EP3860969A1 - Procédé d'hydroformylation d'oléfines à chaîne courte en phase gazeuse - Google Patents

Procédé d'hydroformylation d'oléfines à chaîne courte en phase gazeuse

Info

Publication number
EP3860969A1
EP3860969A1 EP19773873.5A EP19773873A EP3860969A1 EP 3860969 A1 EP3860969 A1 EP 3860969A1 EP 19773873 A EP19773873 A EP 19773873A EP 3860969 A1 EP3860969 A1 EP 3860969A1
Authority
EP
European Patent Office
Prior art keywords
support
catalyst system
hydroformylation
reactor
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19773873.5A
Other languages
German (de)
English (en)
Inventor
Jennifer Haßelberg
Robert Franke
Frank Stenger
Peter Kreis
Corinna HECHT
Marc Oliver Kristen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Operations GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Operations GmbH filed Critical Evonik Operations GmbH
Publication of EP3860969A1 publication Critical patent/EP3860969A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • C07C45/505Asymmetric hydroformylation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J27/224Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0237Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0271Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds also containing elements or functional groups covered by B01J31/0201 - B01J31/0231
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • B01J31/185Phosphites ((RO)3P), their isomeric phosphonates (R(RO)2P=O) and RO-substitution derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/20Carbonyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2234Beta-dicarbonyl ligands, e.g. acetylacetonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00628Controlling the composition of the reactive mixture
    • B01J2208/00646Means for starting up the reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00716Means for reactor start-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/321Hydroformylation, metalformylation, carbonylation or hydroaminomethylation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/001General concepts, e.g. reviews, relating to catalyst systems and methods of making them, the concept being defined by a common material or method/theory
    • B01J2531/002Materials
    • B01J2531/004Ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica

Definitions

  • the present invention relates to a process for the hydroformylation of short-chain olefins, in particular C2 to C5 olefins, in which the catalyst system is present heterogeneously on a support made of a porous ceramic material, and to plants for carrying out this process.
  • Alkenes olefins
  • carbon monoxide and hydrogen also:
  • Synthesis gas or syngas converted to aldehydes using a catalyst, which are important and valuable intermediates in the manufacture of chemical bulk products such as alcohols, esters or plasticizers.
  • the hydroformylation is carried out on an industrial scale exclusively under homogeneous catalysis.
  • the soluble transition metal catalyst systems are usually based on cobalt or rhodium, which is often used with phosphorus-containing ligands, for example phosphines or phosphites, for the hydroformylation of rather short-chain olefins.
  • Immobilization should therefore be understood to mean that the catalyst is formed on the surface and / or in the surface by forming a thin liquid film using an ionic liquid Pores of a solid support material is immobilized and there is no reaction solution in the classic sense in which the catalyst is homogeneously dissolved.
  • SILP systems Supported Lonic Liquid Phase
  • the catalyst system with rhodium, iridium or cobalt as the central atom is immobilized, in particular on a porous silicon dioxide carrier, using an ionic liquid.
  • the object of the present invention was therefore to provide a method for
  • a catalyst system is used in the hydroformylation, the catalyst system being heterogenized on a support which is in the form of a powder, in the form of granules or in the form of pellets and is made of a porous ceramic material.
  • the present invention thus relates to a process for the hydroformylation of C2 to C5 olefins in a reaction zone using a heterogenized one
  • Catalyst system the method being characterized in that a gaseous feed mixture containing the C2 to C8 olefins together with
  • Catalyst system which is a metal from the 8th or 9th group of the Periodic Table of the Elements, at least one organic phosphorus-containing ligand, a stabilizer and optionally an ionic liquid, is present in heterogeneous form; and the support, which is in the form of a powder, in the form of a granulate or in the form of pellets and consists of a carbide, nitride, silicide material or mixtures thereof, to which a washcoat, based on the ceramic material of the support, is the same or another ceramic material is applied.
  • All mixtures which comprise C2 to C5 olefins, in particular ethene, propene, 1-butene, 2-butene, 1-pentene or 2-pentene, as starting materials can be used as the first feed mixture.
  • the amount of olefins in the feed mixtures should understandably be high enough to be sufficient To operate hydroformylation reaction economically.
  • These include in particular technical mixtures from the petrochemical industry, such as raffinate streams (raffinate I, II or III) or raw butane.
  • raw butane comprises 5 to 40% by weight of butenes, preferably 20 to 40% by weight of butenes (the butenes are composed of 1 to 20% by weight of 1-butene and 80 to 99% by weight of 2 -Butene) and 60 to 95% by weight of butanes, preferably 60 to 80% by weight of butanes.
  • the reaction zone comprises at least one reactor in which the inventive
  • the reaction zone comprises a plurality of reactors which can be connected in parallel or in series.
  • the reactors are preferably connected in parallel and are used alternately.
  • At least one reactor (a) is used for the hydroformylation, so the reactor is in operation.
  • At least one further reactor (b) is on hold, with no hydroformylation being carried out there. This should be understood to mean that as soon as the reactor (a) in operation is no longer sufficient
  • Catalyst activity is determined, the flow of the feed mixture is switched from this reactor (a) to the next reactor (b) on hold and this reactor (b) is thus put into operation.
  • Reactor (a) is then transferred to a regeneration mode, where the catalyst system is regenerated as described below or the support is re-impregnated, and then transferred to the waiting position until the reactor is started up again.
  • This principle can also be applied to 3 or more reactors, where at least one reactor is in operation, one or more reactors are on hold at the same time and one or more reactors are in regeneration mode at the same time.
  • the hydroformylation is preferably carried out under the following conditions:
  • the temperature during the hydroformylation should be in the range from 65 to 200 ° C., preferably 75 to 175 ° C. and particularly preferably 85 to 150 ° C.
  • the pressure should not exceed 35 bar, preferably 30 bar, particularly preferably 25 bar during the hydroformylation.
  • the molar ratio between synthesis gas and the feed mixture should be between 6: 1 and 1: 1, preferably between 5: 1 and 3: 1.
  • the feed mixture can optionally be diluted with inert gas, for example with the alkanes present in technical hydrocarbon streams.
  • the catalyst system used in the hydroformylation process according to the invention preferably comprises a transition metal from the 8th or 9th group of the Periodic Table of the Elements, in particular iron, ruthenium, iridium, cobalt or rhodium, particularly preferably cobalt and rhodium, at least one organic phosphorus-containing ligand Stabilizer and optionally an ionic liquid.
  • the stabilizer is preferably an organic amine compound, particularly preferably an organic amine compound which contains at least one 2,2,6,6-tetramethylpiperidine unit of the formula (I):
  • the stabilizer is selected from the group consisting of the compounds of the following formulas (1.1), (I.2), (I.3), (I.4), (I.5) , (I.6), (I.7) and (I.8).
  • n is an integer from 1 to 20;
