EP4191346A1 - Protection antichoc d'un mécanisme résonateur à guidage flexible rotatif - Google Patents

Protection antichoc d'un mécanisme résonateur à guidage flexible rotatif Download PDF

Info

Publication number
EP4191346A1
EP4191346A1 EP21212441.6A EP21212441A EP4191346A1 EP 4191346 A1 EP4191346 A1 EP 4191346A1 EP 21212441 A EP21212441 A EP 21212441A EP 4191346 A1 EP4191346 A1 EP 4191346A1
Authority
EP
European Patent Office
Prior art keywords
flexible
resonator mechanism
pivot
resonator
freedom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP21212441.6A
Other languages
German (de)
English (en)
Other versions
EP4191346B1 (fr
Inventor
Gianni Di Domenico
Mohammad Hussein Kahrobaiyan
Dominique Lechot
Pascal Winkler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swatch Group Research and Development SA
Original Assignee
Swatch Group Research and Development SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swatch Group Research and Development SA filed Critical Swatch Group Research and Development SA
Priority to EP21212441.6A priority Critical patent/EP4191346B1/fr
Priority to US17/812,456 priority patent/US20230176522A1/en
Priority to JP2022134701A priority patent/JP7407250B2/ja
Priority to CN202211089846.8A priority patent/CN116224741A/zh
Publication of EP4191346A1 publication Critical patent/EP4191346A1/fr
Application granted granted Critical
Publication of EP4191346B1 publication Critical patent/EP4191346B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/045Oscillators acting by spring tension with oscillating blade springs
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B31/00Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor
    • G04B31/02Shock-damping bearings
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B43/00Protecting clockworks by shields or other means against external influences, e.g. magnetic fields
    • G04B43/002Component shock protection arrangements

Definitions

  • the invention relates to a clockwork resonator mechanism, comprising a structure and an anchoring block from which is suspended at least one inertial element arranged to oscillate according to a first degree of freedom in rotation RZ around a pivot axis extending in a first direction Z, said inertial element being subjected to restoring forces exerted by a flexible pivot comprising a plurality of substantially longitudinal elastic blades, each fixed, at a first end to said anchoring block, and at a second end to said element inertial, each said elastic blade being deformable essentially in an XY plane perpendicular to said first direction Z, the structure carrying this anchoring block by a flexible suspension which allows the mobility of the anchoring block according to five degrees of freedom.
  • the invention also relates to a clock oscillator comprising at least one such resonator mechanism.
  • the invention also relates to a timepiece movement comprising at least one such oscillator and/or such a resonator mechanism.
  • the invention also relates to a watch comprising such a clock movement, and/or such an oscillator, and/or such a resonator mechanism.
  • the invention relates to the field of clockwork resonators, and more particularly those which comprise elastic blades acting as return means for the operation of the oscillator, and the shock protection of such mechanisms with flexible guides.
  • clock oscillators comprising elastic blades constituting a flexible guide, and in particular resonators with crossed blades.
  • the use of a pivot with flexible guidance makes it possible to replace the pivot of a balance wheel as well as its spiral spring. This has the advantage of eliminating pivot friction and therefore of increasing the quality factor of the resonator.
  • the inertial mass in particular a pendulum, is suspended from the flexible guide, generally but not limited to silicon, it is necessary to provide an anti-shock device so that the blades do not break during a fall.
  • a way to achieve this shockproof was presented in the application CH 715526 in the name of ETA Manufacture Horlogère Suisse, incorporated here by reference.
  • a flexible structure (called anti-shock) is inserted between the flexible pivot and the plate which authorizes the movements of the balance according to all the degrees of freedom (translations X, Y, Z and rotations X, Y) except the Z rotation of the balance which is authorized by the flexible pivot, and mechanical stops are added to limit the stroke of the balance.
  • this shock absorber allows the balance wheel to move as far as the mechanical stops, while protecting the flexible silicon pivot from breaking.
  • the rigidity of the shock absorber is high enough for the balance wheel not to touch the mechanical stops.
  • the shock absorber and the flexible pivot are made in a single monolithic piece of silicon. This has advantages in terms of simplicity of manufacture and assembly. Nevertheless silicon is a fragile material, so that, during very violent shocks, it can happen that the part breaks because the maximum stress is exceeded.
  • shock absorbers for timepieces come in many variants. However, their main purpose is to protect the fragile pivots of the axle, and not the elastic elements, such as conventionally the spiral spring.
  • the document EP3054357A1 on behalf of ETA Manufacture Horlogère Suisse SA describes a horological oscillator comprising a structure and separate primary resonators, temporally and geometrically out of phase, each comprising a mass returned to the structure by an elastic return means.
  • This oscillator comprises coupling means for the interaction of the primary resonators, comprising motor means for driving a mobile in motion which comprises drive and guide means arranged to drive and guide a control means articulated with transmission means , each articulated, at a distance from the control means, with a mass of a primary resonator.
  • the primary resonators and the mobile are arranged in such a way that the axes of the articulations of any two of the primary resonators and the axis of articulation of the control means are never coplanar.
  • the document EP3035127A1 on behalf of SWATCH GROUP RESEARCH & DEVELOPMENT Ltd describes a clockwork oscillator comprising a resonator constituted by a tuning fork which comprises at least two oscillating mobile parts, fixed to a connecting element by flexible elements whose geometry determines a virtual pivot axis of determined position relative to a plate, and around which the respective mobile part oscillates, the center of mass of which coincides in the rest position with the respective virtual pivot axis.
  • the flexible elements consist of elastic blades crossed at a distance from each other in two parallel planes, the projections of the directions of which on one of the planes parallel intersect at the virtual pivot axis of the moving part.
  • New architectures of mechanisms make it possible to maximize the quality factor of a resonator, by the use of a flexible guide with the use of a lever escapement with a very small angle of lift, according to demand CH01544/16 in the name of ETA Manufacture Horlogère Suisse and its derivatives, the teachings of which can be directly used in the present invention, and whose resonator can be further improved as regards its sensitivity to shocks, in certain particular directions. It is therefore a question of protecting the blades from breaking in the event of impact.
  • Requirement CH00518/18 or request EP18168765.8 on behalf of ETA Manufacture Horlogère Suisse describes a resonator clockwork mechanism, comprising a structure carrying, by a flexible suspension, an anchoring block from which is suspended an inertial element oscillating according to a first degree of freedom in rotation RZ, under the action of return forces exerted by a flexible pivot comprising first elastic blades each fixed to said inertial element and to said anchoring block, the flexible suspension being arranged to allow a certain mobility of the anchoring block according to all the other degrees of freedom that the first degree of freedom in rotation RZ according to which only the inertial element is mobile to avoid any disturbance of its oscillation, and the rigidity of the suspension according to the first degree of freedom in rotation RZ is very greatly greater than the rigidity of the pivot flexible according to this same first degree of freedom in rotation RZ.
