EP3849942B1 - Procédé de préparation de chlorosilanes - Google Patents

Procédé de préparation de chlorosilanes Download PDF

Info

Publication number
EP3849942B1
EP3849942B1 EP18833021.1A EP18833021A EP3849942B1 EP 3849942 B1 EP3849942 B1 EP 3849942B1 EP 18833021 A EP18833021 A EP 18833021A EP 3849942 B1 EP3849942 B1 EP 3849942B1
Authority
EP
European Patent Office
Prior art keywords
reactor
process according
silicon
contact mass
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18833021.1A
Other languages
German (de)
English (en)
Other versions
EP3849942A1 (fr
Inventor
Karl-Heinz RIMBÖCK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Chemie AG
Original Assignee
Wacker Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie AG filed Critical Wacker Chemie AG
Publication of EP3849942A1 publication Critical patent/EP3849942A1/fr
Application granted granted Critical
Publication of EP3849942B1 publication Critical patent/EP3849942B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/1071Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof
    • C01B33/10742Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof prepared by hydrochlorination of silicon or of a silicon-containing material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1809Controlling processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/1071Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00539Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00548Flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00575Controlling the viscosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00584Controlling the density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00654Controlling the process by measures relating to the particulate material
    • B01J2208/00672Particle size selection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00725Mathematical modelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material