  • w Mob «eai n corresponds to an integer from 1 to 12;
  • n is an integer from 1 to 17;
  • R corresponds to a C6 to C20 alkyl group.
  • the optionally present ionic liquid in the sense of the present invention is an almost water-free (water content ⁇ 1.5% by weight based on the total ionic liquid) liquid, which is liquid at normal pressure (1,01325 bar) and preferably at 25 ° C.
  • the ionic liquid preferably consists of more than 98% by weight of ions.
  • the anion of the ionic liquid is selected from the group consisting of tetrafluoroborate [BF4] -; Hexafluorophosphate [PF6] -; Dicyanamide
  • the cation of the ionic liquid is preferably selected from the group consisting of quaternary ammonium cations of the general formula [NR 1 R 2 R 3 R 4 ] + where R 1 , R 2 , R 3 , R 4 are each independently a C1- Represent C8 alkyl group; Phosphonium cations of the general formula [PR 1 R 2 R 3 R 4 ] + where R 1 , R 2 , R 3 , R 4 each independently represent a C1-C8-alkyl group; Imidazolium cations of the general formula (II)
  • R 1 , R 2 , R 3 and R 4 each independently represent H or a C1 to C8 alkyl group, a C1 to C6 alkoxy group, an optionally substituted C1 to C6 aminoalkyl group or an optionally substituted C5 to C12 aryl group;
  • R 1 and R 2 each independently represent H or a C1 to C8 alkyl group, a C1 to C6 alkoxy group, an optionally substituted C1 to C6 aminoalkyl group or an optionally substituted C5 to C12 aryl group;
  • R 1 and R 2 each independently represent H or a C1 to C8 alkyl group, a C1 to C6 alkoxy group, an optionally substituted C1 to C6 aminoalkyl group or an optionally substituted C5 to C12 aryl group;
  • R 1 and R 2 and / or R 3 each independently represent H or a C1 to C8 alkyl group, a C1 to C6 alkoxy group, an optionally substituted C1 to C6 aminoalkyl group or an optionally substituted C5 to C12 aryl group.
  • the cation of the ionic liquid is an imidazolium cation according to the aforementioned general formula (II) with a corresponding definition of the radicals R 1 to R 4 .
  • the ionic liquid is selected from the group consisting of 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl -3-methylimidazolium bis (trifluoromethylsulfonyl) imide, 1-ethyl-3-methylimidazolium ethyl sulfate, trioctyl-methylammonium bis (trifluoromethylsulfonyl) imide and 1-butyl-3-methylimidazolium octyl sulfate.
  • the optionally present ionic liquid serves in the catalyst system according to the invention as a carrier solution for the transition metal catalyst with ligands and the stabilizer. It is important that the ionic liquid absorb the reactants (feed olefins and synthesis gas) to a sufficient extent, i. H. solve, and a comparatively low
  • Liquid reservoir is present.
  • the stabilizer can also form a stable liquid film in the pores of the support and is therefore able to replace the ionic liquid partially or completely.
  • the catalyst system contains no ionic liquid.
  • the gas solubility for the reactants should be better than the gas solubility of the Products. Partial separation of the starting material olefins used and the product aldehydes formed can be achieved in this way alone. In principle, other film-forming substances would also be conceivable for this, but care must be taken to ensure that there is no increased formation of high boilers and / or that the feed of the educt olefins is restricted.
  • the organic phosphorus-containing ligand for the catalyst system according to the invention preferably has the general formula (VI)
  • R '- A - R "- A - R"' (VI) where R ', R “and R”' are each organic radicals and both A are each a bridging -0-P (-0) 2 group, where two of the three oxygen atoms -O- are each bound to radical R 'and the radical R "', with the proviso that R 'and R"' are not identical.
  • the organic radicals R ', R “and R”' preferably do not contain a terminal trialkoxysilane group.
  • the substituted 1, 1 ' biphenyl groups in the 3,3 ' and / or 5.5 ' position of the 1, 1 ' biphenyl main body particularly preferably have an alkyl group and / or an alkoxy group, in particular a C1-C4-alkyl group, particularly preferably a tert-butyl and / or methyl group and / or preferably a C1-C5 alkox group, particularly preferably a methoxy group.
  • the aforementioned catalyst system is present heterogenized on a support made of a porous ceramic material.
  • the expression “heterogenized on a support” is to be understood in such a way that the catalyst system passes through
  • Carrier material is immobilized.
  • the film can also be solid at room temperature and at
  • the inner surface of the solid carrier material comprises in particular the inner surface of the pores.
  • immobilization encompasses both the case that the catalyst system and / or the catalytically active species are present in solution in the solid or liquid film, and the cases that the stabilizer acts as an adhesion promoter or that the catalyst system is adsorbed on the surface, but not chemically or is covalently bound on the surface.
  • the porous support material is preferably selected from the group consisting of a nitridic ceramic, a carbidic ceramic, a silicidic ceramic and mixtures thereof, for example carbonitridic materials.
  • the nitridic ceramic is preferably selected from silicon nitride, boron nitride, aluminum nitride and mixtures thereof.
  • the carbidic ceramic is preferably selected from silicon carbide, boron carbide, tungsten carbide or mixtures thereof. Mixtures of carbide and nitride ceramics, the so-called carbonitrides, are also conceivable.
  • the silicide ceramic is preferably molybdenum disilicide.
  • the support according to the present invention, to which the catalyst system is applied preferably consists of a carbide ceramic, particularly preferably of silicon carbide.
  • the support is preferably in the form of a powder, in the form of granules or in the form of pellets.