  • the invention proposes to optimize the shock protection of such an oscillator, while ensuring the required torsional stiffness of the suspension, in particular for a resonator mechanism according to CH00518/18 or request EP18168765.8 in the name of ETA Manufacture Horlogère Suisse, or for a similar resonator with flexible guides.
  • a good rotary resonator with flexible guidance which constitutes a flexible pivot and defines a virtual pivot axis, must be both very flexible for the rotation of oscillation according to a first degree of freedom in rotation RZ, and also very rigid according to the other degrees of freedom (X, Y, Z, RX, RY) so as to avoid parasitic movements of the center of mass of the resonator. Indeed, such parasitic movements can cause walking errors, if the orientation of the resonator changes in the field of gravity (one speaks of position error).
  • the suspension of the embedding of the pivot must be very rigid according to the degree of freedom of the oscillation, so as not to disturb the isochronism of the resonator, and so as not to dissipate energy via movements due to the reaction forces.
  • the invention proposes to produce an improved shock absorber for an oscillator with flexible guidance, to better manage the torsion rigidities of the suspension, and consequently to limit the out-of-plane displacement stroke of the blades of a blade resonator, and therefore ensure better performance of the system
  • the invention relates to a blade resonator mechanism according to claim 1.
  • the invention also relates to a clock oscillator comprising at least one such resonator mechanism.
  • the invention also relates to a clock movement comprising at least one such resonator mechanism.
  • the invention also relates to a watch comprising such a clock movement, and/or such a resonator mechanism.
  • the invention relates to a clockwork resonator mechanism, which constitutes a variant of the resonators described in the application CH00518/18 , or request EP18168765.8 on behalf of ETA Manufacture Horlogère Suisse, or at the request CH 715526 or request EP 3561607 in the name of ETA Manufacture Horlogère Congress incorporated here by reference, and whose characteristics the person skilled in the art will be able to combine with those specific to the present invention.
  • the invention starts from the observation that silicon (or silicon and/or a silicon oxide) is the most suitable material for the flexible pivot, but not for the shockproof.
  • silicon or silicon and/or a silicon oxide
  • the structure in order to fulfill its shock-absorbing role, the structure must be capable of large deformations with high accumulation of elastic energy.
  • Certain metallic materials are better suited than silicon for this function.
  • the NiP material is more suitable than silicon.
  • the Young's modulus is 90GPa for NiP against 150GPa for Si, and the maximum stress 1700MPa for NiP against 1000MPa for Si. This means that the maximum authorized deformation is three times greater for NiP than for the If.
  • the invention therefore consists of making the pivot in a first material, in particular silicon or equivalent, and making the shockproof in a second material, in particular nickel phosphorus NiP or equivalent, this second material having very different physical properties from the first material. .
  • This clockwork resonator mechanism 100 comprises, as seen on the figure 1 , a structure 1 and an anchor block 30, from which is suspended at least one inertial element 2 which is arranged to oscillate according to a first degree of freedom in rotation RZ around a pivot axis D extending along a first direction Z.
  • This inertial element 2 is subjected to restoring forces exerted by a flexible pivot 200 comprising a plurality of substantially longitudinal elastic strips 3, each fixed, at a first end to the anchor block 30, and at a second end to the inertial element 2.
  • Each elastic blade 3 is essentially deformable in an XY plane perpendicular to the first direction Z.
  • the resonator mechanism 100 is a composite assembly made of at least two distinct materials, and which comprises, on the one hand the flexible pivot 200, which is made of a first material characterized by a first Young's modulus E1 and by a first elastic limit Sigma 1 and by a first tenacity G1, and on the other hand the flexible suspension 300, which is made of a second material characterized by a second Young's modulus E2 and by a second elastic limit Sigma 2 and by a second tenacity G2.
  • a high G toughness means that the part is able to store more elastic energy before breaking.
  • the value of the second toughness G2 is greater than ten times the value of the first toughness G1. More particularly still, the value of the second tenacity G2 is greater than eighty times the value of the first tenacity G1. This is the case when the first material is silicon and/or a silicon oxide, and when the second material is NiP, the G2/G1 ratio is close to 100;
  • the Sigma 2/E2 ratio is at least twice the Sigma 1/E1 ratio.
  • the value of the first Young's modulus E1 is greater than or equal to 1.5 times the value of the second Young's modulus E2.
  • the value of the second elastic limit Sigma 2 is greater than or equal to 1.5 times the value of the first elastic limit Sigma 1.
  • At least one inertial element 2 is integral with the flexible pivot 200.
  • the flexible suspension 300 is integral with the structure 1.
  • the flexible pivot 200 is removable with respect to the flexible suspension 300.
  • the flexible suspension 300 comprises gripper elements, in particular jaws 939, to immobilize the flexible pivot 200.
  • these jaws 939 constitute the gripping elements of an elastic gripper 930.
  • the picture 3 shows under the mark 938 the rest position of this clamp.
  • the flexible suspension 300 comprises at least one pocket 933 which is capable of receiving glue to immobilize the flexible pivot 200.
  • the junction between the flexible suspension 300 and the flexible pivot 200 is made on the anchoring block 30, which preferably comprises reliefs 309 of complementary shape to the profile of the elements 939.
  • the clamp 930 is suspended from an intermediate mass 305, which is itself suspended from the structure 1 or from another intermediate mass 303.
  • This elastic assembly has the advantage of minimizing the added mass.
  • the Sigma 2/E2 ratio is at least three times the Sigma 1/E1 ratio.
  • the first material is silicon and/or a silicon oxide.
  • the second material is nickel-phosphorus NiP.
  • the toughness of silicon is almost 100 times lower than that of all nickel alloys.
  • a pair with the first material which is silicon and/or a silicon oxide, and the second material which is nickel-phosphorus NiP, is particularly advantageous for the desired shockproof application
  • the dissipation (losses) of the NiP is larger than that of silicon, which is an additional advantage.
  • the nickel phosphorus NiP has the major advantage of being able to be shaped precisely with the "LIGA" method (Lithographie Galvano-Abformung), with perfect geometry and tight tolerances perfectly compatible with the requirements. watchmakers.
  • the flexible suspension 300 is advantageously, but not limitatively, made from a nickel-phosphorus NiP board with a thickness of between 180 and 420 micrometers.
  • FIG. 3 describes the assembly of the flexible swivel 200 with the flexible suspension 300, and shows the assembly area in detail, and also describes the assembly procedure.
  • the assembly is done in three stages: first of all the elastic clamp 930 (in particular made of NiP) is separated in order to be able to insert the anchoring block 30 (in particular made of silicon) into the jaws 939; then the clamp 930 is released so that its jaws 939 grip and block the reliefs 309 of the anchor block 30; finally, only if necessary, glue is inserted into at least one pocket 933 between the clamp 930 and the anchor block 30.
