EP3863989A1 - Procede de fabrication d'un revêtement abradable poreux en materiau ceramique - Google Patents

Procede de fabrication d'un revêtement abradable poreux en materiau ceramique

Info

Publication number
EP3863989A1
EP3863989A1 EP19823797.6A EP19823797A EP3863989A1 EP 3863989 A1 EP3863989 A1 EP 3863989A1 EP 19823797 A EP19823797 A EP 19823797A EP 3863989 A1 EP3863989 A1 EP 3863989A1
Authority
EP
European Patent Office
Prior art keywords
hollow
glass
balls
sintering
ceramic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19823797.6A
Other languages
German (de)
English (en)
Inventor
Philippe Charles Alain Le Biez
Nicolas DROZ
Ludovic Philippe LIAIS
Serge Georges Vladimir SELEZNEFF
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP3863989A1 publication Critical patent/EP3863989A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/008Bodies obtained by assembling separate elements having such a configuration that the final product is porous or by spirally winding one or more corrugated sheets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4582Porous coatings, e.g. coating containing porous fillers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5027Oxide ceramics in general; Specific oxide ceramics not covered by C04B41/5029 - C04B41/5051
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • F01D11/122Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with erodable or abradable material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00362Friction materials, e.g. used as brake linings, anti-skid materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00982Uses not provided for elsewhere in C04B2111/00 as construction elements for space vehicles or aeroplanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6028Shaping around a core which is removed later
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying

Definitions

  • the present disclosure relates to a porous coating of ceramic material, in particular an abradable coating for a part of a turbomachine, and its manufacturing process.
  • coating is meant a substantially continuous layer of a material, this layer being interposed between the part which it covers and the fluid flowing through the turbomachine or the nozzle.
  • a coating can comprise a material different from the material of the part which it covers.
  • a coating can also be divided into several sub-elements which together cover the room.
  • the burnt gases from the combustion chamber open into the high pressure turbine at very high temperature and pressure levels, which causes premature wear of conventional abradable tracks. Therefore, in order to protect the stator ring of the turbine, it is often preferred to provide the latter with a coating of the thermal barrier type whose materials and high density, too high for the coating to be effectively abradable, protect the ring against erosion and corrosion.
  • the coating can be damaged and less protect the stator.
  • Coatings obtained by thermal spraying of a powder composed of a metal part made of aluminum-silicon alloy and an organic part made of resin are known, the resin being for example a polyester resin.
  • a disadvantage of these coatings is that aluminum is sensitive to the phenomena of self-ignition, and therefore of deflagration, during the operation of the compressor. These phenomena can lead to accelerated wear of the abradable coating and of the surrounding parts in the turbomachine.
  • the turbomachine comprises a relatively complex cooling system, which increases production costs and / or makes the assembly of such a turbomachine relatively complex.
  • These ceramic material coatings are generally obtained by thermal spraying of a mixture of ceramic powder and a polymer, such as a polyester or a polyamide. The polymer is then decomposed by pyrolysis to form a porous coating of ceramic material.
  • a polymer such as a polyester or a polyamide.
  • the polymer is then decomposed by pyrolysis to form a porous coating of ceramic material.
  • the total porosity of such coatings is generally limited to about 30% by volume, which limits their ability to be eroded by the blades of the rotor.
  • the present presentation aims to at least partially remedy these drawbacks and to meet at least partially all or part of these needs.
  • the present disclosure relates to a method of manufacturing a porous abradable coating of ceramic material comprising a layer of ceramic material comprising pores, the method comprising the following steps:
  • thermosetting polymer a maximum temperature of sintering of the raw material of the ceramic part being either higher than the melting temperature of the hollow glass balls so that at the end of the sintering heat treatment, the hollow glass beads are melted, ie higher than the decomposition temperature of the hollow beads made of thermosetting polymer so that at the end of the heat sintering treatment, the hollow balls in thermosetting polymer are broken down.
  • glass an amorphous material having a glass transition phenomenon.
  • the glass comprises silica or a silica-based compound.
  • thermosetting polymer is meant a material obtained by an irreversible polymerization process.
  • the decomposition of a thermosetting polymer is obtained by pyrolysis of the thermosetting polymer.
  • slip means a suspension of ceramic particles in a liquid.
  • the slip once sintered will form a ceramic material.
  • the liquid can be water or an organic liquid.
  • the slip may comprise other compounds than the liquid and the ceramic particles.
  • a slip may comprise a mixture of different powders. It can also include additives. These additives may for example include wetting agents, anti-foaming agents, deflocculants, flocculants, coagulants, binders, lubricants and / or plasticizers. This list is of course not exhaustive.
  • the porous abradable coating of ceramic material is thus obtained by using a slip whose solvent is removed and filtered.
  • ceramic material is meant an inorganic and non-metallic material which has undergone a thermal sintering treatment in order to consolidate the material.
  • ceramic means a technical ceramic, that is to say a material having good mechanical strength at very high temperature, such as for example at 1000 ° C. (Celcius degree), and comprising ceramic materials based in particular of oxides, carbide and / or nitrides. Indeed, at higher porosity rates, the erosion of the abradable coating becomes too great because generally, the increase in the porosity rate occurs at the expense of consolidation of the coating.
  • these masses of glass are sufficiently small and are not likely to block conduits, such as ventilation ducts.
  • hollow glass beads there may be mentioned hollow beads of borosilicate glass, soda lime glass, lead glass, also commonly called crystal, silica glass or aluminosilicate glass.
  • thermosetting polymer When hollow beads of thermosetting polymer are used, the thermosetting polymer decomposes.
  • thermosetting polymer As an example of hollow balls made of thermosetting polymer, mention may be made of phenolic resin microballoons, the decomposition temperature of which begins around 200 ° C. and is complete at 500 ° C.
  • the glass transition temperature is generally between 550 ° C and 600 ° C for borosilicate glasses; between 450 ° C and 480 ° C for soda-lime glasses; between 400 ° C and 420 ° C for lead glasses; between 1300 ° C and 1400 ° C for aluminosilicate glasses and between 900 and 1300 ° C for silica glass.
  • the choice of the material of the hollow glass beads and of the ceramic material is made according to the temperatures in operation of the porous abradable coating and according to the glass transition temperature of the hollow glass beads. Thus, for a given operating temperature, a type of ceramic material will be chosen. Depending on this ceramic material, hollow glass beads will be chosen having a glass transition temperature between the final sintering temperature of the ceramic material and a sintering temperature allowing partial consolidation of the ceramic material.
  • the heat treatment comprises at least two sintering stages, a first sintering stage at a temperature below a glass transition temperature of the hollow glass beads or below the decomposition temperature of the hollow beads made of thermosetting polymer to form a partially consolidated ceramic part and a second sintering stage at a temperature above the glass transition temperature of the hollow glass beads to melt the hollow glass beads or above the decomposition temperature of the hollow polymer beads thermosetting to decompose hollow beads in thermosetting polymer.
  • the temperature of the first sintering bearing being lower than the glass transition temperature of the hollow glass beads, the hollow glass beads present in the raw material of the ceramic part do not soften during the pre-sintering of the raw material of the ceramic piece.
  • the structure formed by the hollow glass balls does not collapse and the vintage of the ceramic part undergoes, during this first sintering stage, a first consolidation.
  • the structure formed by the hollow beads of glass or of thermosetting polymer is not deformed and a partial consolidation of the raw of the ceramic part is obtained.
  • the temperature being higher than the glass transition temperature of the hollow glass beads, the consolidation of the continuous ceramic part and the hollow glass beads soften.
  • the hollow glass balls By softening, the hollow glass balls leave cavities in the ceramic material. These cavities will form the porosity of the porous abradable coating. Thus, when the hollow glass balls melt, the ceramic material is already sufficiently consolidated and the cavities left by the hollow glass balls are not filled with the ceramic material.
  • the hollow balls are made of thermosetting polymer
  • the temperature being higher than the decomposition temperature of the hollow balls made of thermosetting polymer
  • the hollow balls made of thermosetting polymer are decompose to mainly form carbonaceous residues and gas and the consolidation of the ceramic part continues.
  • the ceramic material is already sufficiently consolidated and the cavities left by the hollow beads of thermosetting polymer are not filled with the ceramic material.
  • the diameter of the hollow beads of glass or of thermosetting polymer is greater than or equal to 800 nm, preferably greater than or equal to 1 ⁇ m, even more preferably greater than or equal to 10 ⁇ m and less or equal to 500 ⁇ m, preferably less than or equal to 400 ⁇ m, even more preferably less than or equal to 300 ⁇ m.
  • the diameter of the hollow balls made of glass or thermosetting polymer can also be chosen according to the type of ceramic material. For example, for ceramic materials based on oxides, it is possible to choose hollow beads whose diameter is between 10 ⁇ m and 300 ⁇ m.
  • the hollow beads of glass or of thermosetting polymer are arranged in a net having a mesh allowing the beads to be contained hollow glass or thermosetting polymer and allow the slip to pass, the net having a decomposition temperature below a final sintering temperature.
  • the mesh of the net is such that the hollow balls of glass or of thermosetting polymer cannot escape from the net, that is to say that the size of the mesh is less than the diameter of the hollow balls of glass or of thermosetting polymer.
  • the mesh of the net allows the slip to infiltrate between the hollow glass or polymer beads thermosetting, and more particularly in the spaces formed between hollow glass or thermosetting polymer beads.
  • the net can be flexible and can therefore easily adapt to the shape of the mold.
  • the net may be made of a material comprising a nylon, a polyimide or a polyamide.
  • the decomposition temperature of the thread is higher than the temperature of the first temperature level.
  • the hollow glass beads or of thermosetting polymer are placed in the mold with a solvent for agglomerating the hollow beads of glass or thermosetting polymer with each other by adsorption of the solvent on the surface of the hollow beads of glass or of thermosetting polymer, the solvent then being removed from the mold.
  • This technique provides a dense stack of hollow glass beads or thermosetting polymer in the mold. Thanks to the adsorption of the solvent on the surface of the hollow beads, the stack of hollow beads made of glass or of thermosetting polymer is preserved during filling of the mold with the slip. Indeed, after evacuation of the solvent, there remains, on the surface, a small amount of solvent which however makes it possible to maintain the hollow beads of glass or of thermosetting polymer in compact stack.
  • the mold has at least one liquid discharge orifice.
  • a slip comprises a blowing agent.
  • This blowing agent allows, during the sintering heat treatment to create, in the ceramic material, a porosity additional to the porosity generated from the hollow glass beads. It is thus possible to create additional porosity during the sintering heat treatment and therefore increase the total porosity of the layer of ceramic material comprising pores.
  • the layer of ceramic material comprising pores has a porosity greater than or equal to 30% by volume, preferably greater than or equal to 40% by volume, preferably greater than or equal to 60% by volume , even more preferably greater than or equal to 80% by volume.
  • This porosity is a total porosity which is constituted by the open porosity and the closed porosity of the layer of ceramic material. This porosity is measured by triple weighing in accordance with ISO standard 5017 for refractory materials.
  • a slip layer is applied to the layer of ceramic material comprising pores and an additional sintering heat treatment is carried out to sinter the layer slip and form an additional layer of ceramic material having a porosity less than a porosity of the layer of ceramic material having pores and a roughness Ra less than or equal to 5 ⁇ m, preferably less than or equal to 3 ⁇ m, even more preferably less than or equal to 1 pm.
  • This additional layer of ceramic material is less porous than the layer of ceramic material and has a relatively low roughness.
  • the parameter used to characterize the roughness is the parameter Ra which is defined by standard ISO 4287 and which can be measured according to standard ISO 4288.
  • the additional layer of ceramic material is produced from the same ceramic material as the layer of material ceramic comprising the pores, the additional layer of ceramic material is therefore denser than the layer of ceramic material comprising the pores.
  • the aerodynamic properties of the material are improved, which improves the energy efficiency of the turbomachine.
  • This smooth layer does not significantly influence the mechanical properties of the abradable coating.
  • the present disclosure also relates to a porous abradable coating of ceramic material comprising a layer of ceramic material comprising pores, the layer of ceramic material comprising glass in pores of the layer of ceramic material.
  • the slip comprises a pore-forming agent
  • certain pores of the layer of ceramic material comprising pores can be formed by the pore-forming agent and not include glass because these pores are not formed by the hollow beads in glass or thermosetting polymer.
  • the porous abradable coating of ceramic material comprises an additional layer of ceramic material having a porosity less than a porosity of the layer of ceramic material and a roughness Ra less than or equal to 5 ⁇ m, preferably less or equal to 3 pm, even more preferably less than or equal to 1 pm.
  • the additional layer of ceramic material has a thickness less than or equal to 150 ⁇ m, preferably less than or equal to 100 ⁇ m, even more preferably less than or equal to 50 ⁇ m.
  • This smooth layer does not significantly influence the mechanical properties of the abradable coating.
  • Figure 1 is a view of a rupture face of an abradable coating according to the description
  • Figure 2 is a schematic perspective view of a stack of hollow glass beads or thermosetting polymer
