EP3856698A1 - Procede pour la realisation d'une piece creuse en materiau composite a matrice ceramique - Google Patents

Procede pour la realisation d'une piece creuse en materiau composite a matrice ceramique

Info

Publication number
EP3856698A1
EP3856698A1 EP18792425.3A EP18792425A EP3856698A1 EP 3856698 A1 EP3856698 A1 EP 3856698A1 EP 18792425 A EP18792425 A EP 18792425A EP 3856698 A1 EP3856698 A1 EP 3856698A1
Authority
EP
European Patent Office
Prior art keywords
preform
core
heating
hollow
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18792425.3A
Other languages
German (de)
English (en)
Inventor
Matthieu Arnaud GIMAT
Rémy DUPONT
Maxime François Roger CARLIN
Eric Philippe
Benjamin LACOMBE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Ceramics SA
Original Assignee
Safran Ceramics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Ceramics SA filed Critical Safran Ceramics SA
Publication of EP3856698A1 publication Critical patent/EP3856698A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62865Nitrides
    • C04B35/62868Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62894Coating the powders or the macroscopic reinforcing agents with more than one coating layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/421Boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • C04B2235/5256Two-dimensional, e.g. woven structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6028Shaping around a core which is removed later
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/612Machining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • F05D2300/6033Ceramic matrix composites [CMC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a method for producing a hollow part made of ceramic matrix or CMC composite material.
  • a field of application of the invention is the manufacture of structural parts used in hot parts of a turbomachine, for example parts of turbine, rear body or secondary nozzles of the turbomachine. More specifically, the invention can be used for producing dispensers or hollow turbine blades.
  • a turbine stage consists of a fixed blade or distributor belonging to a stator, followed by a mobile blade belonging to a rotor.
  • the first distributor stages are generally hollow in order to convey air radially from the outside to the inside of the turbine, so as to feed the hub with air to ensure the pressurization and purging and its possible cooling . Part of this air may be intended for cooling the dispenser.
  • the blades may also be hollow in order to be traversed by cooling air.
  • the use of hollow parts also reduces the mass of the turbomachine.
  • a method for producing hollow parts in CMC is known from US 2014/0048978. This method comprises the steps of:
  • the first disadvantage is related to the fact that the core and the mold (or shaper) are made of different materials. Indeed, the core, made of silicon, has a thermal expansion different from the mold, made of carbon or metal, which can induce a variability of the finished part. Compensation is thus necessary to ensure the right fiber content and the good sizing of the part.
  • the second disadvantage is related to having to correctly size the volume of the silicon core so that the whole of the porous preform is infiltrated by the silicon of the core.
  • drainage means are provided to evacuate this excess out of the cavity.
  • a crucible must be provided to bring into the cavity of the complementary silicon. This makes the infiltration step of the preform more complex.
  • the invention aims to overcome these disadvantages by providing a simple alternative, effective and inexpensive.
  • the invention proposes a method for producing a hollow part made of ceramic matrix composite material comprising the steps of:
  • the core can be easily removed, without risk of degradation of the preform. Indeed, the latter having been consolidated before removal of the core, said preform retains its size and shape after removal of the core.
  • oxidation is meant the chemical reaction of the nucleus with an oxidizing agent or oxidation agent transforming it into an oxide. Furthermore, the removal of the core by oxidation can easily be achieved within the current range of CMC parts manufacturing, without requiring significant adaptations of the manufacturing process.
  • the core can be pierced through or can be perforated.
  • the step of extracting the ring by oxidation may comprise the substeps consisting of:
  • Said heating can be carried out in the presence of a catalyst, such as for example potassium acetate.
  • Said heating can be carried out at a temperature between 400 ° C and 800 ° C.
  • Said heating may comprise:
  • the first and second heating cycles may vary depending on the volume of the core and the section of the core which is in direct contact with the air.
  • a mechanical removal operation of the core for example a scraping operation, can be performed after each heating cycle.
  • the oxidizable core may be made of carbon, graphite or other material derived from carbon.
  • Such materials are particularly resistant to the consolidation step.
  • the hollow fiber preform can be made by draping or assembling fibrous textures around the core, or by weaving a preform having a hollow zone for insertion of the core.
  • Said consolidation of the preform may comprise the substeps consisting of:
  • Said consolidation of the son may comprise the substeps consisting of:
  • the hollow preform can then be shaped, a core of oxidizable material being housed or inserted into the preform.
  • the hollow fiber preform can then be woven with these consolidated yarns or can then result from the assembly around an oxidizable core of one-dimensional fabrics made from these consolidated yarns.
  • the step of extraction of the nucleus by oxidation may be followed by a step of densification of the preform consisting at least in part of:
  • a metal powder for example a silicon powder
  • molten metal for example molten silicon
  • the step of extracting the nucleus by oxidation may be followed by the steps of:
  • FIG. 1 is a diagram illustrating the various successive steps of the method according to the invention.
  • FIG. 2 is a schematic view of the preform in which is inserted the core
