EP3839651B1 - Oscillateur horloger mécanique a guidage flexible - Google Patents

Oscillateur horloger mécanique a guidage flexible Download PDF

Info

Publication number
EP3839651B1
EP3839651B1 EP19217918.2A EP19217918A EP3839651B1 EP 3839651 B1 EP3839651 B1 EP 3839651B1 EP 19217918 A EP19217918 A EP 19217918A EP 3839651 B1 EP3839651 B1 EP 3839651B1
Authority
EP
European Patent Office
Prior art keywords
oscillator
balance
movable part
diameter
hub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19217918.2A
Other languages
German (de)
English (en)
Other versions
EP3839651A1 (fr
Inventor
Stéphane OES
Anthony Krüttli
David Chabloz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Patek Philippe SA Geneve
Original Assignee
Patek Philippe SA Geneve
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patek Philippe SA Geneve filed Critical Patek Philippe SA Geneve
Priority to EP19217918.2A priority Critical patent/EP3839651B1/fr
Publication of EP3839651A1 publication Critical patent/EP3839651A1/fr
Application granted granted Critical
Publication of EP3839651B1 publication Critical patent/EP3839651B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/045Oscillators acting by spring tension with oscillating blade springs

Definitions

  • the present invention relates to a mechanical watch oscillator with flexible guidance, intended to oscillate around a virtual oscillation axis, said oscillator comprising a movable part centered on the oscillation axis, a fixing part intended to be fixed to a first support element, and at least first and second elastic blades connecting the movable part and the fixing part and arranged to exert on the movable part, relative to the fixing part, a restoring torque.
  • Such oscillators also called flexible pivot oscillators, are designed to pivot without a physical axis of rotation, therefore without friction, around a virtual axis of rotation, thanks to an arrangement of elastic parts.
  • pivots with separate crossed blades pivots with non-separated crossed blades or pivots with a remote center of rotation called “RCC” (Remote Center Compliance).
  • RRC Remote Center Compliance
  • oscillators have one or more flexible blades, generally monolithic with the moving part and the fixing part, replacing the hairspring and the physical oscillation axis. These oscillators are particularly interesting in terms of friction reduction.
  • operating stops are generally positioned outside the oscillator in order to be able to act on its moving part.
  • This type of construction with a shaft or a central material element requires the production of blades comprising a recess, a clearance or an eye provided around the shaft or the central material element, allowing the passage of said shaft or material element. central material without contact with the blades.
  • This has the disadvantage of increasing the complexity of designing and manufacturing the blades. This also has the negative effect of reducing the effective length of the blades for a given size, and therefore reducing their stiffness.
  • the present invention aims to remedy these drawbacks by proposing a flexible guided oscillator which is ensured in all radial and axial positions, while retaining the advantages of a flexible guided oscillator.
  • the flexible guided oscillator according to the invention allows, by means of a single tenon integrated in the central hub of the reported balance, to obtain stops in all directions X, Y, Z, over a small diameter, which has the advantage of reducing the friction torque and disturbances.
  • the balance wheel is arranged to constitute the inertial element of the oscillator.
  • This advantageously makes it possible to dissociate the inertia of the oscillator from the stiffness of the elastic blades, thus making it possible to adjust the inertia of the oscillator in an easy and known manner via the reported balance, as for a standard balance, and an embodiment blades to the desired stiffness, without sizing constraints of the blades to obtain the good stiffness/inertia compromise usually sought in standard flexible guided oscillators.
  • the oscillator is such that its mobile part has a shape arranged to define an interior zone empty of any element of material of the mobile part or it does not include a physical shaft passing through the mobile part and/or the elastic blades.
  • the present invention also relates to a regulating mechanism, a watch movement as well as a timepiece comprising such an oscillator.
  • FIG. 1 With reference to figures 1 to 3 , there is shown a flexible guided oscillator of the type with separate crossed blades, according to which the elastic blades 5, 6 are of the same length and cross without contact by extending in two different parallel planes.
  • these elastic blades 5, 6 intersect at a point P which constitutes the center of rotation of the movable part 2 relative to the fixing part 3.
  • the straight line passing through the point P and perpendicular to the plane of oscillator 1 constitutes the axis of oscillation A of the movable part 2 relative to the fixing part 3.
  • said movable part 2 oscillates around the axis A relative to the fixing part 3, the elastic blades 5 , 6 exerting on the mobile part 2, relative to the fixing part 3, a restoring torque like the hairspring of a balance-spring oscillator.
  • Oscillator 1 is associated with an escapement (not shown) which can be of a classic type such as a Swiss lever escapement or of any other type.
  • a pin 7 is provided intended to cooperate with a fork of an anchor of the escapement mechanism for maintaining the oscillations.
  • the pin 7 is carried by a free end of an arm 2a extending from the free part 2 towards the axis of oscillation A, forming with the free part 2 a rigid part.
  • Such an oscillator can be manufactured monolithicly, for example in silicon or in any other suitable material using the etching technique.
  • deep reactive ionic called “DRIE” (Deep Reactive Ion Etching), in nickel, nickel alloy or any other appropriate material according to the LIGA technique (lithography, electroplating, casting), in steel, copper-beryllium, nickel silver or other metallic alloy by milling or electroerosion, or metallic glass by molding.
  • the oscillator 1 comprises at least one balance 8, rigid, attached and made integral with the movable part 2, said balance 8 comprising a rim 10 of annular, continuous or discontinuous shape, a hub 12 having a hole central 14, centered on the axis of oscillation A, and at least one arm 16 (here four arms 16) connecting said hub 12 to the rim 10.
  • the oscillator 1 also comprises a tenon 18, centered on the axis d oscillation A, said tenon 18 being on the one hand integral at least in axial translation with a second support element (not shown on the figures 1 to 3 ), such as a bridge, and on the other hand positioned in the central hole 14 of the hub 12 of the balance 8, so that said balance 8 oscillates along the axis A around the tenon 18.
  • a second support element not shown on the figures 1 to 3
  • a bridge such as a bridge
  • the tenon 18 has a head 18a and a foot 18b secured to each other.
  • the head 18a preferably cylindrical in shape, is arranged to be housed in the second support element, integrally in translation and in rotation with said second support element, for example by driving.
  • the foot 18b extends along the axis A and is of cylindrical shape concentric with the axis A, allowing the hub 12 to pivot around the foot 18b.
  • Said foot 18b is arranged to project from the second support element, perpendicular to the head 18a, and to pass through the central hole 14 of the hub 12.
  • the foot 18b has a diameter smaller than the diameter of the head 18a so as to form a shoulder 18c between foot 18b and head 18a.
  • the dimensions of the tenon 18 and the central hole 14 are chosen so as to leave an axial clearance between the upper surface 12a of the hub 12 and the shoulder 18c of the tenon 18 constituting a bearing surface defining an axial operating stop as well as a radial clearance between the inner periphery 12b of the hub 12 and the outer surface 18d of the foot 18b of the tenon 18 constituting a radial bearing surface defining a radial operating stop.
  • the tenon 18 can be monolithic with the second support element, and then have the form only of the cylindrical foot 18b, the support surface defining the axial operating stop being constituted by the surface of the second support element, in place of the shoulder 18c.
  • Said cylindrical foot 8b can for example be machined directly in the second support element.
  • the balance 8 is arranged to constitute the inertial element of the oscillator 1, independently of the inertia of the mobile part 2.
  • the balance 8, and more particularly the rim 10, and the movable part 2 are preferably made of materials different from each other, the material of the balance 8, and more particularly the material of the serge 10, having an inertia greater than that of the movable part 2.
  • the materials of the balance and of the mobile part 2 are chosen so that the inertia of the mobile part 2 is negligible compared to the inertia of the balance.
  • the mobile part 2 can be made of silicon and the rim can be made of CuBe.
  • the geometry of the mobile part 2 can be easily and freely modified to be perfectly adapted in order to ensure assembly with the serge 10, to integrate measuring elements or even to be perfectly adapted to the geometry of the blades, without risk modifying the overall inertia of oscillator 1.
  • the oscillator according to the invention makes it possible to adjust the inertia and its balance/unbalance via the balance, for example by appropriate sizing of the balance and its rim and/or by the use of weights positioned on the balance, so as to similar to the inertia and balance/unbalance adjustment for a standard balance wheel.
  • the balance 8, and more particularly its rim 10, and the movable part 2 can advantageously have circular or annular shapes of different diameters, the diameter of the rim 10 being chosen to obtain the appropriate inertia of the oscillator 1
  • the serge 10 can be of continuous circular or annular shape, or comprise at least two circular portions, preferably symmetrical with respect to the axis A. It is also possible to integrate design elements and decorations such as bevels, drawn lines, polishing or coloring.