  • Figure 3 is a schematic sectional view of an abradable coating according to a variant of the description
  • FIG. 4 a flowchart representing the steps of a process for manufacturing the abradable coating of FIGS. 1 and 3;
  • Figures 5A and 5B are schematic sectional views of a mold for implementing a method of manufacturing the abradable coating
  • FIG. 6 is a graph showing the evolution of the temperature as a function of time during the sintering heat treatment
  • FIG. 7 is a perspective view of the result of an abrasion test carried out on an abradable coating according to the description.
  • FIG. 1 is a view of a rupture face of a porous abradable coating 10 of ceramic material.
  • the porous abradable coating 10 comprises a layer 12 of ceramic material comprising pores 14.
  • the pores 14 of the layer 12 comprise glass 16A.
  • This glass 16A is present in the pores 14 of the layer 12 of ceramic material and results from the process for manufacturing the porous abradable coating 10.
  • This glass 16A can be identified, for example, during analysis by fluorescence spectroscopy of X-rays ("SFX"), also called XRF according to the English acronym for "X-Ray Fluorescence". This technique makes it possible to identify elements present in the glass 16A and which are not present in the ceramic material. We can thus identify the presence of glass 16A.
  • SFX fluorescence spectroscopy of X-rays
  • XRF X-Ray Fluorescence
  • This glass 16A comes from hollow glass balls 16B which are used to create porosity in the porous abradable coating 10. Hollow glass balls 16B which can be used in the process for manufacturing the porous abradable coating 10 are shown in the figure 2. 16B hollow glass beads can be borosilicate glass, soda lime glass, lead glass, also commonly called crystal, silica glass or aluminosilicate glass.
  • the glass transition temperature is generally between 550 ° C and 600 ° C for borosilicate glasses; between 450 ° C and 480 ° C for soda-lime glasses; between 400 ° C and 420 ° C for lead glasses; between 1300 ° C and 1400 ° C for aluminosilicate glasses and between 900 and 1300 ° C for silica glass.
  • the hollow glass beads 16B of FIG. 2 may for example have a diameter of approximately 100 ⁇ m (micrometer) and have a wall thickness of between approximately a few hundred nanometers and a few micrometers.
  • These hollow glass beads 16B can for example be made of borosilicate glass and have a glass transition temperature T g of around 800 ° C.
  • the 16B hollow glass beads can be obtained with a technical sheet which provides their glass transition temperature T g .
  • the glass transition temperature T g can be measured for example by differential scanning calorimetry, called DSC in accordance with the acronym for "Differential Scanning Calorimetry"
  • the layer 12 of ceramic material having the pores 14 has a total porosity of about 60% by volume.
  • the layer 12 of ceramic material can for example comprise alumina (AI2O3), zirconia (Zr0 2 ), yttrium disilicate (Y 2 Si 2 0 7 ) or silicon carbide (SiC) , or a mixture of these compounds. This list is not exhaustive.
  • the porous abradable coating 10 also comprises an additional layer 36 of ceramic material having a porosity lower than a porosity of the layer 12 of ceramic material.
  • the additional layer 36 of ceramic material has a roughness Ra less than or equal to 5 mhti.
  • the additional layer 36 of ceramic material has a thickness of 100 ⁇ m.
  • the porous abradable coating 10 of the embodiments of FIGS. 1 and 3 is obtained thanks to the manufacturing process 100 which will be described below and which is illustrated in FIG. 4.
  • the manufacturing method 100 of the porous abradable coating 10 of FIG. 4 comprises a first step 102 during which a mold 20 is filled with hollow glass balls 16B (see FIGS. 5A and 5B).
  • the mold 20 has two parts: a lower part 22 and an upper part 24. When assembled, the lower part 22 and the upper part 24 of the mold 20 define a cavity 26 which is intended to receive the hollow glass balls 16B and a slip intended to form the ceramic material of the layer 12 of ceramic material after heat treatment.
  • the 22 of the mold 20 has an evacuation orifice 28 and the upper part 24 of the mold has two evacuation orifices 30.
  • the lower part 22 and / or the upper part 24 of the mold 20 could be made of porous material allowing filtration and the evacuation of liquids from the mold 20.
  • the evacuation orifices 28, 30 of the lower and upper parts 22, 24 of the mold 20 can for example allow the evacuation of the liquid of the slip from the mold 20.
  • These orifices d 'evacuations 28, 30 allow in particular to use a vacuum pump and to accelerate the withdrawal of the liquid to form a raw of the ceramic part without manipulation of the part.
  • the evacuation orifices 28, 30 of the lower and upper parts 22, 24 of the mold 20 can also make it possible to introduce material into the mold 20.
  • the evacuation orifice 28 of the lower part of the mold 20 can be used to inject the slip into the cavity 26 of the mold 20.
  • the cavity 26 of the mold 20 can be partially filled, that is to say that over a given height of the cavity 26, a stack 18 of 16B hollow glass balls is present and that over a height complementary to the given height of the cavity 26, the cavity does not include a stack of 16B hollow glass balls.
  • the hollow glass balls 16B have for example a diameter of approximately 100 ⁇ m and the hollow glass balls 16B are arranged in a net 32.
  • the net 32 has a mesh allowing to contain the hollow glass balls 16B and to allow the slip to pass.
  • the mesh of the net 32 is such that the hollow glass balls 16B cannot leave the net 32, that is to say that the size of the mesh is less than the diameter of the hollow glass balls 16B.
  • the mesh of the net 32 allows the slip to infiltrate between the hollow glass balls 16B, and more particularly in the spaces formed between the hollow glass balls 16B.
  • the net 32 is flexible, which allows the net 32 filled with hollow glass balls 16B to adapt to the shape of the cavity 26 of the mold 20.
  • the net 32 also makes it possible to contain the hollow glass balls 16B in the cavity 26 when the mold 20 has discharge orifices.
  • the mold 20 comprises porous membranes 34 arranged in the cavity 26 of the mold 20 and the hollow glass balls 16B are arranged between these porous membranes 34.
  • the porous membranes allow to contain the hollow glass balls 16B in the cavity 26 when the mold 20 has discharge orifices.
  • the 16B in glass are placed in the cavity 26 of the mold 20 with a solvent for agglomerating the hollow glass balls 16B with each other by adsorption of the solvent on the surface of the hollow glass balls 16B.
  • the solvent is then evacuated from the mold 20, for example by one of the evacuation orifices 28, 30.
  • the adsorbed solvent remains on the surface of the hollow glass beads 16B which allows the beads to be maintained hollow glass 16B in a dense stack, even during filling of the mold 20 with the slip.
  • the manufacturing method 100 then comprises a step of filling 104 of the cavity 26 of the mold 20 with the slip, for example by the discharge orifice 28 of the lower part 22 of the mold 20.
  • the discharge orifice 28 is closed.
  • the solvent 106 of the slip in the mold 20 we go to the filtration and evacuation step of the solvent 106 of the slip in the mold 20 to form a green of the ceramic part comprising the hollow glass beads 16B.
  • the solvent is extracted from the slip, for example by using a vacuum pump connected to one of the evacuation orifices 28, 30.
  • This filtration step and d solvent evacuation 106 can last more than 24 hours (hours).
  • the green of the ceramic part When the green of the ceramic part has reached a correct humidity level, the green of the ceramic part comprising the hollow glass balls 16B is placed in an oven and undergoes a thermal sintering treatment (steps 108 and 110) in order to obtain the layer 12 of ceramic material comprising the pores 14.
  • the heat treatment comprises a first sintering stage (step 108) at a temperature T1, which is lower than the glass transition temperature T g of the hollow glass balls 16B (see FIG. 6).
  • the raw material of the ceramic part before heat treatment is partially consolidated and forms a partially consolidated ceramic part, the ceramic material forming a partially consolidated structure around the hollow glass balls 16B.
  • the temperature T1 being lower than the glass transition temperature T g of the hollow glass balls 16B, the hollow glass balls 16B do not soften under the effect of the temperature T1.
  • the partial consolidation of the ceramic material around the hollow balls 16B in glass is produced around the hollow balls 16B in glass which are not or which are slightly deformed under the effect of the partial consolidation of the ceramic material around the hollow balls 16B in glass.
  • the thread 32 of Figure 5A is made of a material having a decomposition temperature above the temperature T1 of the first temperature level
  • T1 the temperature of the first temperature level
  • the net 32 is for example of material comprising a nylon.
  • the partially consolidated ceramic part is then heat treated at a second sintering stage (step 110) at a temperature T2, which is higher than the glass transition temperature T g of the hollow glass balls 16B.
  • the temperature T2 is therefore higher than the temperature T1.
  • the temperature T2 of the second sintering stage can be the final sintering temperature (curve 40) or the sintering heat treatment can comprise other sintering stages, at least one of which at a temperature T3 higher than the temperature T2 of the second sintering stage (curve 42).
  • the term final sintering temperature is understood to mean the maximum imposed temperature which has been imposed on the ceramic material in order to obtain the porous abradable coating 10 of ceramic material.
  • the temperature T2 of the second sintering bearing being higher than the glass transition temperature T g of the hollow glass balls 16B, the consolidation of the partially consolidated ceramic part continues and the hollow glass balls 16B soften.
  • the hollow glass balls 16B By softening, the hollow glass balls 16B leave cavities in the ceramic material. These cavities will form the pores 14 of the porous abradable coating 10. Thus, when the hollow glass balls 16B melt, the ceramic material is already sufficiently consolidated and the cavities left by the hollow glass balls 16B are not filled with the ceramic material.
  • a porous abradable coating 10 of ceramic material is obtained, the pores 14 of which comprise a small amount of glass 16A.
  • the balls being hollow glass balls 16B, the wall of the glass hollow ball 16B being relatively thin, the quantity of glass 16A remaining in the pores 14 is relatively small.
  • the glass 16A present in the pores 14 of the layer 12 of ceramic material has no negative influence on the abradable nature of the porous abradable coating 10.
  • the material of the net 32 has the advantage of having a decomposition temperature which is lower than the final sintering temperature. Thus, at the end of the sintering, the thread 32 is broken down and at most traces of carbon remain in the porous abradable coating 10 of ceramic material obtained at the end of the sintering heat treatment.
  • the manufacturing method 10 comprises, after the heat treatment of sintering the raw of the ceramic piece, an additional step 112 during which a slip layer on the layer 12 of ceramic material comprising the pores 14.
  • the assembly formed by the layer 12 of ceramic material comprising the pores 14 and the slip layer is then subjected to an additional sintering heat treatment 114 to sinter the slip layer and form the additional layer 36 of ceramic material.
  • the slip may include a blowing agent which, during the sintering heat treatment, creates, in the ceramic material, a porosity additional to the porosity generated from the hollow beads. 16B glass. It is thus possible to create additional porosity during the sintering heat treatment and therefore increase the total porosity of the layer 12 of ceramic material comprising the pores 14. It is then understood that the glass 16A will not be present in all the pores 14 of the layer 12 of ceramic material.
  • FIG. 7 shows the results of an abrasion test of a porous abradable coating 10 by a metal blade of titanium-based alloy produced under standard test conditions.
  • the porous abradable coating 10 was obtained by using an alumina slip comprising 25% by volume of alumina.
  • the alumina slip comprises water (solvent) and polyvinyl acetate.
  • the hollow glass beads are made of borosilicate glass and have a diameter of about 100 ⁇ m.
  • the green of the ceramic part is heat treated with an intermediate bearing at 80 ° C for at least 2 h to dry the green of the ceramic part. Then, the heat treatment comprises a first sintering stage at a temperature T1 equal to 500 ° C.
  • the temperature rise to 500 ° C is carried out at 15 ° C / min (degree celcius / minute).
  • the heat treatment comprises a second sintering stage at a temperature T2 equal to 1050 ° C. for 8 h.
  • the temperature rise from 500 ° C to 1050 ° C is carried out at
  • the ceramic part is then freely cooled.
  • the porosity obtained is approximately 60% by volume.
  • the standard test conditions are as follows: three blades in TA6V having a thickness of 0.7 mm were rotated at a circumferential speed of 200 m / s (meter / second) with a speed of penetration into the porous abradable coating 10 of 0.15 mm / s (millimeter / second) until reaching a penetration depth in the porous abradable coating 10 which is equal to 1 mm.
  • the wear of the blades which has been measured is less than 0.01 mm.
  • the sintering heat treatment may include additional temperature steps at intermediate temperatures at temperatures T1, T2 and T3. It may also include temperature levels during the cooling of the porous abradable coating from the final sintering temperature to ambient temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Glass Compositions (AREA)
  • Filtering Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