Definitions

  • polycrystalline silicon as a starting material for the production of chips or solar cells usually takes place by decomposing its volatile halogen compounds, in particular trichlorosilane (TCS, HSiCl 3 ).
  • TCS trichlorosilane
  • HSiCl 3 trichlorosilane
  • Polycrystalline silicon can be produced in the form of rods using the Siemens process, where polysilicon is deposited on heated filament rods in a reactor. A mixture of TCS and hydrogen is usually used as the process gas. Alternatively, polysilicon granules can be produced in a fluidized bed reactor. Silicon particles are fluidized by means of a gas flow in a fluidized bed, which is heated to high temperatures via a heating device. By adding a silicon-containing reaction gas such as TCS, a pyrolysis reaction occurs on the hot particle surface, causing the particles to grow in diameter.
  • a silicon-containing reaction gas such as TCS
  • halosilanes can arise as by-products, for example monochlorosilane (H 3 SiCl), dichlorosilane (H 2 SiCl 2 ), silicon tetrachloride (STC, SiCl 4 ) as well as di- and oligosilanes.
  • impurities such as hydrocarbons, organochlorosilanes and metal chlorides can be part of the by-products.
  • distillation usually takes place afterwards.
  • chlorosilanes can be produced from metallurgical silicon (Si mg ) with the addition of hydrogen chloride (HCl) in a fluidized bed reactor, the reaction being exothermic. This usually results in TCS and STC as the main products.
  • chlorosilanes especially TCS
  • TCS is the thermal conversion of STC and hydrogen in the gas phase in the presence or absence of a catalyst.
  • the low-temperature conversion (NTK) according to reaction (2) is a weakly endothermic process and is usually carried out in the presence of a catalyst (e.g. copper-containing catalysts or catalyst mixtures).
  • the NTK can be carried out in a fluidized bed reactor in the presence of Si mg under a pressure from 0.5 to 5 MPa and at temperatures of 400 to 700 ° C.
  • An uncatalyzed reaction is generally possible using Si mg and/or by adding HCl to the reaction gas.
  • different product distributions can result and/or lower TCS selectivities can be achieved than with the catalyzed variant.
  • the high-temperature conversion (HTK) according to reaction (3) is an endothermic process. This process usually takes place in a reactor under high pressure at temperatures between 600 and 1,200°C.
  • the known processes are complex and energy-intensive.
  • the required energy supply which is usually electrical, represents a significant cost factor.
  • the operational performance e.g. expressed by the TCS selectivity-weighted productivity, the formation of few high-boiling by-products
  • TCS selectivity-weighted productivity the formation of few high-boiling by-products
  • TCS-selectivity-weighted productivity TCS-selectivity-weighted productivity
  • composition of an NTK product mixture can be determined in the laboratory by analyzing samples taken (off-line/at-line measurement) and requires a lot of personnel. However, this always takes place with a time delay and, in the best case, provides a selective, retrospective excerpt of a discrete operating state of a fluidized bed reactor. However, if, for example, product gas streams from several reactors are directed to a condensation section and only a sample of this condensate mixture is taken, no concrete conclusions can be drawn about the operating states of the individual reactors based on the analysis result.
  • WO 02/48024 A2 describes an NTK process for the production of chlorosilanes, which is controlled by a ratio of the residence times of HCl and silicon tetrachloride.
  • DE 39 38 897 Al describes an NTK process for producing TCS by reacting silicon powder with HCl in a fluidized bed reactor at 280 to 300 ° C.
  • DE 10 2008 041 974 A1 describes an energy-autonomous NTK process for the production of chlorosilanes, in which the reaction of silicon, silicon tetrachloride and H 2 takes place at a pressure of 25 to 55 bar and a temperature of 450 to 650 ° C.
  • DE 197 40 923 A1 describes an HC process for producing STC by reacting silicon with HCl, where the silicon is contacted with a silane compound before or during the HC reaction.
  • process analyzers in the gas and/or condensate stream for example process gas chromatographs, can be used (on-/in-line and/or non-invasive Measurement).
  • process gas chromatographs for example process gas chromatographs
  • the fundamental disadvantage here is the limited number of devices that can be used, due to the high mechanical stress (abrasion) and the aggressive chemical environment.
  • Another cost factor is the generally high procurement and maintenance costs.