  • the average particle diameter (d50) of the support can be from 0.1 mm to 7 mm, preferably 0.3 to 6 mm, particularly preferably from 0.5 mm to 5 mm.
  • the mean particle diameter can be determined by means of imaging methods, in particular by means of the methods mentioned in the standards ISO 13322-1 (status: 2004-12-01) and ISO 13322-2 (status: 2006-11-01).
  • the support can be produced in the form of a powder, in the form of granules or in the form of pellets by methods known to the person skilled in the art. For example, it could be done by mechanically comminuting a monolith made of the carbide, nitride, silicide material or mixtures thereof, for example with a jaw crusher, and the particle size of the obtained one
  • Fracture granulate is adjusted by means of sieving.
  • the support are the particles of the powder, the granulate or the
  • Pellet particles made of porous ceramic material, so the support has pores.
  • the catalyst system according to the invention is in particular also in the solid or liquid film in these pores.
  • the pore diameter is preferably in the range from 0.9 nm to 30 ⁇ m, preferably in the range from 10 nm to 25 ⁇ m and particularly preferably in the range from 70 nm to 20 ⁇ m.
  • the pore diameter can be determined by means of nitrogen adsorption or mercury porosimetry according to DIN 66133 (status: 1993-06).
  • the support has at least partially continuous pores that extend from one surface to another surface. It is also possible for a number of pores to be connected to one another and thus to form a single continuous pore.
  • the catalyst system is heterogenized, as described below:
  • a so-called washcoat is applied to the powder, granulate or pellet-shaped support made of the ceramic material, which, based on the ceramic material of the support, is preferably made of the same or a different ceramic material Silicon oxide.
  • the washcoat itself can be porous or non-porous, preferably the washcoat is non-porous.
  • the particle size of the washcoat is preferably 5 nm to 3 nm, preferably 7 nm to 700 nm.
  • the washcoat is used to introduce or generate the desired pore size and / or to increase the surface of the support.
  • the washcoat can be applied, in particular, by dipping (dipcoating) into a washcoat solution, which
  • Ceramic material of the washcoat possibly also as a precursor, contains.
  • the amount of washcoat on the support is ⁇ 20% by weight, preferably ⁇ 15% by weight, particularly preferably ⁇ 10% by weight, based on the total amount of support.
  • a catalyst solution is first prepared by mixing, in particular at room temperature and ambient pressure, the catalyst solution comprising at least one organic phosphorus-containing ligand, at least one metal precursor, for example chlorides, oxides, carboxylates of the respective metal, at least one stabilizer and at least one solvent includes.
  • An ionic liquid can optionally be used in the production of the catalyst system, but the catalyst solution can also be prepared explicitly without an ionic liquid.
  • the catalyst solution should in particular be prepared in an inert environment, for example in a glove box. In this case, an inert environment means an atmosphere that is as free of water and oxygen as possible.
  • the solvent can be selected from all solvent classes (protic, aprotic, polar or non-polar).
  • a prerequisite for the solvent is the solubility of the catalyst system (ligand, metal precursor, stabilizer and optionally the ionic liquid) and preferably also the high boilers formed during the hydroformylation.
  • the solubility can be within the
  • Immobilization step can be increased by heating.
  • the solvent is preferably aprotic, polar, such as. B. acetonitrile and ethyl acetate or else aprotic, non-polar such as. B. THF and diethyl ether.
  • Chlorinated hydrocarbons such as B. dichloromethane can be used as a solvent.
  • the catalyst solution prepared in this way is then brought into contact with the support (optionally including washcoat), for example by immersion (dip coating) or by filling a pressure vessel, for example directly in the reactor (in-situ impregnation). If the catalyst solution is applied outside the reactor, the support must be removed after the
  • Solvent are of course reinstalled in the reactor. The is preferred
  • the reactor is flushed with an inert gas, for example noble gases, alkanes or nitrogen, before filling.
  • the flushing can be carried out at 1 to 25 bar, preferably under a slight excess pressure of 20 to 90 mbar, particularly preferably 30 to 60 mbar above normal pressure.
  • the reactor can be cooled with inert gas before purging to prevent the solvent of the catalyst solution to be filled from evaporating immediately. However, if the solvent has a boiling temperature that is higher than the temperature of the reactor, cooling of the reactor can be omitted.
  • the existing pressure can be, for example, via the
  • Pressure control be drained, preferably until the reactor is depressurized, that is
  • Ambient pressure approximately 1 bar
  • a vacuum can also be generated in the reactor, for example with a vacuum pump.
  • the reactor can be flushed again with an inert gas, as described above, after the pressure has been released or after the vacuum has been drawn. This process of releasing pressure / drawing vacuum and rinsing again can be repeated as often as required.
  • the catalyst solution is placed in a pressure vessel for filling the reactor and is preferably subjected to an inert gas pressure of 1 to 25 bar, particularly preferably a slight inert gas pressure of 20 to 90 mbar, preferably 30 to 60 mbar above the reactor pressure.
  • the inert gas can be an inert gas, an alkane, for example butane, or nitrogen.
  • the catalyst solution is then filled into the reactor, in particular pressure-driven, with the above-mentioned pressure which is applied to the pressure vessel.