L'invention concerne un procédé de fabrication d'un revêtement abradable poreux comportant une étape de remplissage d'un moule avec des billes creuses en verre ou en polymère thermodurcissable et une barbotine et une étape de traitement thermique de frittage pour obtenir une couche (12) en matériau céramique comportant des pores (14), une température maximale de frittage du cru de pièce céramique étant soit supérieure à la température de fusion des billes creuses (16B) en verre de sorte qu'à la fin du traitement thermique de frittage, les billes creuses (16B) en verre sont fondues, soit supérieure à la température de décomposition des billes creuses (16B) en polymère thermodurcissable de sorte qu'à la fin du traitement thermique de frittage, les billes creuses (16B) en polymère thermodurcissable sont décomposées.

Description

PROCEDE DE FABRICATION D'UN REVÊTEMENT ABRAPABLE POREUX EN
MATERIAU CERAMIQUE
Arrière-plan de l'invention
[0001] Le présent exposé concerne un revêtement poreux en matériau céramique, notamment un revêtement abradable pour une pièce de turbomachine, et son procédé de fabrication.
[0002] De nombreuses pièces de turbomachines, ainsi que des pièces des tuyères de turboréacteur, sont aujourd'hui pourvues de revêtements. Par « revêtement », on entend désigner une couche substantiellement continue d'un matériau, cette couche étant interposée entre la pièce qu'elle recouvre et le fluide circulant à travers la turbomachine ou la tuyère. Un revêtement peut comprendre un matériau différent du matériau de la pièce qu'il recouvre. Un revêtement peut aussi être divisé en plusieurs sous-éléments qui, ensemble, recouvrent la pièce.
[0003] Dans de nombreuses machines tournantes, il est désormais connu de munir l'anneau du stator de pistes abradables en regard du sommet des aubes du rotor. De telles pistes sont réalisées à l'aide de matériaux dit « abradables » qui, lorsqu'ils entrent en contact avec les aubes tournantes, s'usent plus facilement que ces dernières. On assure ainsi un jeu minimal entre le rotor et le stator, améliorant les performances de la machine tournante, sans risquer de détériorer les aubes en cas de frottement de ces dernières sur le stator. Au contraire, un tel frottement érode la piste abradable, ce qui permet d'ajuster automatiquement le diamètre de l'anneau du stator au plus proche du rotor. Ainsi, de telles pistes abradables sont souvent mises en place dans les compresseurs de turbomachines.
[0004] En revanche, leur emploi est plus rare dans les turbines de telles turbomachines, et surtout dans les turbines haute pression dans lesquelles régnent des conditions physico-chimiques et thermiques extrêmes.
[0005] En effet, les gaz brûlés issus de la chambre de combustion débouchent dans la turbine haute pression à des niveaux de température et de pression très élevés, ce qui entraîne l'usure prématurée des pistes abradables conventionnelles. [0006] Dès lors, afin de protéger l'anneau du stator de la turbine, il est souvent préféré de munir ce dernier d'un revêtement du type barrière thermique dont les matériaux et la densité élevée, trop importante pour que le revêtement soit efficacement abradable, permettent de protéger l'anneau contre l'érosion et la corrosion.
[0007] Toutefois, on comprend naturellement que, dans un tel cas, l'intégrité des aubes n'est plus assurée en cas de contact avec le stator, ce qui nécessite de prévoir un jeu plus important entre le rotor et le stator et augmente donc le débit de fuite en sommet d'aubes et réduit ainsi les performances de la turbine.
[0008] Par ailleurs, du fait du frottement ponctuel avec les aubes et la chaleur des gaz brûlés, le revêtement peut être endommagé et moins bien protéger le stator.
[0009] On connaît des revêtements obtenus par projection thermique d'une poudre composée d'une partie métallique en alliage aluminium- silicium et une partie organique en résine, la résine étant par exemple une résine de polyester.
[0010] Un inconvénient de ces revêtements est que l'aluminium est sensible aux phénomènes d'auto-inflammation, et donc de déflagration, pendant le fonctionnement du compresseur. Ces phénomènes peuvent conduire à une usure accélérée du revêtement abradable et des pièces environnantes dans la turbomachine.
[0011] Afin de réduire les risques de déflagration, la turbomachine comprend un système de refroidissement relativement complexe, ce qui augmente les coûts de production et/ou rend le montage d'une telle turbomachine relativement complexe.
[0012] On connaît également des revêtements abradables en matériau céramique, ces revêtements en matériau céramique sont rendus abradables par incorporation de porosité dans le matériau céramique.
[0013] Ces revêtements en matériau céramique sont généralement obtenus par projection thermique d'un mélange de poudre céramique et d'un polymère, tel qu'un polyester ou un polyamide. Le polymère est ensuite décomposé par pyrolyse pour former un revêtement poreux en matériau céramique. [0014] Toutefois, la porosité totale de tels revêtements est généralement limitée à environ 30% en volume, ce qui limite leur capacité à être érodés par les aubes du rotor.
[0015] On peut aussi souhaiter former des plaques de revêtement abradable poreux, plaques qui sont ensuite rapportées sur le stator. Ces plaques ne sont pas obtenues par projection thermique et leur porosité est relativement peu importante.
[0016] Il existe donc un besoin de revêtements abradables pour turbomachine qui sont non-déflagrants et qui présentent une porosité relativement importante, ces revêtements n'étant pas obtenus par projection thermique.
Objet et résumé de l'invention
[0017] Le présent exposé vise à remédier au moins en partie à ces inconvénients et à répondre au moins partiellement à tout ou partie de ces besoins.
[0018] A cet effet, le présent exposé concerne un procédé de fabrication d'un revêtement abradable poreux en matériau céramique comprenant une couche en matériau céramique comportant des pores, le procédé comprenant les étapes suivantes :
- remplissage au moins partiel d'un moule avec des billes creuses en verre ou en polymère thermodurcissable ;
- remplissage du moule avec une barbotine ;
- filtration et évacuation d'un solvant de la barbotine de sorte que le moule contient un cru de la pièce céramique comprenant les billes creuses en verre ou en polymère thermodurcissable ;
- traitement thermique de frittage du cru de la pièce céramique pour obtenir la couche en matériau céramique comportant des pores, une température maximale de frittage du cru de pièce céramique étant soit supérieure à la température de fusion des billes creuses en verre de sorte qu'à la fin du traitement thermique de frittage, les billes creuses en verre sont fondues, soit supérieure à la température de décomposition des billes creuses en polymère thermodurcissable de sorte qu'à la fin du traitement thermique de frittage, les billes creuses en polymère thermodurcissable sont décomposées.
[0019] On entend par verre un matériau amorphe présentant un phénomène de transition vitreuse. Typiquement, le verre comprend de la silice ou un composé à base de silice.
[0020] On entend par polymère thermodurcissable un matériau obtenu par un procédé de polymérisation irréversible. La décomposition d'un polymère thermodurcissable est obtenue par pyrolyse du polymère thermodurcissable.
[0021] On entend par barbotine une suspension de particules céramiques dans un liquide. La barbotine une fois frittée formera un matériau céramique. Le liquide peut être de l'eau ou un liquide organique. La barbotine peut comprendre d'autres composés que ie liquide et les particules de céramique. De manière connue, une barbotine peut comprendre un mélange de poudres différentes. Elle peut aussi comprendre des additifs. Ces additifs peuvent par exemple comprendre des agents mouillant, des agents anti-moussant, des défloculants, des floculants, des coagulants, des liants, des lubrifiants et/ou des plastifiants. Cette liste est bien entendu non-exhaustive.
[0022] Le revêtement abradable poreux en matériau céramique est ainsi obtenu par utilisation d'une barbotine dont le solvant est évacué et filtré.
[0023] On entend par matériau céramique un matériau inorganique et non métallique qui a subi un traitement thermique de frittage afin de consolider le matériau. En particulier, on entend par céramique, une céramique technique, c'est-à-dire un matériau présentant une bonne tenue mécanique à très haute température, comme par exemple à 1000°C (degré Celcius), et comprenant des matériaux céramiques à base notamment d'oxydes, de carbure et/ou de nitrures. En effet, à des taux de porosité supérieurs, l'érosion du revêtement abradable devient trop importante car généralement, l'augmentation du taux de porosité se fait au détriment de la consolidation du revêtement.
[0024] Lorsque le traitement thermique de frittage est terminé, on obtient un revêtement abradable poreux en matériau céramique dont des pores comprennent une petite quantité de verre lorsque des billes creuses en verre ont été utilisées. Les billes étant des billes creuses en verre, la paroi de la bille est relativement mince et la quantité de verre restant dans les pores est relativement faible et ne risque pas d'endommager les éléments de la turbomachine.
[0025] Lors de l'érosion du revêtement abradable poreux, ces masses de verre sont suffisamment petites et ne sont pas susceptibles d'obturer des conduits, tels que des conduits de ventilation.
[0026] Comme exemple de billes creuses en verre, on peut citer des billes creuses en verre borosilicaté, en verre sodocalcique, en verre au plomb, aussi appelé communément cristal, en verre de silice ou en verre aluminosilicate.
[0027] Lorsque des billes creuses en polymère thermodurcissable sont utilisées, le polymère thermodurcissable se décompose.
[0028] Comme exemple de billes creuses en polymère thermodurcissable, on peut citer des microballons en résine phénolique dont la température de décomposition débute vers environ 200°C et est complète à 500°C.