  • FIG. 3 is a schematic view of the preform after removal of the core by oxidation.
  • FIG. 1 shows schematically the various steps of a method of producing a hollow part made of ceramic matrix composite material (CMC) according to one embodiment of the invention.
  • CMC ceramic matrix composite material
  • This method comprises a first step E1 in which a hollow fiber preform is shaped, a core of oxidizable material being housed or inserted into the preform.
  • the core is for example made of carbon, graphite or other material derived from carbon.
  • the fibrous preform intended to form the fibrous reinforcement of the part according to the invention can be obtained by multilayer weaving between a plurality of layers of warp threads and a plurality of weft layers.
  • the multilayer weave produced can be in particular an "interlock" weave weave, that is to say a weave weave in which each layer of weft yarn binds several layers of warp yarns with all the yarns of a weave. same column of weft having the same movement in the plane of the armor.
  • the weaving can be performed with warp son extending in the longitudinal direction of the preform, being noted that weaving with weft yarns in this direction is also possible. .
  • the son used may be silicon carbide (SiC) son provided under the name "Nicalon”, “Hi-Nicalon” or “Hi-Nicalon-S” by the Japanese company Nippon Carbon or “Tyranno SA3" by the company UBE and having a titre (number of filaments) of 0.5K (500 filaments).
  • SiC silicon carbide
  • the fibrous reinforcement of the piece according to the invention can also be formed from a fibrous preform obtained by assembling two fibrous textures.
  • the two fibrous textures may be bonded together, for example by sewing or needling, or simply juxtaposed.
  • the two fibrous textures can in particular be each obtained from a layer or a stack of several layers of:
  • unidirectional sheet of son or cables or multidirectional layers obtained by superimposition of several unidirectional sheets in different directions and by unidirectional webs connection between them, for example by sewing, by chemical bonding agent or by needling.
  • the fibrous reinforcement of the piece according to the invention can also be formed by draping unidirectional folds, fabrics or bands, around the core.
  • the hollow zone in the preform is made directly by constructing the preform around the core.
  • step E2 The assembly comprising the preform and the core inserted in the hollow zone of the preform is then placed in a conformation tool (step E2) so as to maintain the preform in a shape close to that of the part to be manufactured.
  • a boron nitride (BN) interphase coating is then formed by chemical vapor infiltration or CVI ("Chemical Vapor Infiltration" - step E3), the preform remaining in the desired shape by means of the conformation tooling, said tool being placed in an oven.
  • the tool may be made of graphite and may have holes for the passage of the gas phase.
  • This gaseous phase can comprise boron trichloride BCb, ammonia NH3 and hydrogen gas H2.
  • a ceramic matrix layer is formed by CVI on the BN interphase for consolidation of the preform (Step E4), that is to say to bind the fibers of the preform sufficiently between them so that the preform can retain its shape without the assistance of the conformation tooling.
  • This matrix layer is for example made of silicon carbide SiC.
  • steps E3 and E4 the preform and the core are subjected to a temperature of between 700 and 1100 ° C.
  • the core 2 (visible in dashed lines in Figure 2) and the preform 1 are then removed from the conformation mold and are placed in an oven under an oxidizing atmosphere, that is to say in the presence of a catalyst , such as for example potassium acetate, to carry out the extraction of the nucleus by oxidation (E5).
  • oxidation is meant the reaction of a body with oxygen, giving an oxide.
  • the core is thus removed by means of a chemical reaction transforming it into oxide.
  • the core and the preform undergo a first heating cycle in which the temperature in the oven is maintained between 400 ° C and 800 ° C, for example of the order of 600 ° C, for a period of between 20 and 30 hours, for example from the order of 25 hours.
  • Part of the core is then removed by mechanical action, for example by scraping. At the end of the first cycle of heating and scraping, between 30 and 50% of the mass of the core can be removed.
  • the core and the preform then undergo a second heating cycle in which the temperature in the oven is maintained between 400 ° C and 800 ° C, for example of the order of 600 ° C, for a period of between 10 and 15 hours, for example of the order of 12 hours.
  • the remainder of the core is then removed by mechanical action, for example by scraping.
  • a preform 1 having a hollow zone 3 is obtained, said hollow zone 3 being illustrated in dashed lines in FIG.
  • a ceramic matrix is then formed in the preform by impregnating said preform with a slip containing one or more carbon or ceramic powders, for example SiC, Si 3 N 4 , C, B and their mixtures, in aqueous suspension, or SC ("Slurry Casting" - step E6).
  • This densification step is performed in a mold at room temperature.
  • the preform is then removed from the mold and dried, and the formation of the ceramic matrix is continued in an oven by infiltration with molten silicon or a molten alloy containing predominantly silicon, or Ml (“Melt Infiltration" - step E7).
  • the constituent (s) present within said molten silicon alloy may be chosen from B, Al, Mo, Ti, and mixtures thereof.
  • This densification step is carried out at a temperature of, for example, between 1400 ° C. and 1450 ° C.
  • step E7 The piece from step E7 is then removed from the oven and functional surfaces are optionally machined (step E8), for example by milling.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Moulds, Cores, Or Mandrels (AREA)

Abstract

L'invention concerne un procédé pour la réalisation d'une pièce creuse en matériau composite à matrice céramique comprenant les étapes consistant à : -mettre en forme une préforme fibreuse creuse, un noyau en matériau oxydable étant logé ou inséré dans la préforme (E1); -consolider ladite préforme (E3, E4); et -extraire le noyau par oxydation dudit noyau (E5).