  • the elastic clamp 930 in particular made of NiP
  • the anchoring block 30 in particular made of silicon
  • the elastic clamp 930 is designed so that the clamping force is high. It is therefore important to ensure that the Hertzian pressure does not exceed the maximum stress at contact between the jaw 939 and the relief 309 of the anchoring block 30 made of silicon. For this reason, the shape of the jaw 939 marries that of relief 309, so that the difference in radius of curvature is as small as possible. The fact of giving a certain flexibility to the jaw 939 allows it to deform slightly to accommodate any geometry errors between the clamp 930 and the anchor block 30.
  • the pocket 933 provided for the glue is made up, on the one hand, of at least one wide zone where it is easy to insert the glue, as well as on the other hand at least one narrower zone which helps to distribute the glue. sticks by capillarity.
  • the use of the torsional flexibility of a translation table makes it possible to better manage the torsional rigidities of the suspension.
  • the blades of the XY tables are oriented so that the direction of greatest flexibility in torsion aims at the axis of rotation of the resonator. Their flexibility in torsion is managed by bringing the blades closer to each other.
  • the flexible suspension 300 advantageously comprises, between the anchor block 30 and a first intermediate mass 303, which is fixed to the structure 1 directly or via a flexible plate 301 in the first direction Z, a transverse translation table 32 with flexible guidance, and which comprises transverse blades 320 or transverse flexible rods 1320, rectilinear and extending in the second direction X and in symmetry around a transverse axis D2 crossing the pivot axis D .
  • the flexible suspension 300 further comprises, between the anchor block 30 and a second intermediate mass 305, a longitudinal translation table 31 with flexible guidance, and which comprises longitudinal blades 310 or longitudinal flexible rods, straight and extending in the third direction Y and in symmetry around a longitudinal axis D1 crossing the pivot axis D.
  • the table of transverse translation 32 with flexible guidance comprises transverse blades 320 or transverse flexible rods, rectilinear and extending in the second direction X and in symmetry around the transverse axis D2 crossing the pivot axis D.
  • the longitudinal axis D1 crosses the transverse axis D2, and in particular the longitudinal axis D1, the transverse axis D2, and the pivot axis D are concurrent.
  • the longitudinal translation table 31 and the transverse translation table 32 each comprise at least two blades or flexible rods, each blade or rod being characterized by its thickness in the second direction X when the blade or rod extends in the third direction Y or vice versa, by its height in the first direction Z, and by its length in the direction in which the blade or rod extends, the length being at least five times greater than the height, the height being at least as great as the thickness, and more particularly at least five times greater than this thickness, and more particularly still at least seven times greater than this thickness.
  • the transverse translation table 32 comprises at least two blades or transverse flexible rods, parallel to each other and of the same length.
  • THE figure 1 And 4 illustrate a non-limiting variant with four parallel transverse blades, and, more particularly, each consisting of two half-blades arranged on two superimposed levels, and extending in the extension of one another in the first direction Z. These half-blades can be either entirely free relative to each other, or else secured by gluing or the like, or by growth of SiO 2 in the case of an execution in silicon, or the like.
  • the longitudinal translation table 31, when it exists since it is optional, can obey the same principle of construction.
  • There figure 6 illustrates a variant with flexible rods, grouped in two levels of two rods, of substantially square section; another variant has circular flexible rods. The number, arrangement and section of these blades or rods may vary without departing from the present invention.
  • the blades or transverse rods of the transverse translation table 32 have a first plane of symmetry, which is parallel to the transverse axis D2, and which passes through the pivot axis D.
  • the blades or transverse rods of the transverse translation table 32 have a second plane of symmetry, which is parallel to the transverse axis D2, and orthogonal to the pivot axis D.
  • the transverse blades or rods of the transverse translation table 32 have a third plane of symmetry, which is perpendicular to the transverse axis D2, and parallel to the pivot axis D.
  • the blades or transverse rods of the transverse translation table 32 extend over at least two levels parallel to each other, each level being perpendicular to the pivot axis D.
  • the arrangement of the transverse blades or rods of the transverse translation table 32 is identical on each of the levels.
  • the transverse blades or rectilinear flexible rods 320 are flat blades whose height is at least five times greater than their thickness.
  • transverse blades or rectilinear flexible rods 320 are rods of square or circular section whose height is equal to the thickness.
  • the longitudinal translation table 31 comprises at least two blades or longitudinal flexible rods, parallel to each other and of the same length.
  • the blades or longitudinal rods of the longitudinal translation table 31 have a first plane of symmetry, which is parallel to the longitudinal axis D1, and which passes through the pivot axis D.
  • the blades or longitudinal rods of the longitudinal translation table 31 have a second plane of symmetry, which is parallel to the longitudinal axis D1, and orthogonal to the pivot axis D.
  • the blades or longitudinal rods of the longitudinal translation table 31 have a third plane of symmetry, which is perpendicular to the longitudinal axis D1, and parallel to the pivot axis D.
  • the blades or transverse rods of the longitudinal translation table 31 extend over at least two levels parallel to each other, each level being perpendicular to the pivot axis D.
  • the arrangement of the blades or transverse rods of the longitudinal translation table 31 is identical on each of the levels.
  • the longitudinal blades or rectilinear flexible rods 310 are flat blades whose height is at least five times greater than their thickness.
  • the longitudinal strips or rectilinear flexible rods 310 are rods of square or circular cross-section, the height of which equals the thickness.
  • the resonator mechanism 100 comprises axial stop means comprising at least a first upper axial stop and a second lower axial stop to limit the travel in translation of the inertial element 2 at least along the first direction Z, the means axial abutment being arranged to cooperate in abutment support with the inertial element 2 for the protection of the longitudinal blades 3 at least against axial shocks in the first direction Z, and the second plane of symmetry is substantially at equal distance from the first axial stop 7 and the second axial stop 8.
  • the resonator mechanism 100 comprises a plate fixed to the structure 1 or integral with it, comprising at least one flexible blade 302 extending in a plane perpendicular to the pivot axis D and fixed to the first intermediate mass 303, and which is arranged to allow mobility of the first intermediate mass 303 in the first direction Z.
  • the plate 301 comprises at least two such coplanar flexible blades.
  • Such a plate 301 is however optional if the height of the blades of the XY translation tables is low compared to the height of the flexible blades 3, in particular less than a third of the height of the flexible blades 3, and in particular if these translation tables comprise flexible rods as on the figure 6 .
  • the technology used for manufacturing makes it possible to obtain two distinct blades in the height of a silicon wafer, which promotes the torsion flexibility of the table without softening it for translation.
  • the resonator mechanism 100 can thus advantageously comprise at least two superimposed elementary assemblies, which each group together a level of the anchoring block 30, and/or of a base of the at least one inertial element 2, and of the flexible pivot 200 or of the flexible suspension 300 which still form a composite assembly, and/or of the first intermediate mass 303, and/or of the transverse translation table 32, and/or of a breakable element used only during assembly and destroyed before commissioning the oscillator; each elementary assembly can be assembled with at least one other elementary assembly by bonding or similar, by mechanical assembly, or by growth of SiO 2 in the case of an execution in silicon, or similar.
