EP3850194A1 - Dampfturbine und verfahren zum betreiben derselben - Google Patents

Dampfturbine und verfahren zum betreiben derselben

Info

Publication number
EP3850194A1
EP3850194A1 EP19795107.2A EP19795107A EP3850194A1 EP 3850194 A1 EP3850194 A1 EP 3850194A1 EP 19795107 A EP19795107 A EP 19795107A EP 3850194 A1 EP3850194 A1 EP 3850194A1
Authority
EP
European Patent Office
Prior art keywords
pressure
steam
low
inner housing
process steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19795107.2A
Other languages
English (en)
French (fr)
Other versions
EP3850194B1 (de
Inventor
Stefan PREIBISCH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens Energy Global GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Energy Global GmbH and Co KG filed Critical Siemens Energy Global GmbH and Co KG
Publication of EP3850194A1 publication Critical patent/EP3850194A1/de
Application granted granted Critical
Publication of EP3850194B1 publication Critical patent/EP3850194B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/14Casings modified therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/02Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of multiple-expansion type
    • F01K7/025Consecutive expansion in a turbine or a positive displacement engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/94Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF]
    • F05D2260/941Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF] particularly aimed at mechanical or thermal stress reduction

Definitions

  • the present invention relates to a steam turbine according to the preamble of independent claim 1 and to a method for operating a steam turbine according to the preamble of independent claim 7.
  • steam is used as the working medium to operate steam turbines.
  • the water vapor is heated in a steam boiler and flows as process steam through pipes into the steam turbine.
  • the previously absorbed thermal energy of the working medium is converted into kinetic energy in the steam turbine.
  • a generator is usually operated, which converts the mechanical power it produces into electrical power.
  • the kinetic energy can also be used to drive machines, for example pumps.
  • the relaxed and cooled process steam flows into a condenser, where it condenses by heat transfer in a heat exchanger and is returned to the steam boiler for heating as water.
  • Conventional steam turbines have at least one high-pressure part and at least one low-pressure part, which are also referred to as high-pressure or low-pressure stages.
  • the temperature of the process steam drops sharply, which can lead to partial condensation of the process steam.
  • the low-pressure part is very sensitive to the moisture content of the process steam. If the process steam reaches the low-pressure part of the steam turbine with a moisture content of approx. 8 to 10%, measures must be taken to reduce the moisture content of the process steam to an acceptable level before entering the low-pressure part.
  • the process steam becomes one before entering the low-pressure part so-called reheating supplied.
  • reheating supplied.
  • the intermediate overheating process steam is heated again so that the moisture content drops.
  • At least one medium pressure stage is used in addition to a high pressure and a low pressure stage.
  • Such an intermediate superheating of the process steam is carried out between the individual turbine stages. This leads to higher efficiency, since the superheated steam can be used to generate mechanical energy more efficiently in the turbine stages.
  • the material on the outer wall is subjected to high stress.
  • the colder water vapor is removed, fed to the reheater and the heated process steam is fed to the second turbine stage.
  • High temperature differences occur in the outer wall in the transition area between the first turbine stage and the second turbine stage. Since the end of the first turbine stage, from which the cold process steam is removed, and the beginning of the second turbine stage, in which the hot process steam is supplied from the reheater, are close together, high thermal stresses occur in the outer wall. This can lead to leaks or cracks in the outer wall.
  • the steam turbine has an outer steam turbine housing. Furthermore, the steam turbine has a high-pressure inner casing with a first process steam inlet section and a first process steam outlet section for guiding process steam through the high-pressure inner casing from the first process steam inlet section to the first process steam outlet section in a first process steam release device. Furthermore, the steam turbine has a low-pressure inner casing with a second process steam inlet section and a second process steam outlet section for guiding process steam through the low-pressure inner casing from the second process steam inlet section to the second process steam outlet section in a second process steam relaxation direction. In addition, the steam turbine has a reheater, which is located downstream of the high-pressure inner housing and downstream. is arranged downward of the low-pressure inner housing, the high-pressure inner housing and the low-pressure inner housing being arranged within half of the steam turbine outer housing.
  • the high pressure inner housing and the low pressure inner housing are arranged such that the first steam inlet section of the high pressure inner housing faces the second steam inlet section of the low pressure inner housing.
  • first steam inlet section of the high-pressure inner housing faces the second steam inlet section of the low-pressure inner housing
  • first steam inlet section of the high-pressure inner housing points in the opposite direction or essentially in the opposite direction to the second steam inlet section of the low-pressure inner housing is.
  • the first process steam relaxation direction runs in the opposite direction or essentially in the opposite direction to the second process steam relaxation direction.
  • the high-pressure inner housing and the low-pressure inner housing are thus arranged in such a way that a process steam flow direction through the high-pressure inner housing runs opposite, in particular through 180 °, to a process steam flow direction through the low-pressure inner housing.
  • superheated process steam in the form of live steam, can be fed into the high-pressure inner casing rotated counter to a steam direction and can be expanded down to the pressure and temperature level of a so-called cold reheat.
  • the process steam can be led to the reheater.
  • Intermediate superheated process steam from the reheater can then slide into the low-pressure inner casing facing a main flow direction and relax there up to the condensation pressure in the steam turbine.
  • the low-pressure inner housing is to be understood as an inner housing in which, at least on average, a lower pressure prevails or arises than in the high-pressure inner housing. Ie, the low-pressure inner housing can also be understood to mean in particular a medium-pressure inner housing.
  • Process steam is understood to mean steam, in particular water steam, which flows through components of the steam turbine during operation of the steam turbine.
  • the arrangement of the high-pressure inner housing and the low-pressure inner housing enables exciting forces in the low-pressure inner housing to be minimized, since only the pressure difference from the intermediate overheating acts.
  • Process steam can be passed directly into the next component, for example another low-pressure inner housing, for further expansion and does not have to be diverted first.
  • An expansion direction is to be understood as a direction in which the process steam is essentially moved or directed.
  • a pressure direction from a high-pressure region to a low-pressure region or to a pressure region with a lower pressure than in the high-pressure region is to be understood here as a direction of expansion.
  • a section upstream of a steam turbine section is to be understood as being arranged in a direction opposite to the expansion direction.
  • a steam turbine is provided.
  • the steam engine has a steam turbine outer casing.
  • the steam turbine has a high-pressure inner casing with a first process steam inlet section and a first process steam outlet section for guiding process steam through the high-pressure inner casing from the first process steam inlet section to the first process steam outlet section in a first process relaxation device.
  • the steam turbine has a low-pressure inner casing with a second process steam inlet section and a second process steam outlet section for guiding process steam through the low-pressure inner casing from the second process steam inlet section to the second process steam outlet section in a second process steam relaxation device.
  • the steam turbine has a reheater for reheating process steam, which can be removed downstream of the high-pressure inner housing and upstream of the low-pressure inner housing.
  • the high-pressure inner housing and the low-pressure inner housing are arranged within the steam turbine outer housing and the high-pressure inner housing and the low-pressure inner housing are arranged such that the first steam inlet section of the high-pressure inner housing faces the second steam inlet section of the low-pressure inner housing and further downstream of the high-pressure inner housing, a process steam deflection section for deflecting process steam from the first steam outlet section in a direction opposite to the first steam expansion device into a gap which is between an inner wall of the steam turbine outer casing and an outer wall of the high-pressure inner casing and at least in sections between the inner wall and outer wall of the steam turbine extends an outer wall of the low-pressure inner housing, is formed.
  • a high-pressure sealing shell for at least partially sealing the upstream end section of the high-pressure inner casing and at an upstream end section of the low-pressure inner casing, on which the second process steam end section is configured, a low pressure Sealing shell for at least partially sealing the upstream end section of the low-pressure inner housing are arranged, and wherein the high-pressure sealing shell and the low-pressure sealing shell are arranged adjacent to one another.
  • the high-pressure inner housing is designed according to the invention in such a way that process steam can be removed from the high-pressure inner housing and can be conducted in a region between the high-pressure sealing shell and the low-pressure sealing shell.
  • the process steam which can be taken from the high-pressure inner casing, is throttled directly to reheat parameters without doing any work.
  • the steam is significantly warmer than the process steam that was expanded within the first steam relaxation device.
  • the removed process steam can thereby be used to lead it into an area of the high-pressure sealing shell and the low-pressure sealing shell, in order to locally heat the area and in particular the second inner housing there. This cannot result in so-called cold spots on the rotor and in the region of the second steam inlet section of the low-pressure inner housing. This results in a temperature distribution that is positive both in terms of rotor mechanics and rotor dynamics.
  • the play between the rotor of the steam turbine and the inner casing can be set smaller. This increases the efficiency of the steam turbine.
  • the impressed temperature field also enables higher absolute temperature differences of the reheat to be realized, which in turn increases the process efficiency of the overall system.
  • the area of application of the single-case reheat turbine, ie the turbine with a single outer casing, is thereby enlarged. This has significant cost advantages compared to the alternative multicase turbine, in which several outer casings are used. In this way, cheaper turbines can be offered in a wider performance range.
  • the high-pressure sealing shell is designed such that a predeterminable leakage mass flow can be conducted via the high-pressure sealing shell in a region between the high-pressure sealing shell and the low-pressure sealing shell. Because the high-pressure sealing shell is designed in such a way that a sufficiently large steam mass flow (leakage current) can be conducted through the high-pressure sealing shell into the area between the high-pressure sealing shell and the low-pressure sealing shell, the space between the two sealing shells can be heated accordingly, so that The rotor mechanical and rotor dynamic properties are positively influenced with regard to the temperature, so that no cold spots occur on the rotor and the area of the second process steam inlet section is preheated accordingly.