Description

PROCEDE POUR LA REALISATION D'UNE PIECE CREUSE EN MATERIAU COMPOSITE A MATRICE CERAMIQUE
DOMAINE
[001] La présente invention concerne un procédé pour la réalisation d'une pièce creuse en matériau composite à matrice céramique ou CMC.
[002] Un domaine d'application de l'invention est la fabrication de pièces structurales utilisées dans des parties chaudes d'une turbomachine, par exemple des pièces de turbine, d'arrière-corps ou de tuyères secondaires de la turbomachine. Plus précisément, l'invention peut être utilisée pour la réalisation de distributeurs ou d'aubes creuses de turbine.
CONTEXTE
[003] Un étage de turbine est constitué d'un aubage fixe ou distributeur appartenant à un stator, suivi d'un aubage mobile appartenant à un rotor. Les premiers étages de distributeur sont généralement creux afin d'acheminer de l'air radialement de l'extérieur vers l'intérieur de la turbine, de façon à alimenter le moyeu en air pour en assurer la pressurisation et la purge ainsi que son éventuel refroidissement. Une partie de cet air peut être destiné au refroidissement du distributeur.
[004] Par ailleurs, les aubes mobiles peuvent également être creuses afin de pouvoir être traversées par de l'air de refroidissement. L'utilisation de pièces creuses permet également de réduire la masse de la turbomachine.
[005] Un procédé de réalisation de pièces creuses en CMC est notamment connu du document US 2014/0048978. Ce procédé comporte les étapes consistant à :
- placer un noyau en silicium dans une zone creuse d'une préforme poreuse, - chauffer le noyau et la préforme de manière à faire fondre le noyau, le silicium dudit noyau venant infiltrer la préforme poreuse de manière à la consolider.
[006] Un tel procédé présente deux principaux inconvénients.
[007] Le premier inconvénient est lié au fait que le noyau et le moule (ou conformateur) soient fabriqués avec des matériaux différents. En effet, le noyau, réalisé en silicium, présente une dilatation thermique différente du moule, réalisé en carbone ou en métal, qui peut induire une variabilité de la pièce finie. Une compensation est ainsi nécessaire pour assurer le bon taux de fibre et le bon dimensionnement de la pièce.
[008] Le deuxième inconvénient est lié au fait de devoir dimensionner correctement le volume du noyau de silicium pour que l'ensemble de la préforme poreuse soit infiltré par le silicium du noyau. En général, si le silicium du noyau est en excès, des moyens de drainage sont prévus pour évacuer cet excès hors de la cavité. De manière analogue, si la quantité de silicium du noyau n'est pas suffisante pour infiltrer l'ensemble de la préforme poreuse, un creuset doit être prévu pour apporter dans la cavité du silicium complémentaire. Cela rend de fait l'étape d'infiltration de la préforme plus complexe. RESUME DE L'INVENTION
[009] L'invention vise à remédier à ces inconvénients en proposant une alternative simple, efficace et peu onéreuse.
[010] A cet effet, l'invention propose un procédé pour la réalisation d'une pièce creuse en matériau composite à matrice céramique comprenant les étapes consistant à :
- mettre en forme une préforme fibreuse creuse, un noyau en matériau oxydable étant logé ou inséré dans la préforme ;
- consolider ladite préforme ; et
- extraire le noyau par oxydation dudit noyau. [011] De cette manière, le noyau peut être retiré aisément, sans risque de dégradation de la préforme. En effet, cette dernière ayant été consolidée avant retrait du noyau, ladite préforme conserve ses dimensions et sa forme après retrait du noyau.
[012] Par oxydation, on entend la réaction chimique du noyau avec un oxydant ou agent d'oxydation le transformant en un oxyde. Par ailleurs, le retrait du noyau par oxydation peut aisément être réalisé dans le cadre de la gamme actuelle de fabrication des pièces en CMC, sans nécessiter d'adaptations importantes du procédé de fabrication.
[013] Pour faciliter son retrait, le noyau peut être percé de part en part ou peut être ajouré.
[014] L'étape d'extraction du noyau par oxydation peut comprendre les sous-étapes consistant à :
- chauffer la préforme dans laquelle est inséré le noyau, dans un four sous atmosphère oxydante ;
- retirer mécaniquement le noyau oxydé, par exemple par grattage.
[015] Ledit chauffage peut être réalisé en présence d'un catalyseur, tel par exemple que de l'acétate de potassium.
[016] La présence d'un catalyseur permet de réduire la durée de l'étape de chauffage et de faciliter le retrait du noyau.
[017] Ledit chauffage peut être réalisé à une température comprise entre 400°C et 800°C.
[018] Ledit chauffage peut comprendre :
- un premier cycle de chauffage d'une durée comprise entre 20h et 30h ;
- un second cycle de chauffage d'une durée comprise entre 10h et 15h.
[019] De manière générale, les premier et second cycles de chauffage peuvent varier selon le volume du noyau ainsi que la section du noyau qui est en contact direct avec l'air.
[020] Une opération mécanique de retrait du noyau, par exemple une opération de grattage, peut être réalisée après chaque cycle de chauffage. [021] Le noyau oxydable peut être réalisé en carbone, graphite ou autre matériau dérivé du carbone.
[022] De tels matériaux résistent notamment à l'étape de consolidation.
[023] La préforme fibreuse creuse peut être réalisée par drapage ou assemblage de textures fibreuses autour du noyau, ou par tissage d'une préforme comportant une zone creuse destinée à l'insertion du noyau.
