwischen wärmeaufnehmendem Wärmeüberträger 10 und Verdichter 11 angeordnet ist, und dass seine warme Seite 13.2 zwischen wärmeabgebendem Wärmeüberträger 1 und Drosselorgan 2 angeordnet ist. Der interne Wärmeüberträger 13 ist somit im parallelen Leitungssystem mit geringerem Druckbereich angeordnet.The refrigeration cycle K according to FIG. 5 connects the additional features of the refrigeration cycle K out FIG. 2 and FIG. 3 , The internal heat exchanger 13 is arranged such that its cool side 13.1 is arranged in the flow direction of the refrigerant between the heat-absorbing heat exchanger 10 and the compressor 11, and that its warm side 13.2 is arranged between the heat-emitting heat exchanger 1 and the throttle element 2. The internal heat exchanger 13 is thus arranged in the parallel line system with a lower pressure range.

Der Kältekreislauf K gemäß FIG 6 verbindet schließlich die zusätzlichen Merkmale der Kühlkreisläufe K aus FIG 4 und FIG 5. Er umfasst zwei interne Wärmeüberträger 9, 13. Die kühle Seite 9.1 des ersten internen Wärmeüberträgers 9 ist in Strömungsrichtung des Kältemittels zwischen erstem wärmeaufnehmendem Wärmeüberträger 3 und erstem Verdichter 4 angeordnet. Die kühle Seite 13.1 des zweiten internen Wärmeüberträgers 13 ist in Strömungsrichtung des Kältemittels zwischen zweitem wärmeaufnehmendem Wärmeüberträger 10 und zweitem Verdichter 11 angeordnet. Für die warmen Seiten 9.2, 13.2 gilt: In Strömungsrichtung folgt nach dem wärmeabgebenden Wärmeüberträger 1 zunächst die warme Seite 9.2 des ersten internen Wärmeüberträgers 9, dann das zusätzliche Drosselorgan 12, und dann die warme Seite 13.2 des zweiten internen Wärmeüberträgers 13. Anschließend teilt sich das Leitungssystem in die beiden parallelen Kanäle mit den Drosselorganen 2.The refrigeration cycle K according to FIG. 6 finally connects the additional features of the cooling circuits K out FIG. 4 and FIG. 5 , It comprises two internal heat exchangers 9, 13. The cool side 9.1 of the first internal heat exchanger 9 is arranged in the flow direction of the refrigerant between the first heat-absorbing heat exchanger 3 and the first compressor 4. The cool side 13.1 of the second internal heat exchanger 13 is arranged in the flow direction of the refrigerant between the second heat-absorbing heat exchanger 10 and the second compressor 11. For the hot sides 9.2, 13.2 the following applies: In the flow direction follows after the heat-emitting heat exchanger 1, first the warm side 9.2 of the first internal heat exchanger 9, then the additional throttle body 12, and then the warm side 13.2 of the second internal heat exchanger 13. Then divides the Line system in the two parallel channels with the throttle bodies. 2

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
wärmeabgebender Wärmeüberträgerheat-emitting heat exchanger
22
Drosselorganthrottle member
33
wärmeaufnehmender Wärmeüberträgerheat-absorbing heat exchanger
3.13.1
Temperatursensortemperature sensor
44
Verdichtercompressor
5, 65, 6
Drucksensorpressure sensor
77
Temperatursensortemperature sensor
88th
Regelungseinrichtungcontrol device
99
interner Wärmeüberträgerinternal heat exchanger
9.19.1
kühle Seitecool side
9.29.2
warme Seitewarm side
1010
wärmeaufnehmender Wärmeüberträgerheat-absorbing heat exchanger
10.110.1
Temperatursensortemperature sensor
1111
Verdichtercompressor
1212
Drosselorganthrottle member
1313
interner Wärmeüberträgerinternal heat exchanger
13.113.1
kühle Seitecool side
13.213.2
warme Seitewarm side
KK
KältekreislaufRefrigeration circuit

Claims (15)