  • the existing leakage flow of the high-pressure sealing shell is used for heating, whereby the high-pressure sealing shell must be designed so that the leakage mass flow is higher than would be technically necessary.
  • the leakage mass flow can be easily determined or adjusted by increasing the gap between the sealing shells and the rotor accordingly.
  • a further embodiment of the invention provides that the high-pressure sealing shell and the low-pressure sealing shell are designed and matched to one another in such a way that the leakage mass flow through the high-pressure sealing shell is greater than the leakage mass flow through the low-pressure sealing shell.
  • the leakage mass flow through the high-pressure sealing shell is preferably at least 30%, preferably at least 50% larger than the leakage mass flow through the low-pressure sealing shell.
  • the difference between the mass flows results in a blocking mass flow which prevents the cold intermediate superheating steam from entering the low-pressure sealing shell and thus the second expansion device.
  • the hot leakage mass flow from the first expansion device ensures preheating of the rotor between the first sealing shell and the second sealing shell and preheating, in particular the second process steam inlet section on the second expansion device.
  • a further embodiment of the invention provides that a sealing web for sealing a steam turbine region between the downstream end section of the low-pressure inner casing and the steam turbine outer casing is configured on a downstream end section of the low-pressure inner casing.
  • process steam flows around the low-pressure inner casing during operation.
  • the sealing web which is preferably designed as an integrated sealing web at the downstream end section of the low-pressure inner housing.
  • an inner sealing shell on the downstream end section of the low-pressure inner housing can be dispensed with.
  • the sealing web has a significantly less complex structure than a sealing shell.
  • a further embodiment of the invention provides that the reheater is arranged outside the outer casing of the steam turbine. This is particularly advantageous with regard to assembly, disassembly, maintenance and repair.
  • a method for operating a steam turbine as shown in detail above is provided.
  • a method according to the invention has the same advantages as have been described in detail with reference to the steam turbine according to the invention.
  • the process has the following steps:
  • the process results in a rotor mechanical and rotor dynamic positive temperature distribution. Due to the imprinted temperature field, higher absolute temperature differences of reheating can be realized and thus the overall efficiency can be increased.
  • An embodiment of the method provides that the removed process steam (leakage steam) via the high-pressure sealing shell in the area between the high-pressure sealing shell and the low pressure sealing shell is directed.
  • the method according to the invention can be implemented with little design effort and thus inexpensively.
  • the conversion of existing steam turbines to the process described can be accomplished with simple means.
  • Figure 1 shows the basic structure of an inventive
  • FIG. 2 shows the detailed view Z, in which the invention
  • FIG. 1 shows the basic structure of a steam turbine 1 according to the invention.
  • the steam turbine 1 has a steam turbine outer housing 20 in which there is a high-pressure inner housing 30, a low-pressure inner housing 40 in the form of a medium-pressure inner housing and another low-pressure inner housing 90.
  • a live steam or process steam source 10 for supplying process steam to the high pressure inner housing 30 is arranged upstream of the high pressure inner housing 30.
  • the high-pressure inner housing 30 has a first process steam inlet section 31 and a first process steam outlet section 32 for guiding process steam through the high pressure inner housing 30 from the first process steam inlet section 31 to the first process steam outlet section 32 in a first process steam relaxation device 33.
  • the low-pressure inner housing 40 has a second process steam inlet section 41 and a second process steam outlet section 42 for guiding process steam through the low-pressure Inner housing 40 from the second process steam inlet section 41 to the second process steam outlet section 42 in a second process steam relaxation device 43.
  • Steam turbine 1 also has a reheater 50, which is arranged downstream of the high-pressure inner housing 30 and upstream of the low-pressure inner housing 40.
  • the arrangement does not refer to a spatial, but to a fluidic arrangement.
  • the high-pressure inner housing 30 and the low-pressure inner housing 40 are arranged in such a way that the first steam inlet section 31 of the high-pressure inner housing 30 faces the second steam inlet section 41 of the low-pressure inner housing 40.
  • the steam turbine 1 Downstream of the high-pressure inner housing 30, the steam turbine 1 has a process steam deflection section 60 for deflecting process steam from the first steam outlet section 32 in a direction opposite the first steam relaxation device 33 into a gap 70 of the steam turbine 1.
  • the gap 70 extends between the steam turbine outer housing 20 and the high-pressure inner housing 30 and at least from section between the steam turbine housing 20 and the low-pressure inner housing 40.
  • a sealing web 80 At a downstream end section of the low-pressure inner housing 40 there is a sealing web 80 for sealing a steam turbine region between the downstream end section of the Low pressure inner housing 40 and the steam turbine outer housing 20 is configured.
  • the intermediate superheater 50 is arranged outside the steam turbine outer casing 20.
  • the high pressure inner housing 30 and the low pressure inner housing 40 are provided as separate components in a common steam turbine outer housing 20.
  • a high pressure sealing shell 34 is arranged for partially sealing the downstream end section of the high pressure inner housing 30.
  • a low-pressure sealing shell 44 for partially sealing off the upstream end portion of the low-pressure inner housing 40.
  • the high-pressure sealing shell 34 and the low-pressure sealing shell 44 are arranged adjacent to one another.
  • a further high-pressure sealing shell 35 is arranged for at least partially sealing the downstream end section of the high-pressure inner housing 30.
  • the high-pressure sealing shell 34 is designed and designed such that a predeterminable leakage mass flow emerges through it and can be conducted into the region 110 between the high-pressure sealing shell 34 and the low-pressure sealing shell 44.
  • the sealing shell or the sealing gap can be designed such that a predeterminable leakage mass flow passes through the sealing shell.
  • the high-pressure sealing shell 34 and the low-pressure sealing shell 44 are coordinated with one another in such a way that the leakage mass flow through the high-pressure sealing shell 34 is greater than the leakage mass flow through the low-pressure sealing shell 44.
  • the leakage mass flow through the high-pressure sealing shell 34 is preferably at least 30%, preferably at least 50% greater than the leakage mass flow through the low pressure sealing shell 44.
  • FIG. 2 shows a detailed view Z from FIG. 1.
  • a high-pressure sealing shell 34 is arranged at the end section of the high-pressure inner housing 30.
  • a low pressure sealing shell 44 is arranged to seal the gap between the upstream end portion of the low pressure inner housing 40 and the shaft 100.
  • the high pressure sealing shell 34 and the low pressure sealing shell 44 are arranged adjacent to one another.
  • the process steam is then passed from the first process steam inlet section 31 to the first process steam outlet section 32 and then passed through the first process steam outlet section 32 from the high-pressure inner housing 30 via the process steam deflection section 60 into the gap 70 to the reheater 50.
  • the process steam is passed through the gap 70 for cooling the steam turbine outer housing 20 or the steam turbine 1 along the high-pressure inner housing 30 and along the low-pressure inner housing 40.
  • the heated or superheated process steam from the reheater 50 is passed through the second process steam inlet section 41 into the low-pressure or medium-pressure inner housing.
  • the process steam is slid into the further low-pressure inner housing 90 while the direction of expansion remains the same.
  • the process steam can further relax there and finally condense.
  • steam is drawn from the first high pressure inner housing 30 steam removed and throttled directly to overheating parameters without performing any work and this steam passed directly into the gap between the high-pressure sealing shell 34 and the low-pressure sealing shell 44.
  • the low-pressure inner housing 40 and the region 110 of the shaft 100 which lies between the high-pressure sealing shell 34 and the low-pressure sealing shell 44, can be locally heated.
  • the high pressure inner casing 30 an opening in the high-pressure inner housing 30 and a corresponding pipeline can be provided.
  • the steam can be removed from the inner housing via the high pressure sealing shell 34.
  • the gap of the high-pressure sealing shell 34 must be designed accordingly. The hot steam can then pass from the high-pressure inner housing 30 directly into the space between the first high-pressure sealing shell 34 and the second low-pressure sealing shell 44.
  • the steam that flows out via the high-pressure sealing shell 34 has almost live steam parameters, it can be used to heat the area 110 between the high-pressure sealing shell 34 and the low-pressure sealing shell 44. This results in a positive temperature distribution in terms of rotor dynamics and rotor mechanics.
  • the pressure On the outside of the low pressure inner housing 40, the pressure is higher than on the inside, the reason for this is the pressure loss in the gap, which leads to the intermediate overheating 50.
  • the process steam which is taken from the high-pressure inner housing 30 and is conducted in the region 110 between the high-pressure sealing shell 34 and the low-pressure sealing shell 44, is thus sucked into the low-pressure inner housing 40 and thereby heats up the low-pressure inner housing 40.
  • the high-pressure sealing shell 34 and the Never derdruckdichtschale 44 are coordinated so that the process steam, which flows out through the high pressure sealing shell 34 is at least 30%, preferably at least 50% larger than the leakage mass flow through the low pressure sealing shell 44.
  • the difference in mass flows leads to a blocking mass flow arises, which prevents the penetration of cold steam flowing to the reheater 50 into the high-pressure sealing shell 34.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Dampfturbine (1), aufweisend ein Niederdruckinnengehäuse (NDIG) und ein Hochdruckinnengehäuse (HDIG) innerhalb eines Dampfturbinenaußengehäuses (20), einen Zwischenüberhitzer (50), stromabwärts des HDIG (30) und stromaufwärts des NDIG (40) wobei der erste Dampfeintrittsabschnitt des HDIG (30) dem zweiten Dampfeintrittsabschnitt des NDIG (40) zugewandt ist, und ein Prozessdampfumlenkabschnitt (60) zum Umlenken von Prozessdampf aus dem ersten Dampfaustrittsabschnitt in einen Spalt zwischen einer Innenwandung des Dampfturbinenaußengehäuses und einer Außenwandung des HDIG (30) und des NDIG, eine Hochdruckdichtschale (34) zum Abdichten des stromaufwärtigen Endabschnitts des HDIG (30), eine Niederdruckdichtschale (44) zum Abdichten des stromaufwärtigen Endabschnitts des NDIG (40), wobei die Hochdruckdichtschale (34) und die Niederdruckdichtschale (44) benachbart zueinander sind, und wobei das HDIG (30) derart ausgebildet ist, dass Prozessdampf dem HDIG entnehmbar und in einen Bereich zwischen der Hochdruckdichtschale (34) und der Niederdruckdichtschale (44) leitbar ist.