  • Soft sensors rely on continuously determined measurement data of operating parameters that are essential for operating the process (e.g. temperatures, pressures, volume flows, filling levels, power, mass flows, valve positions, etc.). This is how you can, for example Predict concentrations of major and by-products.
  • Soft sensors are based on mathematical equations and are dependency simulations of representative measured variables for a target variable. In other words, soft sensors map dependencies on correlating measured variables and lead to a target parameter. The target parameter is therefore not measured directly, but rather determined using measured variables that correlate with it. Applied to the HC, this means that, for example, the TCS content or TCS selectivity are not determined using real measuring sensors (e.g. process gas chromatograph), but can be calculated using relationships between operating parameters.
  • real measuring sensors e.g. process gas chromatograph
  • mathematical equations for soft sensors can be done through fully empirical (e.g. based on a modified power law model), through partially empirical (e.g. based on kinetic equations to describe a reaction rate) or through fundamental (e.g. based on basic equations of fluid mechanics and kinetics) modeling .
  • the mathematical equations can be derived using process simulation programs (e.g. OpenFOAM, ANSYS or Barracuda) or regression programs (e.g. Excel VBA, MATLAB or Maple).
  • the object of the present invention was to improve the economics of producing chlorosilanes using NTK.
  • K1 is given a value from 2 to 20, K2 a value from 0.001 to 200 and K3 a value from 0.5 to 10,000.
  • the productivity of the process is particularly high within these areas.
  • NTK Advanced Process Control
  • Soft sensors can also be used to map performance parameters such as TCS selectivity as a function of K1, K2 and K3.
  • the performance data thus determined with high temporal resolution can be passed on as a variable to be controlled to a process control, in particular model predictive control. In this way, the process can be operated in an economically optimized manner.
  • K1 has a value of 3 to 18, preferably 4 to 16, particularly preferably 6 to 12.
  • K2 preferably has a value of 0.005 to 100, preferably 0.01 to 25, particularly preferably 0.02 to 15.
  • K3 preferably has a value of 0.5 to 10,000, preferably 3 to 3,000, particularly preferably 5 to 1,000, particularly preferably 10 to 500.
  • the Figure 2 shows schematically a fluidized bed reactor 1 with a reactor interior 6 for carrying out the process.
  • the reaction gas 2 is preferably blown into the particulate contact mass from below and optionally from the side (for example tangentially or orthogonally to the gas flow from below), whereby the particles of the contact mass are fluidized and form a fluidized bed 3.
  • the fluidized bed 3 is heated by means of a heating device (not shown) arranged outside the reactor. No heating is typically required during continuous operation.
  • Some of the particles are transported with the gas flow transported from the fluidized bed 3 into the free space 4 above the fluidized bed 3.
  • the free space 4 is characterized by a very low solids density, which decreases towards the reactor outlet.
  • the particle portion that leaves the reactor with the gas flow is referred to as particle discharge 5.
  • An example of a fluidized bed reactor is in the US 2011-/0129402 A1 described.
  • the key figure K1 uses equation 1 to set parameters of the reactor geometry, namely the effective volume of the reactor interior V reactor,eff , the sum of the cooled surfaces in the reactor interior A tot,cooled and the hydraulic diameter d hyd with the fluidized bed, expressed by the dimensionless degree of filling ⁇ , in relationship.
  • V reactor,eff corresponds to the total volume of the reactor interior minus all internals.
  • V Reaxtor,eff is 1 to 300 m 3 , preferably 5 to 200 m 3 , particularly preferably 10 to 150 m 3 , in particular 20 to 100 m 3 .
  • the term interior should be understood to mean, in particular, the area that can come into contact with the reaction gas and/or the particles of the contact mass (i.e. in particular both the free space and the area in which the fluidized bed forms).
  • the geometry of the interior is also determined by internal components located in the interior. With the installations In particular, these can be heat exchanger units, stiffening levels, feeds (lines) for introducing the reaction gas and devices for distributing the reaction gas (e.g. gas distribution plates).
  • a ges,cooled consists of the surfaces of a cooling register (consisting of individual lances, U-tubes, etc.) and a jacket cooling system.
  • the free flow cross section is the cross section of the part of the reactor (without internals) in which the fluidized bed is formed.
  • the hydraulic system diameter d hyd is 0.5 to 2.5 m, preferably 0.75 to 2 m, particularly preferably 0.8 to 1.5 m.
  • the measurement of all objects can be done, for example can be determined using laser measurements/3D scans (e.g. ZEISS COMET L3D 2). These sizes can usually also be found in the information provided by the reactor manufacturer.
  • the particle solid density ⁇ p can be viewed as approximately constant.
  • a typical value is, for example, 2336 kg/m 3 (density Si at 20°C).
  • the measurement can be done with a pycnometer.
  • the pressure loss across the fluidized bed p diff is 10,000 to 200,000 kg/m*s 2 , preferably 30,000 to 150,000 kg/m*s 2 , particularly preferably 50,000 to 120,000 kg/m*s 2 .
  • the pressure in both a supply line of the reaction gas and in a discharge line of the exhaust gas is measured, for example with a manometer. The difference results in p diff .
  • K2 uses equation 4 to describe the nature, in particular the grain size, of the particulate contact mass used.
  • K2 is composed of the dimensionless degree of purity of the silicon R Si , the width of the particle size distribution of the contact mass B AK , the Sauter diameter d 32 and the relative catalyst distribution in the contact mass ⁇ rel .
  • B AK results from equation 5.
  • b AK d 90 ⁇ d 10 , where
  • d 10 [ ⁇ m] is a measure of the size of the smaller particles and the value d 90 [ ⁇ m] is a measure of the larger particles in the fraction or grain mixture.
  • d 10 and d 90 are generally important parameters for characterizing a particle size distribution.
  • the value d 10 means that 10% of all particles are smaller than the specified value.
  • the value of d 50 is also defined as the average particle size (see DIN 13320).
  • the values for d 10 and d 90 are chosen so that the particle size distribution of the contact mass B AK has a width of 10 to 1,500 ⁇ m, preferably 100 to 1,000 ⁇ m, particularly preferably 300 to 800 ⁇ m.
  • the Sauter diameter d 32 corresponds to the mean, equal-volume particle diameter of the contact mass and is 10 to 2,000 ⁇ m, preferably 50 to 1,500 ⁇ m, particularly preferably 100 to 1,000 ⁇ m, in particular 200 to 800 ⁇ m.
  • the width of the grain size distribution or the Sauter diameter can be determined according to ISO 13320 (laser diffraction) and/or ISO 13322 (image analysis). A calculation of mean Particle sizes/diameters from particle size distributions can be done according to DIN ISO 9276-2.
  • the relative catalyst distribution in the contact mass ⁇ rel is a measure of the wetting or general wettability of the particulate contact mass with the catalyst.
  • Catalyst should in particular also be understood to mean mixtures of catalysts and/or promoters that can be added to the fluidized bed reactor.
  • ⁇ rel can also be a measure of the wetting of the particulate contact mass with a catalyst mixture or a catalyst-promoter mixture.
  • the relative catalyst distribution in the contact mass ⁇ rel is 0.001 to 7, preferably 0.005 to 5, particularly preferably 0.01 to 2.5.
  • the average specific surface area can be determined directly, for example, using gas adsorption using the BET method (ISO 9277).
  • Gram should be understood in particular to mean a mixture of silicon particles, which can be produced, for example, by crushing lumpy silicon, in particular Si mg , using crushing and grinding systems.
  • the lumpy silicon can have an average particle size of >10 mm, preferably >20 mm, particularly preferably >50 mm.
  • the maximum average particle size is preferably 500 mm.
  • Grains can essentially be classified into fractions by sieving and/or sifting.
  • a mixture of different grain sizes can be called a grain mixture and the grain sizes that make up the grain mixture can be called grain fractions.
  • Grain fractions can be divided into coarse grain fractions and fine grain fractions relative to each other. In principle, with a grain size mixture it is possible to divide more than one grain size fraction into coarse grain fraction and/or fine grain fraction.
  • the grain size that is introduced into the fluidized bed reactor can be called working grain size be referred to.
  • the contact mass is generally the grain mixture that comes into contact with the reaction gas in the reactor and reacts.
  • the contact mass is in particular a grain mixture.
  • the contact mass does not comprise any further components.
  • It is preferably silicon which contains at most 5% by weight, particularly preferably at most 2% by weight, in particular at most 1% by weight, of elements other than impurities.
  • It is preferably Si mg , which usually has a purity of 98 to 99.9%.
  • a composition with 98% silicon is typical, with the remaining 2% usually consisting largely of the following elements: Fe, Ca, Al, Ti, Cu, Mn, Cr, V, Ni, Mg, B, C, P and O.
  • the following elements can also be included: Co, W, Mo, As, Sb, Bi, S, Se, Te, Zr, Ge, Sn, Pb, Zn, Cd, Sr, Ba, Y and Cl .
  • the indication of the purity of silicon is therefore to be understood as meaning that the content of the elements mentioned is determined in the silicon sample to be measured and these are then used in total to calculate the degree of purity (e.g. in wt.%). If a total impurity content is determined to be 2% by weight, this results in a silicon content of 98% by weight. However, it is also possible to use silicon with a lower purity of 75 to 98% by weight. However, the silicon content is preferably greater than 75% by weight, preferably greater than 85% by weight, particularly preferably greater than 95% by weight.
  • the silicon used is a mixture of Si mg and ultrapure silicon (purity > 99.9%).
  • it can be a grain mixture that includes Si mg and ultrapure silicon.
  • the proportion of Si mg is preferably at least 50% by weight, preferably at least 70% by weight, particularly preferably at least 90% by weight, based on the total weight of the grain mixture.
  • the ultrapure silicon is part of the fine grain fraction.
  • the fine grain fraction can only contain ultrapure silicon.
  • the silicon used is Si mg and ultrapure silicon, the proportion of Si mg being less than 50% by weight, based on the total weight of the grain mixture.
  • the grain mixture or the contact mass additionally comprises a catalyst.
  • the ultrapure silicon and/or the catalyst are preferably components of the fine grain fraction.
  • the fine grain fraction preferably consists of ultrapure silicon.
  • the silicon used is exclusively pure silicon and the contact mass or grain mixture contains a catalyst.
  • ultrapure silicon can be converted by NTK even in the presence of small amounts of one of the elements Co, Mo and W (usually already contained as an impurity in ultrapure silicon).
  • a joint reaction with Si mg which contains larger amounts of the catalytically active elements than Contains contamination is not absolutely necessary.
  • the chlorosilane selectivity can be increased further by adding a catalyst. In the present method, this can be the case in particular if the proportion of ultrapure silicon in the grain mixture is greater than the proportion of Si mg and/or if the grain mixture exclusively comprises ultrapure silicon.
  • the catalyst can be one or more elements from the group consisting of Fe, Cr, Ni, Co, Mn, W, Mo, V, P, As, Sb, Bi, O, S, Se, Te, Ti, Zr , C, Ge, Sn, Pb, Cu, Zn, Cd, Mg, Ca, Sr, Ba, B, Al, Y, Cl.
  • the catalyst is preferably selected from the group containing Fe, Al, Ca, Ni, Mn, Cu, Zn, Sn, C, V, Ti, Cr, B, P, O, Cl and mixtures thereof.
  • these catalytically active elements can already be contained in silicon as an impurity in a certain proportion, for example in oxidic or metallic form, as silicides or in other metallurgical phases, or as oxides or chlorides. Their proportion depends on the purity of the silicon used.
  • the catalyst can, for example, be added to the contact mass in metallic, alloyed and/or salt-like form. These can in particular be chlorides and/or oxides of the catalytically active elements. Preferred compounds are CuCl, CuCl 2 , CuP, CuO or mixtures thereof.
  • the contact mass can also contain promoters, for example Zn and/or ZnCl 2 and/or Sn.
  • the elemental composition of the silicon used and the contact mass can be determined, for example, by means of X-ray fluorescence analysis.
  • the catalyst is preferably in a proportion of 0.1 to 20% by weight, particularly preferably 0.5 to 15% by weight, in particular 0.8 to 10% by weight, particularly preferably 1 up to 5% by weight.
  • the key figure K3 relates the most important parameters of the HC to one another. It contains the gas superficial velocity u L , the pressure loss across the fluidized bed p diff , the kinematic viscosity of the fluid ⁇ F and the fluid density ⁇ F .
  • Fluid means the gaseous reaction mixture in the reactor interior.
  • the gas teaching tube speed u L is 0.05 to 2 m/s, preferably 0.1 to 1 m/s, particularly preferably 0.2 to 0.8 m/s, in particular 0.25 to 0.6 m/s.
  • the fluid density ⁇ F and the kinematic viscosity ⁇ F can be determined by simulations of (phase) equilibrium states using process engineering software. These simulations are usually based on adapted equations of state, which are based on real measured compositions of the reaction mixture in both the gas and liquid phases with varying physical parameters (e.g. p and T). This simulation model can be validated based on real operating states/parameters and thus enables the determination of operating optima with regard to the parameters ⁇ F and ⁇ F .
  • phase equilibria can be done, for example, with a measuring apparatus (e.g. modified circulation apparatus according to Röck and Sieg, e.g. MSK Baraton Type 690, MSK instruments). Changes in the physical state of a mixture of substances are caused by varying physical influencing variables such as pressure and temperature. The different aggregate states are then analyzed and the component composition is determined, for example using a gas chromatograph. Using computer-aided modeling, equations of state can be adjusted to describe the phase equilibria. The data is transferred to process engineering software programs so that phase equilibria can be calculated.
  • a measuring apparatus e.g. modified circulation apparatus according to Röck and Sieg, e.g. MSK Baraton Type 690, MSK instruments.
  • Changes in the physical state of a mixture of substances are caused by varying physical influencing variables such as pressure and temperature.
  • the different aggregate states are then analyzed and the component composition is determined, for example using a gas chromatograph.
  • the kinematic viscosity is a measure of the momentum transfer transverse to the direction of flow in a moving fluid.
  • the kinematic viscosity ⁇ F can be described via the dynamic viscosity and the fluid density.
  • the density can be approximated, for example, using the Rackett equation; for gases, an approximation can be made using an equation of state, such as Peng-Robinson.
  • the density can be measured with a digital density measuring device (e.g. DMA 58, Anton Paar) using the bending oscillator method (natural frequency measurement).
  • the fluid density ⁇ F is in a range from 2 to 20 kg/m 3 , preferably from 5 to 15 kg/m 3 , particularly preferably from 7.5 to 12 kg/m 3 .
  • the kinematic viscosity ⁇ F is in a range from 3*10 -7 to 5.4*10 -6 m 2 /s, preferably from 1.5*10 -6 to 5.4*10 -6 m 2 /s, particularly preferably from 2*10 -6 to 4*10 -6 m 2 /s.
  • the absolute pressure in the fluidized bed reactor at which the process according to the invention is preferably carried out is 0.5 to 5 MPa, preferably 1 to 4 MPa, particularly preferably 1.5 to 3.5 MPa.
  • the process is preferably carried out in a temperature range of 350 to 800°C, particularly preferably 400 to 700°C, in particular 480 to 600°C.
  • the reaction gas Before entering the reactor, the reaction gas preferably contains at least 10% by volume, particularly preferably at least 50% by volume, in particular at least 90% by volume, hydrogen and STC.
  • hydrogen and STC can be present in a molar ratio of 1:1 to 10:1, preferably from 1:1 to 6:1, particularly preferably from 1.1 to 4:1.
  • These components can, for example, come from hydrogen recovered in a composite.
  • HCl and/or Cl 2 can be added to the reaction gas, in particular to enable an exothermic reaction and to influence the equilibrium position of the reactions.
  • the reaction gas preferably contains 0.01 to 1 mol of HCl and/or 0.01 to 1 mol of Cl 2 per mole of hydrogen contained.
  • HCl can also be present as an impurity in recovered hydrogen.
  • the reaction gas can also contain a carrier gas, for example nitrogen or a noble gas such as argon.
  • a carrier gas for example nitrogen or a noble gas such as argon.
  • the composition of the reaction gas is usually determined before it is fed to the reactor using Raman and infrared spectroscopy as well as gas chromatography. This can be done both via random samples taken and subsequent “offline analyses” as well as via “online” analysis devices integrated into the system.
  • the process is preferably integrated into a composite for the production of polysilicon.
  • the composite preferably includes the following processes: production of TCS according to the process according to the invention, purification of the TCS produced to TCS with semiconductor quality, deposition of polysilicon, preferably using the Siemens process or as granules.
  • the particle solids density ⁇ P can be viewed as approximately constant.
  • the fluid density ⁇ F is usually in a range of 2 to 20 kg/m 3 .
  • the kinematic viscosity ⁇ F is usually in a range from 6 ⁇ 10 -7 to 4.5 ⁇ 10 -6 m 2 /s.
  • K1 (equation 1)
  • K2 (equation 4)
  • K3 (equation 7)
  • the productivity [kg/(kg*h)]
  • Amount of contact mass (working grain size) [kg] taken as a basis.
  • a productivity of > 0.01 kg/(kg*h) is considered optimal or acceptable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Silicon Compounds (AREA)

Claims (18)

  1. Procédé de fabrication de chlorosilanes dans un réacteur à lit fluidisé par réaction d'un gaz réactionnel contenant de l'hydrogène et du tétrachlorure de silicium avec une masse de contact particulaire contenant du silicium et un catalyseur, les chlorosilanes ayant la formule générale HnSiCl4-n et/ou HmCl6-mSi2 avec n = 1-4 et m = 0-4, caractérisé en ce que
    - la conception du réacteur est décrite par un indicateur, K 1 = φ . V R é acteur , eff A tot , refroidi . d hyd
    Figure imgb0014
    dans laquelle
    ϕ = taux de remplissage du réacteur,
    VRéacteur,eff = volume efficace du réacteur [m3],
    Atot,refroidi = somme des aires refroidies dans le réacteur [m2],
    dhyd = diamètre hydraulique du réacteur [m], VRéacteur,eff étant de 1 à 300 m3 et dhyd étant de 0,5 à 2,5 m ;
    - la nature de la masse de contact est déterminée par un indicateur K 2 = R Si B AK . δ rel d 32 ,
    Figure imgb0015
    dans lequel
    BAK = largeur de la distribution granulométrique de la masse de contact [pm],
    d32 = diamètre de Sauter des particules [pm],
    RSi = degré de pureté du silicium,
    δrel = distribution relative du catalyseur dans la masse de contact,
    δrel étant de 0,001 à 7, d32 étant de 10 à 2 000 µm, BAK étant de 10 à 1 500 pm et RSi étant de 0,75 à 0,99999 ;
    - les conditions de la réaction sont décrites par un indicateur K 3 = u L ν F 10 6 p diff g 1 ρ F ,
    Figure imgb0016
    dans lequel
    uL = vitesse du gaz dans le tube vide [m/s],
    νF = viscosité cinématique du fluide [m2/s],
    ρF = masse volumique du fluide [kg/m3],
    pdiff = perte de charge sur le lit fluidisé [kg/m*s2],
    g = accélération de la pesanteur [m/s2],
    pdiff étant de 10 000 à 200 000 kg/m*s2, uL étant de 0,05 à 2 m/s, ρF étant de 2 à 20 kg/m3 et νF étant de 3*10-7 à 5,4*10-6 m2/s ;
    K1 ayant une valeur de 2 à 20, K2 une valeur de 0,001 à 200 et K3 une valeur de 0,5 à 10 000.
  2. Procédé selon la revendication 1, caractérisé en ce que K1 a une valeur de 3 à 18, de préférence de 4 à 16, d'une manière particulièrement préférée de 6 à 12.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que K2 a une valeur de 0,005 à 100, de préférence de 0,01 à 25, d'une manière particulièrement préférée de 0,02 à 15.
  4. Procédé selon l'une des revendications précédentes, caractérisé en ce que K3 a une valeur de 0,5 à 10 000, de préférence de 3 à 3 000, d'une manière particulièrement préférée de 5 à 1 000.
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce que le volume efficace du réacteur VRéacteur,eff est de 5 à 200 m3, de préférence de 10 à 150 m3, en particulier de 20 à 100 m3.
  6. Procédé selon l'une des revendications précédentes, caractérisé en ce que le diamètre hydraulique de l'installation dhyd est de 0,75 à 2 m, de préférence de 0,8 à 1,5 m.
  7. Procédé selon l'une des revendications précédentes, caractérisé en ce que la perte de charge sur le lit fluidisé pdiff est de 30 000 à 150 000 kg/m*s2, de préférence de 50 000 à 120 000 kg/m*s2.
  8. Procédé selon l'une des revendications précédentes, caractérisé en ce que le diamètre Sauter des particules d32 est de 50 à 1 500 µm, de préférence de 100 à 1 000 µm, en particulier de 200 à 800 pm.
  9. Procédé selon l'une des revendications précédentes, caractérisé en ce que la largeur de la distribution granulométrique de la masse de contact BAK est de 100 à 1 000 µm, de préférence de 300 à 800 pm.
  10. Procédé selon l'une des revendications précédentes, caractérisé en ce que la distribution relative du catalyseur dans la masse de contact δrel est de 0,005 à 5, de préférence de 0,01 à 2,5.
  11. Procédé selon l'une des revendications précédentes, caractérisé en ce que le catalyseur est choisi dans le groupe Fe, Al, Ca, Ni, Mn, Cu, Zn, Sn, C, V, Ti, Cr, B, P, O, Cl et les mélanges de ceux-ci.
  12. Procédé selon l'une des revendications précédentes, caractérisé en ce que la vitesse du gaz dans le tube vide uL est de 0,1 à 1 m/s, de préférence de 0,2 à 0,8 m/s, en particulier de 0,25 à 0,6 m/s.
  13. Procédé selon l'une des revendications précédentes, caractérisé en ce que la masse volumique du fluide ρF est de 5 à 15 kg/m3, de préférence de 7,5 à 12 kg/m3.
  14. Procédé selon l'une des revendications précédentes, caractérisé en ce que la viscosité cinématique νF est de 1,5*10-6 à 5,4*10-6 m2/s, de préférence de 2*10-6 à
    4*10-6 m2/s.
  15. Procédé selon l'une des revendications précédentes, caractérisé en ce que la pression absolue dans le réacteur à lit fluidisé est de 0,5 à 5 MPa, de préférence de 1 à 4 MPa, d'une manière particulièrement préférée de 1,5 à 3,5 MPa.
  16. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il est mis en œuvre dans une plage de températures de 350 à 800 °C, de préférence de 400 à 700 °C, d'une manière particulièrement préférée de 480 à 600 °C.
  17. Procédé selon l'une des revendications précédentes, caractérisé en ce que le gaz réactionnel contient avant d'entrer dans le réacteur au moins 10 % en volume, de préférence au moins 50 % en volume, d'une manière particulièrement préférée au moins 90 % en volume d'hydrogène et de tétrachlorure de silicium.
  18. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il est intégré dans un système combiné de fabrication de silicium polycristallin.
EP18833021.1A 2018-12-18 2018-12-18 Procédé de préparation de chlorosilanes Active EP3849942B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2018/085601 WO2020125955A1 (fr) 2018-12-18 2018-12-18 Procédé de préparation de chlorosilanes

Publications (2)

Publication Number Publication Date
EP3849942A1 EP3849942A1 (fr) 2021-07-21
EP3849942B1 true EP3849942B1 (fr) 2024-02-07

Family

ID=65010737

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18833021.1A Active EP3849942B1 (fr) 2018-12-18 2018-12-18 Procédé de préparation de chlorosilanes

Country Status (7)

Country Link
US (1) US20220073357A1 (fr)
EP (1) EP3849942B1 (fr)
JP (1) JP7275278B2 (fr)
KR (1) KR102609337B1 (fr)
CN (1) CN113784920B (fr)
TW (1) TWI723676B (fr)
WO (1) WO2020125955A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3938373B1 (fr) * 2019-03-12 2023-05-03 Wacker Chemie AG Procédé pour obtenir des silanes organochlorés

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO166032C (no) * 1988-12-08 1991-05-22 Elkem As Fremgangsmaate ved fremstilling av triklormonosilan.
US5871705A (en) * 1996-09-19 1999-02-16 Tokuyama Corporation Process for producing trichlorosilane
DE10062413A1 (de) 2000-12-14 2002-07-04 Solarworld Ag Verfahren zur Herstellung von Trichlorsilan
JP4620694B2 (ja) 2007-01-31 2011-01-26 株式会社大阪チタニウムテクノロジーズ 高純度トリクロロシランの製造方法
DE102007047210A1 (de) * 2007-10-02 2009-04-09 Wacker Chemie Ag Polykristallines Silicium und Verfahren zu seiner Herstellung
CN102099363A (zh) * 2008-06-04 2011-06-15 陶氏康宁公司 制备有机基卤代硅烷和卤代硅烷的改进
US20100264362A1 (en) 2008-07-01 2010-10-21 Yongchae Chee Method of producing trichlorosilane (TCS) rich Chlorosilane product stably from a fluidized gas phase reactor (FBR) and the structure of the reactor
DE102008041974A1 (de) * 2008-09-10 2010-03-11 Evonik Degussa Gmbh Vorrichtung, deren Verwendung und ein Verfahren zur energieautarken Hydrierung von Chlorsilanen
WO2011009390A1 (fr) * 2009-07-19 2011-01-27 Chu Xi Réacteur et procédé de conversion de silicium gazeux
DE102011005643A1 (de) * 2011-03-16 2012-09-20 Evonik Degussa Gmbh Reaktorkonzept zur Umsetzung von Organochlorsilanen und Siliciumtetrachlorid zu wasserstoffhaltigen Chlorsilanen
DE102012223784A1 (de) * 2012-12-19 2014-06-26 Wacker Chemie Ag Verfahren zur Konvertierung von Siliciumtetrachlorid in Trichlorsilan
DE102015210762A1 (de) 2015-06-12 2016-12-15 Wacker Chemie Ag Verfahren zur Aufarbeitung von mit Kohlenstoffverbindungen verunreinigten Chlorsilanen oder Chlorsilangemischen
JP6874218B2 (ja) 2017-10-05 2021-05-19 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG クロロシラン類の製造方法

Also Published As

Publication number Publication date
JP7275278B2 (ja) 2023-05-17
KR20210087507A (ko) 2021-07-12
TWI723676B (zh) 2021-04-01
US20220073357A1 (en) 2022-03-10
KR102609337B1 (ko) 2023-12-01
EP3849942A1 (fr) 2021-07-21
JP2022539934A (ja) 2022-09-14
TW202023946A (zh) 2020-07-01
WO2020125955A1 (fr) 2020-06-25
CN113784920B (zh) 2024-04-16
CN113784920A (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
EP3606874B1 (fr) Procédé de préparation de chlorosilanes
EP3849942B1 (fr) Procédé de préparation de chlorosilanes
EP3898509B1 (fr) Procédé de préparation de chlorosilanes
EP3017298B1 (fr) Analyse de la composition d'un gas ou d'un flux gazeux dans un réacteur chimique et procédé pour produire des chlorosilanes dans un réacteur à lit fluidisé
EP3938373B1 (fr) Procédé pour obtenir des silanes organochlorés
EP3880686B1 (fr) Procédé pour produire des méthylchlorosilanes au moyen de particules de silicium à structure optimisée
EP3898510A1 (fr) Procédé de préparation de chlorosilanes
EP3781519B1 (fr) Procédé de préparation de chlorosilanes
WO2020221421A1 (fr) Procédé pour la production de trichlorosilane comprenant des particules de silicium à structure optimisée
WO2020239228A1 (fr) Procédé de production de trichlorosilane comprenant des particules de silicium à structure optimisée

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210414

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210809

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230906

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018014091

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20240207