[024] Ladite consolidation de la préforme peut comporter les sous-étapes consistant à :
- créer au moins une interphase, par exemple de nitrure de bore, sur les fibres de la préforme fibreuse par infiltration chimique en phase gazeuse ;
- créer au moins une couche de matrice céramique, par exemple de carbure de silicium, sur l'interphase par infiltration chimique en phase gazeuse.
[025] Il est également possible de réaliser la consolidation des fils servant au tissage de la préforme fibreuse creuse ou à la fabrication des textures fibreuses, par exemple des tissus unidimensionnels, assemblées ou drapées autour du noyau pour réaliser la préforme fibreuse creuse.
[026] Ladite consolidation des fils peut comporter les sous-étapes consistant à :
- créer au moins une interphase, par exemple de nitrure de bore, sur les fils par infiltration chimique en phase gazeuse ;
- créer au moins une couche de matrice céramique, par exemple de carbure de silicium, sur l'interphase par infiltration chimique en phase gazeuse.
[027] La préforme creuse peut alors être mise en forme, un noyau en matériau oxydable étant logé ou inséré dans la préforme. La préforme fibreuse creuse peut alors être tissée avec ces fils consolidés ou peut alors résulter de l'assemblage autour d'un noyau oxydable de tissus unidimensionnels conçus à partir de ces fils consolidés. [028] L'étape d'extraction du noyau par oxydation peut être suivie d'une étape de densification de la préforme consistant au moins en partie en :
- l'introduction d'une poudre de métal, par exemple d'une poudre de silicium, dans la préforme ;
- l'infiltration de métal fondu, par exemple de silicium fondu dans la préforme.
[029] L'étape d'extraction du noyau par oxydation peut être suivie des étapes consistant à :
- usiner la pièce ;
- recouvrir la surface externe de la pièce d'un revêtement formant une barrière thermique ou environnementale.
[030] L'invention sera mieux comprise et d'autres détails, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante faite à titre d'exemple non limitatif en référence aux dessins annexés.
BREVE DESCRIPTION DES FIGURES
- la figure 1 est un diagramme illustrant les différentes étapes successives du procédé selon l'invention ;
- la figure 2 est une vue schématique de la préforme dans laquelle est inséré le noyau;
- la figure 3 est une vue schématique de la préforme après retrait du noyau par oxydation.
DESCRIPTION DETAILLEE
[031] La figure 1 représente de façon schématique les différentes étapes d'un procédé de réalisation d'une pièce creuse en matériau composite à matrice céramique (CMC) selon une forme de réalisation de l'invention.
[032] Ce procédé comporte une première étape E1 dans laquelle une préforme fibreuse creuse est mise en forme, un noyau en matériau oxydable étant logé ou inséré dans la préforme. [033] Le noyau est par exemple réalisé en carbone, graphite ou autre matériau dérivé du carbone.
[034] La préforme fibreuse destinée à former le renfort fibreux de la pièce selon l'invention peut être obtenue par tissage multicouche entre une pluralité de couches de fils de chaîne et une pluralité de couches de trame. Le tissage multicouche réalisé peut être notamment un tissage à armure de type "interlock", c'est-à-dire une armure de tissage dans laquelle chaque couche de fils de trame lie plusieurs couches de fils de chaîne avec tous les fils d'une même colonne de trame ayant le même mouvement dans le plan de l'armure.
[035] D'autres types de tissage multicouche pourront bien entendu être utilisés.
[036] Lorsque la préforme fibreuse est réalisée par tissage, le tissage peut être réalisé avec des fils de chaîne s'étendant dans la direction longitudinale de la préforme, étant noté qu'un tissage avec des fils de trame dans cette direction est également possible.
[037] Dans un exemple de réalisation, les fils utilisés peuvent être des fils de carbure de silicium (SiC) fournis sous la dénomination "Nicalon", " Hi- Nicalon " ou " Hi-Nicalon-S " par la société japonaise Nippon Carbon ou "Tyranno SA3 " par la société UBE et ayant un titre (nombre de filaments) de 0,5K (500 filaments).
[038] Pour des aubes de turbomachine destinées à une utilisation à température élevée et notamment en environnement corrosif (par exemple en environnement humide), on peut avantageusement utiliser pour le tissage des fils formés de fibres en céramique, notamment des fibres de carbure de silicium (SiC). Pour des pièces de plus courtes durées d'utilisation, des fibres de carbone peuvent être également utilisées.
[039] Différents modes de tissage multicouche sont notamment décrits dans le document WO 2006/136755.
[040] Un tel procédé permet de réaliser une préforme cohérente comportant une zone creuse dans laquelle est insérée le noyau. [041] Le renfort fibreux de la pièce selon l'invention peut encore être formé à partir d'une préforme fibreuse obtenue par assemblage de deux textures fibreuses. Dans ce cas, les deux textures fibreuses peuvent être liées entre elles, par exemple par couture ou aiguilletage, ou simplement juxtaposées. Les deux textures fibreuses peuvent notamment être chacune obtenue à partir d'une couche ou d'un empilement de plusieurs couches de :
- tissu unidimensionnel (UD),
- tissu bidimensionnel (2D),
- tresse,
- tricot,
- feutre,
- nappe unidirectionnelle de fils ou câbles ou nappes multidirectionnelles obtenues par superposition de plusieurs nappes unidirectionnelles dans des directions différentes et par liaison des nappes unidirectionnelle entre elles, par exemple par couture, par agent de liaison chimique ou par aiguilletage.