Description

Beschreibung
Dampfturbine und Verfahren zum Betreiben derselben
Die vorliegende Erfindung betrifft eine Dampfturbine nach dem Oberbegriff des unabhängigen Patentanspruchs 1 sowie ein Ver fahren zum Betreiben einer Dampfturbine nach dem Oberbegriff des unabhängigen Patentanspruchs 7.
In Dampfkraftwerken wird zum Betreiben von Dampfturbinen als Arbeitsmedium Wasserdampf verwendet. Der Wasserdampf wird in einem Dampfkessel erwärmt und strömt als Prozessdampf über Rohrleitungen in die Dampfturbine. In der Dampfturbine wird die zuvor aufgenommene thermische Energie des Arbeitsmediums in Bewegungsenergie umgewandelt. Mittels der Bewegungsenergie wird üblicherweise ein Generator betrieben, welcher die er zeugte mechanische Leistung in elektrische Leistung umwan delt. Alternativ kann die Bewegungsenergie auch zum Antreiben von Maschinen bspw. Pumpen genutzt werden. Der entspannte und abgekühlte Prozessdampf strömt in einen Kondensator, wo er durch Wärmeübertragung in einem Wärmetauscher kondensiert und als Wasser erneut dem Dampfkessel zum Erhitzen zugeführt wird .
Übliche Dampfturbinen weisen wenigstens einen Hochdruckteil und wenigstens einen Niederdruckteil auf, die auch als Hoch druck- bzw. Niederdruckstufe bezeichnet werden. Beim Nieder druckteil sinkt die Temperatur des Prozessdampfes stark ab, wodurch es zur teilweisen Kondensation des Prozessdampfes kommen kann. Der Niederdruckteil ist dabei sehr empfindlich hinsichtlich des Nässegehaltes des Prozessdampfes. Erreicht der Prozessdampf den Niederdruckteil der Dampfturbine mit ei nem Nässegehalt von ca. 8 bis 10 %, sind Maßnahmen zu ergrei fen, die den Nässegehalt des Prozessdampfes vor dem Eintritt in den Niederdruckteil auf ein zulässiges Maß reduzieren.
Um die Effizienz eines Dampfkraftwerkes zu erhöhen, wird der Prozessdampf vor dem Eintritt in den Niederdruckteil einer sogenannten Zwischenüberhitzung zugeführt. In der Zwischen überhitzung wird der Prozessdampf erneut erhitzt, so dass der Nässegehalt sinkt. Bei dieser Zwischenüberhitzung wird der gesamte Dampfmassenstrom nach dem Hochdruckteil aus der
Dampfturbine entnommen, der Zwischenüberhitzung zugeführt und annähernd auf die Temperatur des Frischdampfes angehoben. An schließend wird der Prozessdampf dem Niederdruckteil zuge führt. Ohne eine solche Zwischenüberhitzung müsste die Dampf turbine angehalten werden, da auskondensierte Wassertropfen auf die sich drehenden Turbinenschaufeln auftreffen könnten und Schäden durch Tropfenerosion an den Turbinenschaufeln verursachen würden.
Bei mehrstufigen Dampfturbinen wird neben einer Hochdruck- und einer Niederdruckstufe wenigstens eine Mitteldruckstufe verwendet. Hierbei wird zwischen den einzelnen Turbinenstufen jeweils eine solche Zwischenüberhitzung des Prozessdampfes durchgeführt. Dies führt zu einer höheren Effizienz, da mit tels des überhitzten Wasserdampfes effizienter mechanische Energie in den Turbinenstufen erzeugt werden kann.
Bei der Implementierung von Zwischenüberhitzungssystemen in Dampfturbinen wird das Material an der Außenwand, insbesonde re zwischen den einzelnen Turbinenstufen hoch beansprucht. An der ersten Turbinenstufe wird der kältere Wasserdampf entnom men, dem Zwischenüberhitzer zugeführt und der aufgeheizte Prozessdampf der zweiten Turbinenstufe zugeführt. Dabei tre ten in der Außenwand im Übergangsbereich zwischen der ersten Turbinenstufe und der zweiten Turbinenstufe hohe Temperatur differenzen auf. Da das Ende der ersten Turbinenstufe, aus der der kalte Prozessdampf entnommen wird und der Beginn der zweiten Turbinenstufe, in welchem der heiße Prozessdampf aus dem Zwischenüberhitzer zugeführt wird, eng beieinander lie gen, treten dort hohe thermische Spannungen in der Außenwand auf. Dies kann zu Undichtigkeiten oder zu Rissen in der Au ßenwand führen. Ferner besteht die Gefahr, dass bei Entnahme des kalten Prozessdampfes aus der ersten Turbinenstufe Nass dampfparameter herrschen und sich dadurch an der Innenwand des Außengehäuses Kondensat bildet. Das Kondensat kühlt die Innenseite der Außenwandung zusätzlich ab. Somit wird die thermische Spannung an der Außenwand erhöht. Damit der über hitzte Prozessdampf keine schädlichen thermischen Spannungen verursacht, wird der überhitzte Prozessdampf zur Reduktion der thermischen Spannung abgekühlt. Dies wird üblicherweise in vorgeschalteten Einströmgehäusen durchgeführt. Diese zu sätzlichen Einströmgehäuse können allerdings zu Energiever lusten führen.
Bei einer einschaligen bzw. eingehäusigen Dampfturbine mit Zwischenüberhitzung wird an zwei Stellen stark überhitzter Prozessdampf in die Turbine geleitet. Dabei wird insbesondere das Dampfturbinenaußengehäuse durch die auftretenden Tempera turen und Drücke thermisch stark belastet.
Die auftretenden erforderlichen Parameter liegen jedoch häu fig über den möglichen Parametern einschaliger Turbinengehäu se. Die nicht vorveröffentlichte Patentanmeldung
DE 10 2017 211 295 der Anmelderin schlägt daher eine Dampf turbine sowie ein Verfahren zum Betreiben einer solchen
Dampfturbine vor, die die Nachteile weitgehend überwindet.
Die Dampfturbine weist ein Dampfturbinenaußengehäuse auf. Ferner weist die Dampfturbine ein Hochdruckinnengehäuse mit einem ersten Prozessdampfeintrittsabschnitt und einem ersten Prozessdampfaustrittsabschnitt zum Leiten von Prozessdampf durch das Hochdruckinnengehäuse vom ersten Prozessdampfein trittsabschnitt zum ersten Prozessdampfaustrittsabschnitt in einer ersten ProzessdampfentSpannungseinrichtung auf. Weiter hin weist die Dampfturbine ein Niederdruckinnengehäuse mit einem zweiten Prozessdampfeintrittsabschnitt und einem zwei ten Prozessdampfaustrittsabschnitt zum Leiten von Prozess dampf durch das Niederdruckinnengehäuse vom zweiten Prozess dampfeintrittsabschnitt zum zweiten Prozessdampfaustrittsab schnitt in einer zweiten ProzessdampfentSpannungsrichtung auf. Außerdem weist die Dampfturbine einen Zwischenüberhitzer auf, der stromabwärts des Hochdruckinnengehäuses und stromab- wärts des Niederdruckinnengehäuses angeordnet ist, wobei das Hochdruckinnengehäuse und das Niederdruckinnengehäuse inner halb des Dampfturbinenaußengehäuses angeordnet sind.
Das Hochdruckinnengehäuse und das Niederdruckinnengehäuse sind derart angeordnet, dass der erste Dampfeintrittsab- schnitt des Hochdruckinnengehäuses dem zweiten Dampfein trittsabschnitt des Niederdruckinnengehäuses zugewandt ist. Darunter, dass der erste Dampfeintrittsabschnitt des Hochdru ckinnengehäuses dem zweiten Dampfeintrittsabschnitt des Nie derdruckinnengehäuses zugewandt ist, versteht man, dass der erste Dampfeintrittsabschnitt des Hochdruckinnengehäuses in die entgegengesetzte Richtung oder im Wesentlichen in die entgegengesetzte Richtung wie der zweite Dampfeintrittsab schnitt des Niederdruckinnengehäuses zeigt, bzw. ausgerichtet ist. Entsprechend verläuft die erste ProzessdampfentSpan nungsrichtung entgegen oder im Wesentlichen entgegen zur zweiten ProzessdampfentSpannungsrichtung .
Das Hochdruckinnengehäuse und das Niederdruckinnengehäuse sind somit derart angeordnet, dass eine Prozessdampfflutrich- tung durch das Hochdruckinnengehäuse entgegengesetzt, insbe sondere um 180° entgegengesetzt, zu einer Prozessdampfflut- richtung durch das Niederdruckinnengehäuse verläuft.