[0029] La température de transition vitreuse est généralement comprise entre 550°C et 600°C pour les verres borosilicatés ; entre 450°C et 480°C pour les verres sodocalciques ; entre 400°C et 420°C pour les verres au plomb ; entre 1300°C et 1400°C pour les verres aluminosilicates et entre 900 et 1300°C pour le verre de silice.
[0030] On obtient ainsi un matériau céramique comportant des pores et donc un revêtement abradable poreux en matériau céramique facilement abradable par frottement d'une pièce contre le revêtement abradable, la pièce frottant contre le revêtement abradable étant peu ou pas endommagée.
[0031] Le choix du matériau des billes creuses en verre et du matériau céramique se fait en fonction des températures en fonctionnement du revêtement abradable poreux et en fonction de la température de transition vitreuse des billes creuses en verre. Ainsi, pour une température en fonctionnement donnée, on choisira un type de matériau céramique. En fonction de ce matériau céramique, on choisira des billes creuses en verre présentant une température de transition vitreuse comprise entre la température finale de frittage du matériau céramique et une température de frittage permettant une consolidation partielle du matériau céramique. [0032] Dans certains modes de réalisation, le traitement thermique comprend au moins deux paliers de frittage, un premier palier de frittage à une température inférieure à une température de transition vitreuse des billes creuses en verre ou inférieure à la température de décomposition des billes creuses en polymère thermodurcissable pour former une pièce céramique partiellement consolidée et un deuxième palier de frittage à une température supérieure à la température de transition vitreuse des billes creuses en verre pour faire fondre les billes creuses en verre ou supérieure à la température de décomposition des creuses en polymère thermodurcissable pour décomposer les billes creuses en polymère thermodurcissable.
[0033] La température du premier palier de frittage étant inférieure à la température de transition vitreuse des billes creuses en verre, les billes creuses en verre présentes dans le cru de la pièce céramique ne se ramollissent pas pendant le pré-frittage du cru de la pièce céramique. La structure formée par les billes creuses en verre ne s'effondre pas et le cru de la pièce céramique subit, pendant ce premier palier de frittage une première consolidation.
[0034] Ainsi, à la fin du premier palier de frittage, la structure formée par les billes creuses en verre ou en polymère thermodurcissable n'est pas déformée et une consolidation partielle du cru de la pièce céramique est obtenue.
[0035] Pendant le deuxième palier de frittage, la température étant supérieure à la température de transition vitreuse des billes creuses en verre, la consolidation de la pièce céramique continue et les billes creuses en verre se ramollissent.
[0036] En se ramollissant, les billes creuses en verre laissent des cavités dans le matériau céramique. Ces cavités formeront la porosité du revêtement abradable poreux. Ainsi, lorsque les billes creuses en verre fondent, le matériau céramique est déjà suffisamment consolidé et les cavités laissées par les billes creuses en verre ne sont pas comblées par le matériau céramique.
[0037] Lorsque les billes creuses sont en polymère thermodurcissable, pendant le deuxième palier de frittage, la température étant supérieure à la température de décomposition des billes creuses en polymère thermodurcissable, les billes creuses en polymère thermodurcissable se décomposent pour former principalement des résidus carbonés et du gaz et la consolidation de la pièce céramique continue. Ainsi, lorsque les billes creuses en polymère thermodurcissable se décomposent, le matériau céramique est déjà suffisamment consolidé et les cavités laissées par les billes creuses en polymère thermodurcissable ne sont pas comblées par le matériau céramique.
[0038] Dans certains modes de réalisation, le diamètre des billes creuses en verre ou en polymère thermodurcissable est supérieur ou égal à 800 nm, de préférence supérieur ou égal à 1 pm, encore plus de préférence supérieur ou égale à 10 pm et inférieur ou égal à 500 pm, de préférence inférieur ou égal à 400 pm, encore plus de préférence inférieur ou égal à 300 pm.
[0039] On peut ainsi modifier la taille des pores présents dans la couche en matériau céramique. Le diamètre des billes creuses en verre ou en polymère thermodurcissable peut également être choisi en fonction du type de matériau céramique. Par exemple, pour des matériaux céramiques à base d'oxydes, on pourra choisir des billes creuses dont le diamètre est compris entre 10 pm et 300 pm.
[0040] Dans certains modes de réalisation, lors du remplissage au moins partiel du moule avec les billes creuses en verre ou en polymère thermodurcissable, les billes creuses en verre ou en polymère thermodurcissable sont disposées dans un filet présentant une maille permettant de contenir les billes creuses en verre ou en polymère thermodurcissable et de laisser passer la barbotine, le filet ayant une température de décomposition inférieure à une température finale de frittage.
[0041] Grâce au filet, il est facile de contenir toutes les billes creuses en verre ou en polymère thermodurcissable dans le moule et de garantir une bonne répartition des billes creuses en verre ou en polymère thermodurcissable même lors du remplissage du moule avec la barbotine. La maille du filet est telle que les billes creuses en verre ou en polymère thermodurcissable ne peuvent pas sortir du filet, c'est-à-dire que la taille de la maille est inférieure au diamètre des billes creuses en verre ou en polymère thermodurcissable. Cependant, la maille du filet permet à la barbotine de s'infiltrer entre les billes creuses en verre ou en polymère thermodurcissable, et plus particulièrement dans les espaces formés entre les billes creuses en verre ou en polymère thermodurcissable.
[0042] Par ailleurs, le filet peut être souple et peut donc s'adapter facilement à la forme du moule.
[0043] Dans certains modes de réalisation, le filet peut être en matériau comprenant un nylon, un polyimide ou un polyamide.
[0044] Ces matériaux ont l'avantage de présenter des températures de décomposition qui sont inférieures à la température finale de frittage. Ainsi, à la fin du frittage, le filet est décomposé et il reste tout au plus des traces de carbone dans le revêtement abradable poreux en matériau céramique obtenu à la fin du traitement thermique de frittage.
[0045] Dans certains modes de réalisation, température de décomposition du filet est supérieure à la température du premier palier de température.
[0046] Dans certains modes de réalisation, lors du remplissage au moins partiel du moule avec les billes creuses en verre ou en polymère thermodurcissable, les billes creuses en verre ou en polymère thermodurcissable sont disposées dans le moule avec un solvant pour agglomérer les billes creuses en verre ou en polymère thermodurcissable les unes avec les autres par adsorption du solvant en surface des billes creuses en verre ou en polymère thermodurcissable, le solvant étant ensuite évacué du moule.
[0047] Cette technique permet d'obtenir un empilement dense des billes creuses en verre ou en polymère thermodurcissable dans le moule. Grâce à l'adsorption du solvant en surface des billes creuses, l'empilement des billes creuses en verre ou en polymère thermodurcissable est conservé pendant le remplissage du moule avec la barbotine. En effet, après évacuation du solvant, il reste, en surface, une faible quantité de solvant qui permet cependant de maintenir les billes creuses en verre ou en polymère thermodurcissable en empilement compact.
[0048] Dans certains modes de réalisation, le moule comporte au moins un orifice d'évacuation de liquide.
[0049] Cet orifice d'évacuation peut par exemple permettre l'évacuation du liquide de la barbotine. Cet orifice d'évacuation permet notamment d'utiliser une pompe à vide et d'accélérer le retrait du liquide pour former le cru de la pièce céramique sans manipulation de la pièce. [0050] Dans certains modes de réalisation, a barbotine comprend un agent porogène.
[0051] Cet agent porogène permet, lors du traitement thermique de frittage de créer, dans le matériau céramique, une porosité supplémentaire à la porosité générée à partir des billes creuses en verre. On peut ainsi créer de la porosité supplémentaire pendant le traitement thermique de frittage et donc augmenter la porosité totale de la couche en matériau céramique comportant des pores.
[0052] Dans certains modes de réalisation, la couche en matériau céramique comportant des pores présente une porosité supérieure ou égale à 30% en volume, de préférence supérieure ou égale à 40% en volume, de préférence supérieure ou égale à 60% en volume, encore plus de préférence supérieure ou égale à 80% en volume.
[0053] Cette porosité est une porosité totale qui est constituée par la porosité ouverte et la porosité fermée de la couche en matériau céramique. Cette porosité est mesurée par triple pesée conformément à la norme ISO 5017 pour les matériaux réfractaires.
[0054] Dans certains modes de réalisation, après le traitement thermique de frittage du cru de la pièce céramique, une couche de barbotine est appliquée sur la couche en matériau céramique comportant des pores et un traitement thermique de frittage supplémentaire est réalisé pour fritter la couche de barbotine et former une couche additionnelle en matériau céramique présentant une porosité inférieure à une porosité de la couche en matériau céramique comportant des pores et une rugosité Ra inférieure ou égale à 5 miti, de préférence inférieure ou égale à 3 pm, encore plus de préférence inférieure ou égale à 1 pm.
[0055] Cette couche additionnelle en matériau céramique est moins poreuse que la couche en matériau céramique et présente une rugosité relativement faible. Le paramètre utilisé pour caractériser la rugosité est le paramètre Ra qui est défini par la norme ISO 4287 et qui peut être mesuré selon la norme ISO 4288. Lorsque la couche additionnelle en matériau céramique est réalisée à partir du même matériau céramique que la couche en matériau céramique comportant les pores, la couche additionnelle en matériau céramique est donc plus dense que la couche en matériau céramique comportant les pores. [0056] Ainsi, comme cela est expliqué dans le document brevet FR 2 994 397 Al au nom de la demanderesse, on améliore les propriétés aérodynamiques du matériau, ce qui améliore l'efficacité énergétique de la turbomachine. Cette couche lisse n'influence pas significativement les propriétés mécaniques du revêtement abradable.