  • such an elementary assembly further comprises at least one level of the second intermediate mass 305 and/or of the longitudinal translation table 31.
  • the invention also relates to a clockwork oscillator mechanism 500 comprising such a clockwork resonator mechanism 100, and an escapement mechanism 400, arranged to cooperate with each other.
  • the invention also relates to a timepiece movement 1000 comprising at least one such oscillator mechanism 500 and/or at least one resonator mechanism 100.
  • the invention also relates to a watch 2000 comprising at least one such movement 1000 and/or at least one oscillator mechanism 500 and/or at least one such resonator mechanism 100.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Electric Clocks (AREA)

Abstract

Mécanisme résonateur (100) d'horlogerie, comportant une structure (1) portant, par une suspension flexible (300), un bloc d'ancrage (30) auquel est suspendu un élément inertiel (2) oscillant autour d'un axe de pivotement (D) s'étendant selon une première direction Z, selon un premier degré de liberté en rotation RZ, sous l'action des efforts de rappel d'un pivot flexible (200) comportant des lames longitudinales élastiques (3) chacune fixée audit élément inertiel (2) et audit bloc d'ancrage (30), la suspension flexible (300) autorisant la mobilité du bloc d'ancrage (30) selon cinq degrés de liberté, ce résonateur (100) est un ensemble composite réalisé dans au moins deux matériaux distincts, d'une part pour le pivot flexible (200), d'autre part pour la suspension flexible (300).

Description

    Domaine de l'invention
  • L'invention concerne un mécanisme résonateur d'horlogerie, comportant une structure et un bloc d'ancrage auquel est suspendu au moins un élément inertiel agencé pour osciller selon un premier degré de liberté en rotation RZ autour d'un axe de pivotement s'étendant selon une première direction Z, ledit élément inertiel étant soumis à des efforts de rappel exercés par un pivot flexible comportant une pluralité de lames élastiques sensiblement longitudinales, chacune fixée, à une première extrémité audit bloc d'ancrage, et à une deuxième extrémité audit élément inertiel, chaque dite lame élastique étant déformable essentiellement dans un plan XY perpendiculaire à ladite première direction Z, la structure portant ce bloc d'ancrage par une suspension flexible qui autorise la mobilité du bloc d'ancrage selon cinq degrés de liberté.
  • L'invention concerne encore un oscillateur d'horlogerie comportant au moins un tel mécanisme résonateur.
  • L'invention concerne encore un mouvement d'horlogerie comportant au moins un tel oscillateur et/ou un tel mécanisme résonateur.
  • L'invention concerne encore une montre comportant un tel mouvement d'horlogerie, et/ou un tel oscillateur, et/ou un tel mécanisme résonateur.
  • L'invention concerne le domaine des résonateurs d'horlogerie, et tout particulièrement ceux qui comportent des lames élastiques faisant fonction de moyens de rappel pour la marche de l'oscillateur, et la protection antichoc de tels mécanismes à guidages flexibles.
  • Arrière-plan de l'invention
  • On obtient de très bonnes performances avec des oscillateurs d'horlogerie comportant des lames élastiques constituant un guidage flexible, et notamment des résonateurs à lames croisées. L'utilisation d'un pivot à guidage flexible permet de remplacer le pivot d'un balancier ainsi que son ressort spiral. Ceci a l'avantage de supprimer les frottements de pivots et donc d'augmenter le facteur de qualité du résonateur. Comme la masse inertielle, notamment un balancier, est suspendue au guidage flexible, généralement mais non limitativement en silicium, il est nécessaire de prévoir un dispositif antichoc afin que les lames ne cassent pas lors d'une chute.
  • Une façon de réaliser cet antichoc a été présenté dans la demande CH 715526 au nom de ETA Manufacture Horlogère Suisse, incorporée ici par référence. On insère entre le pivot flexible et la platine une structure flexible (appelée antichoc) qui autorise les mouvements du balancier selon tous les degrés de liberté (translations X, Y, Z et rotations X, Y) excepté la rotation Z du balancier qui est autorisée par le pivot flexible, et on ajoute des butées mécaniques afin de limiter la course du balancier. Lors de chocs importants, cet antichoc permet au balancier de se déplacer jusqu'aux butées mécaniques, tout en préservant le pivot flexible silicium d'une casse. Lors de micro chocs, la rigidité de l'antichoc est suffisamment élevée pour que le balancier ne touche pas les butées mécaniques. Dans la demande CH 715526 , l'antichoc et le pivot flexible sont réalisés en une seule pièce monolithique en silicium. Ceci présente des avantages en terme de simplicité de fabrication et d'assemblage. Néanmoins le silicium est un matériau fragile, si bien que, lors de chocs très violents, il peut arriver que la pièce se casse car la contrainte maximale est dépassée.
  • Il est ainsi nécessaire d'améliorer encore la protection antichoc de tels oscillateurs, tout en assurant la rigidité en torsion de leur suspension. La tenue au chocs dépend aussi de cette rigidité en torsion; en effet, lors de chocs hors plan, la contrainte subie par les lames atteint rapidement des valeurs très importantes, ce qui réduit d'autant la course que peut parcourir la pièce avant de céder. Les amortisseurs de chocs pour les pièces d'horlogerie se déclinent dans de nombreuses variantes. Cependant, ils ont essentiellement pour but de protéger les pivots fragiles de l'axe, et non pas les éléments élastiques, tel que classiquement le ressort spiral.
  • Le document EP3054357A1 au nom de ETA Manufacture Horlogère Suisse SA décrit un oscillateur horloger comportant une structure et des résonateurs primaires distincts, déphasés temporellement et géométriquement, comportant chacun une masse rappelée vers la structure par un moyen de rappel élastique. Cet oscillateur comporte des moyens de couplage pour l'interaction des résonateurs primaires, comportant des moyens moteurs pour entraîner en mouvement un mobile lequel comporte des moyens d'entraînement et de guidage agencés pour entraîner et guider un moyen de commande articulé avec des moyens de transmission, chacun articulé, à distance du moyen de commande, avec une masse d'un résonateur primaire. Les résonateurs primaires et le mobile sont agencés de telle façon que les axes des articulations de deux quelconques des résonateurs primaires et l'axe d'articulation du moyen de commande ne sont jamais coplanaires.
  • Le document EP3035127A1 au nom de SWATCH GROUP RESEARCH & DEVELOPMENT Ltd décrit un oscillateur d'horlogerie comportant un résonateur constitué par un diapason lequel comporte au moins deux parties mobiles oscillantes, fixées à un élément de liaison par des éléments flexibles dont la géométrie détermine un axe de pivotement virtuel de position déterminée par rapport à une plaque, et autour duquel oscille la partie mobile respective, dont le centre de masse est confondu en position de repos avec l'axe de pivotement virtuel respectif.
  • Pour au moins une partie mobile, les éléments flexibles sont constitués de lames élastiques croisées à distance l'une de l'autre dans deux plans parallèles, dont les projections des directions sur un des plans parallèles se croisent au niveau de l'axe de pivotement virtuel de la partie mobile.