Unter Verwendung einer solchen Dampfturbine kann überhitzter Prozessdampf, in Form von Frischdampf, in das entgegen einer Dampfrichtung gedrehte Hochdruckinnengehäuse zugeführt werden und bis auf das Druck- und Temperaturniveau einer sogenannten kalten Zwischenüberhitzung entspannt werden. Nachdem der Pro zessdampf aus dem Hochdruckinnengehäuse ausgetreten ist, kann der Prozessdampf zum Zwischenüberhitzer geführt werden. Zwi schenüberhitzter Prozessdampf aus dem Zwischenüberhitzer kann dann in das in eine HauptStrömungsrichtung gewandte Nieder druckinnengehäuse gleiten und dort bis auf Kondensationsdruck in der Dampfturbine entspannen. Unter dem Niederdruckinnengehäuse ist ein Innengehäuse zu verstehen, in welchem zumindest im Mittel ein niedrigerer Druck als im Hochdruckinnengehäuse herrscht bzw. entsteht. D.h., unter dem Niederdruckinnengehäuse kann auch insbesonde re ein Mitteldruckinnengehäuse verstanden werden.
Unter dem Prozessdampf ist Dampf, insbesondere Wasserdampf, zu verstehen, der während des Betriebs der Dampfturbine durch Bauteile der Dampfturbine strömt.
Durch die Anordnung des Hochdruckinnengehäuses und des Nie- derdruckinnengehäuses können erregende Kräfte im Niederdru ckinnengehäuse minimiert werden, da lediglich die Druckdiffe renz aus der Zwischenüberhitzung wirkt. Prozessdampf kann zur weiteren Entspannung direkt in das nächste Bauteil, bspw. ein weiteres Niederdruckinnengehäuse, geleitet werden und muss nicht erst umgeleitet werden.
Unter einer Entspannungsrichtung ist eine Richtung zu verste hen, in welcher sich der Prozessdampf im Wesentlichen bewegt bzw. geleitet wird. D.h., wenn sich der Prozessdampf in einen Dampfturbinenabschnitt, bspw. von links nach rechts bewegt, ist darunter vereinfacht betrachtet eine lineare Entspan nungsrichtung nach rechts zu verstehen. Ferner ist vorliegend unter einer Entspannungsrichtung eine Druckrichtung von einem Hochdruckbereich in einen Niederdruckbereich bzw. in einen Druckbereich mit einem niedrigeren Druck als im Hochdruckbe reich zu verstehen. Entsprechend ist über einen stromaufwär- tigen Dampfturbinenabschnitt ein Abschnitt zu verstehen, der entgegen der Entspannungsrichtung angeordnet ist.
Die Tatsache, dass das Hochdruckinnengehäuse zunächst vom kalten Dampf, welcher zur Zwischenüberhitzung geführt wird, überströmt wird und anschließend vom heißen von der Zwischen überhitzung kommenden Dampf durchströmt wird, stellt immer noch eine hohe Herausforderung dar. Des Weiteren besteht die zu verhindernde Möglichkeit, dass der kalte zur Zwischenüber hitzung geführte Dampf aufgrund des Druckverlustes in der Zwischenüberhitzung in das Niederdruckinnengehäuse eingesaugt wird. Diese Nachteile des Standes der Technik versucht die vorliegende Erfindung zu beseitigen.
Hinsichtlich der erfindungsgemäßen Dampfturbine wird die Auf gabe gelöst durch die Merkmale des unabhängigen Patentan spruchs 1. Hinsichtlich des Verfahrens zum Betreiben einer solchen Dampfturbine wird die Aufgabe gelöst durch die Merk male des unabhängigen Patentanspruchs 7.
Weitere Vorteile und Ausgestaltungen der Erfindung, die ein zeln oder in Kombination miteinander einsetzbar sind, sind Gegenstand der Unteransprüche.
Gemäß einem ersten Aspekt der Erfindung wird eine Dampfturbi ne zur Verfügung gestellt. Die Dampfmaschine weist ein Dampf turbinenaußengehäuse auf. Ferner weist die Dampfturbine ein Hochdruckinnengehäuse mit einem ersten Prozessdampfeintritts- abschnitt und einem ersten Prozessdampfaustrittsabschnitt zum Leiten von Prozessdampf durch das Hochdruckinnengehäuse vom ersten Prozessdampfeintrittsabschnitt zum ersten Prozess dampfaustrittsabschnitt in einer ersten Prozessentspannungs einrichtung auf. Des Weiteren weist die Dampfturbine ein Nie derdruckinnengehäuse mit einem zweiten Prozessdampfeintritts- abschnitt und einem zweiten Prozessdampfaustrittsabschnitt zum Leiten von Prozessdampf durch das Niederdruckinnengehäuse vom zweiten Prozessdampfeintrittsabschnitt zum zweiten Pro zessdampfaustrittsabschnitt in einer zweiten Prozessdampfent- spannungseinrichtung auf. Des Weiteren weist die Dampfturbine einen Zwischenüberhitzer zum Zwischenüberhitzen von Prozess dampf, welcher stromabwärts des Hochdruckinnengehäuses und stromaufwärts des Niederdruckinnengehäuses entnehmbar ist, auf. Wobei das Hochdruckinnengehäuse und das Niederdruckin nengehäuse innerhalb des Dampfturbinenaußengehäuses angeord net sind und das Hochdruckinnengehäuse und das Niederdruckin nengehäuse derart angeordnet sind, dass der erste Dampfein trittsabschnitt des Hochdruckinnengehäuses dem zweiten Dampf eintrittsabschnitt des Niederdruckinnengehäuses zugewandt ist und wobei ferner stromabwärts des Hochdruckinnengehäuses ein Prozessdampfumlenkabschnitt zum Umlenken von Prozessdampf aus den ersten Dampfaustrittsabschnitt in eine Richtung entgegen der ersten DampfentSpannungseinrichtung in einen Spalt, wel cher sich zwischen einer Innenwandung des Dampfturbinenaußen gehäuses und einer Außenwandung des Hochdruckinnengehäuses und zumindest abschnittsweise zwischen der Innenwandung des Dampfturbinenaußengehäuses und einer Außenwandung des Nieder- druckinnengehäuses erstreckt, ausgebildet ist. Und wobei an einem stromaufwärtigen Endabschnitt des Hochdruckinnengehäu ses, an welchem der erste Prozessdampfeintrittsabschnitt aus gestaltet ist, eine Hochdruckdichtschale zum zumindest teil weisen Abdichten des stromaufwärtigen Endabschnittes des Hochdruckinnengehäuses und an einem stromaufwärtigen Endab schnitt des Niederdruckinnengehäuses , an welchem der zweite Prozessdampfendabschnitt ausgestaltet ist, eine Niederdruck dichtschale zum zumindest teilweisen Abdichten des stromauf- wärtigen Endabschnitts des Niederdruckinnengehäuses angeord net sind, und wobei die Hochdruckdichtschale und die Nieder druckdichtschale benachbart zueinander angeordnet sind. Wobei das Hochdruckinnengehäuse erfindungsgemäß derart ausgebildet ist, dass Prozessdampf dem Hochdruckinnengehäuse entnehmbar und in einem Bereich zwischen der Hochdruckdichtschale und der Niederdruckdichtschale leitbar ist. Der Prozessdampf, der dem Hochdruckinnengehäuse entnehmbar ist, wird direkt auf Zwischenüberhitzungsparameter gedrosselt, ohne Arbeit zu ver richten. Hierdurch ist der Dampf deutlich wärmer als der Pro zessdampf, der innerhalb der ersten Dampfentspannungseinrich- tung entspannt wurde. Der entnommene Prozessdampf kann dadurch dazu genutzt werden, um ihn in einen Bereich der Hochdruckdichtschale und der Niederdruckdichtschale zu lei ten, um dort den Bereich und insbesondere das zweite Innenge häuse lokal zu erwärmen. Hierdurch kann es nicht zu sogenann ten Cold Spots am Rotor und im Bereich des zweiten Dampfein trittsabschnittes des Niederdruckinnengehäuses kommen. Hier durch ergibt sich eine sowohl rotormechanisch als auch rotor dynamisch positive Temperaturverteilung. Aufgrund der gerin geren thermisch getriebenen Verformung am Niederdruckinnenge- häuse können die Spiele zwischen dem Rotor der Dampfturbine und dem Innengehäuse kleiner eingestellt werden. Dies erhöht den Wirkungsgrad der Dampfturbine. Durch das aufgeprägte Tem peraturfeld können zudem höhere absolute Temperaturdifferen zen der Zwischenüberhitzung realisiert werden, was wiederum den Prozesswirkungsgrad der Gesamtanlage steigert. Der Ein satzbereich der Single-Case-Reheat-Turbine, d.h. der Turbine mit einem einzigen Außengehäuse wird hierdurch vergrößert. Dies hat deutliche Kostenvorteile im Vergleich zur alternati ven Multicase-Turbine, bei der mehrere Außengehäuse einge setzt werden. Somit können kostengünstigere Turbinen in einem breiteren Leistungsbereich angeboten werden.