  1. A method for operating a refrigeration circuit (K) with at least the following components following one another in the direction of flow of a refrigerant:
    - a heat-transferring heat exchanger (1),
    - a throttling element (2),
    - a heat-absorbing heat exchanger (3),
    - a compressor (4),
    wherein the degree of opening of the throttling element (2) is controlled by means of a set point value for a temperature at the outlet of the heat-absorbing heat exchanger (3),
    characterised in that
    the set point is continuously adjusted during operation by means of the pressure at the inlet of the compressor (4) and by means of the pressure at the outlet of the compressor (4).
  2. The method according to claim 1, wherein the set point is further adjusted by means of the temperature at the outlet of the compressor (4).
  3. The method according to claim 1 or 2, wherein the refrigeration circuit (K) comprises an internal heat exchanger (9), the cool side (9.1) of which is arranged in the direction of flow of the refrigerant between the heat-absorbing heat exchanger (3) and the compressor (4), and the warm side (9.2) of which is arranged in the direction of flow of the refrigerant between the heat-transferring heat exchanger (1) and the throttling element (2), and wherein the setpoint value in standard operation is less than 1 K above the saturation temperature of the refrigerant at the outlet of the heat-absorbing heat exchanger (3).
  4. The method according to claim 3, wherein the set point is temporarily changed to 5 K to 15 K above the saturation temperature of the refrigerant at the outlet of the heat-absorbing heat exchanger (3).
  5. The method according to any of claims 1 to 4, wherein the refrigerant is brought at least temporarily into a supercritical state during operation.
  6. The method according to any of claims 1 to 5, wherein carbon dioxide is used as refrigerant.
  7. A refrigeration circuit (K) with at least the following components following one another in the direction of flow of a refrigerant:
    - a heat-transferring heat exchanger (1),
    - a throttling element (2),
    - a heat-absorbing heat exchanger (3) with a temperature sensor on the outlet side (3.1),
    - a compressor (4),
    wherein the refrigeration circuit (K) has a control device (8) which is connected on the data input side to the temperature sensor (3.1) and is adapted to control the degree of opening of the throttling element (2) by means of a set point value for a temperature at the temperature sensor (3.1),
    characterised in that
    the control device (8) is connected on the data input side to a pressure sensor (5) at the inlet of the compressor (4) and to a pressure sensor (6) at the outlet of the compressor (4) and is adapted to continuously adjust the set point during operation by means of the pressure at the pressure sensors (5, 6).
  8. The refrigeration circuit (K) according to claim 7, wherein the control device (8) is further connected on the data input side to a temperature sensor (7) at the outlet of the compressor (4) and is further adapted to continuously adjust the set point during operation by means of the pressure at the pressure sensors (5, 6).
  9. The refrigeration circuit (K) according to claim 7 or 8, comprising an internal heat exchanger (9), the cool side (9.1) of which is arranged in the direction of flow of the refrigerant between the heat-absorbing heat exchanger (3) and the compressor (4), and the warm side (9.2) of which is arranged between the heat-transferring heat exchanger (1) and the throttling element (2).
  10. The refrigeration circuit (K) according to claim 9, wherein the set point in standard operation is less than 1 K above the saturation temperature of the refrigerant at the outlet of the heat-absorbing heat exchanger (3).
  11. The refrigeration circuit (K) according to claim 10, wherein the control device (8) is adapted to temporarily change the set point value to 5 K to 15 K above the saturation temperature of the refrigerant at the outlet of the heat-absorbing heat exchanger (3).
  12. The refrigeration circuit (K) according to any one of claims 7 to 11, comprising a second heat-absorbing heat exchanger (10) and a second compressor (11) following in the direction of flow of the refrigerant, the second compressor (11) having a lower operating pressure than the first compressor (4) and opening on the outlet side between the first heat-absorbing heat exchanger (3) and the first compressor (4).
  13. The refrigeration circuit (K) according to claim 12, comprising a second internal heat exchanger (13), the cool side (13.1) of which is arranged in the flow direction of the refrigerant between the second heat-absorbing heat exchanger (10) and the second compressor (11), and the warm side (13.2) of which is arranged between the heat-transferring heat exchanger (1) and the throttling element (2).
  14. The refrigeration circuit (K) according to at least claim 11, which is adapted to be operated with refrigerant in at least temporarily supercritical state, the heat-transferring heat exchanger (1) being adapted to operate as a gas cooler or condenser, and the refrigeration circuit (K) having a second throttling element (12) which is arranged in the flow direction downstream of the warm side (9.2) of the internal heat exchanger (9).
  15. The refrigeration circuit (K) according to claim 14, wherein the refrigerant is carbon dioxide.
EP17195998.4A 2016-10-11 2017-10-11 Method for operating a cooling circuit Active EP3309478B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL17195998T PL3309478T3 (en) 2016-10-11 2017-10-11 Method for operating a cooling circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016119351.8A DE102016119351A1 (en) 2016-10-11 2016-10-11 Method for operating a refrigeration cycle

Publications (2)