[0057] Le présent exposé concerne également un revêtement abradable poreux en matériau céramique comprenant une couche en matériau céramique comportant des pores, la couche en matériau céramique comportant du verre dans des pores de la couche en matériau céramique.
[0058] Par exemple lorsque la barbotine comprend un agent porogène, certains pores de la couche en matériau céramique comportant des pores peuvent être formé par l'agent porogène et ne pas comporter de verre car ces pores ne sont pas formés par les billes creuses en verre ou en polymère thermodurcissable.
[0059] Dans certains modes de réalisation, le revêtement abradable poreux en matériau céramique comprend une couche additionnelle en matériau céramique présentant une porosité inférieure à une porosité de la couche en matériau céramique et une rugosité Ra inférieure ou égale à 5 pm, de préférence inférieure ou égale à 3 pm, encore plus de préférence inférieure ou égale à 1 pm.
[0060] Dans certains modes de réalisation, la couche additionnelle en matériau céramique présente une épaisseur inférieure ou égale à 150 pm, de préférence inférieure ou égale à 100 pm, encore plus de préférence inférieure ou égale à 50 pm.
[0061] Cette couche lisse n'influence pas significativement les propriétés mécaniques du revêtement abradable.
Brève description des dessins
[0062] D’autres caractéristiques et avantages de l’invention ressortiront de la description suivante de modes de réalisation de l’invention, donnés à titre d’exemples non limitatifs, en référence aux figures annexées, sur lesquelles :
- la figure 1 est une vue d'une face de rupture d'un revêtement abradable selon l'exposé ; la figure 2 est une vue schématique en perspective d'un empilement de billes creuses en verre ou en polymère thermodurcissable ;
la figure 3 est une vue schématique en coupe d'un revêtement abradable selon une variante de l'exposé ;
la figure 4 un ordinogramme représentant les étapes d'un procédé de fabrication du revêtement abradable des figures 1 et 3 ;
les figures 5A et 5B sont des vues schématiques en coupe d'un moule permettant de mettre en œuvre un procédé de fabrication du revêtement abradable ;
la figure 6 est un graphe représentant l'évolution de la température en fonction du temps pendant le traitement thermique de frittage ;
la figure 7 est une vue en perspective du résultat d'un essai d'abrasion réalisé sur un revêtement abradable selon l'exposé.
Description détaillée de l'invention
[0063] La figure 1 est une vue d'une face de rupture d'un revêtement abradable poreux 10 en matériau céramique. Le revêtement abradable poreux 10 comporte une couche 12 en matériau céramique comportant des pores 14. Comme représenté schématiquement dans l'agrandissement de la figure 1, les pores 14 de la couche 12 comprennent du verre 16A.
[0064] Ce verre 16A est présent dans les pores 14 de la couche 12 en matériau céramique et résulte du procédé de fabrication du revêtement abradable poreux 10. Ce verre 16A peut être identifié, par exemple, lors d'analyse par spectroscopie par fluorescence des rayons-X (« SFX »), appelée aussi XRF conformément au sigle anglais pour « X-Ray Fluorescence ». Cette technique permet d'identifier des éléments présents dans le verre 16A et qui ne sont pas présents dans le matériau céramique. On peut donc ainsi identifier la présence du verre 16A.
[0065] Ce verre 16A provient de billes creuses 16B en verre qui sont utilisées pour créer de la porosité dans le revêtement abradable poreux 10. Des billes creuses 16B en verre pouvant servir au procédé de fabrication du revêtement abradable poreux 10 sont représentées à la figure 2. [0066] Les billes creuses 16B en verre peuvent être en verre borosilicaté, en verre sodocalcique, en verre au plomb, aussi appelé communément cristal, en verre de silice ou en verre aluminosilicate.
[0067] La température de transition vitreuse est généralement comprise entre 550°C et 600°C pour les verres borosilicatés ; entre 450°C et 480°C pour les verres sodocalciques ; entre 400°C et 420°C pour les verres au plomb ; entre 1300°C et 1400°C pour les verres aluminosilicates et entre 900 et 1300°Cpour le verre de silice.
[0068] Les billes creuses 16B en verre de la figure 2 peuvent par exemple présenter un diamètre d'environ 100 prn (micromètre) et présenter une épaisseur de paroi comprise entre environ quelques centaines de nanomètres et quelques micromètres.
[0069] Ces billes creuses 16B en verre peuvent par exemple être en verre borosilicaté et présenter une température de transition vitreuse Tg d'environ 800°C.
[0070] Les billes creuses 16B en verre peuvent être obtenues avec une fiche technique qui renseigne leur température de transition vitreuse Tg. Alternativement, la température de transition vitreuse Tg peut être mesurée par exemple par calorimétrie différentielle à balayage, appelé DSC conformément au sigle anglais pour « Differential Scanning Calorimetry »
[0071] Dans le mode de réalisation de la figure 1, la couche 12 en matériau céramique comportant les pores 14 présente une porosité totale d'environ 60% en volume.
[0072] La couche 12 en matériau céramique peut par exemple comprendre de l'alumine (AI2O3), de la zircone (Zr02), du disilicate d'yttrium (Y2Si207) ou du carbure de silicium (SiC), ou un mélange de ces composés. Cette liste n'est pas limitative.
[0073] Dans ce qui suit, les éléments communs aux différents modes de réalisation sont identifiés par les mêmes références numériques.
[0074] Sur la figure 3, on a représenté un autre mode de réalisation d'un revêtement abradable poreux 10. Dans le mode de réalisation de la figure 3, le revêtement abradable poreux 10 comporte également une couche additionnelle 36 en matériau céramique présentant une porosité inférieure à une porosité de la couche 12 en matériau céramique. La couche additionnelle 36 en matériau céramique présente une rugosité Ra inférieure ou égale à 5 mhti.
[0075] La couche additionnelle 36 en matériau céramique présente une épaisseur de 100 pm.
[0076] On comprend que lorsque l'on utilise des billes creuses 16B en polymère thermodurcissable, il n'y a pas de verre 16A présent dans des pores du revêtement abradable poreux 10.
[0077] Le revêtement abradable poreux 10 des modes de réalisation des figures 1 et 3 est obtenu grâce au procédé de fabrication 100 qui va être décrit ci-après et qui est illustré à la figure 4.
[0078] Le procédé de fabrication 100 du revêtement abradable poreux 10 de la figure 4 comporte une première étape 102 au cours de laquelle on remplit un moule 20 avec des billes creuses 16B en verre (voir figures 5A et 5B). Le moule 20 comporte deux partie : une partie inférieure 22 et une partie supérieure 24. Lorsqu'elles sont assemblées, la partie inférieure 22 et la partie supérieure 24 du moule 20 délimitent une cavité 26 qui est destinée à recevoir les billes creuses 16B en verre et une barbotine destinée à former le matériau céramique de la couche 12 en matériau céramique après traitement thermique.
[0079] Comme représenté sur les figures 5A et 5B, la partie inférieure
22 du moule 20 comporte un orifice d'évacuation 28 et la partie supérieure 24 du moule comporte deux orifices d'évacuation 30. Alternativement, la partie inférieure 22 et/ou la partie supérieure 24 du moule 20 pourraient être en matériau poreux permettant la filtration et l'évacuation de liquides hors du moule 20. Les orifices d'évacuation 28, 30 des parties inférieure et supérieure 22, 24 du moule 20 peuvent par exemple permettre l'évacuation du liquide de la barbotine hors du moule 20. Ces orifices d'évacuations 28, 30 permettent notamment d'utiliser une pompe à vide et d'accélérer le retrait du liquide pour former un cru de la pièce céramique sans manipulation de la pièce. Les orifices d'évacuation 28, 30 des parties inférieure et supérieure 22, 24 du moule 20 peuvent également permettre d'introduire de la matière dans le moule 20. Par exemple, l'orifice d'évacuation 28 de la partie inférieure du moule 20 peut être utilisé pour injecter la barbotine dans la cavité 26 du moule 20.
[0080] La cavité 26 du moule 20 peut être remplie partiellement, c'est- à-dire que sur une hauteur donnée de la cavité 26, un empilement 18 de billes creuses 16B en verre est présent et que sur une hauteur complémentaire à la hauteur donnée de la cavité 26, la cavité ne comprend pas d'empilement de billes creuses 16B en verre.
[0081] On comprend que lorsque la cavité 26 est remplie entièrement avec les billes creuses 16B en verre, il existe des espaces entre les billes creuses 16B en verre, espaces qui seront comblés par la barbotine.
[0082] Dans le mode de réalisation de la figure 5A, les billes creuses 16B en verre présentent par exemple un diamètre d'environ 100 pm et les billes creuses 16B en verre sont disposées dans un filet 32. Le filet 32 présente une maille permettant de contenir les billes creuses 16B en verre et de laisser passer la barbotine.
[0083] La maille du filet 32 est telle que les billes creuses 16B en verre ne peuvent pas sortir du filet 32, c'est-à-dire que la taille de la maille est inférieure au diamètre des billes creuses 16B en verre. Cependant, la maille du filet 32 permet à la barbotine de s'infiltrer entre les billes creuses 16B en verre, et plus particulièrement dans les espaces formés entre les billes creuses 16B en verre.
[0084] Par exemple, le filet 32 est souple ce qui permet au filet 32 rempli de billes creuses 16B en verre de s'adapter à la forme de la cavité 26 du moule 20.
[0085] Le filet 32 permet également de contenir les billes creuses 16B en verre dans la cavité 26 lorsque le moule 20 comporte des orifices d'évacuation.