Eine Ausgestaltung der Erfindung sieht vor, dass die Hoch druckdichtschale so ausgebildet ist, dass ein vorgebbarer Le ckage-Massenstrom über die Hochdruckdichtschale in einem Be reich zwischen der Hochdruckdichtschale und der Niederdruck dichtschale leitbar ist. Dadurch, dass die Hochdruckdicht schale so ausgebildet ist, dass ein hinreichend großer Dampf massenstrom (Leckage-Strom) durch die Hochdruckdichtschale in den Bereich zwischen der Hochdruckdichtschale und der Nieder druckdichtschale leitbar ist, kann der Zwischenraum zwischen den beiden Dichtschalen entsprechend erwärmt werden, so dass die rotormechanischen und rotordynamischen Eigenschaften hin sichtlich der Temperatur positiv beeinflusst werden, so dass keine Cold Spots am Rotor entstehen und der Bereich des zwei ten Prozessdampfeintrittsabschnitts entsprechend vorgewärmt wird. Auf die zusätzliche Ausbildung von Leitungen und Durch brüchen innerhalb der ersten Entspannungseinrichtung kann so mit verzichtet werden, wodurch sich der konstruktive Aufwand deutlich verringert. Im Prinzip wird der an sich vorhandene Leckage-Strom der Hochdruckdichtschale zum Erwärmen verwen det, wobei die Hochdruckdichtschale so ausgelegt werden muss, dass der Leckage-Massenstrom höher ist, als dies technisch bedingt notwendig wäre. Der Leckage-Massenstrom lässt sich dabei einfach über eine entsprechnde Vergrößerung des Spaltes zwischen den Dichtschalen und dem Rotor bestimmen bzw. ein stellen . Eine weitere Ausgestaltung der Erfindung sieht vor, dass die Hochdruckdichtschale und die Niederdruckdichtschale derart ausgebildet und aufeinander abgestimmt sind, dass der Lecka ge-Massenstrom über die Hochdruckdichtschale größer ist, als der Leckage-Massenstrom über die Niederdruckdichtschale . Vor zugsweise ist dabei der Leckage-Massenstrom über die Hoch druckdichtschale mindestens 30 %, vorzugsweise mindestens 50 % größer als der Leckage-Massenstrom über die Niederdruck dichtschale. Durch die Differenz der Massenströme ergibt sich ein Sperrmassenstrom, der ein Eindringen des kalten Zwischen überhitzungsdampfes in die Niederdruckdichtschale und damit in die zweite Entspannungseinrichtung verhindert. Der heiße Leckage-Massenstrom aus der ersten Entspannungseinrichtung sorgt dabei für ein Vorheizen des Rotors zwischen der ersten Dichtschale und der zweiten Dichtschale und für ein Vorhei zen, insbesondere des zweiten Prozessdampfeintrittsabschnitts an der zweiten Entspannungseinrichtung.
Eine weitere Ausgestaltung der Erfindung sieht vor, dass an einem stromabwärtigen Endabschnitt des Niederdruckinnengehäu- ses ein Dichtsteg zum Abdichten eines Dampfturbinenbereiches zwischen dem stromabwärtigen Endabschnitt des Niederdruckin- nengehäuses und dem Dampfturbinenaußengehäuse ausgestaltet ist. Bei der vorliegenden Dampfturbine wird das Niederdrucki- nnengehäuse während eines Betriebs mit Prozessdampf umströmt. Während das Hochdruckinnengehäuse zum Niederdruckinnengehäuse durch den Dichtsteg getrennt ist, der vorzugsweise als inte grierter Dichtsteg am stromabwärtigen Endabschnitt des Nie- derdruckinnengehäuses ausgestaltet ist. Unter Verwendung des Dichtstegs kann auf eine innere Dichtschale am stromabwärti- gen Endabschnitt des Niederdruckinnengehäuses verzichtet wer den. Der Dichtsteg weist einen deutlich weniger komplexen Aufbau wie eine Dichtschale auf. An dieser Stelle sei er wähnt, dass vorliegend unter einer Dichtschale eine dem Stand der Technik übliche Dichtschale zu verstehen ist, welche vor liegend deshalb nicht im Detail beschrieben wird. Eine weitere Ausgestaltung der Erfindung sieht vor, dass der Zwischenüberhitzer außerhalb des Dampfturbinenaußengehäuses angeordnet ist. Dies ist insbesondere mit Blick auf die Mon tage, Demontage, Wartung und Reparatur von Vorteil.
Gemäß einem weiteren Aspekt der vorliegenden Erfindung wird ein Verfahren zum Betreiben einer wie vorstehend im Detail dargestellten Dampfturbine zur Verfügung gestellt. Damit bringt ein erfindungsgemäßes Verfahren die gleichen Vorteile mit sich, wie sie ausführlich mit Bezug auf die erfindungsge mäße Dampfturbine beschrieben worden sind. Das Verfahren weist die folgenden Schritte auf:
- Leiten von Prozessdampf von einer Prozessdampfquelle
durch den ersten Prozessdampfeintrittsabschnitt in das Hochdruckinnengehäuse,
- Leiten des Prozessdampfes vom ersten Prozessdampfein
trittsabschnitt zum ersten Prozessdampf
austrittsabschnitt , und
- Leiten des Prozessdampfes durch den ersten Prozessdampf austrittsabschnitt aus dem Hochdruckinnengehäuse über den Prozessdampfumlenkabschnitt und den Spalt zum Zwi schenüberhitzer sowie,
- Entnehmen eines Teiles des Prozessdampfes aus dem Hoch druckinnengehäuse entspannen dieses Teils des Prozess dampfes auf Zwischenüberhitzungsparameter und Einleiten des entnommenen Prozessdampfes in dem Bereich zwischen der Hochdruckdichtschale und der Niederdruckdichtschale .
Durch das Verfahren ergibt sich eine rotormechanische und ro tordynamische positive Temperaturverteilung. Durch das aufge prägte Temperaturfeld können höhere absolute Temperaturdiffe renzen der Zwischenüberhitzung realisiert werden und damit der Gesamtwirkungsgrad erhöht werden.
Eine Ausgestaltung des Verfahrens sieht vor, dass der entnom mene Prozessdampf (Leckage-Dampfes) , über die Hochdruckdicht schale in den Bereich zwischen der Hochdruckdichtschale und der Niederdruckdichtschale geleitet wird. Hierdurch kann das erfindungsgemäße Verfahren mit geringem konstruktivem Aufwand und damit kostengünstig realisiert werden. Die Umrüstung be stehender Dampfturbinen auf den beschriebenen Prozess ist mit einfachen Mitteln zu bewerkstelligen.
Weitere, die Erfindung verbessernde Maßnahmen ergeben sich aus den nachfolgenden Beschreibungen zu verschiedenen Ausfüh rungsbeispielen der Erfindung, welche in den Figuren schema tisch dargestellt sind. Sämtliche aus den Ansprüchen, der Be schreibung oder der Zeichnung hervorgehenden Merkmale
und/oder Vorteile, einschließlich konstruktiver Einzelheiten und räumlicher Anordnungen können sowohl für sich als auch in den verschiedenen Kombinationen erfindungswesentlich sein. Es zeigt :
Figur 1 den prinzipiellen Aufbau einer erfindungsgemäßen
Dampfturbine ;
Figur 2 die Detailansicht Z, in der das erfindungsgemäße
Verfahren näher erläutert wird.
Figur 1 zeigt den prinzipiellen Aufbau einer erfindungsgemä ßen Dampfturbine 1. Die Dampfturbine 1 weist ein Dampfturbi nenaußengehäuse 20 auf, in welchem sich ein Hochdruckinnenge- häuse 30, ein Niederdruckinnengehäuse 40 in Form eines Mit- teldruckinnengehäuses sowie ein weiteres Niederdruckinnenge häuse 90 befindet. Stromaufwärts zum Hochdruckinnengehäuse 30 ist eine Frischdampf- bzw. Prozessdampfquelle 10 zum Zuführen von Prozessdampf zum Hochdruckinnengehäuse 30 angeordnet. Das Hochdruckinnengehäuse 30 weist einen ersten Prozessdampfein- trittsabschnitt 31 und einen ersten Prozessdampfaustrittsab- schnitt 32 zum Leiten von Prozessdampf durch das Hochdruckin nengehäuse 30 vom ersten Prozessdampfeintrittsabschnitt 31 zum ersten Prozessdampfaustrittsabschnitt 32 in einer ersten ProzessdampfentSpannungseinrichtung 33 auf. Das Nieder druckinnengehäuse 40 weist einen zweiten Prozessdampfein trittsabschnitt 41 und einen zweiten Prozessdampfaustrittsab schnitt 42 zum Leiten von Prozessdampf durch das Niederdru- ckinnengehäuse 40 vom zweiten Prozessdampfeintrittsabschnitt 41 zum zweiten Prozessdampfaustrittsabschnitt 42 in einer zweiten ProzessdampfentSpannungseinrichtung 43 auf. Die
Dampfturbine 1 weist ferner einen Zwischenüberhitzer 50 auf, der stromabwärts des Hochdruckinnengehäuses 30 und stromauf wärts des Niederdruckinnengehäuses 40 angeordnet ist. Die An ordnung bezieht sich dabei nicht auf eine räumliche, sondern auf eine strömungstechnische Anordnung.