  • the pressure vessel should be higher when filling than in the reactor. Temperatures in the range from 20 to 150 ° C. and a pressure from 1 to 25 bar can be present. Another possibility for filling is that the reactor is kept in a vacuum after flushing with inert gas and the catalyst solution is drawn into the reactor by the suppressor. For the preparation of the catalyst solution, a solvent should be used which boils under the prevailing vacuum or negative pressure and the prevailing temperatures.
  • the reactor solution can be filled with the catalyst solution via the normal inputs and outputs. Liquid distributors or nozzles within the reactor can ensure a uniform distribution of the catalyst liquid, as can optionally present ones
  • the solvent is separated off.
  • the remaining catalyst solution is first drained through the outlet of the reactor.
  • solvent residues remaining in the reactor are evaporated by adjusting the pressure or increasing the temperature.
  • the pressure can also be set by simultaneously increasing the temperature.
  • the temperature can be 20 to 150 ° C depending on the solvent.
  • the pressure can be set to a high vacuum (10 3 to 10 7 mbar), but depending on the solvent and temperature, overpressures from a few mbar to several bar are also conceivable.
  • the stabilizer and the optional ionic liquid remain heterogenized on the support with the catalyst made of the transition metal, in particular cobalt or rhodium, and the organic phosphorus-containing ligand.
  • the catalyst system can be applied to the support either directly in the reactor (in situ) or outside the reactor. Another problem is that the support must always be transported with the air sealed off, which is difficult to implement when installing and removing. In a preferred embodiment of the present invention, the application of the catalyst system is therefore applied directly in the reactor, that is to say in situ. After removing the
  • the reactor can be used immediately and charged with the feed mixture. This has the advantage that no time-consuming installation and removal steps are necessary, which would result in a longer failure of the reactor.
  • the size of the support is no longer limited by the fact that there are suitable rooms with inert environments of a certain size. The size of the support can be freely selected depending on the reactor design.
  • the aim of the start-up procedure is a gentle activation of the catalyst system and a cushioning of the maximum starting activity of the catalyst to extend the life of the catalyst system.
  • the start-up procedure is intended to prevent the formation of a liquid phase, since this can lead to deactivation, blocking and or washing out of the catalyst system. Especially when starting up a freshly made one
  • Catalyst system (on the support) with concentrated educt can namely
  • the activation of the catalyst system is preferably carried out according to the invention with a sales increase that is prolonged over time. So for any combination of pressure,
  • Aldehyde concentration can be determined, ie the start-up procedure depends on the maximum conversion of the olefins used. With known long-term operating conditions of the reactor, which allow a reliable degree of conversion of the feed olefins from 20 to 95%, preferably from 80% to 95%, the
  • Start-up procedure can be implemented in such a way that the composition of the feed mixture which is fed into the reactor is changed in stages without the maximum conversion of the feed olefins being exceeded.
  • composition of the feed mixture which ensures reliable conversion of the olefins under long-term operating conditions, can be varied so that it remains constant
  • volume flow of the olefin and / or the synthesis gas portion in at least two, preferably more than three stages, in particular four or more stages, is raised without the maximum conversion of the feed olefins being exceeded.
  • Synthesis gas mixtures can do this in the first stage (s) inert gases such as N2, argon, helium or the like is supplied.
  • inert gases such as N2, argon, helium or the like is supplied.
  • the activity of the catalyst can decrease, for example due to the accumulation of high boilers and / or the occupation or deactivation of active centers.
  • the high boilers can lead to increased condensation in the pores, so that the pores are no longer accessible or more slowly for the educt olefins.
  • some by-products can lead to decomposition of the catalyst system, which also reduces the activity of the catalyst.
  • a decrease in the catalyst activity can be determined, for example, on the basis of a drop in sales or selectivities, in particular by means of appropriate analysis using Raman spectroscopy, gas chromatography or mass flow meter (MDM). Model-based monitoring of the catalyst activity would also be possible. This would be a method of monitoring the
  • the catalyst system which is heterogenized on the porous ceramic support can be replaced.
  • the reactor or the support in the reactor can be rinsed once or several times with a solvent.
  • the catalyst system can be demobilized and removed by rinsing.
  • the solvent can be one of the solvents mentioned for the preparation of the catalyst solution.
  • the temperature when rinsing with solvent can be 20 to 150 ° C.
  • the pressure can also be 1 to 25 bar when flushing with solvent.
  • the support After rinsing, the support is impregnated once or several times, in particular with the previously described in-situ impregnation of the support.
  • the in-situ impregnation is thus renewed and the heterogeneous catalyst system is freshly applied.
  • the re-in-situ impregnation can be carried out under exactly the same conditions as described for the first in-situ impregnation Due to the fact that the catalyst system is completely replaced by rinsing and reapplying, these steps can be repeated as soon as the activity of the catalyst drops again.