  • De nouvelles architectures de mécanismes permettent de maximiser le facteur de qualité d'un résonateur, par l'utilisation d'un guidage flexible avec l'utilisation d'un échappement à ancre avec un très petit angle de levée, selon la demande CH01544/16 au nom de ETA Manufacture Horlogère Suisse et ses dérivées, dont les enseignements sont directement utilisables dans la présente invention, et dont le résonateur peut encore être amélioré en ce qui concerne sa sensibilité aux chocs, selon certaines directions particulières. Il s'agit donc de protéger les lames de la rupture en cas de chocs. On se rend compte que les systèmes antichocs proposés à ce jour pour les résonateurs à guidages flexibles, protègent les lames de chocs dans certaines directions seulement, mais pas dans toutes les directions, ou alors qu'ils présentent le défaut de laisser bouger légèrement l'encastrement du pivot flexible selon sa rotation d'oscillation, ce qui est à éviter autant que possible.
  • La demande CH00518/18 ou la demande EP18168765.8 au nom de ETA Manufacture Horlogère Suisse décrit un mécanisme résonateur d'horlogerie, comportant une structure portant, par une suspension flexible, un bloc d'ancrage auquel est suspendu un élément inertiel oscillant selon un premier degré de liberté en rotation RZ, sous l'action d'efforts de rappel exercés par un pivot flexible comportant des premières lames élastiques chacune fixée audit élément inertiel et audit bloc d'ancrage, la suspension flexible étant agencée pour autoriser une certaine mobilité du bloc d'ancrage selon tous les degrés de liberté autres que le premier degré de liberté en rotation RZ selon lequel seul est mobile l'élément inertiel pour éviter toute perturbation de son oscillation, et la rigidité de la suspension selon le premier degré de liberté en rotation RZ est très fortement supérieure à la rigidité du pivot flexible selon ce même premier degré de liberté en rotation RZ.
  • Résumé de l'invention
  • L'invention se propose d'optimiser la protection antichoc d'un tel oscillateur, tout en assurant les rigidités en torsion requises de la suspension, notamment pour un mécanisme résonateur selon CH00518/18 ou la demande EP18168765.8 au nom de ETA Manufacture Horlogère Suisse, ou pour un résonateur similaire à guidages flexibles.
  • En améliorant la rigidité en torsion de la suspension, on améliore aussi la protection des lames contre une rupture en cas de chocs. Un bon résonateur rotatif à guidage flexible, qui constitue un pivot flexible et définit un axe de pivotement virtuel, doit être à la fois très flexible pour la rotation d'oscillation selon un premier degré de liberté en rotation RZ, et aussi très rigide selon les autres degrés de liberté (X, Y, Z, RX, RY) de façon à éviter des mouvements parasites du centre de masse du résonateur. En effet, de tels mouvements parasites peuvent provoquer des erreurs de marche, si l'orientation du résonateur change dans le champ de gravité (on parle d'erreur aux positions). La suspension de l'encastrement du pivot doit être très rigide selon le degré de liberté de l'oscillation, pour ne pas perturber l'isochronisme du résonateur, et pour ne pas dissiper de l'énergie via des mouvements dus aux forces de réaction.
  • L'invention se propose de réaliser un antichoc amélioré pour un oscillateur à guidage flexible, de mieux gérer les rigidités en torsion de la suspension, et en conséquence de limiter la course de déplacement hors plan des lames d'un résonateur à lames, et donc d'assurer une meilleure tenue du système
  • A cet effet, l'invention concerne un mécanisme résonateur à lames selon la revendication 1.
  • L'invention concerne encore un oscillateur d'horlogerie comportant au moins un tel mécanisme résonateur.
  • L'invention concerne encore un mouvement d'horlogerie comportant au moins un tel mécanisme résonateur.
  • L'invention concerne encore une montre comportant un tel mouvement d'horlogerie, et/ou un tel mécanisme résonateur.
  • Description sommaire des dessins
  • D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui va suivre, en référence aux dessins annexés, où :
    • la figure 1 représente, de façon schématisée, et en vue en plan, un mécanisme résonateur à lames élastiques, comportant une masse inertielle suspendue à un bloc d'ancrage par un pivot flexible comportant deux niveaux parallèles de lames élastiques, les directions selon lesquelles s'étendent ces lames se croisant, en projection, au niveau d'un axe de pivotement virtuel de cet élément inertiel, selon la demande selon la demande CH00518/18 ou la demande EP18168765.8 au nom de ETA Manufacture Horlogère Suisse, et dont les enseignements sont utilisables dans le cas de la présente invention; ce mécanisme résonateur est représenté dans une configuration particulière, non limitative, où il comporte deux tables de translation agencées pour autoriser une liberté restreinte à des masses intermédiaires que comporte le résonateur entre le bloc d'ancrage et la fixation à une platine; on remarque que chacune de ces tables de translation comporte des éléments élastiques longilignes dont la direction est sensiblement dirigée vers l'axe de pivotement au niveau du pivot virtuel défini par les lames élastiques; l'élément inertiel porte ici une masse inertielle sous la forme d'un balancier avec des visselottes d'ajustement, et porte encore un élément saillant, de type cheville ou similaire, agencé pour coopérer avec un mécanisme d'échappement non représenté, et notamment avec une ancre, voire directement avec une roue d'échappement ; ce mécanisme comporte encore des butées supérieur et inférieure pour limiter la course de la masse inertielle et protéger les lames du guidage flexible ;
    • la figure 2 représente, de façon schématisée, et en perspective, l'amélioration selon l'invention d'un mécanisme résonateur selon la figure 1; le mécanisme résonateur , représenté après dépose des éléments de liaison à une structure fixe de la montre, est un ensemble composite réalisé dans au moins deux matériaux distincts, et qui comporte, d'une part le pivot flexible, qui est réalisé dans un premier matériau, et d'autre part la suspension flexible, qui est réalisée dans un deuxième matériau, le pivot flexible étant maintenu dans une pince élastique intégrée à la suspension flexible ;
    • la figure 3 représente, de façon schématisée et en vue en plan, un détail du mécanisme selon l'invention de la figure 2, montrant l'interaction entre la pince élastique de la suspension flexible et du bloc d'ancrage du pivot flexible ;
    • la figure 4 représente, de façon similaire à la figure 2, un mécanisme similaire à celui de la figure 1, comportant deux tables de translation avec des lames élastiques rectilignes, sur deux niveaux superposés et parallèles;
    • la figure 5 représente, de façon schématisée, et en perspective, un détail de la variante de la figure 4, montrant une telle table de translation avec des lames élastiques rectilignes, sur deux niveaux superposés et parallèles ;
    • la figure 6 représente, de façon similaire à la figure 5, une autre variante d'un mécanisme similaire, mais dont les tables de translation comportent des tiges flexibles rectilignes à section sensiblement carrée ;
    • la figure 7 est un schéma-blocs représentant une montre comportant un mouvement comportant, d'une part un tel mécanisme résonateur, et d'autre part un mécanisme oscillateur comportant un tel mécanisme résonateur.