Wie in Figur 1 dargestellt, sind das Hochdruckinnengehäuse 30 und das Niederdruckinnengehäuse 40 derart angeordnet, dass der erste Dampfeintrittsabschnitt 31 des Hochdruckinnengehäu ses 30 dem zweiten Dampfeintrittsabschnitt 41 des Niederdru ckinnengehäuses 40 zugewandt ist.
Stromabwärts des Hochdruckinnengehäuses 30 weist die Dampf turbine 1 einen Prozessdampfumlenkabschnitt 60 zum Umlenken von Prozessdampf aus dem ersten Dampfaustrittsabschnitt 32 in eine Richtung entgegen der ersten Dampfentspannungs- einrichtung 33 in einen Spalt 70 der Dampfturbine 1 auf. Der Spalt 70 erstreckt sich zwischen dem Dampfturbinenaußengehäu se 20 und dem Hochdruckinnengehäuse 30 sowie zumindest ab schnittsweise zwischen dem Dampfturbinengehäuse 20 und dem Niederdruckinnengehäuse 40. An einem stromabwärtigen Endab schnitt des Niederdruckinnengehäuses 40 ist ein Dichtsteg 80 zum Abdichten eines Dampfturbinenbereichs zwischen dem strom- abwärtigen Endabschnitt des Niederdruckinnengehäuses 40 und dem Dampfturbinenaußengehäuse 20 ausgestaltet. Der Zwischen überhitzer 50 ist außerhalb des Dampfturbinenaußengehäuses 20 angeordnet. Das Hochdruckinnengehäuse 30 und das Niederdru ckinnengehäuse 40 sind als separate Bauteile in einem gemein samen Dampfturbinenaußengehäuse 20 bereitgestellt.
Am stromaufwärtigen Endabschnitt des Hochdruckinnengehäuses 30, an welchem der erste Prozessdampfeintrittsabschnitt 31 ausgestaltet ist, ist eine Hochdruckdichtschale 34 zum teil weise Abdichten des stromabwärtigen Endabschnittes des Hoch druckinnengehäuses 30 angeordnet. Außerdem ist am stromauf- wärtigen Endabschnitt des Niederdruckinnengehäuses 40, an welchem der zweite Prozessdampfeintrittsabschnitt 41 ausge staltet ist, eine Niederdruckdichtschale 44 zum teilweise Ab dichten des stromaufwärtigen Endabschnittes des Niederdrucki nnengehäuses 40 angeordnet. Die Hochdruckdichtschale 34 und die Niederdruckdichtschale 44 sind benachbart zueinander an geordnet. An einem stromabwärtigen Endabschnitt des Hochdru- ckinnengehäuses 30, an welchem der erste Prozessdampfaus trittsabschnitt 32 ausgestaltet ist, ist eine weitere Hoch druckdichtschale 35 zum zumindest teilweise Abdichten des stromabwärtigen Endabschnittes des Hochdruckinnengehäuses 30 angeordnet. Die Hochdruckdichtschale 34 ist derart ausgelegt und ausgebildet, dass über sie ein vorgebbarer Leckage- Massenstrom austreten und in den Bereich 110 zwischen der Hochdruckdichtschale 34 und der Niederdruckdichtschale 44 leitbar ist. Bei vorgegebenem Dampfdruck und Dampftemperatur kann die Dichtschale bzw. der Dichtspalt so ausgelegt werden, dass ein vorgebbarer Leckage-Massenstrom durch die Dichtscha le hindurchtritt. Die Hochdruckdichtschale 34 und die Nieder druckdichtschale 44 sind so aufeinander abgestimmt, dass der Leckage-Massenstrom über die Hochdruckdichtschale 34 größer ist als der Leckage-Massenstrom über die Niederdruckdicht schale 44. Vorzugsweise ist der Leckage-Massenstrom über die Hochdruckdichtschale 34 mindestens 30 %, vorzugsweise mindes tens 50 % größer als der Leckage-Massenstrom über die Nieder druckdichtschale 44.
Figur 2 zeigt eine Detailansicht Z aus Figur 1. An Hand der Figur 2 und mit Bezugnahme auf Figur 1 und den dazu gemachten Beschreibungen wird nachfolgend ein erfindungsgemäßes Verfah ren zum Betreiben einer erfindungsgemäßen Dampfturbine erläu tert .
Um den Spalt zwischen der Welle 100 und den stromaufwärtigen Endabschnitt des Hochdruckinnengehäuses 30 abzudichten, ist eine Hochdruckdichtschale 34 am Endabschnitt des Hochdruckin nengehäuses 30 angeordnet. Zur Abdichtung des Spaltes zwi schen dem stromaufwärtigen Endabschnitt des Niederdruckinnen- gehäuses 40 und der Welle 100 ist eine Niederdruckdichtschale 44 angeordnet. Die Hochdruckdichtschale 34 und die Nieder druckdichtschale 44 sind benachbart zueinander angeordnet. Während des Betriebs der Dampfturbine wird zunächst Prozess dampf von der Prozessdampfquelle 10 durch den ersten Prozess dampfeintrittsabschnitt 31 in das Hochdruckinnengehäuse 30 geleitet. Anschließend wird der Prozessdampf vom ersten Pro zessdampfeintrittsabschnitt 31 zum ersten Prozessdampfaus trittsabschnitt 32 geleitet und danach durch den ersten Pro zessdampfaustrittsabschnitt 32 aus dem Hochdruckinnengehäuse 30 über den Prozessdampfumlenkabschnitt 60 in den Spalt 70 zum Zwischenüberhitzer 50 geleitet. Hierbei wird der Prozess dampf durch den Spalt 70 zum Kühlen des Dampfturbinenaußenge häuses 20 bzw. der Dampfturbine 1 entlang des Hochdruckinnen- gehäuses 30 sowie entlang des Niederdruckinnengehäuses 40 ge leitet. Nachdem der Prozessdampf im Zwischenüberhitzer 50 bei gleichem Druck auf eine vordefinierte Temperatur erhitzt wur de, wird der erhitzte bzw. überhitzte Prozessdampf aus dem Zwischenüberhitzer 50 durch den zweiten Prozessdampfein trittsabschnitt 41 in das Niederdruck- bzw. Mitteldruckinnen- gehäuse geleitet. Von dort wird der Prozessdampf bei gleich bleibender Entspannungsrichtung in das weitere Niederdruckin- nengehäuse 90 gleitet. Dort kann der Prozessdampf weiter ent spannen und schließlich kondensieren. Um zu verhindern, dass der abgekühlte Dampf, welcher der Zwischenüberhitzung 50 zu geführt wird aufgrund des Druckverlustes in der Zwischenüber hitzung in den Spalt zwischen der Hochdruckdichtschale 34 und der Niederdruckdichtschale 44 sowie in das Niederdruckinnen- gehäuse 40 eingesaugt wird, wird Dampf aus dem ersten Hoch druckinnengehäuse 30 Dampf entnommen und direkt auf Zwischen überhitzungsparameter gedrosselt, ohne Arbeit zu verrichten und dieser Dampf direkt in den Spalt zwischen der Hochdruck dichtschale 34 und der Niederdruckdichtschale 44 geleitet.
Hierdurch kann lokal das Niederdruckinnengehäuse 40 sowie der Bereich 110 der Welle 100, welcher zwischen der Hochdruck dichtschale 34 und der Niederdruckdichtschale 44 liegt, lokal erwärmt werden. Um den heißen Dampf dem Hochdruckinnengehäuse 30 zu entnehmen, kann eine Öffnung im Hochdruckinnengehäuse 30 und eine entsprechende Rohrleitung vorgesehen werden. Be sonders einfach und ohne konstruktiven zusätzlichen Aufwand kann der Dampf dem Innengehäuse allerdings über die Hoch druckdichtschale 34 entnommen werden. Hierzu muss der Spalt der Hochdruckdichtschale 34 entsprechend ausgelegt sein. Der heiße Dampf kann dann aus dem Hochdruckinnengehäuse 30 direkt in den Zwischenraum zwischen der ersten Hochdruckdichtschale 34 und der zweiten Niederdruckdichtschale 44 gelangen. Da der Dampf, der über die Hochdruckdichtschale 34 ausströmt nahezu Frischdampfparameter aufweist, kann er dazu genutzt werden, den Bereich 110 zwischen der Hochdruckdichtschale 34 und der Niederdruckdichtschale 44 zu erwärmen. Hierdurch ergibt sich rotordynamisch und rotormechanisch eine positive Temperatur verteilung. Auf der Außenseite des Niederdruckinnengehäuses 40 ist der Druck höher, als auf der Innenseite, Grund hierfür ist der Druckverlust im Spalt, welcher zur Zwischenüberhit zung 50 führt. Der Prozessdampf, der dem Hochdruckinnengehäu se 30 entnommen wird und in dem Bereich 110 zwischen der Hochdruckdichtschale 34 und der Niederdruckdichtschale 44 ge leitet wird, wird somit in das Niederdruckinnengehäuse 40 eingesaugt und sorgt dabei für eine Erwärmung des Niederdru ckinnengehäuse 40. Die Hochdruckdichtschale 34 und die Nie derdruckdichtschale 44 sind so aufeinander abgestimmt, dass der Prozessdampf, welcher über die Hochdruckdichtschale 34 ausströmt mindestens 30 %, vorzugsweise mindestens 50 % grö ßer ist als der Leckage-Massenstrom über die Niederdruck dichtschale 44. Die Differenz der Massenströme führt dazu, dass ein Sperrmassenstrom entsteht, welcher das Eindringen von kaltem, zum Zwischenüberhitzer 50 strömenden Dampf in die Hochdruckdichtschale 34 verhindert.