  • the material of the balance 8 is also chosen so that said balance 8 is able to withstand shocks.
  • this material can be brass, nickel silver, titanium, steel and nickel.
  • the tenon 18 is also made of a material capable of withstanding shocks, such as for example preferably steel or CuBe, brass, nickel silver, titanium, and ruby.
  • the balance 8 can be kept centered on the upper face of the movable part 2 by pins 20 on which weights 22 can be positioned for adjusting the inertia of the balance 8.
  • the balance wheel 8 can be assembled to the mobile part 2 for example by brazing, elastic tightening, clipping or gluing.
  • the movable part 2 has a shape arranged to define a central interior zone, centered on the axis of oscillation A, empty of any element of movable part material.
  • no physical shaft is provided passing through the mobile part and/or the elastic blades.
  • the movable part 2 may have a continuous or discontinuous annular shape, without any element of free part material in the center.
  • the oscillator according to the invention has all the advantages of a flexible oscillator with a virtual pivot. It also remains very compact.
  • a second balance wheel similar to the balance wheel 8 can be assembled on the lower face of the movable part 2, said second balance wheel cooperating as described above with a second tenon similar to tenon 18 and provided in a support element under the oscillator.
  • FIG. 4 Another alternative embodiment of an oscillator according to the invention is shown on the figures 4 to 8 , the same references being used to designate the same elements as for the figures 1 to 3 .
  • THE figures 4 and 5 represent a regulating mechanism comprising the flexible guided oscillator 1 according to the invention and an escapement mechanism 30.
  • Said escapement mechanism 30 comprises in a known manner an escapement wheel 32 and an anchor 34 mounted on its axis 36, and comprising a fork 38 arranged to cooperate with a pin 37 provided on the balance 8 as will be described in more detail below.
  • the pendulum 8 of figures 4 to 8 differs from the pendulum of figures 1 to 3 by the shape of the tenon 18, which is here coupled to the hub 12 of the balance 8 by a bayonet device.
  • the tenon 18 comprises a head 18a and a foot 18b secured to each other.
  • the head 18a is cylindrical in shape, and is arranged to be housed in a housing 39a provided in a bridge 39 (partially shown on the Figure 6 and also visible on the Figure 4 ) here constituting the second support element, integral in axial translation with said second support element but free in rotation relative to it.
  • the head 18a has on its exterior surface a slot 40 (cf. Figure 4 ) allowing the introduction of a tool so that said head 18a can be maneuvered by a user so as to be able to pivot the tenon 18 between different angular positions as will be described in detail below.
  • the foot 18b extends along the axis A, and has a first skirt 42 linked to the head 18a, arranged to project from said second support element, perpendicular to the head 18a, and of cylindrical shape concentric with the axis A, of diameter less than the diameter of the head 18a so as to form a shoulder 18c between the foot 18b and the head 18a on which the second support element rests.
  • the foot 18b also comprises a second skirt 44 of diameter less than the diameter of the first skirt 42, so as to form a shoulder 54.
  • the second skirt 44 passes through the central hole 14 of the hub 12 of the balance 8.
  • the foot 18b being terminated by a fin 46 linked to the second skirt 44 and extending perpendicular to said foot 18b.
  • the central hole 14 of the hub 12 has two first circular portions 48 having a first diameter, alternating with two second circular portions 50 having a second diameter less than the first diameter of the first portions 48, said second diameter being between the diameter of the first skirt 42 and the diameter of the second skirt 44, the two first portions being opposite each other with respect to the axis A to form a groove 52 of dimensions greater than the dimensions of the fin 46, and the length of the fin 46 being greater than the second diameter of the second portions 50.
  • the tenon 18 can move between a first angular mounting position, as shown in the Figure 7 , according to which the fin 46 of the tenon 18 can be introduced into the groove 52 of the central hole 14 of the hub 12 of the balance 8, and, by rotating the head 18a by 90°, a second angular locking position, as shown in there figure 8 , according to which the fin 46 of the tenon 18 is capable of cooperating with the second portions 50 of the central hole 14, the interior face 46a of the fin 46 constituting a bearing surface defining lower axial operating stops, the shoulder 54 of the first skirt 42 constituting a bearing surface defining upper axial operating stops, and the outer surface 56 of the second skirt 44 constituting a bearing surface defining radial operating stops for the second portions 50 of the balance wheel 8 , particularly in the event of shocks.
  • This variant makes it possible to form lower axial operating stops, which constitute additional security compared to the production of figures 1 to 3 .
  • the rim 10 of the balance 8 can be discontinuous and comprise at least two circular or annular portions 10a, 10b, symmetrical with respect to the axis A. Said circular portions 10a, 10b are positioned on each side of the anchor 34.
  • a pin 37 is provided on the balance 8 intended to cooperate with the fork 38 of the anchor 34 for maintaining the oscillations.
  • the pin 37 extends towards the second support element so that the anchor 34 is positioned above the hub 12 of the balance 8, facing the second support element, and opposite the movable part 2 This makes it possible to position the anchor 34 close to the balance 8, on the side opposite the blades 5, 6, and. thus having a relatively short ankle 37, guaranteeing good perpendicularity.
  • the mobile part 2 of generally annular shape, is also discontinuous and is interrupted so as to be able to position the anchor 34 between the two ends of the mobile part 2, as close as possible to the oscillator 1
  • the axis 36 of the anchor 34 can then be pivotally mounted in the same bridge as the oscillator 1. This makes it possible to have less dimension chain, and to have better positioning precision, with fewer components. .
  • the anchor 34 is positioned between the two ends of the movable part 2 and between the two circular portions 10a, 10b of the serge 10, the axis 36 of the anchor 34 being arranged to be in the stroke of said circular portions 10a, 10b so that said axis 36 constitutes a stop for said circular portions 10a, 10b of the rim 10 of the balance 8 and that the elastic blades 5 and 6 do not strike said axis 36 of the anchor 34 .
  • the blades 5, 6, the movable part 2 and the fixing part 3 can be produced in a monolithic manner as described above for the first variant of the figures 1 to 3 .
  • the blades 5, 6, the movable part 2 and the fixing part 3 can also be made in several parts as shown here on the figures 4 to 8 .
  • the movable part 2 may comprise a first upper element 2a of movable part 2 and a second lower element 2b of movable part 2, superimposed and made integral with each other, by being assembled for example by means of pins 20 which will be used to fix the portions 10a, 10b of the serge 10, by inserting spacers 59.
  • the fixing part 3 comprises a first upper element 3a of fixing part 3 and a second lower element 3b of fixing part 3, superimposed and made integral with each other, by being assembled for example by means pins 60.
  • the first upper element 2a of movable part 2 is connected to the first upper element 3a of fixing part 3 by the first elastic blade 5 and the second lower element 2b of movable part 2 is connected to the second lower element 3b of fixing part 3 by the second elastic blade 6.
  • Said first and second elements 2a, 2b of movable part 2 are symmetrical in shape with respect to a line perpendicular and secant to the axis of oscillation A (mirror symmetry).
  • said first and second elements 2a, 2b of movable part 2 have a first annular portion open at an angle of approximately 120° relative to the crossing point P of the blades 5, 6, terminated at one of the two free ends by a arm carrying a second annular portion of diameter greater than the first annular portion and forming an angle of approximately 30° relative to point P.
  • One of the ends of an elastic blade is fixed on said second annular portion, the other end of the elastic blade being fixed on the corresponding fixing part element.
  • This embodiment in several parts advantageously makes it possible to manufacture, on the one hand, in a monolithic manner a first stage corresponding to the first element 2a of the movable part, to the first element 3a of the fixing part and to the first blade 5, and on the other hand leaves a second stage corresponding to the second element 2b of the movable part, to the second element 3b of the fixing part and to the second blade 6.
  • This allows each stage to be manufactured on a single level, which is advantageous in the context of a manufacturing of silicon elements by DRIE.
  • This also makes it possible to have a real physical separation of the blades 5 and 6, obtained more easily than with monolithic manufacturing of a moving part in a single element.
  • the first and second stages are superimposed and assembled by pins 20.
  • the serge 10 is then assembled to the movable part 2 by means of pins 20 then the weights 22 are put in place in order to obtain the appropriate inertia.
  • the first and second annular portions of the elements 2a, 2b of the movable part 2 have diameters different from the diameter of the serge 10.
  • This shape of the elements 2a, 2b of the movable part 2 is particularly suitable so that the elastic blades 5 and 6 can have the length necessary to present the required stiffness.
  • the mobile part 2 is made of silicon and the rim 10 is made of CuBe for example, so that the inertial element of the oscillator 1 is constituted by the balance 8, making it possible to dissociate the inertia from the oscillator 1 of the stiffness of the blades 5, 6.
  • the oscillator according to the invention can also include more than two elastic blades.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Micromachines (AREA)

Description

  • La présente invention concerne un oscillateur horloger mécanique à guidage flexible, destiné à osciller autour d'un axe d'oscillation virtuel, ledit oscillateur comportant une partie mobile centrée sur l'axe d'oscillation, une partie de fixation destinée à être fixée à un premier élément de support, et au moins des première et deuxième lames élastiques reliant la partie mobile et la partie de fixation et agencées pour exercer sur la partie mobile, par rapport à la partie de fixation, un couple de rappel.
  • De tels oscillateurs, également appelés oscillateurs à pivot flexible sont conçus pour pivoter sans axe de rotation physique, donc sans frottements, autour d'un axe de rotation virtuel, grâce à un agencement de parties élastiques.
  • Différents types de pivots flexibles existent, tels que les pivots à lames croisées séparées, les pivots à lames croisées non séparées ou les pivots à centre de rotation déporté dits « RCC » (Remote Center Compliance).
  • L'utilisation de ce type d'oscillateurs mécaniques à guidage flexible dans l'horlogerie est désormais bien connue. Des exemples de tels oscillateurs sont décrits à titre indicatif dans la demande de brevet EP 2 911 012 ou dans le brevet EP 3 356 690 .
  • Ces oscillateurs possèdent une ou plusieurs lames flexibles, généralement monolithiques avec la partie mobile et la partie de fixation, remplaçant le spiral et l'axe d'oscillation physique. Ces oscillateurs sont particulièrement intéressants en termes de réduction des frottements.
  • Toutefois, il est néanmoins nécessaire de limiter leurs déplacements radial et axial dans le but d'éviter de dépasser la limite élastique des lames, notamment en cas de chocs ou en cas de perturbations externes. Pour cela, des butées de fonctionnement sont généralement positionnées à l'extérieur de l'oscillateur afin de pouvoir agir sur sa partie mobile.
  • Ces butées fonctionnent donc sur un grand diamètre, ce qui signifie de grands bras de levier entre le point d'actionnement de la butée et l'axe d'oscillation et donc un couple de frottement élevé. Cela génère de fortes perturbations, voire même des arrêts inopinés. De plus, le positionnement de ces butées n'est pas simple puisque pratiquement toutes les surfaces de l'oscillateur flexible sont fonctionnelles et en mouvement continu.
  • Pour résoudre ces problèmes, différentes solutions ont été proposées et reposent essentiellement sur la reconstitution d'un axe physique aligné avec l'axe d'oscillation, au moyen d'un arbre ou d'un élément de matière traversant les lames et/ou la partie mobile. De tels oscillateurs sont décrits par exemple dans la demande CH 714 922 ou dans le brevet EP 3 324 246 . Le brevet EP 3 324 246 décrit l'utilisation d'un arbre traversant les lames et portant des moyens de butée axiale et/ou radial. L'arbre est solidaire de la partie mobile ou de la structure. La demande CH 714 922 décrit un oscillateur flexible dont la partie mobile comprend un élément de matière central agencé pour coopérer en appui de butée avec des surfaces complémentaires de butée que comporte la structure. Ce type de construction avec un arbre ou un élément de matière central impose de réaliser des lames comportant un évidement, un dégagement ou un oeil ménagé autour de l'arbre ou de l'élément de matière central, permettant le passage dudit arbre ou élément de matière central sans contact avec les lames. Cela a pour inconvénient d'augmenter la complexité de conception et de fabrication des lames. Cela a également pour effet négatif de réduire la longueur efficace des lames pour un encombrement donné, et donc de diminuer leur raideur.
  • La présente invention vise à remédier à ces inconvénients en proposant un oscillateur à guidage flexible qui soit assuré dans toutes les positions radiales et axiales, tout en conservant les avantages d'un oscillateur à guidage flexible.
  • A cet effet, la présente invention concerne un oscillateur horloger mécanique à guidage flexible, destiné à osciller autour d'un axe d'oscillation virtuel, ledit oscillateur comportant :
    • une partie mobile centrée sur l'axe d'oscillation,
    • une partie de fixation destinée à être fixée à un premier élément de support,
    • au moins des première et deuxième lames élastiques reliant la partie mobile et la partie de fixation et agencées pour exercer sur la partie mobile, par rapport à la partie de fixation, un couple de rappel,
    • au moins un balancier rapporté et rendu solidaire de la partie mobile, ledit balancier comportant une serge, un moyeu présentant un trou central, centré sur l'axe d'oscillation, et au moins un bras reliant ledit moyeu à la serge.
  • Selon l'invention, ledit oscillateur comprend :
    • un tenon, centré sur l'axe d'oscillation, ledit tenon étant d'une part solidaire au moins en translation axiale d'un deuxième élément de support et d'autre part positionné dans le trou central du moyeu du balancier, les dimensions du tenon et du trou central étant choisies de manière à laisser un jeu entre le moyeu et le tenon définissant des butées de fonctionnement axiales et radiales.
  • Ainsi, l'oscillateur à guidage flexible selon l'invention permet au moyen d'un seul tenon intégré dans le moyeu central du balancier rapporté d'obtenir des butées dans toutes les directions X, Y, Z, sur un petit diamètre, ce qui a pour avantage de diminuer le couple de frottement et les perturbations.
  • D'une manière particulièrement préférée, le balancier est agencé pour constituer l'élément inertiel de l'oscillateur. Cela permet avantageusement de pouvoir dissocier l'inertie de l'oscillateur de la raideur des lames élastiques, permettant ainsi de régler l'inertie de l'oscillateur de manière aisée et connue via le balancier rapporté, comme pour un balancier standard, et une réalisation des lames à la raideur souhaitée, sans contrainte de dimensionnement des lames pour obtenir le bon compromis raideur/inertie habituellement recherché dans les oscillateurs à guidage flexible standard.
  • De plus, grâce à cette configuration, il existe une grande liberté de design sans limiter la fonction technique et permettant un équilibrage traditionnel du système. Cela permet également de pouvoir ajouter des finitions ou anglages traditionnellement souhaités dans l'horlogerie haut de gamme.
  • De préférence, l'oscillateur est tel que sa partie mobile présente une forme agencée pour définir une zone intérieure vide de tout élément de matière de partie mobile ou il ne comprend pas d'arbre physique traversant la partie mobile et/ou les lames élastiques. Cela permet à l'oscillateur de l'invention de conserver tous les avantages d'un oscillateur à guidage flexible standard, ainsi que de rester très compact.
  • La présente invention concerne également un mécanisme régulateur, un mouvement horloger ainsi qu'une pièce d'horlogerie comprenant un tel oscillateur.
  • D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description détaillée suivante de différents modes de réalisation de l'invention, donnés à titre d'exemples non limitatifs, et faite en référence aux dessins annexés dans lesquels :
    • les figures 1, 2 et 3 sont respectivement une vue en perspective, une vue plane de dessous et une vue en coupe axiale d'un oscillateur mécanique à guidage flexible selon l'invention ;
    • les figures 4, 5 et 6 sont respectivement une vue en perspective, une vue plane de dessous et une vue en coupe axiale d'un mécanisme régulateur comprenant un mécanisme d'échappement et un oscillateur mécanique à guidage flexible selon une variante de réalisation de l'invention ; et
    • les figures 7 et 8 représentent le couplage du tenon au balancier par un dispositif à baïonnette respectivement dans une première position angulaire de montage et une seconde position angulaire de verrouillage.
  • La présente invention concerne un oscillateur mécanique à guidage flexible d'un mouvement horloger, destiné à osciller autour d'un axe d'oscillation virtuel A, c'est-à-dire sans axe de rotation physique et comprenant comme organe élastique de rappel un système à lames élastiques. Un tel oscillateur comporte d'une manière connue :
    • une partie mobile 2 centrée sur l'axe d'oscillation A,
    • une partie de fixation 3 destinée à être fixée à un premier élément de support (non représenté), tel qu'un élément du bâti du mouvement horloger,
    • au moins des première et deuxième lames élastiques 5, 6 reliant la partie mobile 2 et la partie de fixation 3 et agencées pour exercer sur la partie mobile 2, par rapport à la partie de fixation 3, un couple de rappel,
  • En référence aux figures 1 à 3, il est représenté un oscillateur à guidage flexible de type à lames croisées séparées, selon lequel les lames élastiques 5, 6 sont de même longueur et se croisent sans contact en s'étendant dans deux plans parallèles différents. Sur la figure 2, en vue plane de dessous, ces lames élastiques 5, 6 se croisent en un point P qui constitue le centre de rotation de la partie mobile 2 par rapport à la partie de fixation 3. La droite passant par le point P et perpendiculaire au plan de l'oscillateur 1 (plan de la figure 1) constitue l'axe d'oscillation A de la partie mobile 2 par rapport à la partie de fixation 3. En fonctionnement, ladite partie mobile 2 oscille autour de l'axe A par rapport à la partie de fixation 3, les lames élastiques 5, 6 exerçant sur la partie mobile 2, par rapport à la partie de fixation 3, un couple de rappel à l'instar du spiral d'un oscillateur balancier-spiral.
  • L'oscillateur 1 est associé à un échappement (non représenté) qui peut être de type classique tel qu'un échappement à ancre suisse ou de tout autre type. A cet effet, il est prévu une cheville 7 destinée à coopérer avec une fourchette d'une ancre du mécanisme d'échappement pour l'entretien des oscillations. La cheville 7 est portée par une extrémité libre d'un bras 2a s'étendant depuis la partie libre 2 vers l'axe d'oscillation A, formant avec la partie libre 2 une partie rigide.
  • Un tel oscillateur peut être fabriqué de manière monolithique, par exemple en silicium ou dans tout autre matériau approprié selon la technique de gravure ionique réactive profonde dite « DRIE » (Deep Reactive Ion Etching), en nickel, alliage de nickel ou tout autre matériau approprié selon la technique LIGA (lithographie, galvanoplastie, moulage), en acier, cuivre-béryllium, maillechort ou autre alliage métallique par fraisage ou par électroérosion, ou en verre métallique par moulage.
  • Le fonctionnement d'un tel oscillateur mécanique à guidage flexible 1 est décrit plus amplement par exemple dans le brevet EP 3 356 690 et ne nécessite pas ici de description plus détaillée.
  • Conformément à l'invention, l'oscillateur 1 comprend au moins un balancier 8, rigide, rapporté et rendu solidaire de la partie mobile 2, ledit balancier 8 comportant une serge 10 de forme annulaire, continue ou discontinue, un moyeu 12 présentant un trou central 14, centré sur l'axe d'oscillation A, et au moins un bras 16 (ici quatre bras 16) reliant ledit moyeu 12 à la serge 10. L'oscillateur 1 comprend également un tenon 18, centré sur l'axe d'oscillation A, ledit tenon 18 étant d'une part solidaire au moins en translation axiale d'un deuxième élément de support (non représenté sur les figures 1 à 3), tel qu'un pont, et d'autre part positionné dans le trou central 14 du moyeu 12 du balancier 8, de sorte que ledit balancier 8 oscille selon l'axe A autour du tenon 18.
  • Plus particulièrement en référence à la figure 3, le tenon 18 présente une tête 18a et un pied 18b solidaires l'un de l'autre. La tête 18a, de préférence de forme cylindrique, est agencée pour se loger dans le deuxième élément de support, de manière solidaire en translation et en rotation audit deuxième élément de support, par exemple par chassage. Le pied 18b s'étend selon l'axe A et est de forme cylindrique concentrique à l'axe A, permettant au moyeu 12 de pivoter autour du pied 18b. Ledit pied 18b est agencé pour saillir du deuxième élément de support, perpendiculairement à la tête 18a, et pour traverser le trou central 14 du moyeu 12. Le pied 18b est de diamètre inférieur au diamètre de la tête 18a de manière à former un épaulement 18c entre le pied 18b et la tête 18a.
  • Les dimensions du tenon 18 et du trou central 14 sont choisies de manière à laisser un jeu axial entre la surface supérieure 12a du moyeu 12 et l'épaulement 18c du tenon 18 constituant une surface d'appui définissant une butée de fonctionnement axiale ainsi qu'un jeu radial entre le pourtour intérieur 12b du moyeu 12 et la surface extérieure 18d du pied 18b du tenon 18 constituant une surface d'appui radial définissant une butée de fonctionnement radiale.
  • Ainsi, un dimensionnement précis du tenon 18 concentrique à l'oscillateur 1 et s'intégrant dans le trou central 14 du balancier rigide 8 permet d'obtenir le jeu approprié entre ledit tenon 18 et le moyen 12 du balancier 8 pour former des butées de fonctionnement radiale et axiale assurant l'oscillateur 1 dans toutes les positions radiales et axiales en cas de chocs. Ces butées sont formées au plus proche de l'axe d'oscillation A de sorte que le couple de frottement ainsi que les perturbations sont diminuées.
  • Dans une autre variante de réalisation non représentée, le tenon 18 peut être monolithique avec le deuxième élément de support, et se présenter alors sous la forme uniquement du pied cylindrique 18b, la surface d'appui définissant la butée de fonctionnement axiale étant constituée par la surface du deuxième élément de support, à la place de l'épaulement 18c. Ledit pied cylindrique 8b peut par exemple être usiné directement dans le deuxième élément de support.
  • D'une manière particulièrement préférée, le balancier 8 est agencé pour constituer l'élément inertiel de l'oscillateur 1, indépendamment de l'inertie de la partie mobile 2. A cet effet, le balancier 8, et plus particulièrement la serge 10, et la partie mobile 2 sont réalisés de préférence dans des matériaux différents l'un de l'autre, le matériau du balancier 8, et plus particulièrement le matériau de la serge 10, présentant une inertie supérieure à celui de la partie mobile 2. De préférence, les matériaux du balancier et de la partie mobile 2 sont choisis de sorte que l'inertie de la partie mobile 2 est négligeable par rapport à l'inertie du balancier. Par exemple, la partie mobile 2 peut être réalisée en silicium et la serge peut être réalisée en CuBe.
  • Ainsi, la géométrie de la partie mobile 2 peut être facilement et librement modifiée pour être parfaitement adaptée afin d'assurer l'assemblage avec la serge 10, pour intégrer des éléments de mesure ou encore pour être parfaitement adaptée à la géométrie des lames, sans risquer de modifier l'inertie globale de l'oscillateur 1.
  • De même, cela permet de dissocier l'inertie de l'oscillateur 1 de la raideur des première et deuxième lames élastiques 5,6, et de réaliser des lames élastiques de la longueur nécessaire pour obtenir la raideur recherchée sans avoir à se préoccuper d'autres contraintes qui auraient été imposées pour obtenir l'inertie appropriée de l'oscillateur.
  • L'oscillateur selon l'invention permet de régler l'inertie et son équilibre/balourd via le balancier, par exemple par un dimensionnement approprié du balancier et de sa serge et/ou par l'utilisation de masselottes positionnées sur le balancier, de manière similaire au réglage de l'inertie et de l'équilibre/balourd pour un balancier standard. Par exemple, le balancier 8, et plus particulièrement sa serge 10, et la partie mobile 2 peuvent présenter avantageusement des formes circulaires ou annulaires de diamètres différents, le diamètre de la serge 10 étant choisi pour obtenir l'inertie appropriée de l'oscillateur 1. La serge 10 peut être de forme circulaire ou annulaire continue, ou comprendre au moins deux portions circulaires, de préférence symétriques par rapport à l'axe A. Il est possible également d'intégrer des éléments de design et des décors comme des anglages, traits-tirés, polissage ou mise en couleur.
  • Le matériau du balancier 8 est également choisi pour que ledit balancier 8 soit apte à supporter les chocs. Outre le CuBe, ce matériau peut être les laitons, le maillechort, le titane, l'acier et le nickel.
  • Le tenon 18 est également réalisé dans un matériau apte à supporter les chocs, tel que par exemple l'acier de préférence ou le CuBe, les laitons, le maillechort, le titane, et le rubis.
  • Le balancier 8 peut être maintenu centré sur la face supérieure de la partie mobile 2 par des goupilles 20 sur lesquelles peuvent être positionnées des masselottes 22 pour le réglage de l'inertie du balancier 8.
  • Le balancier 8 peut être assemblée à la partie mobile 2 par exemple par brasage, serrage élastique, clipsage ou collage.
  • D'une manière avantageuse, la partie mobile 2 présente une forme agencée pour définir une zone intérieure centrale, centrée sur l'axe d'oscillation A, vide de tout élément de matière de partie mobile. Notamment, il n'est prévu aucun arbre physique traversant la partie mobile et/ou les lames élastiques. Par exemple, la partie mobile 2 peut présenter une forme annulaire continue ou discontinue, sans aucun élément de matière de partie libre au centre. De ce fait, l'oscillateur selon l'invention présente tous les avantages d'un oscillateur flexible à pivot virtuel. Il reste également très compact.
  • Si besoin, pour des raisons de symétrie et/ou de tenue axiale aux chocs (chocs dans l'axe Z) renforcée, un second balancier similaire au balancier 8 peut être assemblé sur la face inférieure de la partie mobile 2, ledit second balancier coopérant comme décrit ci-dessus avec un second tenon similaire au tenon 18 et prévu dans un élément de support sous l'oscillateur.
  • Une autre variante de réalisation d'un oscillateur selon l'invention est représentée sur les figures 4 à 8, les mêmes références étant utilisées pour désigner les mêmes éléments que pour les figures 1 à 3. Les figures 4 et 5 représentent un mécanisme régulateur comprenant l'oscillateur à guidage flexible 1 selon l'invention et un mécanisme d'échappement 30. Ledit mécanisme d'échappement 30 comprend de manière connue une roue d'échappement 32 et une ancre 34 montée sur son axe 36, et comprenant une fourchette 38 agencée pour coopérer avec une cheville 37 prévue sur le balancier 8 comme cela sera décrit plus en détails ci-après. Le balancier 8 des figures 4 à 8 diffère du balancier des figures 1 à 3 par la forme du tenon 18, qui est ici couplé au moyeu 12 du balancier 8 par un dispositif à baïonnette.
  • En référence plus particulièrement aux figures 6 et 7, le tenon 18 comprend une tête 18a et un pied 18b solidaires l'un de l'autre. La tête 18a est de forme cylindrique, et est agencée pour se loger dans un logement 39a prévu dans un pont 39 (représenté partiellement sur la figure 6 et visible également sur la figure 4) constituant ici le deuxième élément de support, de manière solidaire en translation axiale audit deuxième élément de support mais libre en rotation par rapport à celui-ci. La tête 18a présente sur sa surface extérieure une fente 40 (cf. Figure 4) permettant l'introduction d'un outil de sorte que ladite tête 18a est manoeuvrable par un utilisateur de manière à pouvoir faire pivoter le tenon 18 entre différentes positions angulaires comme cela sera décrit en détails ci-après.
  • Le pied 18b s'étend selon l'axe A, et présente une première jupe 42 liée à la tête 18a, agencée pour saillir dudit deuxième élément de support, perpendiculairement à la tête 18a, et de forme cylindrique concentrique à l'axe A, de diamètre inférieur au diamètre de la tête 18a de manière à former un épaulement 18c entre le pied 18b et la tête 18a sur lequel repose le deuxième élément de support. Le pied 18b comprend également une deuxième jupe 44 de diamètre inférieur au diamètre de la première jupe 42, de manière à former un épaulement 54. La deuxième jupe 44 traverse le trou central 14 du moyeu 12 du balancier 8. Le pied 18b étant terminé par une ailette 46 liée à la deuxième jupe 44 et s'étendant perpendiculairement audit pied 18b.
  • Par ailleurs, comme le montrent plus particulièrement les figures 7 et 8, le trou central 14 du moyeu 12 présente deux premières portions circulaires 48 présentant un premier diamètre, alternées avec deux deuxièmes portions circulaires 50 présentant un deuxième diamètre inférieur au premier diamètre des premières portions 48, ledit deuxième diamètre étant compris entre le diamètre de la première jupe 42 et le diamètre de la deuxième jupe 44, les deux premières portions étant opposées l'une à l'autre par rapport à l'axe A pour former une rainure 52 de dimensions supérieures aux dimensions de l'ailette 46, et la longueur de l'ailette 46 étant supérieure au deuxième diamètre des deuxièmes portions 50.
  • Ainsi, lorsque la tête 18a est manoeuvrée par un utilisateur, le tenon 18 peut évoluer entre une première position angulaire de montage, comme représenté sur la figure 7, selon laquelle l'ailette 46 du tenon 18 peut être introduite dans la rainure 52 du trou central 14 du moyeu 12 du balancier 8, et, en faisant pivoter la tête 18a de 90°, une seconde position angulaire de verrouillage, comme représenté sur la figure 8, selon laquelle l'ailette 46 du tenon 18 est susceptible de coopérer avec les deuxièmes portions 50 du trou central 14, la face intérieure 46a de l'ailette 46 constituant une surface d'appui définissant des butées de fonctionnement axiales inférieures, l'épaulement 54 de la première jupe 42 constituant une surface d'appui définissant des butées de fonctionnement axiales supérieures, et la surface extérieure 56 de la deuxième jupe 44 constituant une surface d'appui définissant des butées de fonctionnement radiales pour les deuxièmes portions 50 du balancier 8, notamment en cas de chocs.
  • Cette variante permet de former des butées de fonctionnement axiales inférieures, qui constituent des sécurités supplémentaires par rapport à la réalisation des figures 1 à 3.
  • D'une manière avantageuse, pour l'une ou l'autre des variantes, mais représenté ici sur les figures 4 à 8, la serge 10 du balancier 8 peut être discontinue et comprendre au moins deux portions circulaires ou annulaires 10a, 10b, symétriques par rapport à l'axe A. Lesdites portions circulaires 10a, 10b sont positionnées de chaque côté de l'ancre 34.
  • Il est prévu sur le balancier 8 une cheville 37 destinée à coopérer avec la fourchette 38 de l'ancre 34 pour l'entretien des oscillations. La cheville 37 s'étend en direction du deuxième élément de support de sorte que l'ancre 34 est positionnée au-dessus du moyeu 12 du balancier 8, en regard du deuxième élément de support, et à l'opposé de la partie mobile 2. Cela permet de pouvoir positionner l'ancre 34 proche du balancier 8, du côté opposé aux lames 5, 6, et ainsi d'avoir une cheville 37 relativement courte, garantissant une bonne perpendicularité.
  • D'une manière avantageuse, la partie mobile 2, de forme globalement annulaire, est également discontinue et s'interrompt de manière à pouvoir positionner l'ancre 34 entre les deux extrémités de la partie mobile 2, au plus près de l'oscillateur 1. L'axe 36 de l'ancre 34 peut alors être monté pivotant dans le même pont que l'oscillateur 1. Cela permet d'avoir moins de chaine de cote, et d'avoir une meilleure précision de positionnement, avec moins de composants.
  • D'une manière avantageuse, l'ancre 34 est positionnée entre les deux extrémités de la partie mobile 2 et entre les deux portions circulaires 10a, 10b de la serge 10, l'axe 36 de l'ancre 34 étant agencé pour se trouver dans la course desdites portions circulaires 10a, 10b de sorte que ledit axe 36 constitue une butée pour lesdites portions circulaires 10a, 10b de la serge 10 du balancier 8 et que les lames élastiques 5 et 6 ne heurtent pas ledit axe 36 de l'ancre 34.
  • Pour l'une ou l'autre des variantes, les lames 5, 6, la partie mobile 2 et la partie de fixation 3 peuvent être réalisée de manière monolithique comme décrit ci-dessus pour la première variante des figures 1 à 3.
  • Les lames 5, 6, la partie mobile 2 et la partie de fixation 3 peuvent être réalisées également en plusieurs parties comme représenté ici sur les figures 4 à 8. Plus particulièrement, la partie mobile 2 peut comprendre un premier élément supérieur 2a de partie mobile 2 et un deuxième élément inférieur 2b de partie mobile 2, superposés et rendus solidaires l'un de l'autre, en étant assemblés par exemple au moyen des goupilles 20 qui seront utilisées pour fixer les portions 10a, 10b de la serge 10, en insérant des entretoises 59.
  • De même, la partie de fixation 3 comprend un premier élément supérieur 3a de partie de fixation 3 et un deuxième élément inférieur 3b de partie de fixation 3, superposés et rendus solidaires l'un de l'autre, en étant assemblés par exemple au moyen des goupilles 60.
  • Le premier élément supérieur 2a de partie mobile 2 est relié au premier élément supérieur 3a de partie de fixation 3 par la première lame élastique 5 et le deuxième élément inférieur 2b de partie mobile 2 est relié au deuxième élément inférieur 3b de partie de fixation 3 par la deuxième lame élastique 6.
  • Lesdits premier et deuxième éléments 2a, 2b de partie mobile 2 sont de forme symétrique par rapport à une droite perpendiculaire et sécante à l'axe d'oscillation A (symétrie miroir). Par exemple, lesdits premier et deuxième éléments 2a, 2b de partie mobile 2 présentent une première portion annulaire ouverte sur un angle de 120° environ par rapport au point P de croisement des lames 5, 6, terminée à une des deux extrémités libres par un bras portant une seconde portion annulaire de diamètre supérieur à la première portion annulaire et formant un angle de 30° environ par rapport au point P. L'une des extrémités d'une lame élastique est fixée sur ladite seconde portion annulaire, l'autre extrémité de la lame élastique étant fixée sur l'élément de partie de fixation correspondant. Ce mode de réalisation en plusieurs parties permet avantageusement de fabriquer d'une part, de manière monolithique un premier étage correspondant au premier élément 2a de partie mobile, au premier élément 3a de partie de fixation et à la première lame 5, et d'autre part un deuxième étage correspondant au deuxième élément 2b de partie mobile, au deuxième élément 3b de partie de fixation et à la deuxième lame 6. Cela permet une fabrication de chaque étage sur un seul niveau, ce qui est avantageux dans le cadre d'une fabrication des éléments en silicium par DRIE. Cela permet également d'avoir une véritable séparation physique des lames 5 et 6, obtenue de manière plus aisée qu'avec une fabrication monolithique d'une partie mobile en un seul élément. Puis les premier et deuxième étages sont superposés et assemblés par les goupilles 20. La serge 10 est ensuite assemblée à la partie mobile 2 au moyen des goupilles 20 puis les masselottes 22 sont mises en place afin d'obtenir l'inertie appropriée.
  • Les première et seconde portions annulaires des éléments 2a, 2b de partie mobile 2 présentent des diamètres différents du diamètre de la serge 10. Cette forme des éléments 2a, 2b de partie mobile 2 est particulièrement appropriée pour que les lames élastiques 5 et 6 puissent avoir la longueur nécessaire pour présenter la raideur requise. De plus, la partie mobile 2 est en silicium et la serge 10 est en CuBe par exemple, de manière à ce que l'élément inertiel de l'oscillateur 1 soit constitué par le balancier 8, permettant de dissocier l'inertie de l'oscillateur 1 de la raideur des lames 5, 6.
  • Les descriptions ci-dessus sont basées sur un oscillateur à guidage flexible de type à lames croisées séparées. Il est bien évident que la présente invention peut également s'appliquer à d'autres types d'oscillateur à guidage flexible, tels que ceux de type à lames croisées non séparées ou à centre de rotation déporté dits « RCC » (Remote Center Compliance).
  • L'oscillateur selon l'invention peut également comprendre plus de deux lames élastiques.

Claims (14)

  1. Oscillateur horloger mécanique à guidage flexible (1), destiné à osciller autour d'un axe d'oscillation virtuel (A), ledit oscillateur comportant :
    - une partie mobile (2) centrée sur l'axe d'oscillation (A),
    - une partie de fixation (3) destinée à être fixée à un premier élément de support,
    - au moins des première et deuxième lames élastiques (5, 6) reliant la partie mobile (2) et la partie de fixation (3) et agencées pour exercer sur la partie mobile (2), par rapport à la partie de fixation (3), un couple de rappel,
    - au moins un balancier (8) rapporté et rendu solidaire de la partie mobile (2), ledit balancier (8) comportant une serge (10), un moyeu (12) présentant un trou central (14), centré sur l'axe d'oscillation (A), et au moins un bras (16) reliant ledit moyeu (12) à la serge (10),
    caractérisé en ce que ledit oscillateur comprend :
    - un tenon (18), centré sur l'axe d'oscillation (A), ledit tenon (18) étant d'une part solidaire au moins en translation axiale d'un deuxième élément de support et d'autre part positionné dans le trou central (14) du moyeu (12) du balancier (8), les dimensions du tenon (18) et du trou central (14) étant choisies de manière à laisser un jeu entre le moyeu (12) et le tenon (18) définissant des butées de fonctionnement axiales et radiales.
  2. Oscillateur selon la revendication 1, caractérisé en ce que le balancier (8) est agencé pour constituer l'élément inertiel de l'oscillateur (1), indépendamment de la partie mobile (2).
  3. Oscillateur selon l'une des revendications précédentes, caractérisé en ce que le balancier (8) et la partie mobile (2) sont réalisés dans des matériaux différents l'un de l'autre, le matériau du balancier (8) présentant une inertie supérieure à celui de la partie mobile (2).
  4. Oscillateur selon l'une des revendications précédentes, caractérisé en ce que le balancier (8) et la partie mobile (2) présentent des formes circulaires de diamètres différents.
  5. Oscillateur selon l'une des revendications précédentes, caractérisé en ce que la partie mobile (2) présente une forme agencée pour définir une zone intérieure vide de tout élément de matière de partie mobile (2).
  6. Oscillateur selon l'une des revendications précédentes, caractérisé en ce qu'il ne comprend pas d'arbre physique traversant la partie mobile et/ou les lames élastiques (5,6).
  7. Oscillateur selon l'une des revendications précédentes, caractérisé en ce que le tenon (18) est couplé au moyeu (12) du balancier (8) par un dispositif à baïonnette.
  8. Oscillateur selon la revendication 7, caractérisé en ce que le tenon (18) présente une tête (18a) solidaire en translation axiale du deuxième élément de support et un pied (18b) agencé pour saillir dudit deuxième élément de support, ledit pied (18b) présentant une première jupe (42) liée à la tête (18a) et une deuxième jupe (44) de diamètre inférieur au diamètre de la première jupe (42), et traversant le trou central (14) du moyeu (12) du balancier (8), ledit pied (18b) étant terminé par une ailette (46) s'étendant perpendiculairement audit pied (18b), et en ce que le trou central (14) présente deux premières portions (48) présentant un premier diamètre, alternées avec deux deuxièmes portions (50) présentant un deuxième diamètre inférieur au premier diamètre des premières portions (48), ledit deuxième diamètre étant compris entre le diamètre de la première jupe (42) et le diamètre de la deuxième jupe (44), les deux premières portions (48) formant une rainure (52) de dimensions supérieures aux dimensions de l'ailette (46), et la longueur de l'ailette (46) étant supérieure au deuxième diamètre des deuxièmes portions (50), la tête (18b) étant manoeuvrable par un utilisateur pour que le tenon (18) puisse évoluer entre une première position angulaire de montage selon laquelle l'ailette (46) du tenon (18) peut être introduite dans la rainure (52) du trou central (14) du moyeu (12), et une seconde position angulaire de verrouillage selon laquelle l'ailette (46) du tenon (18) est susceptible de coopérer avec les deuxièmes portions (50) du trou central (14) pour former des butées de fonctionnement axiales inférieures, la première jupe (42) formant des butées de fonctionnement axiales supérieures, et la deuxième jupe (44) formant des butées de fonctionnement radiales pour le balancier (8).
  9. Oscillateur selon l'une des revendications précédentes, caractérisé en ce qu'il est à lames croisées séparées, les première et deuxième lames élastiques (5, 6) se croisant sans contact en un point de croisement (P) par lequel passe l'axe d'oscillation à pivot virtuel (A).
  10. Oscillateur selon l'une des revendications précédentes, caractérisé en ce que la partie mobile (2) comprend un premier et un deuxième éléments (2a, 2b) de partie mobile, superposés et rendus solidaires l'un de l'autre, et la partie de fixation (3) comprend un premier et un deuxième éléments (3a, 3b) de partie de fixation, superposés et rendus solidaires l'un de l'autre, le premier élément (2a) de partie mobile étant relié au premier élément (3a) de partie de fixation par la première lame élastique (5) et le deuxième élément (2b) de partie mobile étant relié au deuxième élément (3b) de partie de fixation par la deuxième lame élastique (6), lesdits premier et deuxième éléments (2a, 2b) de partie mobile étant symétriques par rapport à une droite perpendiculaire et sécante à l'axe d'oscillation (A).
  11. Mécanisme régulateur comprenant un oscillateur selon l'une des revendications 1 à 10, et un mécanisme d'échappement (30) comprenant une ancre (34), caractérisé en ce que le balancier (8) comprend une cheville (37) en regard du deuxième élément de support et destinée à coopérer avec l'ancre (34), ladite ancre (34) étant positionnée au-dessus du balancier (8).
  12. Mécanisme régulateur selon la revendication 11, caractérisé en ce que la serge (10) du balancier (8) comprend au moins deux portions circulaires (10a, 10b), positionnées de chaque côté de l'ancre (34), et en ce que l'ancre (34) comprend un axe (36) agencé pour pouvoir constituer une butée pour lesdites portions circulaires (10a, 10b) de la serge (10) du balancier (8).
  13. Mouvement horloger comprenant un oscillateur selon l'une quelconque des revendications 1 à 10 ou un mécanisme régulateur selon l'une quelconque des revendications 11 et 12.
  14. Pièce d'horlogerie comprenant un oscillateur selon l'une quelconque des revendications 1 à 10 ou un mécanisme régulateur selon l'une quelconque des revendications 11 et 12.
EP19217918.2A 2019-12-19 2019-12-19 Oscillateur horloger mécanique a guidage flexible Active EP3839651B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19217918.2A EP3839651B1 (fr) 2019-12-19 2019-12-19 Oscillateur horloger mécanique a guidage flexible

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19217918.2A EP3839651B1 (fr) 2019-12-19 2019-12-19 Oscillateur horloger mécanique a guidage flexible

Publications (2)

Publication Number Publication Date
EP3839651A1 EP3839651A1 (fr) 2021-06-23
EP3839651B1 true EP3839651B1 (fr) 2024-05-01

Family

ID=68965836

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19217918.2A Active EP3839651B1 (fr) 2019-12-19 2019-12-19 Oscillateur horloger mécanique a guidage flexible

Country Status (1)

Country Link
EP (1) EP3839651B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4286959A1 (fr) 2022-06-02 2023-12-06 Patek Philippe SA Genève Oscillateur horloger à pivot flexible

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH705928B1 (fr) * 2011-12-22 2016-09-15 Nivarox Far Sa Procédé d'amélioration du pivotement d'un balancier, balancier, balancier-spiral, mouvement et pièce d'horlogerie.
EP2911012B1 (fr) 2014-02-20 2020-07-22 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Oscillateur de pièce d'horlogerie
CN108138837B (zh) 2015-09-29 2020-10-27 百达翡丽日内瓦公司 柔性枢轴机械部件以及包括该部件的钟表设备
EP3324246B1 (fr) 2016-11-16 2019-11-06 The Swatch Group Research and Development Ltd Protection d'un mecanisme resonateur a lames contre les chocs axiaux
CH714922A2 (fr) 2018-04-23 2019-10-31 Eta Sa Mft Horlogere Suisse Protection antichoc d'un mécanisme résonateur d'horlogerie à guidage flexible rotatif.

Also Published As

Publication number Publication date
EP3839651A1 (fr) 2021-06-23

Similar Documents

Publication Publication Date Title
EP3356690B1 (fr) Composant mécanique à pivot flexible et dispositif horloger le comprenant
EP3548973B1 (fr) Dispositif pour pièce d'horlogerie, mouvement horloger et pièce d'horlogerie comprenant un tel dispositif
EP2911012B1 (fr) Oscillateur de pièce d'horlogerie
EP3382470B1 (fr) Oscillateur d'horlogerie a pivot flexible
EP2998800A2 (fr) Composant horloger à pivot flexible
EP3502784B1 (fr) Résonateur horloger à guidage flexible
EP2781967B1 (fr) Spiral d'horlogerie
EP2690507B1 (fr) Spiral d'horlogerie
EP3792700B1 (fr) Oscillateur horloger a pivot flexible
EP4009115A1 (fr) Ressort-spiral pour mécanisme résonateur d horlogerie muni de moyens d'ajustement de la rigidité
EP3555708B1 (fr) Composant horloger à pivot flexible
EP2781965B1 (fr) Cassette de mécanisme d'horlogerie
EP3839651B1 (fr) Oscillateur horloger mécanique a guidage flexible
EP3430479B1 (fr) Dispositif pour pièce d'horlogerie, mouvement horloger et pièce d'horlogerie comprenant un tel dispositif
EP3037893B1 (fr) Composant micromécanique ou horloger à guidage flexible
EP4179391A1 (fr) Oscillateur horloger a pivot flexible
EP2781971B1 (fr) Structure de mécanisme d'horlogerie
CH714165B1 (fr) Dispositif pour pièce d'horlogerie, mouvement horloger et pièce d'horlogerie comprenant un tel dispositif.
EP1960846B1 (fr) Mouvement d'horlogerie
EP4047424A1 (fr) Composant à pivot flexible, notamment pour l' horlogerie
EP3637196A1 (fr) Oscillateur mécanique
WO2021009613A1 (fr) Procede de reglage d'un oscillateur horloger a pivot flexible
EP3761122B1 (fr) Mobile d'échappement horloger, mécanisme d'échappement et pièce d'horlogerie associés
CH717059B1 (fr) Masselotte de réglage.
EP4191346A1 (fr) Protection antichoc d'un mécanisme résonateur à guidage flexible rotatif

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211021

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220217

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230521

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231214

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019051296

Country of ref document: DE