    Description détaillée des modes de réalisation préférés
  • L'invention concerne un mécanisme résonateur d'horlogerie, qui constitue une variante des résonateurs décrits dans la demande CH00518/18 , ou la demande EP18168765.8 au nom de ETA Manufacture Horlogère Suisse, ou la demande CH 715526 ou de la demande EP 3561607 au nom de ETA Manufacture Horlogère Suisse incorporées ici par référence, et dont l'homme du métier saura combiner les caractéristiques avec celles propres à la présente invention.
  • L'invention part du constat selon lequel le silicium (ou le silicium et/ou un oxyde de silicium) est le matériau le plus adapté pour le pivot flexible, mais pas pour l'antichoc. En effet, afin de remplir son rôle d'antichoc, la structure doit être capable de grandes déformations avec accumulation élevée d'énergie élastique. Certains matériaux métalliques sont plus adaptés que le silicium pour cette fonction. Par exemple, le matériau NiP est plus adapté que le silicium. En effet, le module d'Young vaut 90GPa pour le NiP contre 150GPa pour le Si, et la contrainte maximale 1700MPa pour le NiP contre 1000MPa pour le Si. Cela signifie que la déformation maximale autorisée est trois fois plus grande pour le NiP que pour le Si.
  • L'invention consiste donc réaliser le pivot dans un premier matériau, notamment en silicium ou équivalent, et de réaliser l'antichoc dans un deuxième matériau, notamment du nickel phosphore NiP ou équivalent, ce deuxième matériau ayant des propriétés physiques très différentes du premier matériau.
  • La difficulté consiste à assembler les deux pièces sans pour autant ajouter une masse trop importante à l'endroit de l'assemblage. Afin d'y parvenir nous proposons d'utiliser un assemblage élastique, avec ou sans colle. Un exemple de réalisation pratique est présenté dans les figures 2 et 3.
  • Ce mécanisme résonateur 100 d'horlogerie comporte, tel que visible sur la figure 1, une structure 1 et un bloc d'ancrage 30, auquel est suspendu au moins un élément inertiel 2 qui est agencé pour osciller selon un premier degré de liberté en rotation RZ autour d'un axe de pivotement D s'étendant selon une première direction Z. Cet élément inertiel 2 est soumis à des efforts de rappel exercés par un pivot flexible 200 comportant une pluralité de lames élastiques 3 sensiblement longitudinales, chacune fixée, à une première extrémité au bloc d'ancrage 30, et à une deuxième extrémité à l'élément inertiel 2. Chaque lame élastique 3 est déformable essentiellement dans un plan XY perpendiculaire à la première direction Z.
  • Le bloc d'ancrage 30 est suspendu à la structure 1 par une suspension flexible 300, qui est agencée pour autoriser la mobilité du bloc d'ancrage 30 selon cinq degrés de liberté flexibles de la suspension qui sont :
    • un premier degré de liberté en translation selon la première direction Z,
    • un deuxième degré de liberté en translation selon une deuxième direction X orthogonale à la première direction Z,
    • un troisième degré de liberté en translation selon une troisième direction Y orthogonale à la deuxième direction X et à la première direction Z,
    • un deuxième degré de liberté en rotation RX autour d'un axe s'étendant selon la deuxième direction X,
    • et un troisième degré de liberté en rotation RY autour d'un axe s'étendant selon la troisième direction Y.
  • Selon l'invention, le mécanisme résonateur 100 est un ensemble composite réalisé dans au moins deux matériaux distincts, et qui comporte, d'une part le pivot flexible 200, qui est réalisé dans un premier matériau caractérisé par un premier module de Young E1 et par une première limite élastique Sigma 1 et par une première ténacité G1, et d'autre part la suspension flexible 300, qui est réalisée dans un deuxième matériau caractérisé par un deuxième module de Young E2 et par une deuxième limite élastique Sigma 2 et par une deuxième ténacité G2.
  • Par ténacité on entend ici la ténacité G = K1c^2/E, où K1c est la ténacité à la rupture et E le module d'Young. Une ténacité G élevée signifie que la pièce est capable d'emmagasiner plus d'énergie élastique avant de rompre.
  • Plus particulièrement, la valeur de la deuxième ténacité G2 est supérieure à dix fois la valeur de la première ténacité G1. Plus particulièrement encore, la valeur de la deuxième ténacité G2 est supérieure à quatre-vingt fois la valeur de la première ténacité G1. C'est le cas lorsque le premier matériau est du silicium et/ou un oxyde de silicium, et lorsque le deuxième matériau est du NiP, le rapport G2/G1 est voisin de 100 ;
  • Plus particulièrement, le rapport Sigma 2/E2 est au moins double du rapport Sigma 1/E1.
  • Plus particulièrement, la valeur du premier module de Young E1 est supérieure ou égale à 1,5 fois la valeur du deuxième module de Young E2.
  • Plus particulièrement, la valeur de la deuxième limite élastique Sigma 2 est supérieure ou égale à 1,5 fois la valeur de la première limite élastique Sigma 1.
  • Plus particulièrement, au moins un élément inertiel 2 est solidaire du pivot flexible 200.
  • Plus particulièrement, la suspension flexible 300 est solidaire de la structure 1.
  • Plus particulièrement, le pivot flexible 200 est amovible par rapport à la suspension flexible 300.
  • Plus particulièrement, la suspension flexible 300 comporte des éléments faisant pince, notamment des mâchoires 939, pour immobiliser le pivot flexible 200. Avantageusement ces mâchoires 939 constituent les éléments de préhension d'une pince élastique 930. La figure 3 montre sous le repère 938 la position de repos de cette pince.
  • Plus particulièrement, la suspension flexible 300 comporte au moins une poche 933 qui est apte à recevoir de la colle pour immobiliser le pivot flexible 200.
  • Plus particulièrement, la jonction entre la suspension flexible 300 et le pivot flexible 200 est réalisée sur le bloc d'ancrage 30, qui comporte de préférence des reliefs 309 de forme complémentaire au profil des éléments 939.
  • De façon particulière la pince 930 est suspendue à une masse intermédiaire 305, qui est elle-même suspendue à la structure 1 ou à une autre masse intermédiaire 303.
  • Cet assemblage élastique a l'avantage de minimiser la masse ajoutée.
  • Plus particulièrement, le rapport Sigma 2/E2 est au moins triple du rapport Sigma 1/E1.
  • Plus particulièrement, le premier matériau est du silicium et/ou un oxyde de silicium.
  • Plus particulièrement, le deuxième matériau est du nickel-phosphore NiP.
  • Notamment, la ténacité du silicium est presque 100 fois plus faible que celle de tous les alliages de nickel. Un couple avec le premier matériau qui est du silicium et/ou un oxyde de silicium, et le deuxième matériau qui est du nickel-phosphore NiP, est particulièrement avantageux pour l'application d'antichoc recherchée Et la dissipation (pertes) du NiP est plus grande que celle du silicium, ce qui constitue un avantage supplémentaire.