  • Another advantage is that high boilers and product aldehydes as well as decomposition products of the catalyst system can be removed. However, care should be taken to ensure that the properties of the support by
  • Catalyst system is heterogenized, is exchanged.
  • the catalyst system which is heterogenized on the support (removed from the reactor), can then be exchanged outside the reactor as described above and stored in the reactor until the next installation and use.
  • an inert environment is required when applying the catalyst system, which is why the handling and storage of the above
  • a gaseous effluent is preferably withdrawn continuously, which contains at least part of the product aldehydes formed and at least part of the unreacted olefins.
  • the gaseous discharge can be subjected to one or more material separation step (s) in which the gaseous discharge is separated into at least one phase which is unreacted in olefins and at least one phase which is rich in product aldehyde.
  • the material separation can be carried out using known material separation processes, such as condensation, distillation, centrifugation, nanofiltration or a combination of several thereof, preferably condensation or distillation.
  • material separation processes such as condensation, distillation, centrifugation, nanofiltration or a combination of several thereof, preferably condensation or distillation.
  • the one formed during the first separation can be carried out using known material separation processes, such as condensation, distillation, centrifugation, nanofiltration or a combination of several thereof, preferably condensation or distillation.
  • Product aldehyde-rich phase are fed to a second material separation, in particular a subsequent aldehyde separation, in which the product aldehyde is separated from the other substances in this phase, often alkanes and educt olefins.
  • the unreacted olefin-rich phase can be returned to the hydroformylation step or, in the case of a multi-stage configuration, to one of the hydroformylation steps in order to hydroformylate the olefins contained therein to the product aldehyde.
  • a purge gas stream which has a composition which is at least similar or identical to that of the unreacted olefin phase can also be removed during the material separation.
  • the purge gas stream can also be passed to the second material separation or aldehyde separation in order to separate the product aldehydes contained therein and to remove impurities (e.g. nitrogen in the synthesis gas) or inert substances (e.g. alkanes in the feed mixture) from the system.
  • impurities or inert substances can usually be removed in the second separation as volatile substances, for example at the top of a column.
  • Another object of the present invention is also a plant with which the present method can be carried out and which in particular comprises a reactor in which the hydroformylation step according to the invention is carried out.
  • the system can comprise a material separation unit with which the gaseous discharge of the
  • Hydroformylation step is separated into at least one phase unreacted olefin and at least one phase rich in product aldehyde, this separation unit being arranged after the hydroformylation according to the invention.
  • a second material separation unit in particular one, can be located downstream of the first material separation
  • Aldehyde separation unit with which the product aldehyde is separated.
  • Experiment 1 Production and Investigation of a Catalyst System According to the Invention
  • a monolith made of silicon carbide with a length of approximately 20 cm and a diameter of approximately 25 mm was used as the starting material for the support.
  • This monolith was crushed with a jaw crusher with a roller gap of 2 mm.
  • the crushed support was then pretreated to a target grain of 2 to 3.15 mm with a washcoat (S1O2).
  • S1O2 washcoat
  • the granules produced in this way were then introduced into a 20 cm long round reactor sleeve with a diameter of one inch (approx. 2.54 cm), glass beads of a similar size being introduced above and below the granules.
  • the granulate was then with a
  • Catalyst solution containing Rh (acac) (CO) 2, bisphephos (ligand), bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate (stabilizer) and dichloromethane as solvent and prepared by mixing in an inert environment ( Glovebox).
  • Rh (acac) (CO) 2 bisphephos (ligand), bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate (stabilizer) and dichloromethane
  • Glovebox inert environment
  • a hydrocarbon stream with the following composition was used as the feed mixture:
  • the hydroformylation was carried out at a temperature of 120 ° C. and a pressure of 10 bar.
  • the total conversion of butenes (ie the conversion of all butenes in the feed mixture) and the n / iso selectivity (ratio of linear to branched products) was determined by gas chromatography using the product composition.
  • the catalyst system was prepared analogously to the preparation of the catalytically active composition Rh (II) in WO 2015/028284 A1.
  • a hydrocarbon stream with the following composition was used as the feed mixture:
  • the hydroformylation was carried out at a temperature of 120 ° C. and a pressure of 10 bar.
  • the total conversion of butenes i.e. the conversion of all butenes in the feed mixture
  • the n / iso selectivity ratio of linear to branched products
  • the heterogeneous catalyst systems according to the invention have the advantage over the known SILP systems that higher conversions and higher linearity of the products (n / iso selectivity) can be achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