[0086] Dans le mode de réalisation de la figure 5B, le moule 20 comporte des membranes poreuses 34 disposées dans la cavité 26 du moule 20 et les billes creuses 16B en verre sont disposées entre ces membranes poreuses 34. Les membranes poreuses permettent de contenir les billes creuses 16B en verre dans la cavité 26 lorsque le moule 20 comporte des orifices d'évacuation.
[0087] Dans le mode de réalisation de la figure 5B, les billes creuses
16B en verre sont disposées dans la cavité 26 du moule 20 avec un solvant pour agglomérer les billes creuses 16B en verre les unes avec les autres par adsorption du solvant en surface des billes creuses 16B en verre. Le solvant est ensuite évacué du moule 20, par exemple par un des orifices d'évacuation 28, 30. Toutefois, le solvant adsorbé reste en surface des billes creuses 16B en verre ce qui permet de maintenir les billes creuses 16B en verre en un empilement dense, même pendant le remplissage du moule 20 avec la barbotine.
[0088] Le procédé de fabrication 100 comporte ensuite une étape de remplissage 104 de la cavité 26 du moule 20 avec la barbotine, par exemple par l'orifice d'évacuation 28 de la partie inférieure 22 du moule 20. Lorsque les espaces entre les billes creuses 16B en verre sont remplis avec la barbotine, l'orifice d'évacuation 28 est fermé.
[0089] On passe ensuite à l'étape de filtration et d'évacuation du solvant 106 de la barbotine dans le moule 20 pour former un cru de la pièce céramique comprenant les billes creuses 16B en verre. Lors de cette étape de filtration et d'évacuation du solvant 106, on extrait le solvant de la barbotine, par exemple par utilisation d'une pompe à vide raccordée à un des orifices d'évacuation 28, 30. Cette étape de filtration et d'évacuation du solvant 106 peut durer plus de 24 h (heures).
[0090] Lorsque le cru de la pièce céramique a atteint un niveau d'humidité correct, le cru de la pièce céramique comprenant les billes creuses 16B en verre est disposée dans un four et subit un traitement thermique de frittage (étapes 108 et 110) afin d'obtenir la couche 12 en matériau céramique comportant les pores 14.
[0091] Le traitement thermique comporte un premier palier de frittage (étape 108) à une température Tl, qui est inférieure à la température de transition vitreuse Tg des billes creuses 16B en verre (voir figure 6).
[0092] Après le premier palier de frittage à la température Tl, le cru de la pièce céramique avant traitement thermique est partiellement consolidé et forme une pièce céramique partiellement consolidée, le matériau céramique formant une structure partiellement consolidée autour des billes creuses 16B en verre. La température Tl étant inférieure à la température de transition vitreuse Tg des billes creuses 16B en verre, les billes creuses 16B en verre ne ramollissent pas sous l'effet de la température Tl. Ainsi, la consolidation partielle du matériau céramique autour des billes creuses 16B en verre est réalisée autour des billes creuses 16B en verre qui ne sont pas ou qui sont peu déformées sous l'effet de la consolidation partielle du matériau céramique autour des billes creuses 16B en verre.
[0093] Le filet 32 de la figure 5A est réalisé dans un matériau présentant une température de décomposition supérieure à la température Tl du premier palier de température Ainsi, pendant la consolidation partielle du matériau céramique, les billes creuses 16B en verre sont maintenues en place par le filet 32, ce filet 32 étant toujours présent après le premier palier de frittage à la température Tl.
[0094] Le filet 32 est par exemple en matériau comprenant un nylon.
[0095] La pièce céramique partiellement consolidée est ensuite traitée thermiquement à un deuxième palier de frittage (étape 110) à une température T2, qui est supérieure à la température de transition vitreuse Tg des billes creuses 16B en verre. La température T2 est donc supérieure à la température Tl.
[0096] Comme représenté sur la figure 6, la température T2 du deuxième palier de frittage peut être la température finale de frittage (courbe 40) ou le traitement thermique de frittage peut comporter d'autres paliers de frittage dont au moins un à une température T3 supérieure à la température T2 du deuxième palier de frittage (courbe 42). On entend par température finale de frittage la température maximale imposée qui a été imposée au matériau céramique afin d'obtenir le revêtement abradable poreux 10 en matériau céramique.
[0097] La température T2 du deuxième palier de frittage étant supérieure à la température de transition vitreuse Tg des billes creuses 16B en verre, la consolidation de la pièce céramique partiellement consolidée continue et les billes creuses 16B en verre se ramollissent.
[0098] En se ramollissant, les billes creuses 16B en verre laissent des cavités dans le matériau céramique. Ces cavités formeront les pores 14 du revêtement abradable poreux 10. Ainsi, lorsque les billes creuses 16B en verre fondent, le matériau céramique est déjà suffisamment consolidé et les cavités laissées par les billes creuses 16B en verre ne sont pas comblées par le matériau céramique.
[0099] Lorsque le traitement thermique de frittage est terminé, on obtient un revêtement abradable poreux 10 en matériau céramique dont les pores 14 comprennent une petite quantité de verre 16A. Les billes étant des billes creuses 16B en verre, la paroi de la bille creuse en verre 16B étant relativement mince, la quantité de verre 16A restant dans les pores 14 est relativement faible. Le verre 16A présent dans les pores 14 de la couche 12 en matériau céramique n'a pas d'influence négative sur le caractère abradable du revêtement abradable poreux 10. [0100] Le matériau du filet 32 a l'avantage de présenter une température de décomposition qui est inférieure à la température finale de frittage. Ainsi, à la fin du frittage, le filet 32 est décomposé et il reste tout au plus des traces de carbone dans le revêtement abradable poreux 10 en matériau céramique obtenu à la fin du traitement thermique de frittage.
[0101] Pour obtenir le revêtement abradable poreux 10 du mode de réalisation de la figure 3, le procédé de fabrication 10 comporte, après le traitement thermique de frittage du cru de la pièce céramique, une étape supplémentaire 112 au cours de laquelle on applique une couche de barbotine sur la couche 12 en matériau céramique comportant les pores 14.
[0102] L'ensemble formé par la couche 12 en matériau céramique comportant les pores 14 et la couche de barbotine est ensuite soumis à un traitement thermique de frittage supplémentaire 114 pour fritter la couche de barbotine et former la couche additionnelle 36 en matériau céramique.
[0103] En combinaison avec les billes creuses 16B en verre, la barbotine peut comprendre un agent porogène qui permet, lors du traitement thermique de frittage, de créer, dans le matériau céramique, une porosité supplémentaire à la porosité générée à partir des billes creuses 16B en verre. On peut ainsi créer de la porosité supplémentaire pendant le traitement thermique de frittage et donc augmenter la porosité totale de la couche 12 en matériau céramique comportant les pores 14. On comprend alors que le verre 16A ne sera pas présent dans tous les pores 14 de la couche 12 en matériau céramique.
[0104] La figure 7 présente les résultats d'un test d'abrasion d'un revêtement abradable poreux 10 par une aube métallique en alliage à base de titane réalisé dans des conditions standard de test. Le revêtement abradable poreux 10 a été obtenu par utilisation d'une barbotine d'alumine comprenant 25% en volume d'alumine. La barbotine d'alumine comprend de l'eau (solvant) et de l'acétate de polyvinyle. Les billes creuses en verre sont en verre borosilicaté et présentent un diamètre d'environ 100 pm. Après filtration et évacuation du solvant, le cru de la pièce céramique est traité thermiquement avec un palier intermédiaire à 80°C pendant au moins 2 h pour le séchage du cru de la pièce céramique. Ensuite, le traitement thermique comporte un premier palier de frittage à une température Tl égale à 500°C pendant 2 h, qui est inférieure à la température de transition vitreuse Tg des billes creuses 16B en verre qui est d'environ 800°C. La montée en température à 500°C est réalisée à 15°C/min (degré celcius/minute). Le traitement thermique comporte un deuxième palier de frittage à une température T2 égale à 1050°C pendant 8 h. La montée en température de 500°C à 1050°C est réalisée à
10°C/min. La pièce céramique est ensuite refroidie librement. La porosité obtenue est d'environ 60% en volume.
[0105] Les conditions standard de test sont les suivantes : trois aubes en TA6V présentant une épaisseur de 0,7 mm ont été mise en rotation à une vitesse circonférentielle de 200 m/s (mètre/seconde) avec une vitesse de pénétration dans le revêtement abradable poreux 10 de 0,15 mm/s (millimètre/seconde) jusqu'à atteindre une profondeur de pénétration dans le revêtement abradable poreux 10 qui est égale à 1 mm. L'usure des aubes qui a été mesurée est inférieure à 0,01 mm.
[0106] Lorsque l'on utilise des billes creuses 16B en polymère thermoplastique, le procédé de fabrication décrit précédemment en ce que la température de transition vitreuse Tg des billes creuses 16B en verre est remplacée par la température de décomposition T4 des billes creuses 16B en polymère thermoplastique.
[0107] Quoique le présent exposé ait été décrit en se référant à un exemple de réalisation spécifique, il est évident que des différentes modifications et changements peuvent être effectués sur ces exemples sans sortir de la portée générale de l’invention telle que définie par les revendications. En outre, des caractéristiques individuelles des différents modes de réalisation évoqués peuvent être combinées dans des modes de réalisation additionnels. Par conséquent, la description et les dessins doivent être considérés dans un sens illustratif plutôt que restrictif. On notera que le traitement thermique de frittage peut comporter des paliers de température supplémentaires à des températures intermédiaires aux températures Tl, T2 et T3. Il peut également comporter des paliers de température lors du refroidissement du revêtement abradable poreux de la température finale de frittage à la température ambiante.