  • Naturellement d'autres alliages que le nickel phosphore NiP peuvent présenter un rapport limite élastique sigma / module d'Young E qui est suffisamment élevé pour remplir les conditions de l'invention. Dans le cas d'espèce le nickel phosphore NiP présente l'avantage majeur de pouvoir être mis en forme de façon précise avec la méthode « LIGA » (Lithographie Galvano-Abformung), avec une géométrie parfaite et des tolérances serrées parfaitement compatibles avec les exigences horlogères. Pour l'application particulière illustrée par les figures, la suspension flexible 300 est avantageusement, mais non limitativement, réalisée dans une planche en nickel-phosphore NiP d'une épaisseur comprise entre 180 et 420 micromètres.
  • La figure 3 décrit l'assemblage du pivot flexible 200 avec la suspension flexible 300, et montre la zone d'assemblage de façon détaillée, et décrit aussi la procédure d'assemblage. L'assemblage se fait en trois temps : tout d'abord la pince élastique 930 (notamment en NiP) est écartée afin de pouvoir insérer le bloc d'ancrage 30 (notamment en silicium) dans les mâchoires 939; ensuite la pince 930 est relâchée de sorte que ses mâchoires 939 saisissent et bloquent les reliefs 309 du bloc d'ancrage 30; enfin, seulement si nécessaire, de la colle est insérée dans au moins une poche 933 entre la pince 930 et le bloc d'ancrage 30.
  • La pince élastique 930 est conçue afin que la force de serrage soit importante. Il est donc important de veiller à ce que la pression hertzienne ne dépasse pas la contrainte maximale au contact entre la mâchoire 939 et le relief 309 du bloc d'ancrage 30 en silicium. Pour cette raison, la forme de la mâchoire 939 épouse celle du relief 309, afin que la différence de rayon de courbure soit aussi faible que possible. Le fait de donner une certaine souplesse à la mâchoire 939 lui permet de se déformer légèrement pour s'accommoder des erreurs de géométries éventuelles entre la pince 930 et le bloc d'ancrage 30.
  • La poche 933 prévue pour la colle est constituée, d'une part d'au moins une zone large où il est facile d'insérer la colle, ainsi que d'autre part au moins une zone plus étroite qui aide à la répartition de la colle par capillarité.
  • L'utilisation de la souplesse en torsion d'une table de translation permet de mieux gérer les rigidités en torsion de la suspension. Pour ce faire, on oriente les lames des tables XY de manière à ce que la direction de plus grande flexibilité en torsion vise l'axe de rotation du résonateur. On gère leur souplesse en torsion en rapprochant les lames les unes des autres.
  • Ainsi, la suspension flexible 300 comporte, avantageusement, entre le bloc d'ancrage 30 et une première masse intermédiaire 303, laquelle est fixée à la structure 1 directement ou par l'intermédiaire d'une plaque 301 flexible selon la première direction Z, une table de translation transversale 32 à guidage flexible, et qui comporte des lames transversales 320 ou des tiges flexibles transversales 1320, rectilignes et s'étendant selon la deuxième direction X et en symétrie autour d'un axe transversal D2 croisant l'axe de pivotement D.
  • Dans une réalisation particulière non limitative, et tel qu'illustré par les figures, la suspension flexible 300 comporte encore, entre le bloc d'ancrage 30 et une deuxième masse intermédiaire 305, une table de translation longitudinale 31 à guidage flexible, et qui comporte des lames longitudinales 310 ou des tiges flexibles longitudinales, rectilignes et s'étendant selon la troisième direction Y et en symétrie autour d'un axe longitudinal D1 croisant l'axe de pivotement D. Et, entre la deuxième masse intermédiaire 305 et la première masse intermédiaire 303, la table de translation transversale 32 à guidage flexible comporte des lames transversales 320 ou des tiges flexibles transversales, rectilignes et s'étendant selon la deuxième direction X et en symétrie autour de l'axe transversal D2 croisant l'axe de pivotement D.
  • Plus particulièrement, l'axe longitudinal D1 croise l'axe transversal D2, et en particulier l'axe longitudinal D1, l'axe transversal D2, et l'axe de pivotement D sont concourants.
  • De façon plus particulière, la table de translation longitudinale 31 et la table de translation transversale 32 comportent chacune au moins deux lames ou tiges flexibles, chaque lame ou tige étant caractérisée par son épaisseur selon la deuxième direction X quand la lame ou tige s'étend selon la troisième direction Y ou inversement, par sa hauteur selon la première direction Z, et par sa longueur selon la direction selon laquelle s'étend la lame ou tige, la longueur étant au moins cinq fois plus grande que la hauteur, la hauteur étant au moins aussi grande que l'épaisseur, et plus particulièrement au moins cinq fois plus grande que cette épaisseur, et plus particulièrement encore au moins sept fois plus grande que cette épaisseur.
  • Plus particulièrement, la table de translation transversale 32 comporte au moins deux lames ou tiges flexibles transversales, parallèles entre elles et de même longueur. Les figures 1 et 4 illustrent une variante non limitative avec quatre lames transversales parallèles, et, plus particulièrement, chacune constituée de deux demi-lames agencées sur deux niveaux superposées, et s'étendant dans le prolongement l'une de l'autre selon la première direction Z. Ces demi-lames peuvent être, ou bien entièrement libres l'une par rapport à l'autre, ou bien solidarisées par collage ou similaire, ou par croissance de SiO2 dans le cas d'une exécution en silicium, ou similaire. Naturellement, la table de translation longitudinale 31, quand elle existe puisqu'elle est facultative, peut obéir au même principe de construction. La figure 6 illustre une variante avec des tiges flexibles, groupées en deux niveaux de deux tiges, de section sensiblement carrée ; une autre variante comporte des tiges flexibles circulaires. Le nombre, la disposition, et la section de ces lames ou tiges, peuvent varier sans s'écarter de la présente invention.
  • Plus particulièrement, les lames ou tiges transversales de la table de translation transversale 32 ont un premier plan de symétrie, qui est parallèle à l'axe transversal D2, et qui passe par l'axe de pivotement D.
  • Plus particulièrement, les lames ou tiges transversales de la table de translation transversale 32 ont un deuxième plan de symétrie, qui est parallèle à l'axe transversal D2, et orthogonal à l'axe de pivotement D.
  • Plus particulièrement, les lames ou tiges transversales de la table de translation transversale 32 ont un troisième plan de symétrie, qui est perpendiculaire à l'axe transversal D2, et parallèle à l'axe de pivotement D.
  • Plus particulièrement, les lames ou tiges transversales de la table de translation transversale 32 s'étendent sur au moins deux niveaux parallèles entre eux, chaque niveau étant perpendiculaire à l'axe de pivotement D.
  • Plus particulièrement, l'agencement des lames ou tiges transversales de la table de translation transversale 32 est identique sur chacun des niveaux.