[042] Dans le cas d'un empilement de plusieurs couches, celles-ci sont liées entre elles par exemple par couture, par implantation de fils ou d'éléments rigides ou par aiguilletage, ou simplement juxtaposées.
[043] Comme précédemment, un tel procédé permet de réaliser une préforme cohérente comportant une zone creuse dans laquelle est inséré le noyau.
[044] Enfin, le renfort fibreux de la pièce selon l'invention peut encore être formé par drapage de plis unidirectionnels, de tissus ou de bandes, autour du noyau. Dans ce cas, la zone creuse dans la préforme est réalisée directement par construction de la préforme autour du noyau.
[045] L'ensemble comportant la préforme et le noyau inséré dans la zone creuse de la préforme est ensuite placé dans un outillage de conformation (étape E2) de manière à maintenir la préforme dans une forme voisine de celle de la pièce à fabriquer. [046] Des exemples de mise en forme de préformes fibreuses à partir d'une structure fibreuse cohérente peuvent être trouvés notamment dans la demande de brevet US 201 1 /0293828.
[047] Un revêtement d'interphase en nitrure de bore (BN) est ensuite formé par infiltration chimique en phase gazeuse ou CVI (" Chemical Vapor Infiltration " - étape E3), la préforme restant maintenue dans la forme voulue au moyen de l'outillage de conformation, ledit outillage étant placé dans un four. L'outillage peut être réalisé en graphite et peut comporter des trous permettant le passage de la phase gazeuse. Cette phase gazeuse peut comprendre du trichlorure de bore BCb, de l'ammoniac NH3 et du gaz hydrogène H2.
[048] A l'issue de l'étape E3, la préforme et le noyau sont toujours maintenue dans l'outillage de conformation dans le four, une couche de matrice céramique est formée par CVI sur l'interphase BN pour consolidation de la préforme (étape E4), c'est-à-dire pour lier les fibres de la préforme suffisamment entre elles pour que la préforme puisse conserver sa forme sans l'assistance de l'outillage de conformation. Cette couche de matrice est par exemple en carbure de silicium SiC.
[049] Lors des étapes E3 et E4, la préforme et le noyau sont soumis à une température comprise entre 700 et 1 100°C.
[050] Le noyau 2 (visible en traits pointillés à la figure 2) et la préforme 1 sont ensuite retirés du moule de conformation puis sont placés dans un four sous atmosphère oxydante, c'est-à-dire en présence d'un catalyseur, tel par exemple que de l'acétate de potassium, pour réaliser l'extraction du noyau par oxydation (E5). Par oxydation, on entend la réaction d'un corps avec l'oxygène, donnant un oxyde.
[051] Lors de cette étape d'oxydation E5, le noyau est ainsi retiré par le biais d'une réaction chimique le transformant en oxyde. Pour cela, le noyau et la préforme subissent un premier cycle de chauffe lors duquel la température dans le four est maintenue entre 400°C et 800°C, par exemple de l'ordre de 600°C, pendant une durée comprise entre 20 et 30 heures, par exemple de l'ordre de 25 heures. Une partie du noyau est ensuite retirée par action mécanique, par exemple par grattage. A l'issue du premier cycle de chauffe et de grattage, entre 30 et 50% de la masse du noyau peut être retirée.
[052] Le noyau et la préforme subissent ensuite un second cycle de chauffe lors duquel la température dans le four est maintenue entre 400°C et 800°C, par exemple de l'ordre de 600°C, pendant une durée comprise entre 10 et 15 heures, par exemple de l'ordre de 12 heures. Le reste du noyau est ensuite retiré par action mécanique, par exemple par grattage. A l'issue du premier cycle de chauffe et de grattage, la quasi-totalité du noyau a été retirée et on obtient une préforme 1 présentant une zone creuse 3, ladite zone creuse 3 étant illustrée en traits pointillés à la figure 3.
[053] Une matrice céramique est ensuite formée dans la préforme par imprégnation de ladite préforme par une barbotine contenant une ou plusieurs poudres de carbone ou céramique, par exemple SiC, Si3N4, C, B et leurs mélanges, en suspension aqueuse, ou voie SC (" Slurry Casting " - étape E6). Cette étape de densification est réalisée dans un moule à température ambiante. La préforme est ensuite retirée du moule et séchée, puis la formation de la matrice céramique est poursuivie dans un four par infiltration par du silicium en fusion ou par un alliage en fusion contenant majoritairement du silicium, ou voie Ml (" Melt Infiltration " - étape E7). Le(s) constituant(s) présent(s) au sein dudit alliage de silicium en fusion peuvent être choisi(s) parmi B, Al, Mo, Ti, et leurs mélanges. Cette étape de densification est réalisée à une température comprise par exemple entre 1400°C et 1450°C.
[054] Un processus de densification par voie Ml est décrit notamment dans les brevets US 4,889,686, US 4,994,904 et US 5,015,540.
[055] La pièce issue de l'étape E7 est ensuite retirée du four puis des surfaces fonctionnelles sont éventuellement usinées (étape E8), par exemple par fraisage.
[056] Un revêtement, formant une barrière environnementale et/ou thermique ayant une fonction de protection thermique et/ou de protection contre la corrosion en environnement oxydant et/ou humide, est appliqué sur la surface de la pièce (étape E9). On pourra notamment se référer aux demandes de brevets WO2010/063946, WO2010/072978, US2009/0169873 et US2010/003504.