Publication Number Publication Date
EP3309478A1 EP3309478A1 (en) 2018-04-18
EP3309478B1 true EP3309478B1 (en) 2019-04-17

Family

ID=58282116

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17195998.4A Active EP3309478B1 (en) 2016-10-11 2017-10-11 Method for operating a cooling circuit

Country Status (5)

Country Link
EP (1) EP3309478B1 (en)
DE (1) DE102016119351A1 (en)
DK (1) DK3309478T3 (en)
ES (1) ES2730555T3 (en)
PL (1) PL3309478T3 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6711911B1 (en) * 2002-11-21 2004-03-30 Carrier Corporation Expansion valve control
US8096141B2 (en) * 2005-01-25 2012-01-17 Trane International Inc. Superheat control by pressure ratio
ATE514044T1 (en) 2005-02-18 2011-07-15 Carrier Corp CONTROLLING A COOLING CIRCUIT WITH AN INTERNAL HEAT EXCHANGER

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DK3309478T3 (en) 2019-06-24
EP3309478A1 (en) 2018-04-18
DE102016119351A1 (en) 2017-03-30
PL3309478T3 (en) 2019-09-30
ES2730555T3 (en) 2019-11-11

Similar Documents

Publication Publication Date Title
EP3833562B1 (en) Method for operating a refrigeration system for a vehicle, having a refrigerant circuit having a heat pump function
WO2019076615A1 (en) Method for operating a coolant circuit and vehicle air-conditioning system
EP3511695A1 (en) Test chamber
EP2199706B1 (en) A switching device air conditioner and operation method thereof
DE102014108989A1 (en) Branch for a refrigerant flow of a refrigerant circuit
EP3417213A1 (en) Refrigeration device comprising multiple storage chambers
DE102014108993A1 (en) Battery cooler system
EP3584512B1 (en) Test chamber and method
EP3595919B1 (en) Cooling system of a vehicle, comprising a coolant circuit which can be operated as a cooling circuit for an ac operation and as a heat pump circuit for a heating operation
WO2018166935A1 (en) Method for cooling a converter, in particular a frequency converter in a heat pump circuit
EP3699515A1 (en) Temperature-controlled chamber and method
EP1957894B1 (en) Method for operating a refrigerator, and a refrigerator in which the compressor is switched on with a time delay
DE112019003520T5 (en) REFRIGERATION DEVICE AND RELATED OPERATING PROCEDURE
AT522875B1 (en) Method for controlling an expansion valve
EP3309478B1 (en) Method for operating a cooling circuit
EP1350068B1 (en) Method for regulating a cooling appliance
DE102014007853B3 (en) Method and device for controlling the temperature of a heat exchanger
DE102014108999A1 (en) Method for operating a battery cooler system and battery cooler system
DE102013203240A1 (en) Refrigerating machine and method for operating a refrigerating machine
WO2016034446A1 (en) Refrigeration appliance and refrigerating machine therefor
EP0866291A1 (en) Compression heat pump or compression cooling machine and control method therefor
DE19620105A1 (en) Operation of refrigerating plant
DE112009000657B4 (en) Method for operating a cooling device and cooling device for carrying out such a method
DE202016107081U1 (en) Refrigeration system and system with a refrigeration system
EP3866562B1 (en) Compressor module, cooling and / or heating system with compressor modules and method for operating a cooling and / or heating system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181011

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 49/02 20060101AFI20181130BHEP

INTG Intention to grant announced

Effective date: 20181221

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017001137

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1121991

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: VALIPAT S.A. C/O BOVARD SA NEUCHATEL, CH

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20190617

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20190417

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190817

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2730555

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20191111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190718

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190817

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017001137

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

26N No opposition filed

Effective date: 20200120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171011

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20220929

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20220929

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20221003

Year of fee payment: 6

Ref country code: NO

Payment date: 20221020

Year of fee payment: 6

Ref country code: IT

Payment date: 20221031

Year of fee payment: 6

Ref country code: FI

Payment date: 20221018

Year of fee payment: 6

Ref country code: ES

Payment date: 20221118

Year of fee payment: 6

Ref country code: DK

Payment date: 20221021

Year of fee payment: 6

Ref country code: SE

Payment date: 20221020

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20221027

Year of fee payment: 6

Ref country code: BE

Payment date: 20221020

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230807

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231023

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231031

Year of fee payment: 7

Ref country code: DE

Payment date: 20231031

Year of fee payment: 7

Ref country code: AT

Payment date: 20231019

Year of fee payment: 7