Claims

Patentansprüche
1. Dampfturbine (1), aufweisend ein Dampfturbinenaußengehäuse (20), ein Hochdruckinnengehäuse (30) mit einem ersten Pro zessdampfeintrittsabschnitt (31) und einem ersten Prozess dampfaustrittsabschnitt (32) zum Leiten von Prozessdampf durch das Hochdruckinnengehäuse (30) vom ersten Prozess dampfeintrittsabschnitt (31) zum ersten Prozessdampfaus trittsabschnitt (32) in einer ersten ProzessdampfentSpan nungsrichtung (33), ein Niederdruckinnengehäuse (40) mit einem zweiten Prozessdampfeintrittsabschnitt (41) und ei nem zweiten Prozessdampfaustrittsabschnitt (42) zum Leiten von Prozessdampf durch das Niederdruckinnengehäuse (40) vom zweiten Prozessdampfeintrittsabschnitt (41) zum zwei ten Prozessdampfaustrittsabschnitt (42) in einer zweiten ProzessdampfentSpannungsrichtung (43) , und einen Zwischen überhitzer (50), zum zwischenüberhitzen von Prozessdampf welcher stromabwärts des Hochdruckinnengehäuses (30) und stromaufwärts des Niederdruckinnengehäuses (40) entnehmbar ist, wobei
das Hochdruckinnengehäuse (30) und das Niederdruckinnenge häuse (40) innerhalb des Dampfturbinenaußengehäuses (20) angeordnet sind,
das Hochdruckinnengehäuse (30) und das Niederdruckinnenge häuse (40) derart angeordnet sind, dass der erste Dampf eintrittsabschnitt (31) des Hochdruckinnengehäuses (30) dem zweiten Dampfeintrittsabschnitt (41) des Niederdrucki nnengehäuses (40) zugewandt ist,
stromabwärts des Hochdruckinnengehäuses (30) ein Prozess- dampfumlenkabschnitt (60) zum Umlenken von Prozessdampf aus dem ersten Dampfaustrittsabschnitt (32) in eine Rich tung entgegen der ersten DampfentSpannungsrichtung (33) in einen Spalt (70), welcher sich zwischen einer Innenwandung des Dampfturbinenaußengehäuses (20) und einer Außenwandung des Hochdruckinnengehäuses (30) und zumindest abschnitts weise zwischen der Innenwandung des Dampfturbinenaußenge häuses (20) und einer Außenwandung des Niederdruckinnenge häuses (40) erstreckt, ausgebildet ist, an einem stromaufwärtigen Endabschnitt des Hochdruckinnen- gehäuses (30), an welchem der erste Prozessdampfeintritts- abschnitt (31) ausgestaltet ist, eine Hochdruck
dichtschale (34) zum zumindest teilweisen Abdichten des stromaufwärtigen Endabschnitts des Hochdruckinnengehäuses (30) und an einem stromaufwärtigen Endabschnitt des Nie- derdruckinnengehäuses (40), an welchem der zweite Prozess dampfeintrittsabschnitt (41) ausgestaltet ist, eine Nie derdruckdichtschale (44) zum zumindest teilweisen Abdich ten des stromaufwärtigen Endabschnitts des Niederdruckin- nengehäuses (40) angeordnet sind, und wobei die Hochdruck dichtschale (34) und die Niederdruckdichtschale (44) be nachbart zueinander angeordnet sind, dadurch gekennzeichnet, dass
das Hochdruckinnengehäuse (30) derart ausgebildet ist, dass Prozessdampf dem Hochdruckinnengehäuse (30) entnehm bar und in einen Bereich (110) zwischen der Hochdruck dichtschale (34) und der Niederdruckdichtschale (44) leit bar ist.
2. Dampfturbine (1) nach Anspruch 1,
dadurch gekennzeichnet, dass
die Hochdruckdichtschale so ausgebildet ist, dass ein vor- gebbarer Leckagemassenstrom über die Hochdruckdichtschale (34) in einen Bereich (110) zwischen der Hochdruckdicht schale (34) und der Niederdruckdichtschale (44) leitbar ist .
3. Dampfturbine (1) nach Anspruch 2,
dadurch gekennzeichnet, dass
die Hochdruckdichtschale (34) und der Niederdruckdicht schale (44) derart ausgebildet und aufeinander abgestimmt sind, dass der Leckagemassenstrom über die Hochdruck dichtschale (34) größer ist als ein Leckagemassenstrom über die Niederdruckdichtschale (44).
4. Dampfturbine (1) nach Anspruch 3,
dadurch gekennzeichnet, dass
der Leckagemassenstrom über die Hochdruckdichtschale (34) mindestens 30% vorzugsweise mindestens 50% größer ist als der Leckagemassenstrom über die Niederdruckdichtschale (44) .
5. Dampfturbine (1) nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass
an einem stromabwärtigen Endabschnitt des Niederdruckin- nengehäuses (40) ein Dichtsteg (80) zum Abdichten eines Dampfturbinenbereichs zwischen dem stromabwärtigen Endab schnitt des Niederdruckinnengehäuses (40) und dem Dampf turbinenaußengehäuse (20) ausgestaltet ist.
6. Dampfturbine (1) nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass
der Zwischenüberhitzer außerhalb des Dampfturbinenaußenge häuses (20) angeordnet ist.
7. Verfahren zum Betreiben einer Dampfturbine (1) nach einem der voranstehenden Ansprüche, aufweisend die Schritte:
- Leiten von Prozessdampf von einer Prozessdampfquelle (10) durch den ersten Prozessdampfeintrittsabschnitt (31) in das Hochdruckinnengehäuse (30),
- Leiten des Prozessdampfes vom ersten Prozessdampfein trittsabschnitt (31) zum ersten Prozessdampfaustrittsab schnitt (32), und
- Leiten des Prozessdampfes durch den ersten Prozessdampf austrittsabschnitt (32) aus dem Hochdruckinnengehäuse (30) über den Prozessdampfumlenkabschnitt und den Spalt (70) zum Zwischenüberhitzer (50)
- entnehmen eines Teils des Prozessdampf aus dem Hochdru ckinnengehäuse (30), entspannen dieses Teils des Pro zessdampfes auf Zwischenüberhitzungsparameter und ein leiten des entnommenen Prozessdampfes in den Bereich (110) zwischen der Hochdruckdichtschale (34) und der Niederdruckdichtschale (44).
8. Verfahren zum Betreiben einer Dampfturbine (1) nach An spruch 7,
dadurch gekennzeichnet, dass
der entnommene Prozessdampf Leckagedampf ist, welcher über die Hochdruck-Dichtschale (34) in den Bereich ( 110 ) zwischen der Hochdruckdichtschale (34) und der Niederdruckdicht schale (44) geleitet wird.
EP19795107.2A 2018-11-13 2019-10-15 Dampfturbine und verfahren zum betreiben derselben Active EP3850194B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018219374.6A DE102018219374A1 (de) 2018-11-13 2018-11-13 Dampfturbine und Verfahren zum Betreiben derselben
PCT/EP2019/077895 WO2020099054A1 (de) 2018-11-13 2019-10-15 Dampfturbine und verfahren zum betreiben derselben