Claims

REVENDICATIONS
1 . Procédé pour la réalisation d'une pièce creuse en matériau composite à matrice céramique comprenant les étapes consistant à :
- mettre en forme une préforme fibreuse creuse (1 ), un noyau (2) en matériau oxydable étant logé ou inséré dans la préforme (E1 ) ;
- consolider ladite préforme (E3, E4); et
- extraire le noyau par oxydation dudit noyau (E5).
2. Procédé selon la revendication 1 , dans lequel l'étape d'extraction du noyau par oxydation (E5) comprend les sous-étapes consistant à :
- chauffer la préforme (1 ) dans laquelle est inséré le noyau (2), dans un four sous atmosphère oxydante ;
- retirer mécaniquement le noyau oxydé, par exemple par grattage.
3. Procédé selon la revendication 2, dans lequel ledit chauffage est réalisé en présence d'un catalyseur, tel par exemple que de l'acétate de potassium.
4. Procédé selon la revendication 2 ou 3, dans lequel ledit chauffage est réalisé à une température comprise entre 400°C et 800°C.
5. Procédé selon l'une des revendications 2 à 4, dans lequel ledit chauffage comprend :
- un premier cycle de chauffage d'une durée comprise entre 20h et 30h ;
- un second cycle de chauffage d'une durée comprise entre 10h et 15h.
6. Procédé selon l'une des revendications 1 à 5, dans lequel le noyau (2) oxydable est réalisé en carbone, graphite ou autre matériau dérivé du carbone.
7. Procédé selon l'une des revendications 1 à 6, dans lequel la préforme fibreuse creuse (1 ) est réalisée par drapage ou assemblage de textures fibreuses autour du noyau, ou par tissage d'une préforme comportant une zone creuse destinée à l'insertion du noyau.
8. Procédé selon l'une des revendication 1 à 7, dans lequel ladite consolidation de la préforme (E3, E4) comporte les sous-étapes consistant à :
- créer au moins une interphase, par exemple de nitrure de bore, sur les fibres de la préforme fibreuse (1 ) par infiltration chimique en phase gazeuse ;
- créer au moins une couche de matrice céramique, par exemple de carbure de silicium, sur l'interphase par infiltration chimique en phase gazeuse.
9. Procédé selon l'une des revendications 1 à 8, dans lequel l'étape d'extraction du noyau par oxydation (E5) est suivie d'une étape de densification de la préforme (E6, E7) consistant au moins en partie en :
- l'introduction d'une poudre de métal, par exemple d'une poudre de silicium, dans la préforme (E6) ;
- l'infiltration de métal fondu, par exemple de silicium fondu dans la préforme (E7).
10. Procédé selon l'une des revendications 1 à 9, dans lequel dans lequel l'étape d'extraction du noyau par oxydation est suivie des étapes consistant à :
- usiner la pièce (E8) ;
- recouvrir la surface externe de la pièce d'un revêtement formant une barrière thermique ou environnementale (E9).
EP18792425.3A 2017-10-02 2018-09-25 Procede pour la realisation d'une piece creuse en materiau composite a matrice ceramique Pending EP3856698A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1759189A FR3071830B1 (fr) 2017-10-02 2017-10-02 Procede pour la realisation d'une piece creuse en materiau composite a matrice ceramique
PCT/FR2018/052347 WO2019068987A1 (fr) 2017-10-02 2018-09-25 Procede pour la realisation d'une piece creuse en materiau composite a matrice ceramique

Publications (1)

Publication Number Publication Date
EP3856698A1 true EP3856698A1 (fr) 2021-08-04

Family

ID=61003109

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18792425.3A Pending EP3856698A1 (fr) 2017-10-02 2018-09-25 Procede pour la realisation d'une piece creuse en materiau composite a matrice ceramique

Country Status (9)

Country Link
US (1) US11608299B2 (fr)
EP (1) EP3856698A1 (fr)
JP (1) JP7197595B2 (fr)
CN (1) CN111164061A (fr)
BR (1) BR112020006473B1 (fr)
CA (1) CA3077612A1 (fr)
FR (1) FR3071830B1 (fr)
RU (1) RU2770493C2 (fr)
WO (1) WO2019068987A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3112142B1 (fr) * 2020-07-03 2022-09-09 Safran Ceram Procédé de fabrication d’une aube de distributeur en matériau composite à matrice céramique
FR3114532B1 (fr) * 2020-09-29 2023-04-28 Safran Procédé de fabrication d’une pièce creuse en CMC
FR3115280B1 (fr) 2020-10-20 2023-07-21 Safran Ceram Procédé de fabrication d’une pièce creuse en matériau composite à matrice métallique ou céramique renforcée avec des fibres courtes
FR3121678B1 (fr) * 2021-04-08 2023-04-14 Safran Ceram Procédé de fabrication d’une pièce creuse utilisant un noyau à composition optimisée pour faciliter son extraction
FR3129615A1 (fr) 2021-11-26 2023-06-02 Safran Ceramics Noyau pour la réalisation de distributeur en Composite à Matrice Céramique

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4041123A (en) * 1971-04-20 1977-08-09 Westinghouse Electric Corporation Method of compacting shaped powdered objects
US5015540A (en) 1987-06-01 1991-05-14 General Electric Company Fiber-containing composite
JP2698645B2 (ja) 1988-05-25 1998-01-19 株式会社東芝 Mosfet
US4889686A (en) 1989-02-17 1989-12-26 General Electric Company Composite containing coated fibrous material
JPH0825814B2 (ja) * 1989-04-21 1996-03-13 日産自動車株式会社 熱交換器の製造方法
US5198173A (en) * 1990-12-13 1993-03-30 E. I. Du Pont De Nemours And Company Process for preparing advanced composite structures
FR2718130B1 (fr) * 1994-04-05 1996-06-21 Europ Propulsion Procédé pour l'application d'une protection anti-oxydation sur des disques de frein en matériau composite contenant du carbone.
JPH10232290A (ja) * 1997-02-20 1998-09-02 Japan Atom Energy Res Inst セラミックスベローズの製造方法
US6274078B1 (en) * 1999-01-27 2001-08-14 General Electric Company Method of removing cores from ceramic matrix composite articles
US6627019B2 (en) * 2000-12-18 2003-09-30 David C. Jarmon Process for making ceramic matrix composite parts with cooling channels
US6503441B2 (en) * 2001-05-30 2003-01-07 General Electric Company Method for producing melt-infiltrated ceramic composites using formed supports
DE10148659C1 (de) * 2001-10-02 2003-02-06 Sgl Carbon Ag Verfahren zur Herstellung von Hohlkörpern aus faserverstärkten keramischen Materialien und Verwendung dieser Hohlkörper
FR2858318B1 (fr) * 2003-07-31 2007-03-02 Snecma Propulsion Solide Protection contre l'oxydation de pieces en materiau composite contenant du carbone et pieces ainsi protegees
JP4773728B2 (ja) 2004-07-27 2011-09-14 本田技研工業株式会社 C/cコンポジット材用前躯体、及びc/cコンポジット材、並びにその製造方法
FR2886640B1 (fr) * 2005-06-02 2007-08-24 Snecma Propulsion Solide Sa Procede et preforme pour la realisation de pieces en materiau composite par densification cvi et pieces obtenues
FR2887601B1 (fr) 2005-06-24 2007-10-05 Snecma Moteurs Sa Piece mecanique et procede de fabrication d'une telle piece
FR2899226B1 (fr) 2006-04-04 2008-07-04 Snecma Propulsion Solide Sa Piece en materiau composite a matrice ceramique contenant du silicium, protegee contre la corrosion.
FR2909998B1 (fr) 2006-12-18 2009-03-06 Snecma Propulsion Solide Sa Piece en materiau composite a matrice ceramique contenant du silicium, protegee contre la corrosion
FR2924375B1 (fr) * 2007-11-30 2013-05-10 Eads Europ Aeronautic Defence Procede de realisation d'un noyau de moulage et noyau de moulage pour la fabrication d'une piece complexe en materiau compositie
FR2934014B1 (fr) 2008-07-17 2011-05-13 Snecma Propulsion Solide Procede de realisation d'une tuyere ou d'un divergent de tuyere en materiau composite.
FR2939130B1 (fr) 2008-11-28 2011-09-16 Snecma Propulsion Solide Procede de fabrication de piece de forme de forme complexe en materiau composite.
FR2939430B1 (fr) 2008-12-04 2011-01-07 Snecma Propulsion Solide Procede pour le lissage de la surface d'une piece en materiau cmc
FR2940278B1 (fr) 2008-12-24 2011-05-06 Snecma Propulsion Solide Barriere environnementale pour substrat refractaire contenant du silicium
JP5163560B2 (ja) 2009-03-13 2013-03-13 株式会社Ihi タービン翼の製造方法
US9050769B2 (en) 2012-04-13 2015-06-09 General Electric Company Pre-form ceramic matrix composite cavity and method of forming and method of forming a ceramic matrix composite component
US9751807B2 (en) * 2012-08-16 2017-09-05 General Electric Company Consumable core for manufacture of composite articles and related method
FR2995892B1 (fr) * 2012-09-27 2014-10-17 Herakles Procede de fabrication d'une piece en cmc
CN103724042B (zh) * 2013-09-11 2015-08-26 太仓派欧技术咨询服务有限公司 一种叠层混杂防热复合结构材料的制备方法
JP6334293B2 (ja) 2014-07-02 2018-05-30 イビデン株式会社 管状体

Also Published As

Publication number Publication date
CN111164061A (zh) 2020-05-15
CA3077612A1 (fr) 2019-04-11
BR112020006473B1 (pt) 2024-02-20
JP7197595B2 (ja) 2022-12-27
BR112020006473A2 (pt) 2020-10-06
US20200270180A1 (en) 2020-08-27
FR3071830B1 (fr) 2021-03-12
FR3071830A1 (fr) 2019-04-05
RU2020115056A (ru) 2021-11-08
WO2019068987A1 (fr) 2019-04-11
US11608299B2 (en) 2023-03-21
RU2770493C2 (ru) 2022-04-18
JP2020536042A (ja) 2020-12-10
RU2020115056A3 (fr) 2021-11-16

Similar Documents

Publication Publication Date Title
EP3856698A1 (fr) Procede pour la realisation d'une piece creuse en materiau composite a matrice ceramique
EP3830056B1 (fr) Procédé de fabrication d'une piece en cmc
CA2976858C (fr) Procede de fabrication d'une aube de turbomachine en materiau composite
EP2831382B1 (fr) Ensemble d'arrière-corps de moteur aéronautique, moteur aéronautique et aéronef associés
US20130167374A1 (en) Process of producing ceramic matrix composites and ceramic matrix composites formed thereby
WO2016001026A1 (fr) Piece revêtue par un revêtement de surface et procedes associes
US10662117B2 (en) Method of fabricating a part out of ceramic matrix composite material
WO2008132363A2 (fr) Ensemble d'anneau de turbine pour turbine a gaz
EP1851180A1 (fr) Procede de fabrication de piece en materiau composite a matrice ceramique et piece ainsi obtenue
EP3359507B1 (fr) Procédé de fabrication d'un assemblage fibreux imprégné
EP3592716A1 (fr) Procédé de réalisation d'une préforme fibreuse consolidée
WO2019220057A1 (fr) Procede de fabrication d'une piece cmc
FR3051187A1 (fr) Piece en materiau composite
WO2014170586A1 (fr) Outillage de maintien, chargement et installation pour la densification de préformes poreuses de révolution
FR3081156A1 (fr) Procede de fabrication d'une piece cmc revetue
WO2022090664A1 (fr) Procede de fabrication d'une aube de turbomachine en materiau composite
EP4264016A1 (fr) Aube en materiau composite a matrice au moins partiellement ceramique
WO2022112696A1 (fr) Piece en cmc et procede de fabrication d'une telle piece
FR3120811A1 (fr) Procédé amélioré de réalisation d'une préforme fibreuse consolidée
FR3081157A1 (fr) Procede de fabrication d'une piece cmc

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200331

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)