L'invention concerne un procédé permettant l'hydroformylation d'oléfines à chaîne courte, en particulier d'oléfines C2 à C5, le système catalyseur étant présent à l'état hétérogénisé sur un support en matériau céramique poreux, ainsi que des installations permettant la mise en oeuvre dudit procédé.
EP19773873.5A 2018-10-05 2019-09-30 Procédé d'hydroformylation d'oléfines à chaîne courte en phase gazeuse Pending EP3860969A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18198794 2018-10-05
PCT/EP2019/076413 WO2020070052A1 (fr) 2018-10-05 2019-09-30 Procédé d'hydroformylation d'oléfines à chaîne courte en phase gazeuse

Publications (1)

Publication Number Publication Date
EP3860969A1 true EP3860969A1 (fr) 2021-08-11

Family

ID=63787783

Family Applications (2)

Application Number Title Priority Date Filing Date
EP19200448.9A Active EP3632887B1 (fr) 2018-10-05 2019-09-30 Procédé de démarrage d'un réacteur d'hydroformylation
EP19773873.5A Pending EP3860969A1 (fr) 2018-10-05 2019-09-30 Procédé d'hydroformylation d'oléfines à chaîne courte en phase gazeuse

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP19200448.9A Active EP3632887B1 (fr) 2018-10-05 2019-09-30 Procédé de démarrage d'un réacteur d'hydroformylation

Country Status (6)

Country Link
US (1) US11384042B2 (fr)
EP (2) EP3632887B1 (fr)
KR (1) KR20210071041A (fr)
CN (1) CN112888671B (fr)
SG (1) SG11202103356UA (fr)
WO (1) WO2020070052A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4091712B1 (fr) 2021-05-18 2024-05-15 Evonik Oxeno GmbH & Co. KG Procédé de régénération d'un catalyseur pour l'hydroformylation d'oléfines en phase gazeuse
WO2024017514A1 (fr) 2022-07-19 2024-01-25 Evonik Oxeno Gmbh & Co. Kg Procédé de préparation par hydroformylation d'oléfines à chaîne courte en phase gazeuse
WO2024017513A1 (fr) 2022-07-19 2024-01-25 Evonik Oxeno Gmbh & Co. Kg Procédé de préparation par hydroformylation d'oléfines à chaîne courte en phase gazeuse

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE758802A (fr) * 1969-11-14 1971-04-16 Johnson Matthey & Cy Ltd
DE102013217166A1 (de) * 2013-08-28 2015-03-05 Evonik Industries Ag Verfahren zur Hydroformylierung von ungesättigten Verbindungen durch SILP-Katalyse
EP3744707B1 (fr) 2018-10-05 2024-01-10 Evonik Oxeno GmbH & Co. KG Procédé d'hydroformylation d'oléfines à chaîne courte dans le flux de recyclage d'une phase liquide de l'hydroformylation
US10654784B2 (en) 2018-10-05 2020-05-19 Evonik Operations Gmbh Process for hydroformylating short-chain olefins in the gas phase
EP3736258B8 (fr) 2018-10-05 2023-12-06 Evonik Oxeno GmbH & Co. KG Procédé d'hydroformylation d'oléfines à chaîne courte dans les flux de gaz d'échappement riches en alcanes
US10647650B2 (en) 2018-10-05 2020-05-12 Evonik Operations Gmbh Process for hydroformylating short-chain olefins using a heterogenized catalyst system without ionic liquid
EP3632888B1 (fr) 2018-10-05 2021-04-14 Evonik Operations GmbH Procédé de fabrication sur place d'un système de catalyseur d'hydroformylation se trouvant hétérogénisé sur un support
ES2934872T3 (es) 2018-10-05 2023-02-27 Evonik Operations Gmbh Procedimiento para la hidroformilación de olefinas C2 a C5 sin separación de sustancias intermedia

Also Published As

Publication number Publication date
CN112888671A (zh) 2021-06-01
WO2020070052A1 (fr) 2020-04-09
KR20210071041A (ko) 2021-06-15
SG11202103356UA (en) 2021-05-28
US20210340091A1 (en) 2021-11-04
CN112888671B (zh) 2023-12-12
EP3632887A1 (fr) 2020-04-08
US11384042B2 (en) 2022-07-12
EP3632887B1 (fr) 2021-04-14

Similar Documents

Publication Publication Date Title
EP3632885A1 (fr) Procédé d'hydroformylation d'oléfines à chaîne courte en phase gazeuse
EP3632886B1 (fr) Procédé d'hydroformylation d'oléfines à chaîne courte à l'aide d'un système catalytique hétérogénéisé sans liquide ionique
EP3736258B1 (fr) Procédé d'hydroformylation d'oléfines à chaîne courte dans les flux de gaz d'échappement riches en alcanes
EP3744707B1 (fr) Procédé d'hydroformylation d'oléfines à chaîne courte dans le flux de recyclage d'une phase liquide de l'hydroformylation
EP3038752B1 (fr) Catalyseur et procédé d'hydroformylation de composés insaturés par catalyse silp
WO2020070052A1 (fr) Procédé d'hydroformylation d'oléfines à chaîne courte en phase gazeuse
DE102010041821A1 (de) Einsatz von Supported Ionic Liquid Phase (SILP) Katalysatorsystemen in der Hydroformylierung von olefinhaltigen Gemischen zu Aldehydgemischen mit hohem Anteil von in 2-Stellung unverzweigten Aldehyden
EP3027298B1 (fr) Cascade de membranes à température de séparation descendante
EP3632889B1 (fr) Procédé d'hydroformylation d'oléfines en c2 à c5 sans séparation des substances intermédiaires
EP3750866A1 (fr) Procédé de fabrication d'un alcool à partir des hydrocarbures
EP3632888B1 (fr) Procédé de fabrication sur place d'un système de catalyseur d'hydroformylation se trouvant hétérogénisé sur un support
EP3750620A1 (fr) Procédé de fabrication d'un ester par alcoxycarbonylation
DE102014207246A1 (de) Immobilisierte katalytisch aktive Zusammensetzung zur Hydroformylierung von olefinhaltigen Gemischen
EP3114105B1 (fr) Procédé de préparation d'aldéhydes à partir d'alcanes et de gaz de synthèse
DE102009017498A1 (de) Verwendung einer Katalysatorzusammensetzung zur Olefinmetathese in der Gasphase und Verfahren zur Olefinmetathese in der Gasphase
EP3068533A1 (fr) Composition catalytiquement active immobilisée avec des ligands phosphorés tridentés dans un liquide ionique pour l'hydroformylation de mélanges contenant des oléfines
EP4091712B1 (fr) Procédé de régénération d'un catalyseur pour l'hydroformylation d'oléfines en phase gazeuse
WO2024017513A1 (fr) Procédé de préparation par hydroformylation d'oléfines à chaîne courte en phase gazeuse
WO2024017514A1 (fr) Procédé de préparation par hydroformylation d'oléfines à chaîne courte en phase gazeuse
DE102014209114A1 (de) Verfahren zur Herstellung von Wasserstoffperoxid
EP2985261B1 (fr) Hydroformylation catalysé SILP avec CO2
EP3549996A1 (fr) Procédé de production des oléfines par synthèse fischer-tropsch
EP2986376A1 (fr) Composition catalytiquement active immobilisée, pour l'hydroformylation de mélanges contenant des oléfines

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210324

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVONIK OXENO GMBH & CO. KG