Publications (2)

Publication Number Publication Date
EP3850194A1 true EP3850194A1 (de) 2021-07-21
EP3850194B1 EP3850194B1 (de) 2023-09-13

Family

ID=68387268

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19795107.2A Active EP3850194B1 (de) 2018-11-13 2019-10-15 Dampfturbine und verfahren zum betreiben derselben

Country Status (8)

Country Link
US (1) US11560812B2 (de)
EP (1) EP3850194B1 (de)
JP (1) JP7263514B2 (de)
CN (1) CN113015845B (de)
BR (1) BR112021008477A2 (de)
DE (1) DE102018219374A1 (de)
PL (1) PL3850194T3 (de)
WO (1) WO2020099054A1 (de)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1872434U (de) * 1961-04-28 1963-05-22 Siemens Ag Dampfturbine der doppelgehaeuse-bauart mit innerhalb ein und desselben gehaeuses angeordneten vor und hinter einem zwischenueberhitzer liegenden turbinenteilen.
CH524758A (de) 1970-12-08 1972-06-30 Bbc Brown Boveri & Cie Mehrschaliges Turbinengehäuse für hohe Drücke und hohe Temperaturen
FR2646466B1 (fr) * 1989-04-26 1991-07-05 Alsthom Gec Stator interne hp-mp unique de turbine a vapeur avec climatisation controlee
JP3620167B2 (ja) * 1996-07-23 2005-02-16 富士電機システムズ株式会社 再熱式軸流蒸気タービン
EP1744017A1 (de) * 2005-07-14 2007-01-17 Siemens Aktiengesellschaft Kombinierte Dampfturbine, Dampf- oder Gas- und Dampf- Turbinenanlage, Verfahren zum Betrieb einer kombinierten Dampfturbine
EP1998014A3 (de) * 2007-02-26 2008-12-31 Siemens Aktiengesellschaft Verfahren zum Betreiben einer mehrstufigen Dampfturbine
DE102010033327A1 (de) 2010-08-04 2012-02-09 Siemens Aktiengesellschaft Eingehäusige Dampfturbine mit Zwischenüberhitzung
EP2644840A1 (de) 2012-03-28 2013-10-02 Siemens Aktiengesellschaft Dampfturbinensystem und Verfahren zum Anfahren einer Dampfturbine
DE102013219771B4 (de) 2013-09-30 2016-03-31 Siemens Aktiengesellschaft Dampfturbine
JP5955345B2 (ja) * 2014-01-27 2016-07-20 三菱日立パワーシステムズ株式会社 蒸気タービンを含む熱機関の流体シール構造
CN104533550B (zh) 2014-11-03 2016-06-01 章礼道 能提供全部给水回热抽汽的二次再热汽轮机超高压缸
EP3130748A1 (de) 2015-08-14 2017-02-15 Siemens Aktiengesellschaft Rotorkühlung für eine dampfturbine
DE102015219391A1 (de) * 2015-10-07 2017-04-13 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Gas-und-Dampf-Kombinationskraftwerks
US20180080324A1 (en) * 2016-09-20 2018-03-22 General Electric Company Fluidically controlled steam turbine inlet scroll
JP6771665B2 (ja) * 2016-12-22 2020-10-21 シーメンス アクティエンゲゼルシャフト ガスタービン吸気システムを有するパワープラント
JP6736511B2 (ja) * 2017-03-28 2020-08-05 三菱重工業株式会社 翼異常検出装置、翼異常検出システム、回転機械システム及び翼異常検出方法
DE102017211295A1 (de) 2017-07-03 2019-01-03 Siemens Aktiengesellschaft Dampfturbine und Verfahren zum Betreiben derselben
KR20200037828A (ko) * 2017-08-02 2020-04-09 바스프 에스이 융합 필라멘트 제조(fff) 공정에 의한 3차원 그린 바디의 제조 방법

Also Published As

Publication number Publication date
CN113015845A (zh) 2021-06-22
JP2022509766A (ja) 2022-01-24
BR112021008477A2 (pt) 2021-08-03
US11560812B2 (en) 2023-01-24
JP7263514B2 (ja) 2023-04-24
CN113015845B (zh) 2023-08-04
DE102018219374A1 (de) 2020-05-14
WO2020099054A1 (de) 2020-05-22
US20210396154A1 (en) 2021-12-23
EP3850194B1 (de) 2023-09-13
PL3850194T3 (pl) 2024-02-26

Similar Documents

Publication Publication Date Title
DE102008037410B4 (de) Superkritischen Dampf verwendender kombinierter Kreisprozess und Verfahren
EP2368021B1 (de) Abhitzedampferzeuger sowie ein verfahren zum verbesserten betrieb eines abhitzedampferzeugers
DE102007030764B4 (de) Dampfturbine mit Heizdampfentnahme
WO2007042397A2 (de) Verfahren zum aufwärmen einer dampfturbine
DE112016003348B4 (de) Wasserversorgungssystem, wasserversorgungsverfahren, und dampf erzeugende anlage, die mit wasserversorgungssystem bereitgestellt wird
EP2326800B1 (de) Dampfkraftanlage zur erzeugung elektrischer energie
EP0918151B1 (de) Verfahren und Vorrichtung zur Brennstoffvorwärmung einer Feuerungsanlage
EP3610137B1 (de) Dampfturbine und verfahren zum betreiben derselben
EP1957759B1 (de) Verfahren zum starten einer dampfturbinenanlage
EP2997236B1 (de) Dampfturbine
EP0158629B1 (de) Dampfkreislauf für Dampfkraftanlagen
EP1280980A1 (de) Verfahren zur kühlung einer welle in einem hochdruck-expansionsabschnitt einer dampfturbine
WO2021151605A1 (de) Anlage mit zusatzmodul
EP3810907B1 (de) Abgasrezirkulation in gas- und dampfturbinenanlagen
EP3850194A1 (de) Dampfturbine und verfahren zum betreiben derselben
WO2007144285A2 (de) Dampfkraftanlage
DE102004040730B3 (de) Verfahren und Vorrichtung zum Nutzen von Abwärme
WO2016188671A1 (de) Wasser-dampf-kreislauf einer gas- und dampfturbinenanlage
DE102010033327A1 (de) Eingehäusige Dampfturbine mit Zwischenüberhitzung
EP3183426B1 (de) Kontrollierte kühlung von turbinenwellen
DE112016006048T5 (de) Dampfturbine
DE112016005958B4 (de) Dampfturbinenkühleinheit
DE102014221563A1 (de) Verfahren zur Verkürzung des Anfahrvorgangs einer Dampfturbine
DE102013205053B4 (de) Verfahren zum Betrieb eines einen Wasser-Dampf-Kreislauf aufweisenden Kraftwerks
EP3375985A1 (de) Innengehäusestruktur mit kondensationskammer für eine dampfturbine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210416

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230420

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019009372

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231024

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231214

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231124

Year of fee payment: 5

Ref country code: FR

Payment date: 20231026

Year of fee payment: 5

Ref country code: DE

Payment date: 20231027

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240113

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240115

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20231012

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230919

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019009372

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20231031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231031

26N No opposition filed

Effective date: 20240614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231015