Claims

REVENDICATIONS
1. Procédé de fabrication (100) d'un revêtement abradable poreux (10) en matériau céramique comprenant une couche (12) en matériau céramique comportant des pores (14), le procédé comprenant les étapes suivantes :
- remplissage (102) au moins partiel d'un moule (20) avec des billes creuses (16B) en verre ou en polymère thermodurcissable ;
- remplissage (104) du moule (20) avec une barbotine ;
- filtration et évacuation d'un solvant de la barbotine de sorte que le moule (20) contient un cru de la pièce céramique comprenant les billes creuses (16B) en verre ou en polymère thermodurcissable ;
- traitement thermique de frittage du cru de la pièce céramique pour obtenir la couche (12) en matériau céramique comportant des pores (14), une température maximale de frittage du cru de pièce céramique étant soit supérieure à la température de fusion des billes creuses (16B) en verre de sorte qu'à la fin du traitement thermique de frittage, les billes creuses (16B) en verre sont fondues, soit supérieure à la température de décomposition des billes creuses (16B) en polymère thermodurcissable de sorte qu'à la fin du traitement thermique de frittage, les billes creuses (16B) en polymère thermodurcissable sont décomposées.
2. Procédé (100) selon la revendication 1, dans lequel le traitement thermique comprend au moins deux paliers de frittage, un premier palier de frittage à une température (Tl) inférieure à une température de transition vitreuse (Tg) des billes creuses (16B) en verre ou inférieure à la température de décomposition (T4) des billes creuses (16B) en polymère thermodurcissable pour former une pièce céramique partiellement consolidée et un deuxième palier de frittage à une température (T2) supérieure à la température de transition vitreuse (Tg) des billes creuses (16B) en verre pour faire fondre les billes creuses (16B) en verre ou supérieure à la température de décomposition (T4) des creuses (16B) en polymère thermodurcissable pour décomposer les billes creuses (16B) en polymère thermodurcissable.
3. Procédé (100) selon la revendication 1 ou 2, dans lequel, lors du remplissage (102) au moins partiel du moule (20) avec les billes creuses en verre (16B), les billes creuses en verre (16B) sont disposées dans un filet (32) présentant une maille permettant de contenir les billes creuses (16B) en verre ou en polymère thermodurcissable et de laisser passer la barbotine, le filet (32) ayant une température de décomposition inférieure à une température finale de frittage.
4. Procédé (100) selon la revendication 3, dans lequel la température de décomposition du filet (32) est supérieure à la température (Tl) du premier palier de frittage.
5. Procédé (100) selon la revendication 3 ou 4, dans lequel le filet (32) est en matériau comprenant un nylon, un polyimide ou un polyamide.
6. Procédé (100) selon la revendication 1 ou 2, dans lequel, lors du remplissage (102) au moins partiel du moule avec les billes creuses (16B), les billes creuses en verre (16B) sont disposées dans le moule (20) avec un solvant pour agglomérer les billes creuses en verre (16B) les unes avec les autres par adsorption du solvant en surface des billes creuses en verre (16B), le solvant étant ensuite évacué du moule (20).
7. Procédé (100) selon l'une quelconque des revendications 1 à 6, dans lequel le moule (20) comporte au moins un orifice d'évacuation (28,
30) de liquide.
8. Procédé (100) selon l'une quelconque des revendications 1 à 7, dans lequel la barbotine comprend un agent porogène.
9. Procédé (100) selon l'une quelconque des revendications 1 à 8, dans lequel la couche (12) en matériau céramique comportant des pores
(14) présente une porosité supérieure ou égale à 40% en volume, de préférence supérieure ou égale à 60% en volume, encore plus de préférence supérieure ou égale à 80% en volume.
10. Procédé (100) selon la revendication 9, dans lequel après le traitement thermique de frittage du cru de la pièce céramique, une couche de barbotine est appliquée sur la couche (12) en matériau céramique comportant des pores (14) et un traitement thermique de frittage supplémentaire est réalisé pour fritter la couche de barbotine et former une couche additionnelle (36) en matériau céramique présentant une porosité inférieure à une porosité de la couche (12) en matériau céramique comportant des pores (14) et une rugosité (Rg) inférieure ou égale à 5 mih, de préférence inférieure ou égale à 3 pm, encore plus de préférence inférieure ou égale à 1 pm.
EP19823797.6A 2018-10-11 2019-10-09 Procede de fabrication d'un revêtement abradable poreux en materiau ceramique Pending EP3863989A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1859435A FR3087195B1 (fr) 2018-10-11 2018-10-11 Procede de fabrication d'un revetement abradable poreux en materiau ceramique
PCT/FR2019/052394 WO2020074828A1 (fr) 2018-10-11 2019-10-09 Procede de fabrication d'un revêtement abradable poreux en materiau ceramique

Publications (1)

Publication Number Publication Date
EP3863989A1 true EP3863989A1 (fr) 2021-08-18

Family

ID=65861360

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19823797.6A Pending EP3863989A1 (fr) 2018-10-11 2019-10-09 Procede de fabrication d'un revêtement abradable poreux en materiau ceramique

Country Status (5)

Country Link
US (1) US12065387B2 (fr)
EP (1) EP3863989A1 (fr)
CN (1) CN112888666B (fr)
FR (1) FR3087195B1 (fr)
WO (1) WO2020074828A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3087195B1 (fr) 2018-10-11 2022-01-28 Safran Aircraft Engines Procede de fabrication d'un revetement abradable poreux en materiau ceramique

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6916529B2 (en) * 2003-01-09 2005-07-12 General Electric Company High temperature, oxidation-resistant abradable coatings containing microballoons and method for applying same
CN100579929C (zh) 2005-07-19 2010-01-13 宁波材料技术与工程研究所 纳米复合低熔点玻璃绝缘涂层的制备方法
FR2938554B1 (fr) 2008-11-19 2011-05-06 Areva Nc Procede de revetement d'un element de creuset metallique par un melange de verre et de ceramique
EP2317079B1 (fr) 2009-10-30 2020-05-20 Ansaldo Energia Switzerland AG Système de revêtement abradable
BR112012015322A2 (pt) 2009-12-22 2019-09-24 Oxane Mat Inc propante e método para formar o propante
DE102010046370B4 (de) 2010-09-24 2013-06-13 Ecoglass Llc Verfahren zum Beschichten von Substraten aus Keramik, Glass und Metall, Beschichtungszusammensetzung und Formgegenstand
FR2994397B1 (fr) 2012-08-07 2014-08-01 Snecma Revetement en materiau abradable a faible rugosite de surface
US9957819B2 (en) 2014-03-28 2018-05-01 United Technologies Corporation Abrasive tip blade manufacture methods
CN104018208B (zh) 2014-06-13 2016-05-25 北京科技大学 阴极等离子电解沉积大面积弥散贵金属微粒热障涂层
GB2535481A (en) 2015-02-17 2016-08-24 Skf Ab Electrically insulated bearing
FR3041631B1 (fr) * 2015-09-24 2022-01-07 Snecma Materiau poreux en ceramique pour revetement d'une piece et procede de fabrication de ce materiau
FR3087195B1 (fr) 2018-10-11 2022-01-28 Safran Aircraft Engines Procede de fabrication d'un revetement abradable poreux en materiau ceramique

Also Published As

Publication number Publication date
US12065387B2 (en) 2024-08-20
WO2020074828A1 (fr) 2020-04-16
FR3087195A1 (fr) 2020-04-17
FR3087195B1 (fr) 2022-01-28
CN112888666A (zh) 2021-06-01
US20210340069A1 (en) 2021-11-04
CN112888666B (zh) 2023-02-28

Similar Documents

Publication Publication Date Title
EP2414305B1 (fr) Procede pour le lissage de la surface d'une piece en materiau cmc.
EP1522533B1 (fr) Cible destinée à être évaporée sous faisceau d'électrons et son procédé de fabrication.
EP3389903B1 (fr) Procédé de fabrication d'un revêtement abradable à densité variable
WO2014057194A1 (fr) Ensemble rotor-stator pour moteur a turbine a gaz
EP3684742A1 (fr) Procede de fabrication d'une piece en cmc
WO2014053751A1 (fr) Procede de fabrication d'une piece aerodynamique par surmoulage d'une enveloppe ceramique sur une preforme composite
EP2882551B1 (fr) Revetement en materiau abradable a faible rugosite de surface
WO2022090655A1 (fr) Procédé de fabrication d'une pièce en matériau composite à matrice céramique
EP3863989A1 (fr) Procede de fabrication d'un revêtement abradable poreux en materiau ceramique
WO2022263740A1 (fr) Revetement abradable a structure nid d'abeilles en materiau composite a matrice ceramique en fibres courtes
EP3793963B1 (fr) Procédé de fabrication d'une pièce cmc
FR3075692A1 (fr) Piece revetue d'une composition de protection contre les cmas a fissuration controlee, et procede de traitement correspondant
WO2014057205A1 (fr) Procede de traitement local d'une piece en materiau composite poreux
FR3041631A1 (fr) Materiau poreux en ceramique pour revetement d'une piece et procede de fabrication de ce materiau
FR3081156A1 (fr) Procede de fabrication d'une piece cmc revetue
FR3071867A1 (fr) Aube composite a matrice ceramique et procede de fabrication d'une telle aube
WO2020030881A1 (fr) Revetement ceramique pour noyau de fonderie
WO2022248789A1 (fr) Procede de fabrication d'une couche abradable
WO2024084152A1 (fr) Preforme fibreuse et son procede de fabrication pour realiser une piece en materiau composite a matrice ceramique
FR3118096A1 (fr) Aube en materiau composite a matrice au moins partiellement ceramique
FR3139488A1 (fr) Procédé de fabrication d’un revêtement abradable, revêtement abradable et pièce revêtue
WO2022112696A1 (fr) Piece en cmc et procede de fabrication d'une telle piece
FR3123365A1 (fr) Procede de revetement d'une piece en alliage refractaire et piece ainsi revetue.
WO2022090664A1 (fr) Procede de fabrication d'une aube de turbomachine en materiau composite
FR3108919A1 (fr) Pièce en un matériau multicouche à gradient de composition et son procédé de fabrication

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210409

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS