EP3845764A2 - Vakuumpumpe und vakuumpumpensystem - Google Patents

Vakuumpumpe und vakuumpumpensystem Download PDF

Info

Publication number
EP3845764A2
EP3845764A2 EP21166257.2A EP21166257A EP3845764A2 EP 3845764 A2 EP3845764 A2 EP 3845764A2 EP 21166257 A EP21166257 A EP 21166257A EP 3845764 A2 EP3845764 A2 EP 3845764A2
Authority
EP
European Patent Office
Prior art keywords
holweck
pump
vacuum pump
stator
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP21166257.2A
Other languages
English (en)
French (fr)
Other versions
EP3845764B1 (de
EP3845764A3 (de
Inventor
Jan Hofmann
Michael Schweighöfer
Martin Lohse
Sebastian Südwasser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum Technology AG
Original Assignee
Pfeiffer Vacuum Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum Technology AG filed Critical Pfeiffer Vacuum Technology AG
Priority to EP21166257.2A priority Critical patent/EP3845764B1/de
Publication of EP3845764A2 publication Critical patent/EP3845764A2/de
Publication of EP3845764A3 publication Critical patent/EP3845764A3/de
Application granted granted Critical
Publication of EP3845764B1 publication Critical patent/EP3845764B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/044Holweck-type pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/046Combinations of two or more different types of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps

Definitions

  • the invention relates to a vacuum pump, in particular a turbomolecular vacuum pump, with an inlet, an outlet, a housing that encloses a pump space for a gas to be pumped from the inlet to the outlet in one pumping direction, and at least one Holweck pump stage, the at least one Holweck stator and comprises at least one Holweck rotor which rotates around an axis of rotation during operation and delimits a Holweck pump area together with the Holweck stator, the Holweck pump area having an axial length with a first axial end and a second axial end in relation to the axis of rotation, and wherein at least one further inlet is provided for gas to be pumped, which leads via an inlet channel to an opening formed in the Holweck stator of the further inlet into the Holweck pumping area.
  • a vacuum pump in particular a turbomolecular vacuum pump, with an inlet, an outlet, a housing that encloses a pump space for a gas to be pumped
  • Vacuum pumps with several inlets are known in principle and are also referred to as split-flow vacuum pumps.
  • the terms "SplitFlow” and “SPLIT-FLOW” are registered trademarks of Pfeiffer Vacuum GmbH.
  • Other names for such a vacuum pump are also multi-inlet vacuum pump and multi-inlet vacuum pump.
  • split-flow vacuum pumps are used in particular for pumping several chambers (recipients) with different pressures, especially those arranged in series one behind the other.
  • split-flow vacuum pumps include two to six inlets that are spaced along an axis of the pump.
  • the split-flow vacuum pumps usually comprise a stack, that is to say a series arrangement, of pump stages connected in series within of the pump room.
  • These pump stages typically include one or more turbo-molecular pump stages and one or more molecular pump stages, in particular one or more Holweck pump stages.
  • the highest pumping speed and the lowest pressure range are available at the first inlet, ie at the inlet connected upstream of all other inlets.
  • split-flow vacuum pumps are also known in which the highest pumping speed or the highest pumping speed is available at an inlet which is arranged between two further inlets.
  • the specific design of a respective split-flow pump depends in particular on the respective application.
  • Holweck pump stages are concerned, they belong - as mentioned - to the genus of molecular vacuum pumps and each generate a molecular flow by rotating a Holweck rotor relative to one or more Holweck stators.
  • a vacuum pump can comprise one or more Holweck pump stages, wherein several Holweck pump stages can pump both in series and in parallel with one another.
  • Holweck pump stages are used in turbo-molecular vacuum pumps and are then usually connected downstream of one or more turbo-molecular pump stages in the pumping direction.
  • a Holweck pumping stage comprises a Holweck rotor and a Holweck stator, the Holweck rotor having a rotor shaft to which one or more Holweck sleeves (which are sometimes also referred to as rotor sleeves) are concentrically attached by means of a, for example, disk-shaped Holweck hub are.
  • the Holweck stator has a single or multiple Holweck thread. The gas molecules to be conveyed are caused by the rotating movement of the Holweck rotor relative to the Holweck stator along the threads of promoted an inlet to an outlet.
  • a thread turn comprises a circumferential Holweck channel (groove) which is delimited by the walls of a web and in which the gas molecules are conveyed when the rotor sleeve rotates relative to the stator.
  • the width of the radial gap (Holweck gap) between the top of the web, i.e. the web tip, and the rotor sleeve is kept small.
  • the Holweck stator can be either radially outside or radially inside the rotor sleeve, ie both a (radially) outer and a (radially) inner stator can be connected to the corresponding side, i.e. the outside or the inside, of the rotor sleeve form a pumping active Holweck pumping area.
  • a Holweck rotor can therefore work together with two Holweck stators at the same time, and conversely, a Holweck stator can also work together with two Holweck rotors at the same time.
  • a (radially) outer Holweck pump stage and a (radially) inner Holweck pump stage can comprise a common Holweck stator provided on both sides with a Holweck thread (also referred to as "double-sided"), which is located between two rotor sleeves.
  • Holweck pump stages in which the Holweck stator is designed in such a way that the web height decreases in the pumping direction. This can be especially with a constant Bar tip diameter can be achieved in that the so-called groove base diameter increases in the pumping direction.
  • Such Holweck pump stages can have improved pump properties.
  • split-flow vacuum pumps are often referred to as taps. If a split-flow vacuum pump is not only provided with one or more turbo-molecular pump stages - i.e. generally a turbo area - but also has one or more Holweck pump stages - generally a Holweck range - then it is generally known that such split flow -Vacuum pumps can not only have taps in the turbo area, but also in the Holweck area.
  • the Holweck area has a so-called "folded" Holweck arrangement with at least two Holweck pump stages connected in series, then it is also known to provide a tap in the transition area of two directly consecutive Holweck pump stages.
  • the advantage of such a tap is that the inlet provided for this tap, which is also referred to as the port and the opening into the transition area, can in most cases be implemented in a particularly simple manner.
  • the object of the invention is therefore to eliminate this disadvantage and to create a vacuum pump with several inlets and at least one Holweck pump stage, which can be adapted to different requirements.
  • the opening into the Holweck pump area is located in the axial direction between the first axial end and the second axial end of the Holweck pump area, and that the inlet channel comprises at least one opening section which is formed in the Holweck stator is and leads to the mouth in the Holweck pumping area.
  • the tap into the Holweck area does not take place at a transition between two directly successive Holweck pump stages, but at a point on the Holweck stator between the two axial ends of the Holweck pump area.
  • the vacuum pump according to the invention is not dependent on the presence of a transition between two directly successive Holweck pump stages.
  • a tap into the Holweck area can consequently also take place when there is only one Holweck pump stage or several Holweck pump stages that do not follow one another directly.
  • the axial position of the mouth in the Holweck pumping area can in principle be chosen as desired. This has the advantage that the pressure at the tap can be selected comparatively freely as a function of this axial position of the mouth.
  • the invention also relates to a vacuum pump system with a vacuum pump, in particular a turbo-molecular vacuum pump, of the type disclosed herein and with at least one device to be evacuated or at least one device which comprises at least one vacuum chamber to be evacuated.
  • a vacuum pump in particular a turbo-molecular vacuum pump
  • the device to several comprises evacuating vacuum chambers which are arranged one behind the other and each have a gas outlet which is in flow connection with an inlet of the vacuum pump during pumping operation.
  • several pump stages connected in series in the pumping direction between the inlet and the outlet are provided, which include the Holweck pumping stage and at least one turbo-molecular pumping stage, which is arranged upstream of the Holweck pumping stage in the pumping direction.
  • the invention can thus also be implemented on multi-inlet or split-flow vacuum pumps that have different types of pump stages, in particular one or more turbo-molecular pump stages and one or more Holweck pump stages that are connected in series in the pumping direction.
  • At least one further Holweck pump stage is provided, these at least two Holweck pump stages being arranged concentrically and successively in the pumping direction with respect to the axis of rotation forming a common axis of rotation and at least comprise two Holweck stators, one of which is arranged radially inside the other and wherein the mouth and the mouth section extending up to the mouth are formed in the radially inner Holweck stator.
  • the gas to be pumped is first pumped through the radially outer Holweck pump area and then - after passing the transition between the two Holweck pump stages - through the radially inner Holweck pump area. If, according to the exemplary embodiment in question, the opening of the further inlet is formed in the Holweck stator of the radially inner Holweck pumping area, then the invention can be referred to as a relocation of the tap in the downstream direction, based on the pumping direction, compared to the known tap at the transition area become.
  • the opening of the further inlet into the Holweck pumping area is located downstream of a transition area between two directly successive Holweck pumping stages in relation to the pumping direction.
  • the mouth section has at least two channel sections that do not run parallel to one another.
  • the mouth section comprises a channel section formed in the Holweck stator, which extends from a base side of the Holweck stator.
  • the base side of the Holweck stator is the side that faces away from a turbo-molecular pumping stage - if one is present.
  • This channel section formed on the Holweck stator can, according to further exemplary embodiments of the invention, extend from the base side in the axial direction parallel to the axis of rotation in the Holweck stator.
  • Such a channel section can be produced in a particularly advantageous manner by drilling or milling.
  • the mouth section comprises a channel section formed in the Holweck stator, which ends at the mouth and runs in the radial direction perpendicular to the axis of rotation.
  • a channel section can also be produced in a particularly advantageous manner by drilling or milling.
  • the inlet channel has an inlet section, which is located between the further inlet and the Holweck stator and in an adjoining the Holweck stator, which is formed in one piece with the Holweck stator or is supported by the Holweck stator.
  • Stator is designed as a separate component of the vacuum pump. This component can in particular be a so-called lower part of the vacuum pump or an intermediate component.
  • the inlet section can merge directly into the mouth section of the inlet channel formed in the Holweck stator and leading to the mouth.
  • Such a course of the inlet channel between the further inlet and opening into the Holweck pump area can be provided in particular when the Holweck stator and another component, in particular a lower part or an intermediate component of the vacuum pump, are in direct contact with one another, such a direct contact.
  • Concern does not exclude that one or more sealing elements are arranged between Holweck stator and component or lower part or intermediate component.
  • the invention is not restricted to the fact that the further inlet opens into the Holweck pump area at only one point.
  • the inlet channel can consequently, proceeding from the further inlet, lead to a plurality of openings into the Holweck pump area.
  • the inlet channel comprises a plurality of mouth sections formed in the Holweck stator, each of which leads to at least one, preferably to exactly one, of the plurality of mouths.
  • the inlet channel has an inlet section which is located between the further inlet and the Holweck stator and is designed as a collecting section or comprises at least one collecting section that has a plurality of orifices, preferably with all mouths, is in flow connection.
  • each opening By providing such a collecting section, it is consequently not necessary for each opening to have its own inlet channel which leads from the further inlet to the respective opening.
  • the collecting section can in particular be formed in a component of the vacuum pump adjoining the Holweck stator, formed in one piece with the Holweck stator or separate from the Holweck stator, i.e. in a component as has already been described elsewhere.
  • This component for the collecting section can in turn be a so-called lower part or an intermediate component of the vacuum pump.
  • the Holweck stator is provided with a Holweck thread and the groove base diameter varies in the pumping direction.
  • the further inlet opens into the Holweck pumping area of such a conical Holweck pumping stage.
  • this conical Holweck pump stage is part of a so-called "folded" Holweck arrangement, ie in addition to the Holweck pump stage with the mouth according to the invention, at least one further Holweck pump stage is provided, this having at least two Holweck pump stages are arranged concentrically and successively in the pumping direction with respect to the axis of rotation forming a common axis of rotation, i.e. connected in series, and comprise at least two Holweck stators, one of which is arranged radially inside the other, and wherein the mouth and the mouth section extending up to the mouth are formed in the radially inner Holweck stator.
  • the radially outer Holweck pump stage can also be a conical Holweck pump stage. However, it is provided in particular that the groove base diameter decreases in the pumping direction.
  • the turbo molecular pump 111 shown comprises a pump inlet 115 which is surrounded by an inlet flange 113 and to which a recipient (not shown) can be connected in a manner known per se.
  • the gas from the recipient can be sucked out of the recipient via the pump inlet 115 and conveyed through the pump to a pump outlet 117 to which a backing pump, such as a rotary vane pump, can be connected.
  • the inlet flange 113 forms according to FIG Fig. 1 the upper end of the housing 119 of the vacuum pump 111.
  • the housing 119 comprises a lower part 121 on which an electronics housing 123 is arranged laterally. Electrical and / or electronic components of the vacuum pump 111 are accommodated in the electronics housing 123, for example for operating an electric motor 125 arranged in the vacuum pump (see also FIG Fig. 3 ).
  • a plurality of connections 127 for accessories are provided on the electronics housing 123.
  • a data interface 129 for example in accordance with the RS485 standard, and a power supply connection 131 are arranged on the electronics housing 123.
  • turbo-molecular pumps that do not have an electronic housing attached in this way, but are connected to external drive electronics.
  • a flood inlet 133 in particular in the form of a flood valve, is provided on the housing 119 of the turbo molecular pump 111, via which the vacuum pump 111 can be flooded.
  • a sealing gas connection 135, which is also referred to as a purging gas connection is also arranged above which purge gas to protect the electric motor 125 (see e.g. Fig. 3 ) can be admitted into the engine compartment 137, in which the electric motor 125 in the vacuum pump 111 is accommodated, before the gas conveyed by the pump.
  • Two coolant connections 139 are also arranged in the lower part 121, one of the coolant connections being provided as an inlet and the other coolant connection being provided as an outlet for coolant, which can be passed into the vacuum pump for cooling purposes.
  • Other existing turbo-molecular vacuum pumps (not shown) are operated exclusively with air cooling.
  • the lower side 141 of the vacuum pump can serve as a standing surface, so that the vacuum pump 111 can be operated standing on the lower side 141.
  • the vacuum pump 111 can, however, also be attached to a recipient via the inlet flange 113 and can thus be operated in a suspended manner, as it were.
  • the vacuum pump 111 can be designed in such a way that it can also be put into operation when it is oriented in a different way than in FIG Fig. 1 is shown.
  • Embodiments of the vacuum pump can also be implemented in which the underside 141 cannot be arranged facing downwards, but facing to the side or facing upwards. In principle, any angle is possible.
  • various screws 143 are also arranged by means of which components of the vacuum pump not specified here are attached to one another.
  • a bearing cap 145 is attached to the underside 141.
  • Fastening bores 147 are also arranged on the underside 141, via which the pump 111 can be fastened to a support surface, for example. This is not possible with other existing turbo molecular vacuum pumps (not shown), which are in particular larger than the pump shown here.
  • a coolant line 148 is shown, in which the coolant introduced and discharged via the coolant connections 139 can circulate.
  • the vacuum pump comprises several process gas pump stages for conveying the process gas present at the pump inlet 115 to the pump outlet 117.
  • a rotor 149 is arranged in the housing 119 and has a rotor shaft 153 rotatable about an axis of rotation 151.
  • the turbo-molecular pump 111 comprises several turbo-molecular pump stages connected in series with one another with several radial rotor disks 155 fastened to the rotor shaft 153 and stator disks 157 arranged between the rotor disks 155 and fixed in the housing 119.
  • a rotor disk 155 and an adjacent stator disk 157 each form a turbomolecular one Pumping stage.
  • the stator disks 157 are held at a desired axial distance from one another by spacer rings 159.
  • the vacuum pump also comprises Holweck pump stages which are arranged one inside the other in the radial direction and are connected in series with one another for effective pumping. There are other turbo-molecular vacuum pumps (not shown) that do not have Holweck pump stages.
  • the rotor of the Holweck pump stages comprises a rotor hub 161 arranged on the rotor shaft 153 and two cylinder-jacket-shaped Holweck rotor sleeves 163, 165 which are attached to the rotor hub 161 and carried by the latter, which are oriented coaxially to the axis of rotation 151 and nested in one another in the radial direction. Furthermore, two cylinder jacket-shaped Holweck stator sleeves 167, 169 are provided, which are also oriented coaxially to the axis of rotation 151 and, viewed in the radial direction, are nested inside one another.
  • the active pumping surfaces of the Holweck pump stages are formed by the jacket surfaces, that is to say by the radial inner and / or outer surfaces, of the Holweck rotor sleeves 163, 165 and the Holweck stator sleeves 167, 169.
  • the radial inner surface of the outer Holweck stator sleeve 167 lies opposite the radial outer surface of the outer Holweck rotor sleeve 163 with the formation of a radial Holweck gap 171 and with this forms the first Holweck pump stage following the turbomolecular pumps.
  • the radial inner surface of the outer Holweck rotor sleeve 163 faces the radial outer surface of the inner Holweck stator sleeve 169 with the formation of a radial Holweck gap 173 and forms with this a second Holweck pumping stage.
  • the radial inner surface of the inner Holweck stator sleeve 169 lies opposite the radial outer surface of the inner Holweck rotor sleeve 165 with the formation of a radial Holweck gap 175 and with this forms the third Holweck pumping stage.
  • a radially running channel can be provided, via which the radially outer Holweck gap 171 is connected to the central Holweck gap 173.
  • a radially running channel can be provided at the upper end of the inner Holweck stator sleeve 169, via which the middle Holweck gap 173 is connected to the radially inner Holweck gap 175.
  • the nested Holweck pump stages are connected in series with one another.
  • the radially inner Holweck rotor sleeve 165 can furthermore be provided with a connection channel 179 to outlet 117.
  • the aforementioned pump-active surfaces of the Holweck stator sleeves 167, 169 each have a plurality of Holweck grooves running helically around the axis of rotation 151 in the axial direction, while the opposite lateral surfaces of the Holweck rotor sleeves 163, 165 are smooth and the gas for operating the Drive vacuum pump 111 in the Holweck grooves.
  • a roller bearing 181 is provided in the area of the pump outlet 117 and a permanent magnetic bearing 183 in the area of the pump inlet 115.
  • a conical injection molded nut 185 is provided on the rotor shaft 153 with an outer diameter that increases towards the roller bearing 181.
  • the injection-molded nut 185 is in sliding contact with at least one stripper of an operating medium reservoir.
  • an injection screw can be provided instead of an injection nut. Since different designs are thus possible, the term "spray tip" is also used in this context.
  • the operating medium reservoir comprises several absorbent disks 187 stacked on top of one another, which are impregnated with an operating medium for the roller bearing 181, e.g. with a lubricant.
  • the operating medium is transferred by capillary action from the operating medium reservoir via the scraper to the rotating injection nut 185 and, as a result of the centrifugal force, is conveyed along the injection nut 185 in the direction of the increasing outer diameter of the injection nut 185 to the roller bearing 181, where it eg fulfills a lubricating function.
  • the roller bearing 181 and the operating medium store are enclosed in the vacuum pump by a trough-shaped insert 189 and the bearing cover 145.
  • the permanent magnetic bearing 183 comprises a rotor-side bearing half 191 and a stator-side bearing half 193, each of which comprises a ring stack of several permanent magnetic rings 195, 197 stacked on top of one another in the axial direction.
  • the ring magnets 195, 197 are opposite one another with the formation of a radial bearing gap 199, the rotor-side ring magnets 195 being arranged radially on the outside and the stator-side ring magnets 197 being arranged radially on the inside.
  • the magnetic field present in the bearing gap 199 causes magnetic repulsive forces between the ring magnets 195, 197, which cause the rotor shaft 153 to be supported radially.
  • the rotor-side ring magnets 195 are carried by a carrier section 201 of the rotor shaft 153 which surrounds the ring magnets 195 radially on the outside.
  • the stator-side ring magnets 197 are carried by a stator-side support section 203 which extends through the ring magnets 197 and is suspended from radial struts 205 of the housing 119.
  • the ring magnets 195 on the rotor side are fixed parallel to the axis of rotation 151 by a cover element 207 coupled to the carrier section 201.
  • the stator-side ring magnets 197 are fixed parallel to the axis of rotation 151 in one direction by a fastening ring 209 connected to the carrier section 203 and a fastening ring 211 connected to the carrier section 203.
  • a plate spring 213 can also be provided between the fastening ring 211 and the ring magnet 197.
  • An emergency or retainer bearing 215 is provided within the magnetic bearing, which runs empty during normal operation of the vacuum pump 111 without contact and only comes into engagement with an excessive radial deflection of the rotor 149 relative to the stator to create a radial stop for the rotor 149 to form so that a collision of the rotor-side structures with the stator-side structures is prevented becomes.
  • the backup bearing 215 is designed as an unlubricated roller bearing and forms a radial gap with the rotor 149 and / or the stator, which has the effect that the backup bearing 215 is disengaged during normal pumping operation.
  • the radial deflection at which the backup bearing 215 engages is dimensioned large enough that the backup bearing 215 does not come into engagement during normal operation of the vacuum pump, and at the same time small enough that a collision of the rotor-side structures with the stator-side structures under all circumstances is prevented.
  • the vacuum pump 111 comprises the electric motor 125 for rotatingly driving the rotor 149.
  • the armature of the electric motor 125 is formed by the rotor 149, the rotor shaft 153 of which extends through the motor stator 217.
  • a permanent magnet arrangement can be arranged radially on the outside or embedded on the section of the rotor shaft 153 extending through the motor stator 217.
  • the motor stator 217 is fixed in the housing within the motor compartment 137 provided for the electric motor 125.
  • a sealing gas which is also referred to as a flushing gas and which can be air or nitrogen, for example, can enter the engine compartment 137 via the sealing gas connection 135.
  • the electric motor 125 can be protected from process gas, for example from corrosive components of the process gas, via the sealing gas.
  • the engine compartment 137 can also be evacuated via the pump outlet 117, ie in the engine compartment 137 there is at least approximately the vacuum pressure produced by the backing pump connected to the pump outlet 117.
  • a so-called and known labyrinth seal 223 can also be provided between the rotor hub 161 and a wall 221 delimiting the engine compartment 137, in particular to achieve better sealing of the motor compartment 217 from the Holweck pump stages located radially outside.
  • turbo-molecular vacuum pump described above and known from the prior art is not a split-flow vacuum pump.
  • the structure and mode of operation of this turbo-molecular vacuum pump also apply in principle to the vacuum pump according to the invention.
  • Fig. 6 shows a possible vacuum system according to the invention with a split-flow vacuum pump 10 according to the invention and a device 12 to be evacuated by means of this vacuum pump 10.
  • the device 12 comprises three vacuum chambers 14 arranged one behind the other, with gas entering the lowermost chamber 14 being able to pass into the respective subsequent chamber 14, as indicated by the arrows.
  • Each chamber has a gas outlet 16 which leads to an inlet 11 or 33 of the vacuum pump 10, also referred to as a port.
  • the inlet 33 of the vacuum pump 10, which corresponds to the gas outlet 16 of the lowermost chamber 14, is a further inlet in the sense of the invention, which - as will be described in more detail elsewhere - leads to a Holweck area of the vacuum pump 10.
  • the split-flow vacuum pump 10 shown here only schematically, has a housing 15 and within the housing 15 in a pump chamber 17 a rotor shaft 18 which rotates during operation and thus sets rotating components of the individual pump stages attached to it in rotation, namely by one Axis of rotation A, which is defined by the rotor shaft 18.
  • these pump stages are turbo-molecular pump stages 47, which are followed in a pumping direction P in the pump chamber 17 by a Holweck area with two Holweck pump stages 19, 21.
  • a Holweck rotor 31 is only shown schematically, which comprises a Holweck sleeve 32 and a Holweck hub 30, via which the Holweck sleeve 32 is attached to the rotor shaft 18.
  • This Holweck rotor 31 belongs to both Holweck pump stages 19, 21, as will be described below in connection with Fig. 7 is explained in more detail.
  • Gas to be pumped thus enters the pump chamber 17 of the split-flow vacuum pump 10 from the device 12 to be evacuated via its outlets 16 of the individual chambers 14 at different points via the inlets 11, 33 and is released by means of the individual pump stages 47, 19, 21 mentioned is pumped in the pumping direction P to an outlet 13, via which the gas leaves the vacuum pump 10.
  • the basic structure explained above and its functionality is known in principle and can - as also mentioned in the introductory part - be varied in many ways, in particular with regard to the number and arrangement of the chambers 14 to be evacuated of the device 12 to be evacuated and with regard to the number, arrangement and configuration of the individual pump stages of the split-flow vacuum pump 10.
  • FIG. 7 schematically illustrated area of a split-flow vacuum pump 10 according to the invention would be in the in Fig. 6 vacuum pump 10 shown are located approximately (apart from the position of a pump lower part) at the point that is shown in Fig. 6 is indicated by a dashed square V, i.e. to the left of the in Fig. 7 Rotation axis A, not shown, at the lower end of the Holweck sleeve 32 of the Holweck rotor 31 pointing towards the outlet 13.
  • FIG. 7 the housing 15, a lower part 51, an outer Holweck stator 23, an inner Holweck stator 25 and the Holweck sleeve 32 of the Holweck rotor 31 are partially shown.
  • the Holweck stators 23, 25 are each provided with a Holweck thread on their active pumping side facing the Holweck sleeve 32.
  • a Holweck groove 55 is shown for each Holweck stator 23, 25, which is delimited by a web 53.
  • the Holweck sleeve 32 and the radially outer Holweck stator 23 thus form a radially outer Holweck pump area 27 and the Holweck sleeve 32 and the radially inner Holweck stator 25 form a radially inner Holweck pump area 29.
  • the two Holweck pump areas 27, 29 merge into one another in a transition area 43.
  • the height of the webs 53 in the pumping direction P decreases in both Holweck pumping areas 27, 29, with the groove base diameter decreasing in the pumping direction P in the radially outer Holweck pumping stage 19, whereas in the radially inner Holweck -Pump stage 21 the groove base diameter increases in pumping direction P.
  • the tap is relocated downstream in relation to the pumping direction P and thus in relation to the direction of the flow of the gas to be pumped, the tap taking place laterally in the inner Holweck stator 23.
  • an inlet channel 35 extends from a further inlet 33 of the vacuum pump to an opening 37 in the radially inner Holweck pump area 29, the opening 37 being formed in the groove 55 of the radially inner Holweck stator 25.
  • the inlet channel 35 consists of an inlet section 49 which initially runs in the radial direction and which, like the further inlet 33, is also formed in the lower pump part 51.
  • the inlet section 49 extends in an axial direction - based on the axis of rotation A, not shown here (cf. Fig. 6 ) - extending section in the lower part 51, which is immediately followed by an axial channel section 39, which is formed in the radially inner Holweck stator 25.
  • This axial channel section 39 merges into a radial channel section 41 of the inner Holweck stator 25, which leads to the mouth 37.
  • the inlet channel 35 extending from the further inlet 33 to the mouth 37 thus has an inlet section 49 formed in the lower part 51, which begins at the further inlet 33, and one formed in the radially inner Holweck stator 25 and formed by the two mentioned channel sections 39, 41 Muzzle section which ends at the mouth 37.
  • the radially inner Holweck stator 25 has a comparatively large wall thickness - measured in the radial direction - the axial duct section 39 and the radial duct section 41 can be provided with a comparatively large diameter, whereby relatively large conductance values can be achieved.
  • the two channel sections 39, 41 can be produced by drilling or milling.
  • a different axial position for the mouth 37 can also be selected depending on the respective requirement.
  • the length of the axial channel section 39 must then be varied accordingly.
  • the radial bore or radial milling 41 can in principle be carried out at any desired axial position in order to reach the bore which starts from the base side 45 of the radially inner Holweck stator 25 facing the lower part 51 and forms the axial channel section 39.
  • several channels can also open into the radially inner Holweck pumping area 29, ie several openings 37 can be provided, which differ with regard to their axial position and / or with regard to their circumferential position - each based on the Axis of rotation A (cf. Fig. 6 ) - differ from each other.
  • the inlet channel can be formed in another component separate from the outer Holweck stator, in particular in an intermediate component which is also referred to as an intermediate piece.
  • Gas routing for tapping via the further inlet 33 does not therefore have to be carried out as in the exemplary embodiment in FIG Fig. 7 through the lower pump part 51, but can also be done in other ways.
  • the gas can be routed through a section of the pump which is formed in one piece with the Holweck stator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

Die Erfindung betrifft eine Vakuumpumpe, insbesondere Turbomolekularvakuumpumpe, mit einem Einlass, einem Auslass, einem Gehäuse, das einen Pumpenraum für ein vom Einlass zum Auslass in einer Pumprichtung zu pumpendes Gas einschließt, und zumindest einer Holweck-Pumpstufe, die zumindest einen Holweck-Stator und wenigstens einen im Betrieb um eine Rotationsachse rotierenden, zusammen mit dem Holweck-Stator einen Holweck-Pumpbereich begrenzenden Holweck-Rotor umfasst, wobei der Holweck-Pumpbereich bezogen auf die Rotationsachse eine axiale Länge mit einem ersten axialen Ende und einem zweiten axialen Ende aufweist, wobei zumindest ein weiterer Einlass für zu pumpendes Gas vorgesehen ist, der über einen Einlasskanal zu einer im Holweck-Stator ausgebildeten Mündung des weiteren Einlasses in den Holweck-Pumpbereich führt, wobei die Mündung in axialer Richtung zwischen dem ersten axialen Ende und dem zweiten axialen Ende des Holweck-Pumpbereiches gelegen ist, und wobei der Einlasskanal zumindest einen Mündungsabschnitt umfasst, der im Holweck-Stator ausgebildet ist und bis zur Mündung in den Holweck-Pumpbereich führt.

Description

  • Die Erfindung betrifft eine Vakuumpumpe, insbesondere eine Turbomolekularvakuumpumpe, mit einem Einlass, einem Auslass, einem Gehäuse, das einen Pumpenraum für ein vom Einlass zum Auslass in einer Pumprichtung zu pumpendes Gas einschließt, und zumindest einer Holweck-Pumpstufe, die zumindest einen Holweck-Stator und wenigstens einen im Betrieb um eine Rotationsachse rotierenden, zusammen mit dem Holweck-Stator einen Holweck-Pumpbereich begrenzenden Holweck-Rotor umfasst, wobei der Holweck-Pumpbereich bezogen auf die Rotationsachse eine axiale Länge mit einem ersten axialen Ende und einem zweiten axialen Ende aufweist, und wobei zumindest ein weiterer Einlass für zu pumpendes Gas vorgesehen ist, der über einen Einlasskanal zu einem im Holweck-Stator ausgebildeten Mündung des weiteren Einlasses in den Holweck-Pumpbereich führt.
  • Vakuumpumpen mit mehreren Einlässen sind grundsätzlich bekannt und werden auch als Splitflow-Vakuumpumpen bezeichnet. Die Begriffe "SplitFlow" und "SPLIT-FLOW" sind eingetragene Marken der Pfeiffer Vacuum GmbH. Andere Bezeichnungen für einer derartige Vakuumpumpe sind auch Mehreinlass-Vakuumpumpe und Multiinlet-Vakuumpumpe.
  • Splitflow-Vakuumpumpen werden insbesondere zum Pumpen von mehreren, insbesondere in Reihe hintereinander angeordneten, Kammern (Rezipienten) mit unterschiedlichen Drücken eingesetzt. Typischerweise umfassen Splitflow-Vakuumpumpen zwei bis sechs Einlässe, die entlang einer Achse der Pumpe beabstandet sind. Die Splitflow-Vakuumpumpen umfassen üblicherweise einen Stapel, also eine Hintereinanderanordnung, von hintereinander geschalteten Pumpstufen innerhalb des Pumpenraumes. Typischerweise umfassen diese Pumpstufen eine oder mehrere Turbomolekular-Pumpstufen sowie eine oder mehrere Molekular-Pumpstufen, insbesondere eine oder mehrere Holweck-Pumpstufen. In einer typischen Anwendung stehen die höchste Pumpgeschwindigkeit und der niedrigste Druckbereich am ersten, d.h. am allen weiteren Einlässen vorgeschalteten Einlass zur Verfügung. Die nachgeschalteten Einlässe befinden sich entsprechend ihrer Reihenfolge in höheren Druckbereichen und liefern niedrigere Pumpgeschwindigkeiten. Es sind aber auch Splitflow-Vakuumpumpen bekannt, bei welchen die höchste Pumpgeschwindigkeit bzw. das höchste Saugvermögen an einem Einlass zur Verfügung steht, der zwischen zwei weiteren Einlässen angeordnet ist. Die konkrete Ausgestaltung einer jeweiligen Splitflow-Pumpe ist insbesondere von der jeweiligen Anwendung abhängig.
  • Was die erwähnten Holweck-Pumpstufen anbetrifft, so gehören diese - wie erwähnt - zur Gattung der Molekularvakuumpumpen und erzeugen jeweils durch Drehung eines Holweck-Rotors relativ zu einem oder mehreren Holweck-Statoren eine molekulare Strömung. Eine Vakuumpumpe kann eine oder mehrere Holweck-Pumpstufen umfassen, wobei mehrere Holweck-Pumpstufen sowohl seriell als auch parallel zueinander pumpen können. Typischerweise, aber nicht zwingend, werden Holweck-Pumpstufen in Turbomolekular-Vakuumpumpen eingesetzt und sind dann meist einer oder mehreren Turbomolekular-Pumpstufen in Pumprichtung nachgeschaltet.
  • Eine Holweck-Pumpstufe umfasst einen Holweck-Rotor und einen Holweck-Stator, wobei der Holweck-Rotor eine Rotorwelle aufweist, an welcher mittels einer beispielsweise scheibenförmigen Holweck-Nabe eine oder mehrere Holweck-Hülsen (die teilweise auch als Rotorhülsen bezeichnet werden) konzentrisch angebracht sind. Der Holweck-Stator ist mit einem ein- oder mehrgängigen Holweck-Gewinde versehen. Die zu fördernden Gasmoleküle werden durch die rotierende Bewegung des Holweck-Rotors relativ zum Holweck-Stator entlang der Gewindegänge von einem Einlass zu einem Auslass gefördert. Ein Gewindegang umfasst einen durch Wände eines Steges begrenzten umlaufenden Holweck-Kanal (Nut), in welchem die Gasmoleküle gefördert werden, wenn sich die Rotorhülse relativ zum Stator dreht. Um Rückströmungsverluste zu minimieren, wird die Weite des radialen Spaltes (Holweck-Spalt) zwischen der Oberseite des Steges, also der Stegspitze, und der Rotorhülse klein gehalten.
  • Bei Holweck-Pumpstufen kann der Holweck-Stator entweder radial außerhalb oder radial innerhalb der Rotorhülse liegen, d.h. sowohl ein (radial) äußerer als auch ein (radial) innerer Stator kann mit der entsprechenden Seite, also der Außenseite bzw. der Innenseite, der Rotorhülse einen pumpaktiven Holweck-Pumpbereich bilden. Es kann also ein Holweck-Rotor gleichzeitig mit zwei Holweck-Statoren zusammenwirken, wobei auch umgekehrt ein Holweck-Stator gleichzeitig mit zwei Holweck-Rotoren zusammenwirken kann.
  • Es sind auch sogenannte "gefaltete" Holweck-Anordnungen bekannt, bei denen mehrere Holweck-Pumpstufen konzentrisch ineinander angeordnet und pumpwirksam seriell hintereinander geschaltet sind, also in Pumprichtung gesehen unmittelbar aufeinander folgen, sodass das zu pumpende Gas nacheinander durch die aufeinander folgenden Holweck-Pumpbereiche gepumpt wird und die Pumprichtungen von radial unmittelbar aufeinanderfolgenden Holweck-Pumpstufen einander entgegengesetzt sind. Zwei unmittelbar aufeinanderfolgende Holweck-Pumpstufen, also eine (radial) äußere Holweck-Pumpstufe und eine (radial) innere Holweck-Pumpstufe, können einen gemeinsamen, beidseitig mit einem Holweck-Gewinde versehenen (auch als "doppelseitig" bezeichnet) Holweck-Stator umfassen, der sich zwischen zwei Rotorhülsen befindet.
  • Es ist grundsätzlich auch bekannt, sogenannte "konische" Holweck-Pumpstufen vorzusehen, bei denen der Holweck-Stator derart ausgebildet ist, dass die Steghöhe in Pumprichtung abnimmt. Dies kann insbesondere bei einem konstanten Stegspitzendurchmesser dadurch erreicht werden, dass der sogenannte Nutgrunddurchmesser in Pumprichtung zunimmt. Derartige Holweck-Pumpstufen können verbesserte Pumpeigenschaften aufweisen.
  • Die Einlässe der Splitflow-Vakuumpumpen werden häufig auch als Anzapfungen bezeichnet. Wenn eine Splitflow-Vakuumpumpe nicht nur mit einer oder mehreren Turbomolekular-Pumpstufen - allgemein also einem Turbobereich - versehen ist, sondern zusätzlich eine oder mehrere Holweck-Pumpstufen - allgemein also einen Holweck-Bereich - aufweist, dann ist es grundsätzlich bekannt, dass derartige Splitflow-Vakuumpumpen nicht nur Anzapfungen in den Turbobereich, sondern auch in den Holweck-Bereich besitzen können.
  • Wenn der Holweck-Bereich eine sogenannte "gefaltete" Holweck-Anordnung mit zumindest zwei seriell hintereinander geschalteten Holweck-Pumpstufen aufweist, dann ist es auch bekannt, eine Anzapfung in den Übergangsbereich zweier unmittelbar aufeinanderfolgender Holweck-Pumpstufen vorzusehen. Der Vorteil einer solchen Anzapfung besteht darin, dass der für diese Anzapfung vorgesehene, zwischen dem auch als Port bezeichneten Einlass und der Mündung in den Übergangsbereich in den meisten Fällen besonders einfach realisiert werden kann.
  • Nachteilig ist, dass die bislang bekannte Festlegung der Anzapfung auf den Übergangsbereich zweier unmittelbar aufeinanderfolgender Holweck-Pumpstufen keinerlei Variationsmöglichkeiten eröffnet.
  • Aufgabe der Erfindung ist es daher, diesen Nachteil zu beseitigen und eine Vakuumpumpe mit mehreren Einlässen und zumindest einer Holweck-Pumpstufe zu schaffen, die an unterschiedliche Anforderungen angepasst werden kann.
  • Die Lösung dieser Aufgabe erfolgt jeweils durch die Merkmale der unabhängigen Ansprüche.
  • Bei der erfindungsgemäßen Vakuumpumpe ist vorgesehen, dass die Mündung in den Holweck-Pumpbereich in axialer Richtung zwischen dem ersten axialen Ende und dem zweiten axialen Ende des Holweck-Pumpbereichs gelegen ist, und dass der Einlasskanal zumindest einen Mündungsabschnitt umfasst, der im Holweck-Stator ausgebildet ist und bis zur Mündung in den Holweck-Pumpbereich führt.
  • Erfindungsgemäß erfolgt die Anzapfung in den Holweck-Bereich nicht an einem Übergang zwischen zwei unmittelbar aufeinanderfolgenden Holweck-Pumpstufen, sondern an einer Stelle des Holweck-Stators zwischen den beiden axialen Enden des Holweck-Pumpbereiches. Hierdurch ist zum einen die erfindungsgemäße Vakuumpumpe nicht auf das Vorhandensein eines Übergangs zwischen zwei unmittelbar aufeinanderfolgenden Holweck-Pumpstufen angewiesen. Erfindungsgemäß kann folglich eine Anzapfung in den Holweck-Bereich auch dann erfolgen, wenn nur eine Holweck-Pumpstufe vorhanden ist oder mehrere Holweck-Pumpstufen, die nicht unmittelbar aufeinanderfolgen. Zum anderen kann die axiale Position der Mündung in den Holweck-Pumpbereich grundsätzlich beliebig gewählt werden. Dies hat den Vorteil, dass in Abhängigkeit von dieser axialen Position der Mündung der Druck an der Anzapfung vergleichsweise frei gewählt werden kann.
  • Es hat sich überraschend gezeigt, dass bei einer nicht an einem Übergangsbereich zwischen unmittelbar aufeinanderfolgenden Holweck-Pumpstufen liegenden Mündung des Einlasskanals in den Holweck-Pumpbereich sehr gute Pumpresultate mit einer Mehreinlass-Vakuumpumpe erzielt werden können.
  • Die Erfindung betrifft außerdem ein Vakuumpumpsystem mit einer Vakuumpumpe, insbesondere einer Turbomolekular-Vakuumpumpe, der hierin offenbarten Art und mit wenigstens einer zu evakuierenden Einrichtung oder wenigstens einer Einrichtung, die zumindest eine zu evakuierende Vakuumkammer umfasst. Insbesondere ist bei diesem Vakuumpumpsystem vorgesehen, dass die Einrichtung mehrere zu evakuierende Vakuumkammern umfasst, die hintereinander angeordnet sind und jeweils einen Gasauslass aufweisen, der im Pumpbetrieb mit einem Einlass der Vakuumpumpe in Strömungsverbindung steht.
  • Vorteilhafte Weiterbildungen der Erfindung sind auch in den abhängigen Ansprüchen, der Beschreibung sowie der Zeichnung angegeben.
  • In einigen Ausführungsbeispielen der Erfindung kann vorgesehen sein, dass mehrere im Pumpenraum in Pumprichtung zwischen dem Einlass und dem Auslass hintereinandergeschaltete Pumpstufen vorgesehen sind, welche die Holweck-Pumpstufe und zumindest eine Turbomolekular-Pumpstufe umfassen, die in Pumprichtung vor der Holweck-Pumpstufe angeordnet ist.
  • Die Erfindung ist somit auch an solchen Multiinlet- bzw. Splitflow-Vakuumpumpen realisierbar, die unterschiedliche Typen von Pumpstufen aufweisen, insbesondere eine oder mehrere Turbomolekular-Pumpstufen und eine oder mehrere Holweck-Pumpstufen, die in Pumprichtung hintereinandergeschaltet sind.
  • Des Weiteren kann gemäß einigen Weiterbildungen der Erfindung vorgesehen sein, dass zusätzlich zu der Holweck-Pumpstufe wenigstens eine weitere Holweck-Pumpstufe vorgesehen ist, wobei diese wenigstens zwei Holweck-Pumpstufen bezüglich der eine gemeinsame Rotationsachse bildenden Rotationsachse konzentrisch und in Pumprichtung aufeinanderfolgend angeordnet sind und zumindest zwei Holweck-Statoren umfassen, von denen der eine radial innerhalb des anderen angeordnet ist und wobei die Mündung und der bis zur Mündung verlaufende Mündungsabschnitt in dem radial inneren Holweck-Stator ausgebildet sind.
  • Bei einer solchen, auch als "gefaltet" bezeichneten Anordnung von Holweck-Pumpstufen ist erfindungsgemäß also die Mündung des weiteren Einlasses in den Holweck-Pumpbereich am radial inneren Holweck-Stator ausgebildet. Ein Vorteil dieser Ausgestaltung zeigt sich dann, wenn der innere Holweck-Stator insbesondere im Vergleich zum äußeren Holweck-Stator eine vergleichsweise dicke Wandstärke in radialer Richtung aufweist. Es hat sich gezeigt, dass aufgrund dieser vergleichsweise dicken Wandstärke relativ große Leitwerte realisiert werden können.
  • Bei einer typischen Pumprichtung im Zusammenhang mit "gefalteten" Holweck-Anordnungen wird das zu pumpende Gas zunächst durch den radial äußeren Holweck-Pumpbereich und dann - nach dem Passieren des Übergangs zwischen den zwei Holweck-Pumpstufen - durch den radial inneren Holweck-Pumpbereich gepumpt. Wenn gemäß dem hier in Rede stehenden Ausführungsbeispiel die Mündung des weiteren Einlasses im Holweck-Stator des radial inneren Holweck-Pumpbereiches ausgebildet ist, dann kann die Erfindung gegenüber der bekannten Anzapfung am Übergangsbereich als ein Verlegen der Anzapfung in Stromabwärtsrichtung, bezogen auf die Pumprichtung, bezeichnet werden.
  • Allgemein kann also gemäß einigen Ausführungsbeispielen der Erfindung vorgesehen sein, dass die Mündung des weiteren Einlasses in den Holweck-Pumpbereich bezogen auf die Pumprichtung stromabwärts eines Übergangsbereiches zwischen zwei unmittelbar aufeinanderfolgenden Holweck-Pumpstufen gelegen ist.
  • Des Weiteren kann gemäß einigen Ausführungsbeispielen der Erfindung vorgesehen sein, dass der Mündungsabschnitt wenigstens zwei Kanalabschnitte aufweist, die nicht parallel zueinander verlaufen.
  • Hierdurch besteht ein hohes Maß an Flexibilität, was den Verlauf des Einlasskanals innerhalb des mit der Mündung versehenen Holweck-Stators betrifft. Gemäß einigen Ausführungsbeispielen kann vorgesehen sein, dass der Mündungsabschnitt einen im Holweck-Stator ausgebildeten Kanalabschnitt umfasst, der von einer Basisseite des Holweck-Stators ausgeht. Insbesondere handelt es sich bei der Basisseite des Holweck-Stators um diejenige Seite, die von einer Turbomolekular-Pumpstufe - sofern eine solche vorhanden ist - abgewandt ist.
  • Dieser am Holweck-Stator ausgebildete Kanalabschnitt kann gemäß weiteren Ausführungsbeispielen der Erfindung ausgehend von der Basisseite in axialer Richtung parallel zur Rotationsachse im Holweck-Stator verlaufen. Ein derartiger Kanalabschnitte kann in besonders vorteilhafter Weise durch Bohren oder Fräsen hergestellt werden.
  • Des Weiteren kann gemäß einigen Ausführungsbeispielen der Erfindung vorgesehen sein, dass der Mündungsabschnitt einen im Holweck-Stator ausgebildeten Kanalabschnitt umfasst, der an der Mündung endet und in radialer Richtung senkrecht zur Rotationsachse verläuft. Auch ein solcher Kanalabschnitt kann in besonders vorteilhafter Weise durch Bohren oder Fräsen hergestellt werden.
  • Des Weiteren kann gemäß einigen Ausführungsbeispielen vorgesehen sein, dass der Einlasskanal einen Einlassabschnitt aufweist, der zwischen dem weiteren Einlass und dem Holweck-Stator gelegen ist und in einem an den Holweck-Stator angrenzenden, mit dem Holweck-Stator einstückig ausgebildeten oder von dem Holweck-Stator separaten Bauteil der Vakuumpumpe ausgebildet ist. Bei diesem Bauteil kann es sich insbesondere um ein sogenanntes Unterteil der Vakuumpumpe oder um ein Zwischenbauteil handeln.
  • Der Einlassabschnitt kann gemäß einigen Ausgestaltungen der Erfindung unmittelbar in den im Holweck-Stator ausgebildeten, bis zur Mündung führenden Mündungsabschnitt des Einlasskanals übergehen.
  • Ein derartiger Verlauf des Einlasskanals zwischen weiterem Einlass und Mündung in den Holweck-Pumpbereich kann insbesondere dann vorgesehen sein, wenn der Holweck-Stator und ein weiteres Bauteil, insbesondere ein Unterteil oder ein Zwischenbauteil der Vakuumpumpe, unmittelbar aneinander anliegen, wobei ein solches unmittelbares Aneinander-Anliegen nicht ausschließt, dass ein oder mehrere Dichtelemente zwischen Holweck-Stator und Bauteil bzw. Unterteil oder Zwischenbauteil angeordnet sind.
  • Die Erfindung ist nicht darauf beschränkt, dass der weitere Einlass an nur einer einzigen Stelle in den Holweck-Pumpbereich mündet. Der Einlasskanal kann folglich ausgehend von dem weiteren Einlass in einigen Ausführungsbeispielen der Erfindung zu mehreren Mündungen in den Holweck-Pumpbereich führen.
  • Gemäß einigen Ausführungsbeispielen der Erfindung kann dementsprechend vorgesehen sein, dass der Einlasskanal mehrere im Holweck-Stator ausgebildete Mündungsabschnitte umfasst, die jeweils zu wenigstens einer, vorzugsweise zu genau einer, der mehreren Mündungen führen.
  • Hierbei kann gemäß einigen Ausgestaltungen der Erfindung vorgesehen sein, dass der Einlasskanal einen Einlassabschnitt aufweist, der zwischen dem weiteren Einlass und dem Holweck-Stator gelegen ist und als ein Sammelabschnitt ausgebildet ist oder zumindest einen Sammelabschnitt umfasst, der mit einer Mehrzahl der Mündungen, vorzugsweise mit allen Mündungen, in Strömungsverbindung steht.
  • Durch das Vorsehen eines derartigen Sammelabschnitts ist es folglich nicht erforderlich, dass jede Mündung einen eigenen Einlasskanal besitzt, der von dem weiteren Einlass zur jeweiligen Mündung führt.
  • Der Sammelabschnitt kann insbesondere in einem an den Holweck-Stator angrenzenden, mit dem Holweck-Stator einstückig ausgebildeten oder von dem Holweck-Stator separaten Bauteil der Vakuumpumpe ausgebildet sein, also in einem Bauteil, wie es an anderer Stelle bereits beschrieben worden ist. Dieses Bauteil für den Sammelabschnitt kann wiederum ein sogenanntes Unterteil oder ein Zwischenbauteil der Vakuumpumpe sein.
  • Gemäß weiteren möglichen Ausgestaltungen der Erfindung kann vorgesehen sein, dass der Holweck-Stator mit einem Holweck-Gewinde versehen ist und der Nutgrunddurchmesser in Pumprichtung variiert. Wie eingangs bereits erläutert, sind derartige, sogenannte "konische" Holweck-Pumpstufen grundsätzlich bekannt. Erfindungsgemäß kann also vorgesehen sein, dass der weitere Einlass in den Holweck-Pumpbereich einer solchen konischen Holweck-Pumpstufe mündet.
  • In einer bevorzugten Ausgestaltung der Erfindung ist diese konische Holweck-Pumpstufe ein Bestandteil einer sogenannten "gefalteten" Holweck-Anordnung, d.h. zusätzlich zu der Holweck-Pumpstufe mit der erfindungsgemäßen Mündung ist wenigstens eine weitere Holweck-Pumpstufe vorgesehen, wobei diese wenigstens zwei Holweck-Pumpstufen bezüglich der eine gemeinsame Rotationsachse bildenden Rotationsachse konzentrisch und in Pumprichtung aufeinanderfolgend angeordnet, also seriell hintereinander geschaltet, sind und zumindest zwei Holweck-Statoren umfassen, von denen der eine radial innerhalb des anderen angeordnet ist, und wobei die Mündung und der bis zur Mündung verlaufende Mündungsabschnitt in dem radial inneren Holweck-Stator ausgebildet sind. Bei der radial äußeren Holweck-Pumpstufe kann es sich ebenfalls um eine konische Holweck-Pumpstufe handeln. Dabei ist allerdings insbesondere vorgesehen, dass der Nutgrunddurchmesser in Pumprichtung abnimmt.
  • Dabei kann für die radial innere Holweck-Pumpstufe und/oder für die radial äußere Holweck-Pumpstufe jeweils vorgesehen sein, dass die Steghöhe des Holweck-Gewindes in Pumprichtung abnimmt.
  • Unterschiedliche Ausgestaltungen von Holweck-Pumpstufen mit konischer Ausgestaltung können folglich auch bei einer erfindungsgemäßen Vakuumpumpe grundsätzlich beliebig miteinander kombiniert werden. Es hat sich als vorteilhaft herausgestellt, wenn die Mündung des weiteren Einlasses am radial inneren Holweck-Stator ausgebildet ist, die Anzapfung in den Holweck-Bereich also an der radial inneren Holweck-Pumpstufe erfolgt.
  • Die Erfindung wird im Folgenden beispielhaft unter Bezugnahme auf die Zeichnung beschrieben. Es zeigen:
  • Fig. 1
    eine perspektivische Ansicht einer Turbomolekularpumpe,
    Fig. 2
    eine Ansicht der Unterseite der Turbomolekularpumpe von Fig. 1,
    Fig. 3
    einen Querschnitt der Turbomolekularpumpe längs der in Fig. 2 gezeigten Schnittlinie A-A,
    Fig. 4
    eine Querschnittsansicht der Turbomolekularpumpe längs der in Fig. 2 gezeigten Schnittlinie B-B,
    Fig. 5
    eine Querschnittsansicht der Turbomolekularpumpe längs der in Fig. 2 gezeigten Schnittlinie C-C,
    Fig. 6
    ein bekannte Vakuumpumpsystem mit einer Splitflow-Vakuumpumpe, die erfindungsgemäß ausgebildet sein kann, und mit einer zu evakuierenden Einrichtung, und
    Fig. 7
    schematisch einen Teil einer erfindungsgemäßen Vakuumpumpe.
  • Die in Fig. 1 gezeigte Turbomolekularpumpe 111 umfasst einen von einem Einlassflansch 113 umgebenen Pumpeneinlass 115, an welchen in an sich bekannter Weise ein nicht dargestellter Rezipient angeschlossen werden kann. Das Gas aus dem Rezipienten kann über den Pumpeneinlass 115 aus dem Rezipienten gesaugt und durch die Pumpe hindurch zu einem Pumpenauslass 117 gefördert werden, an den eine Vorvakuumpumpe, wie etwa eine Drehschieberpumpe, angeschlossen sein kann.
  • Der Einlassflansch 113 bildet bei der Ausrichtung der Vakuumpumpe gemäß Fig. 1 das obere Ende des Gehäuses 119 der Vakuumpumpe 111. Das Gehäuse 119 umfasst ein Unterteil 121, an welchem seitlich ein Elektronikgehäuse 123 angeordnet ist. In dem Elektronikgehäuse 123 sind elektrische und/oder elektronische Komponenten der Vakuumpumpe 111 untergebracht, z.B. zum Betreiben eines in der Vakuumpumpe angeordneten Elektromotors 125 (vgl. auch Fig. 3). Am Elektronikgehäuse 123 sind mehrere Anschlüsse 127 für Zubehör vorgesehen. Außerdem sind eine Datenschnittstelle 129, z.B. gemäß dem RS485-Standard, und ein Stromversorgungsanschluss 131 am Elektronikgehäuse 123 angeordnet.
  • Es existieren auch Turbomolekularpumpen, die kein derartiges angebrachtes Elektronikgehäuse aufweisen, sondern an eine externe Antriebselektronik angeschlossen werden.
  • Am Gehäuse 119 der Turbomolekularpumpe 111 ist ein Fluteinlass 133, insbesondere in Form eines Flutventils, vorgesehen, über den die Vakuumpumpe 111 geflutet werden kann. Im Bereich des Unterteils 121 ist ferner noch ein Sperrgasanschluss 135, der auch als Spülgasanschluss bezeichnet wird, angeordnet, über welchen Spülgas zum Schutz des Elektromotors 125 (siehe z.B. Fig. 3) vor dem von der Pumpe geförderten Gas in den Motorraum 137, in welchem der Elektromotor 125 in der Vakuumpumpe 111 untergebracht ist, eingelassen werden kann. Im Unterteil 121 sind ferner noch zwei Kühlmittelanschlüsse 139 angeordnet, wobei einer der Kühlmittelanschlüsse als Einlass und der andere Kühlmittelanschluss als Auslass für Kühlmittel vorgesehen ist, das zu Kühlzwecken in die Vakuumpumpe geleitet werden kann. Andere existierende Turbomolekularvakuumpumpen (nicht dargestellt) werden ausschließlich mit Luftkühlung betrieben.
  • Die untere Seite 141 der Vakuumpumpe kann als Standfläche dienen, sodass die Vakuumpumpe 111 auf der Unterseite 141 stehend betrieben werden kann. Die Vakuumpumpe 111 kann aber auch über den Einlassflansch 113 an einem Rezipienten befestigt werden und somit gewissermaßen hängend betrieben werden. Außerdem kann die Vakuumpumpe 111 so gestaltet sein, dass sie auch in Betrieb genommen werden kann, wenn sie auf andere Weise ausgerichtet ist als in Fig. 1 gezeigt ist. Es lassen sich auch Ausführungsformen der Vakuumpumpe realisieren, bei der die Unterseite 141 nicht nach unten, sondern zur Seite gewandt oder nach oben gerichtet angeordnet werden kann. Grundsätzlich sind dabei beliebige Winkel möglich.
  • Andere existierende Turbomolekularvakuumpumpen (nicht dargestellt), die insbesondere größer sind als die hier dargestellte Pumpe, können nicht stehend betrieben werden.
  • An der Unterseite 141, die in Fig. 2 dargestellt ist, sind noch diverse Schrauben 143 angeordnet, mittels denen hier nicht weiter spezifizierte Bauteile der Vakuumpumpe aneinander befestigt sind. Beispielsweise ist ein Lagerdeckel 145 an der Unterseite 141 befestigt.
  • An der Unterseite 141 sind außerdem Befestigungsbohrungen 147 angeordnet, über welche die Pumpe 111 beispielsweise an einer Auflagefläche befestigt werden kann. Dies ist bei anderen existierenden Turbomolekularvakuumpumpen (nicht dargestellt), die insbesondere größer sind als die hier dargestellte Pumpe, nicht möglich.
  • In den Figuren 2 bis 5 ist eine Kühlmittelleitung 148 dargestellt, in welcher das über die Kühlmittelanschlüsse 139 ein- und ausgeleitete Kühlmittel zirkulieren kann.
  • Wie die Schnittdarstellungen der Figuren 3 bis 5 zeigen, umfasst die Vakuumpumpe mehrere Prozessgaspumpstufen zur Förderung des an dem Pumpeneinlass 115 anstehenden Prozessgases zu dem Pumpenauslass 117.
  • In dem Gehäuse 119 ist ein Rotor 149 angeordnet, der eine um eine Rotationsachse 151 drehbare Rotorwelle 153 aufweist.
  • Die Turbomolekularpumpe 111 umfasst mehrere pumpwirksam miteinander in Serie geschaltete turbomolekulare Pumpstufen mit mehreren an der Rotorwelle 153 befestigten radialen Rotorscheiben 155 und zwischen den Rotorscheiben 155 angeordneten und in dem Gehäuse 119 festgelegten Statorscheiben 157. Dabei bilden eine Rotorscheibe 155 und eine benachbarte Statorscheibe 157 jeweils eine turbomolekulare Pumpstufe. Die Statorscheiben 157 sind durch Abstandsringe 159 in einem gewünschten axialen Abstand zueinander gehalten.
  • Die Vakuumpumpe umfasst außerdem in radialer Richtung ineinander angeordnete und pumpwirksam miteinander in Serie geschaltete Holweck-Pumpstufen. Es existieren andere Turbomolekularvakuumpumpen (nicht dargestellt), die keine Holweck-Pumpstufen aufweisen.
  • Der Rotor der Holweck-Pumpstufen umfasst eine an der Rotorwelle 153 angeordnete Rotornabe 161 und zwei an der Rotornabe 161 befestigte und von dieser getragene zylindermantelförmige Holweck-Rotorhülsen 163, 165, die koaxial zur Rotationsachse 151 orientiert und in radialer Richtung ineinander geschachtelt sind. Ferner sind zwei zylindermantelförmige Holweck-Statorhülsen 167, 169 vorgesehen, die ebenfalls koaxial zu der Rotationsachse 151 orientiert und in radialer Richtung gesehen ineinander geschachtelt sind.
  • Die pumpaktiven Oberflächen der Holweck-Pumpstufen sind durch die Mantelflächen, also durch die radialen Innen- und/oder Außenflächen, der Holweck-Rotorhülsen 163, 165 und der Holweck-Statorhülsen 167, 169 gebildet. Die radiale Innenfläche der äußeren Holweck-Statorhülse 167 liegt der radialen Außenfläche der äußeren Holweck-Rotorhülse 163 unter Ausbildung eines radialen Holweck-Spalts 171 gegenüber und bildet mit dieser die der Turbomolekularpumpen nachfolgende erste Holweck-Pumpstufe. Die radiale Innenfläche der äußeren Holweck-Rotorhülse 163 steht der radialen Außenfläche der inneren Holweck-Statorhülse 169 unter Ausbildung eines radialen Holweck-Spalts 173 gegenüber und bildet mit dieser eine zweite Holweck-Pumpstufe. Die radiale Innenfläche der inneren Holweck-Statorhülse 169 liegt der radialen Außenfläche der inneren Holweck-Rotorhülse 165 unter Ausbildung eines radialen Holweck-Spalts 175 gegenüber und bildet mit dieser die dritte Holweck-Pumpstufe.
  • Am unteren Ende der Holweck-Rotorhülse 163 kann ein radial verlaufender Kanal vorgesehen sein, über den der radial außenliegende Holweck-Spalt 171 mit dem mittleren Holweck-Spalt 173 verbunden ist. Außerdem kann am oberen Ende der inneren Holweck-Statorhülse 169 ein radial verlaufender Kanal vorgesehen sein, über den der mittlere Holweck-Spalt 173 mit dem radial innenliegenden Holweck-Spalt 175 verbunden ist. Dadurch werden die ineinander geschachtelten Holweck-Pumpstufen in Serie miteinander geschaltet. Am unteren Ende der radial innenliegenden Holweck-Rotorhülse 165 kann ferner ein Verbindungskanal 179 zum Auslass 117 vorgesehen sein.
  • Die vorstehend genannten pumpaktiven Oberflächen der Holweck-Statorhülsen 167, 169 weisen jeweils mehrere spiralförmig um die Rotationsachse 151 herum in axialer Richtung verlaufende Holweck-Nuten auf, während die gegenüberliegenden Mantelflächen der Holweck-Rotorhülsen 163, 165 glatt ausgebildet sind und das Gas zum Betrieb der Vakuumpumpe 111 in den Holweck-Nuten vorantreiben.
  • Zur drehbaren Lagerung der Rotorwelle 153 sind ein Wälzlager 181 im Bereich des Pumpenauslasses 117 und ein Permanentmagnetlager 183 im Bereich des Pumpeneinlasses 115 vorgesehen.
  • Im Bereich des Wälzlagers 181 ist an der Rotorwelle 153 eine konische Spritzmutter 185 mit einem zu dem Wälzlager 181 hin zunehmenden Außendurchmesser vorgesehen. Die Spritzmutter 185 steht mit mindestens einem Abstreifer eines Betriebsmittelspeichers in gleitendem Kontakt. Bei anderen existierenden Turbomolekularvakuumpumpen (nicht dargestellt) kann anstelle einer Spritzmutter eine Spritzschraube vorgesehen sein. Da somit unterschiedliche Ausführungen möglich sind, wird in diesem Zusammenhang auch der Begriff "Spritzspitze" verwendet.
  • Der Betriebsmittelspeicher umfasst mehrere aufeinander gestapelte saugfähige Scheiben 187, die mit einem Betriebsmittel für das Wälzlager 181, z.B. mit einem Schmiermittel, getränkt sind.
  • Im Betrieb der Vakuumpumpe 111 wird das Betriebsmittel durch kapillare Wirkung von dem Betriebsmittelspeicher über den Abstreifer auf die rotierende Spritzmutter 185 übertragen und in Folge der Zentrifugalkraft entlang der Spritzmutter 185 in Richtung des größer werdenden Außendurchmessers der Spritzmutter 185 zu dem Wälzlager 181 hin gefördert, wo es z.B. eine schmierende Funktion erfüllt. Das Wälzlager 181 und der Betriebsmittelspeicher sind durch einen wannenförmigen Einsatz 189 und den Lagerdeckel 145 in der Vakuumpumpe eingefasst.
  • Das Permanentmagnetlager 183 umfasst eine rotorseitige Lagerhälfte 191 und eine statorseitige Lagerhälfte 193, welche jeweils einen Ringstapel aus mehreren in axialer Richtung aufeinander gestapelten permanentmagnetischen Ringen 195, 197 umfassen. Die Ringmagnete 195, 197 liegen einander unter Ausbildung eines radialen Lagerspalts 199 gegenüber, wobei die rotorseitigen Ringmagnete 195 radial außen und die statorseitigen Ringmagnete 197 radial innen angeordnet sind. Das in dem Lagerspalt 199 vorhandene magnetische Feld ruft magnetische Abstoßungskräfte zwischen den Ringmagneten 195, 197 hervor, welche eine radiale Lagerung der Rotorwelle 153 bewirken. Die rotorseitigen Ringmagnete 195 sind von einem Trägerabschnitt 201 der Rotorwelle 153 getragen, welcher die Ringmagnete 195 radial außenseitig umgibt. Die statorseitigen Ringmagnete 197 sind von einem statorseitigen Trägerabschnitt 203 getragen, welcher sich durch die Ringmagnete 197 hindurch erstreckt und an radialen Streben 205 des Gehäuses 119 aufgehängt ist. Parallel zu der Rotationsachse 151 sind die rotorseitigen Ringmagnete 195 durch ein mit dem Trägerabschnitt 201 gekoppeltes Deckelelement 207 festgelegt. Die statorseitigen Ringmagnete 197 sind parallel zu der Rotationsachse 151 in der einen Richtung durch einen mit dem Trägerabschnitt 203 verbundenen Befestigungsring 209 sowie einen mit dem Trägerabschnitt 203 verbundenen Befestigungsring 211 festgelegt. Zwischen dem Befestigungsring 211 und den Ringmagneten 197 kann außerdem eine Tellerfeder 213 vorgesehen sein.
  • Innerhalb des Magnetlagers ist ein Not- bzw. Fanglager 215 vorgesehen, welches im normalen Betrieb der Vakuumpumpe 111 ohne Berührung leer läuft und erst bei einer übermäßigen radialen Auslenkung des Rotors 149 relativ zu dem Stator in Eingriff gelangt, um einen radialen Anschlag für den Rotor 149 zu bilden, damit eine Kollision der rotorseitigen Strukturen mit den statorseitigen Strukturen verhindert wird. Das Fanglager 215 ist als ungeschmiertes Wälzlager ausgebildet und bildet mit dem Rotor 149 und/oder dem Stator einen radialen Spalt, welcher bewirkt, dass das Fanglager 215 im normalen Pumpbetrieb außer Eingriff ist. Die radiale Auslenkung, bei der das Fanglager 215 in Eingriff gelangt, ist groß genug bemessen, sodass das Fanglager 215 im normalen Betrieb der Vakuumpumpe nicht in Eingriff gelangt, und gleichzeitig klein genug, sodass eine Kollision der rotorseitigen Strukturen mit den statorseitigen Strukturen unter allen Umständen verhindert wird.
  • Die Vakuumpumpe 111 umfasst den Elektromotor 125 zum drehenden Antreiben des Rotors 149. Der Anker des Elektromotors 125 ist durch den Rotor 149 gebildet, dessen Rotorwelle 153 sich durch den Motorstator 217 hindurch erstreckt. Auf den sich durch den Motorstator 217 hindurch erstreckenden Abschnitt der Rotorwelle 153 kann radial außenseitig oder eingebettet eine Permanentmagnetanordnung angeordnet sein. Zwischen dem Motorstator 217 und dem sich durch den Motorstator 217 hindurch erstreckenden Abschnitt des Rotors 149 ist ein Zwischenraum 219 angeordnet, welcher einen radialen Motorspalt umfasst, über den sich der Motorstator 217 und die Permanentmagnetanordnung zur Übertragung des Antriebsmoments magnetisch beeinflussen können.
  • Der Motorstator 217 ist in dem Gehäuse innerhalb des für den Elektromotor 125 vorgesehenen Motorraums 137 festgelegt. Über den Sperrgasanschluss 135 kann ein Sperrgas, das auch als Spülgas bezeichnet wird, und bei dem es sich beispielsweise um Luft oder um Stickstoff handeln kann, in den Motorraum 137 gelangen. Über das Sperrgas kann der Elektromotor 125 vor Prozessgas, z.B. vor korrosiv wirkenden Anteilen des Prozessgases, geschützt werden. Der Motorraum 137 kann auch über den Pumpenauslass 117 evakuiert werden, d.h. im Motorraum 137 herrscht zumindest annäherungsweise der von der am Pumpenauslass 117 angeschlossenen Vorvakuumpumpe bewirkte Vakuumdruck.
  • Zwischen der Rotornabe 161 und einer den Motorraum 137 begrenzenden Wandung 221 kann außerdem eine sog. und an sich bekannte Labyrinthdichtung 223 vorgesehen sein, insbesondere um eine bessere Abdichtung des Motorraums 217 gegenüber den radial außerhalb liegenden Holweck-Pumpstufen zu erreichen.
  • Die vorstehend beschriebene, aus dem Stand der Technik bekannte Turbomolekularvakuumpumpe ist keine Splitflow-Vakuumpumpe. Aufbau und Funktionsweise dieser Turbomolekularvakuumpumpe gelten aber grundsätzlich auch für die erfindungsgemäße Vakuumpumpe.
  • Fig. 6 zeigt ein mögliches erfindungsgemäßes Vakuumsystem mit einer erfindungsgemäßen Splitflow-Vakuumpumpe 10 und einer mittels dieser Vakuumpumpe 10 zu evakuierenden Einrichtung 12.
  • Die Einrichtung 12 umfasst in diesem Ausführungsbeispiel drei hintereinander angeordnete Vakuumkammern 14, wobei in die unterste Kammer 14 eintretendes Gas in die jeweils nachfolgende Kammer 14 gelangen kann, wie es durch die Pfeile angedeutet ist. Jede Kammer besitzt einen Gasauslass 16, der zu einem auch als Port bezeichneten Einlass 11 bzw. 33 der Vakuumpumpe 10 führt. Der mit dem Gasauslass 16 der untersten Kammer 14 korrespondierende Einlass 33 der Vakuumpumpe 10 ist ein weiterer Einlass im Sinne der Erfindung, der - wie an anderer Stelle näher beschrieben wird - zu einem Holweck-Bereich der Vakuumpumpe 10 führt.
  • Die hier lediglich rein schematisch dargestellte Splitflow-Vakuumpumpe 10 besitzt ein Gehäuse 15 und innerhalb des Gehäuses 15 in einem Pumpenraum 17 eine Rotorwelle 18, die während des Betriebs rotiert und so an ihr befestigte rotierende Bauteile der einzelnen Pumpstufen in Drehung versetzt, und zwar um eine Rotationsachse A, welche durch die Rotorwelle 18 festgelegt ist.
  • Bei diesen Pumpstufen handelt es sich in dem hier dargestellten Beispiel um Turbomolekular-Pumpstufen 47, denen in einer Pumprichtung P im Pumpenraum 17 ein Holweck-Bereich mit zwei Holweck-Pumpstufen 19, 21 nachgeschaltet ist.
  • Von diesem Holweck-Bereich 19, 21 ist in Fig. 6 lediglich schematisch ein Holweck-Rotor 31 dargestellt, der eine Holweck-Hülse 32 und eine Holweck-Nabe 30 umfasst, über welche die Holweck-Hülse 32 an der Rotorwelle 18 angebracht ist. Dieser Holweck-Rotor 31 gehört zu beiden Holweck-Pumpstufen 19, 21, wie nachstehend in Verbindung mit Fig. 7 näher erläutert wird.
  • Zu pumpendes Gas tritt also aus der zu evakuierenden Einrichtung 12 über deren Auslässe 16 der einzelnen Kammern 14 an unterschiedlichen Stellen über die Einlässe 11, 33 in den Pumpenraum 17 der Splitflow-Vakuumpumpe 10 ein und wird mittels der einzelnen erwähnten Pumpstufen 47, 19, 21 in Pumprichtung P zu einem Auslass 13 gepumpt, über den das Gas die Vakuumpumpe 10 verlässt. Der vorstehend erläuterte Grundaufbau und dessen Funktionalität ist grundsätzlich bekannt und kann - wie auch im Einleitungsteil erwähnt - in vielfacher Weise variiert werden, insbesondere hinsichtlich der Anzahl und Anordnung der zu evakuierenden Kammern 14 der zu evakuierenden Einrichtung 12 sowie hinsichtlich der Anzahl, Anordnung und Ausgestaltung der einzelnen Pumpstufen der Splitflow-Vakuumpumpe 10.
  • Der in Fig. 7 schematisch dargestellte Bereich einer erfindungsgemäßen Splitflow-Vakuumpumpe 10 würde sich bei der in Fig. 6 dargestellten Vakuumpumpe 10 ungefähr (von der Lage eines Pumpenunterteils abgesehen) an derjenigen Stelle befinden, die in Fig. 6 durch ein gestricheltes Viereck V angedeutet ist, also links von der in Fig. 7 nicht dargestellten Rotationsachse A am unteren, zum Auslass 13 weisenden Ende der Holweck-Hülse 32 des Holweck-Rotors 31.
  • In Fig. 7 sind teilweise das Gehäuse 15, ein Unterteil 51, ein äußerer Holweck-Stator 23, ein innerer Holweck-Stator 25 sowie die Holweck-Hülse 32 des Holweck-Rotors 31 dargestellt.
  • Die Holweck-Statoren 23, 25 sind jeweils auf ihrer pumpaktiven, der Holweck-Hülse 32 zugewandten Seite mit einem Holweck-Gewinde versehen. In Fig. 7 ist für jeden Holweck-Stator 23, 25 jeweils eine Holweck-Nut 55 dargestellt, die von einem Steg 53 begrenzt ist. Es handelt sich hierbei um konische Holweck-Statoren 23, 25, bei denen der Nutgrunddurchmesser variiert, wobei außerdem die Höhe der Stege 53 variiert und der Stegspitzendurchmesser und damit der radiale Abstand der Stege 53 zur Holweck-Hülse 32 in axialer Richtung konstant ist.
  • Somit bilden die Holweck-Hülse 32 und der radial äußere Holweck-Stator 23 einen radial äußeren Holweck-Pumpbereich 27 und die Holweck-Hülse 32 und der radial innere Holweck-Stator 25 bilden einen radial inneren Holweck-Pumpbereich 29.
  • Die beiden Holweck-Pumpbereich 27, 29 gehen in einem Übergangsbereich 43 ineinander über. Bezogen auf die durch einen Pfeil angedeutete Pumprichtung P nimmt in beiden Holweck-Pumpbereichen 27, 29 die Höhe der Stege 53 in Pumprichtung P ab, wobei bei der radial äußeren Holweck-Pumpstufe 19 der Nutgrunddurchmesser in Pumprichtung P abnimmt, wohingegen in der radial inneren Holweck-Pumpstufe 21 der Nutgrunddurchmesser in Pumprichtung P zunimmt.
  • Wie im Einleitungsteil erwähnt, ist es im Stand der Technik bekannt, über einen Einlass der Splitflow-Vakuumpumpe eine Anzapfung in den Holweck-Bereich 27, 29 am Übergangsbereich 43 vorzusehen. Erfindungsgemäß ist aber die Anzapfung bezogen auf die Pumprichtung P und damit bezogen auf die Richtung der Strömung des zu pumpenden Gases stromabwärts verlegt, wobei die Anzapfung seitlich in den inneren Holweck-Stator 23 erfolgt.
  • Erfindungsgemäß erstreckt sich hierzu ein Einlasskanal 35 von einem weiteren Einlass 33 der Vakuumpumpe bis zu einer Mündung 37 in den radial inneren Holweck-Pumpbereich 29, wobei die Mündung 37 in der Nut 55 des radial inneren Holweck-Stators 25 ausgebildet ist.
  • Der Einlasskanal 35 besteht in dem hier dargestellten Ausführungsbeispiel aus einem zunächst in radialer Richtung verlaufenden Einlassabschnitt 49, der wie der weitere Einlass 33 auch im Pumpenunterteil 51 ausgebildet ist. Der Einlassabschnitt 49 geht in einen sich in axialer Richtung - bezogen auf die hier nicht dargestellte Rotationsachse A (vgl. Fig. 6) - erstreckenden Abschnitt im Unterteil 51 über, an den sich unmittelbar ein axialer Kanalabschnitt 39 anschließt, der im radial inneren Holweck-Stator 25 ausgebildet ist. Dieser axiale Kanalabschnitt 39 geht in einen radialen Kanalabschnitt 41 des inneren Holweck-Stators 25 über, der bis zur Mündung 37 führt.
  • Der sich vom weiteren Einlass 33 bis zur Mündung 37 erstreckende Einlasskanal 35 besitzt also einen im Unterteil 51 ausgebildeten Einlassabschnitt 49, der am weiteren Einlass 33 beginnt, und einen im radial inneren Holweck-Stator 25 ausgebildeten, von den beiden erwähnten Kanalabschnitten 39, 41 gebildeten Mündungsabschnitt, der an der Mündung 37 endet.
  • Da der radial innere Holweck-Stator 25 eine vergleichsweise große Wandstärke - gemessen in radialer Richtung - aufweist, können der axiale Kanalabschnitt 39 und der radiale Kanalabschnitt 41 mit einem vergleichsweise großen Durchmesser versehen werden, wodurch relativ große Leitwerte realisiert werden können. Die beiden Kanalabschnitte 39, 41 können durch Bohren oder Fräsen hergestellt werden.
  • Wie im Einleitungsteil bereits erwähnt, kann in Abhängigkeit von der jeweiligen Anforderung auch eine andere axiale Position für die Mündung 37 gewählt werden. Die Länge des axialen Kanalabschnitts 39 ist dann entsprechend zu variieren. Die Radialbohrung oder Radialfräsung 41 kann grundsätzlich an jeder beliebigen axialen Position vorgenommen werden, um die von der dem Unterteil 51 zugewandten Basisseite 45 des radial inneren Holweck-Stators 25 ausgehende, den axialen Kanalabschnitt 39 bildende Bohrung zu erreichen.
  • Des Weiteren können, wie ebenfalls im Einleitungsteil bereits erwähnt, in den radial inneren Holweck-Pumpbereich 29 auch mehrere Kanäle münden, d.h. es können mehrere Mündungen 37 vorgesehen sein, die sich hinsichtlich ihrer axialen Position und/oder hinsichtlich ihrer Umfangsposition - jeweils bezogen auf die Rotationsachse A (vgl. Fig. 6) - voneinander unterscheiden.
  • Grundsätzlich ist es erfindungsgemäß auch möglich, eine oder mehrere Anzapfungen in den radial äußeren Holweck-Pumpbereich 27 vorzusehen, d.h. im radial äußeren Holweck-Stator 23 eine oder mehrere Mündungen auszubilden und diese jeweils über einen einen geeigneten Verlauf aufweisenden Kanal mit dem weiteren Einlass 33 oder mit einem anderen Einlass für zu pumpendes Gas zu verbinden.
  • In anderen erfindungsgemäßen Pumpen kann der Einlasskanal in einem anderen von dem äußeren Holweck-Stator separaten Bauteil ausgebildet sein, insbesondere in einem Zwischenbauteil, das auch als Zwischenstück bezeichnet wird. Eine Gasführung für die Anzapfung über den weiteren Einlass 33 muss also nicht wie im Ausführungsbeispiel der Fig. 7 durch das Pumpenunterteil 51, sondern kann auch auf andere Weise erfolgen. Wie an anderer Stelle erwähnt, kann die Gasführung durch einen Abschnitt der Pumpe erfolgen, der einstückig mit dem Holweck-Stator ausgebildet ist.
  • Bezugszeichenliste
  • 111
    Turbomolekularpumpe
    113
    Einlassflansch
    115
    Pumpeneinlass
    117
    Pumpenauslass
    119
    Gehäuse
    121
    Unterteil
    123
    Elektronikgehäuse
    125
    Elektromotor
    127
    Zubehöranschluss
    129
    Datenschnittstelle
    131
    Stromversorgungsanschluss
    133
    Fluteinlass
    135
    Sperrgasanschluss
    137
    Motorraum
    139
    Kühlmittelanschluss
    141
    Unterseite
    143
    Schraube
    145
    Lagerdeckel
    147
    Befestigungsbohrung
    148
    Kühlmittelleitung
    149
    Rotor
    151
    Rotationsachse
    153
    Rotorwelle
    155
    Rotorscheibe
    157
    Statorscheibe
    159
    Abstandsring
    161
    Rotornabe
    163
    Holweck-Rotorhülse
    165
    Holweck-Rotorhülse
    167
    Holweck-Statorhülse
    169
    Holweck-Statorhülse
    171
    Holweck-Spalt
    173
    Holweck-Spalt
    175
    Holweck-Spalt
    179
    Verbindungskanal
    181
    Wälzlager
    183
    Permanentmagnetlager
    185
    Spritzmutter
    187
    Scheibe
    189
    Einsatz
    191
    rotorseitige Lagerhälfte
    193
    statorseitige Lagerhälfte
    195
    Ringmagnet
    197
    Ringmagnet
    199
    Lagerspalt
    201
    Trägerabschnitt
    203
    Trägerabschnitt
    205
    radiale Strebe
    207
    Deckelelement
    209
    Stützring
    211
    Befestigungsring
    213
    Tellerfeder
    215
    Not- bzw. Fanglager
    217
    Motorstator
    219
    Zwischenraum
    221
    Wandung
    223
    Labyrinthdichtung
    10
    Vakuumpumpe
    11
    Einlass
    12
    zu evakuierende Einrichtung
    13
    Auslass
    14
    Vakuumkammer
    15
    Gehäuse
    16
    Gasauslass
    17
    Pumpenraum
    18
    Rotorwelle
    19
    äußere Holweck-Pumpstufe
    21
    innere Holweck-Pumpstufe
    23
    äußerer Holweck-Stator
    25
    innerer Holweck-Stator
    27
    äußerer Holweck-Pumpbereich
    29
    innerer Holweck-Pumpbereich
    30
    Holweck-Nabe
    31
    Holweck-Rotor
    32
    Holweck-Hülse
    33
    weiterer Einlass
    35
    Einlasskanal
    37
    Mündung
    39
    axialer Kanalabschnitt
    41
    radialer Kanalabschnitt
    43
    Übergangsbereich
    45
    Basisseite
    47
    Turbomolekularpumpstufe
    49
    Einlassabschnitt
    51
    Bauteil
    53
    Steg
    55
    Nut
    P
    Pumprichtung
    A
    Rotationsachse

Claims (15)

  1. Vakuumpumpe, insbesondere Turbomolekularvakuumpumpe, mit
    - einem Einlass (11),
    - einem Auslass (13),
    - einem Gehäuse (15), das einen Pumpenraum (17) für ein vom Einlass (11) zum Auslass (13) in einer Pumprichtung (P) zu pumpendes Gas einschließt, und
    - zumindest einer Holweck-Pumpstufe (19, 21), die zumindest einen Holweck-Stator (23, 25) und wenigstens einen im Betrieb um eine Rotationsachse (A) rotierenden, zusammen mit dem Holweck-Stator (23, 25) einen Holweck-Pumpbereich (27, 29) begrenzenden Holweck-Rotor (31) umfasst,
    wobei der Holweck-Pumpbereich (27, 29) bezogen auf die Rotationsachse (A) eine axiale Länge mit einem ersten axialen Ende und einem zweiten axialen Ende aufweist, und
    wobei zumindest ein weiterer Einlass (33) für zu pumpendes Gas vorgesehen ist, der über einen Einlasskanal (35) zu einer im Holweck-Stator (25) ausgebildeten Mündung (37) des weiteren Einlasses (33) in den Holweck-Pumpbereich (29) führt,
    dadurch gekennzeichnet,
    dass die Mündung (37) in axialer Richtung zwischen dem ersten axialen Ende und dem zweiten axialen Ende des Holweck-Pumpbereiches (29) gelegen ist, und
    dass der Einlasskanal (35) zumindest einen Mündungsabschnitt (39, 41) umfasst, der im Holweck-Stator (25) ausgebildet ist und bis zur Mündung (37) in den Holweck-Pumpbereich (29) führt.
  2. Vakuumpumpe nach Anspruch 1, wobei mehrere im Pumpenraum (17) in Pumprichtung (P) zwischen dem Einlass (11) und dem Auslass (13) hintereinander geschaltete Pumpstufen vorgesehen sind, welche die Holweck-Pumpstufe (19, 21) und zumindest eine Turbomolekular-Pumpstufe (47) umfassen, die in Pumprichtung (P) vor der Holweck-Pumpstufe (19, 21) angeordnet ist.
  3. Vakuumpumpe nach Anspruch 1 oder 2, wobei zusätzlich zu der Holweck-Pumpstufe (21) wenigstens eine weitere Holweck-Pumpstufe (19) vorgesehen ist, wobei diese wenigstens zwei Holweck-Pumpstufen (19, 21) bezüglich der eine gemeinsame Rotationsachse bildenden Rotationsachse (A) konzentrisch und in Pumprichtung (P) aufeinanderfolgend angeordnet sind und zumindest zwei Holweck-Statoren (23, 25) umfassen, von denen der eine radial innerhalb des anderen angeordnet ist, und wobei die Mündung (37) und der bis zur Mündung (37) verlaufende Mündungsabschnitt (39, 41) in dem radial inneren Holweck-Stator (25) ausgebildet sind.
  4. Vakuumpumpe nach einem der vorhergehenden Ansprüche, wobei die Mündung (37) bezogen auf die Pumprichtung (P) stromabwärts eines Übergangsbereiches (43) zwischen zwei unmittelbar aufeinanderfolgenden Holweck-Pumpstufen (19, 21) gelegen ist.
  5. Vakuumpumpe nach einem der vorhergehenden Ansprüche, wobei der Mündungsabschnitt wenigstens zwei Kanalabschnitte (39, 41) aufweist, die nicht parallel zueinander verlaufen.
  6. Vakuumpumpe nach einem der vorhergehenden Ansprüche, wobei der Mündungsabschnitt einen im Holweck-Stator (25) ausgebildeten Kanalabschnitt (39) umfasst, der von einer Basisseite (45) des Holweck-Stators (25) ausgeht, insbesondere wobei die Basisseite (45) von einer Turbomolekular- Pumpstufe (47) der Vakuumpumpe abgewandt ist.
  7. Vakuumpumpe nach Anspruch 6, wobei der Kanalabschnitt (39) ausgehend von der Basisseite (45) in axialer Richtung parallel zur Rotationsachse (A) verläuft.
  8. Vakuumpumpe nach einem der vorhergehenden Ansprüche, wobei der Mündungsabschnitt einen im Holweck-Stator (25) ausgebildeten Kanalabschnitt (41) umfasst, der an der Mündung (37) endet und in radialer Richtung senkrecht zur Rotationsachse (A) verläuft.
  9. Vakuumpumpe nach einem der vorhergehenden Ansprüche, wobei der Einlasskanal (35) einen Einlassabschnitt (49) aufweist, der zwischen dem weiteren Einlass (33) und dem Holweck-Stator (25) gelegen ist und in einem an den Holweck-Stator (25) angrenzenden, mit dem Holweck-Stator (25) einstückig ausgebildeten oder von dem Holweck-Stator (25) separaten Bauteil (51) der Vakuumpumpe ausgebildet ist, insbesondere wobei das Bauteil (51) ein Unterteil oder ein Zwischenbauteil, insbesondere ein Zwischenstück, der Vakuumpumpe ist.
  10. Vakuumpumpe nach Anspruch 9, wobei der Einlassabschnitt (49) unmittelbar in den Mündungsabschnitt (39, 41) übergeht.
  11. Vakuumpumpe nach einem der vorhergehenden Ansprüche, wobei in dem Holweck-Stator (25) mehrere jeweils in axialer Richtung zwischen dem ersten axialen Ende und dem zweiten axialen Ende des Holweck-Pumpbereiches (29) gelegene Mündungen (37) in den Holweck-Pumpbereich (29) ausgebildet sind, die sich hinsichtlich ihrer Lage bezogen auf die Rotationsachse (A) in axialer Richtung und/oder in Umfangsrichtung voneinander unterscheiden.
  12. Vakuumpumpe nach Anspruch 11, wobei der Einlasskanal (35) mehrere im Holweck-Stator (25) ausgebildete Mündungsabschnitte (39, 41) umfasst, die jeweils zu wenigstens einer, vorzugsweise zu genau einer, der mehreren Mündungen (37) führen.
  13. Vakuumpumpe nach Anspruch 11 oder 12, wobei der Einlasskanal (35) einen Einlassabschnitt (49) aufweist, der zwischen dem weiteren Einlass (33) und dem Holweck-Stator (25) gelegen ist und als ein Sammelabschnitt ausgebildet ist oder zumindest einen Sammelabschnitt umfasst, der mit einer Mehrzahl der Mündungen (37), vorzugsweise mit allen Mündungen (37), in Strömungsverbindung steht.
  14. Vakuumpumpe nach einem der vorhergehenden Ansprüche, wobei der Holweck-Stator (25) mit einem Holweck-Gewinde versehen ist und der Nutgrunddurchmesser in Pumprichtung (P) variiert, insbesondere zunimmt, und/oder wobei zusätzlich zu der Holweck-Pumpstufe (21) wenigstens eine weitere Holweck-Pumpstufe (19) vorgesehen ist, wobei diese wenigstens zwei Holweck-Pumpstufen (19, 21) bezüglich der eine gemeinsame Rotationsachse bildenden Rotationsachse (A) konzentrisch und in Pumprichtung (P) aufeinanderfolgend angeordnet sind und zumindest zwei Holweck-Statoren (23, 25) umfassen, von denen der eine radial innerhalb des anderen angeordnet ist, und wobei die Mündung (37) und der bis zur Mündung (37) verlaufende Mündungsabschnitt (39, 41) in dem radial inneren Holweck-Stator (25) ausgebildet sind, der mit einem Holweck-Gewinde versehen ist und dessen Nutgrunddurchmesser in Pumprichtung (P) variiert, insbesondere zunimmt.
  15. Vakuumpumpsystem mit zumindest einer Vakuumpumpe (10), insbesondere Turbomolekularvakuumpumpe, nach einem der vorhergehenden Ansprüche und mit wenigstens einer zu evakuierenden Einrichtung (12) oder wenigstens einer Einrichtung (12), die zumindest eine zu evakuierende Vakuumkammer (14) umfasst, insbesondere wobei die Einrichtung (12) mehrere zu evakuierende Vakuumkammern (14) umfasst, die hintereinander angeordnet sind und jeweils einen Gasauslass (16) aufweisen, der im Pumpbetrieb mit einem Einlass (11, 33) der Vakuumpumpe (10) in Strömungsverbindung steht.
EP21166257.2A 2021-03-31 2021-03-31 Vakuumpumpe und vakuumpumpensystem Active EP3845764B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21166257.2A EP3845764B1 (de) 2021-03-31 2021-03-31 Vakuumpumpe und vakuumpumpensystem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP21166257.2A EP3845764B1 (de) 2021-03-31 2021-03-31 Vakuumpumpe und vakuumpumpensystem

Publications (3)

Publication Number Publication Date
EP3845764A2 true EP3845764A2 (de) 2021-07-07
EP3845764A3 EP3845764A3 (de) 2021-10-27
EP3845764B1 EP3845764B1 (de) 2023-05-03

Family

ID=75339520

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21166257.2A Active EP3845764B1 (de) 2021-03-31 2021-03-31 Vakuumpumpe und vakuumpumpensystem

Country Status (1)

Country Link
EP (1) EP3845764B1 (de)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5733104A (en) * 1992-12-24 1998-03-31 Balzers-Pfeiffer Gmbh Vacuum pump system
DE102014105582A1 (de) * 2014-04-17 2015-10-22 Pfeiffer Vacuum Gmbh Vakuumpumpe
EP3657021B1 (de) * 2018-11-21 2020-11-11 Pfeiffer Vacuum Gmbh Vakuumpumpe

Also Published As

Publication number Publication date
EP3845764B1 (de) 2023-05-03
EP3845764A3 (de) 2021-10-27

Similar Documents

Publication Publication Date Title
EP3657021B1 (de) Vakuumpumpe
EP2829734B1 (de) Vakuumpumpe
EP0675289A1 (de) Reibungspumpe
EP2933497B1 (de) Vakuumpumpe
EP2039941B1 (de) Vakuumpumpe
DE60319585T2 (de) Vakuumpumpe
EP4108932A1 (de) Rezipient und hochvakuumpumpe
EP4212730A1 (de) Vakuumpumpe mit optimierter holweck-pumpstufe zur kompensation temperaturbedingter leistungseinbussen
EP3845764B1 (de) Vakuumpumpe und vakuumpumpensystem
EP3693610B1 (de) Molekularvakuumpumpe
EP3196471B1 (de) Vakuumpumpe
EP3670924B1 (de) Vakuumpumpe und verfahren zur herstellung einer solchen
EP3734078B1 (de) Turbomolekularpumpe und verfahren zur herstellung einer statorscheibe für eine solche
EP3683447B1 (de) Vakuumpumpe
EP3767109B1 (de) Vakuumsystem
EP3907406B1 (de) Vakuumpumpe
EP3267040B1 (de) Turbomolekularpumpe
EP3327293B1 (de) Vakuumpumpe mit mehreren einlässen
EP3564538B1 (de) Vakuumsystem und verfahren zur herstellung eines solchen
EP3628883B1 (de) Vakuumpumpe
EP3135932B1 (de) Vakuumpumpe und permanentmagnetlager
EP4194700A1 (de) Vakuumpumpe mit einer holweck-pumpstufe mit veränderlicher holweck-geometrie
DE102020116770B4 (de) Vakuumpumpe mit integriertem miniaturventil
EP4155549A1 (de) Vakuumpumpe mit verbessertem saugvermögen der holweck-pumpstufe
EP4273405A1 (de) Vakuumpumpe mit einer holweck-pumpstufe mit veränderlicher holweck-geometrie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 19/04 20060101ALI20210920BHEP

Ipc: F04D 1/00 20060101AFI20210920BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211111

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20230228

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021000630

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1564814

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230904

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230803

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230903

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502021000630

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20240325

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240528

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240401

Year of fee payment: 4