  • Plus particulièrement, les lames transversales ou tiges flexibles rectilignes 320 sont des lames plates dont la hauteur est au moins cinq fois plus grande que leur épaisseur.
  • Plus particulièrement, les lames transversales ou tiges flexibles rectilignes 320 sont des tiges de section carrée ou circulaire dont la hauteur est égale à l'épaisseur.
  • Plus particulièrement, la table de translation longitudinale 31 comporte au moins deux lames ou tiges flexibles longitudinales, parallèles entre elles et de même longueur.
  • Plus particulièrement, les lames ou tiges longitudinales de la table de translation longitudinale 31 ont un premier plan de symétrie, qui est parallèle à l'axe longitudinal D1, et qui passe par l'axe de pivotement D.
  • Plus particulièrement, les lames ou tiges longitudinales de la table de translation longitudinale 31 ont un deuxième plan de symétrie, qui est parallèle à l'axe longitudinal D1, et orthogonal à l'axe de pivotement D.
  • Plus particulièrement, les lames ou tiges longitudinales de la table de translation longitudinale 31 ont un troisième plan de symétrie, qui est perpendiculaire à l'axe longitudinal D1, et parallèle à l'axe de pivotement D.
  • Plus particulièrement, les lames ou tiges transversales de la table de translation longitudinale 31 s'étendent sur au moins deux niveaux parallèles entre eux, chaque niveau étant perpendiculaire à l'axe de pivotement D.
  • Plus particulièrement, l'agencement des lames ou tiges transversales de la table de translation longitudinale 31 est identique sur chacun des niveaux.
  • Plus particulièrement, les lames longitudinales ou tiges flexibles rectilignes 310 sont des lames plates dont la hauteur est au moins cinq fois plus grande que leur épaisseur.
  • Plus particulièrement, les lames longitudinales ou tiges flexibles rectilignes 310 sont des tiges de section carrée ou circulaire dont la hauteur égale à l'épaisseur.
  • De façon particulière, le mécanisme résonateur 100 comporte des moyens de butée axiale comportant au moins une première butée axiale supérieure et une deuxième butée axiale inférieure pour limiter la course en translation de l'élément inertiel 2 au moins selon la première direction Z, les moyens de butée axiale étant agencés pour coopérer en appui de butée avec l'élément inertiel 2 pour la protection des lames longitudinales 3 au moins contre les chocs axiaux selon la première direction Z, et le deuxième plan de symétrie est sensiblement à égale distance de la première butée axiale 7 et de la deuxième butée axiale 8.
  • Dans une variante particulière, le mécanisme résonateur 100 comporte une plaque fixée sur la structure 1 ou monobloc avec elle, comportant au moins une lame flexible 302 s'étendant dans un plan perpendiculaire à l'axe de pivotement D et fixée à la première masse intermédiaire 303, et qui est agencée pour autoriser une mobilité de la première masse intermédiaire 303 selon la première direction Z. Plus particulièrement, la plaque 301 comporte au moins deux telles lames flexibles coplanaires. Une telle plaque 301 est toutefois facultative si la hauteur des lames des tables de translation XY est faible par rapport à la hauteur des lames flexibles 3, en particulier inférieure au tiers de la hauteur des lames flexibles 3, et notamment si ces tables de translation comportent des tiges flexibles comme sur la figure 6.
  • Comme exposé ci-dessus, la technologie utilisée pour la fabrication permet d'obtenir deux lames distinctes dans la hauteur d'un wafer silicium, ce qui favorise la souplesse en torsion de la table sans l'assouplir pour la translation. Et le mécanisme résonateur 100 peut ainsi avantageusement comporter au moins deux ensembles élémentaires superposés, qui regroupent chacun un niveau du bloc d'ancrage 30, et/ou d'une embase de l'au moins un élément inertiel 2, et du pivot flexible 200 ou de la suspension flexible 300 lesquels forment toujours un ensemble composite, et/ou de la première masse intermédiaire 303, et/ou de la table de translation transversale 32, et/ou d'un élément sécable utilisé seulement lors de l'assemblage et détruit avant la mise en service de l'oscillateur; chaque ensemble élémentaire peut être assemblé à au moins un autre ensemble élémentaire par collage ou similaire, par assemblage mécanique, ou par croissance de SiO2 dans le cas d'une exécution en silicium, ou similaire.
  • Plus particulièrement, un tel ensemble élémentaire comporte encore au moins un niveau de la deuxième masse intermédiaire 305 et/ou de la table de translation longitudinale 31.
  • L'invention concerne encore un mécanisme oscillateur 500 d'horlogerie comportant un tel mécanisme résonateur 100 d'horlogerie, et un mécanisme d'échappement 400, agencés pour coopérer l'un avec l'autre.
  • L'invention concerne encore un mouvement d'horlogerie 1000 comportant au moins un tel mécanisme oscillateur 500 et/ou au moins un mécanisme résonateur 100.
  • L'invention concerne encore une montre 2000 comportant au moins un tel mouvement 1000 et/ou au moins un mécanisme oscillateur 500 et/ou au moins un tel mécanisme résonateur 100.

Claims (20)

  1. Mécanisme résonateur (100) d'horlogerie, comportant une structure (1) et un bloc d'ancrage (30) auquel est suspendu au moins un élément inertiel (2) agencé pour osciller selon un premier degré de liberté en rotation RZ autour d'un axe de pivotement (D) s'étendant selon une première direction Z, ledit élément inertiel (2) étant soumis à des efforts de rappel exercés par un pivot flexible (200) comportant une pluralité de lames élastiques (3) sensiblement longitudinales, chacune fixée, à une première extrémité audit bloc d'ancrage (30), et à une deuxième extrémité audit élément inertiel (2), chaque dite lame élastique (3) étant déformable essentiellement dans un plan XY perpendiculaire à ladite première direction Z, où ledit bloc d'ancrage (30) est suspendu à ladite structure (1) par une suspension flexible (300) agencée pour autoriser la mobilité dudit bloc d'ancrage (30) selon cinq degrés de liberté flexibles de la suspension qui sont un premier degré de liberté en translation selon ladite première direction Z, un deuxième degré de liberté en translation selon une deuxième direction X orthogonale à ladite première direction Z, un troisième degré de liberté en translation selon une troisième direction Y orthogonale à ladite deuxième direction X et à ladite première direction Z, un deuxième degré de liberté en rotation RX autour d'un axe s'étendant selon ladite deuxième direction X, et un troisième degré de liberté en rotation RY autour d'un axe s'étendant selon ladite troisième direction Y, et caractérisé en ce que ledit mécanisme résonateur (100) est un ensemble composite réalisé dans au moins deux matériaux distincts, et qui comporte, d'une part ledit pivot flexible (200) réalisé dans un premier matériau caractérisé par un premier module de Young E1 et par une première limite élastique Sigma 1 et par une première ténacité G1, et d'autre part ladite suspension flexible (300) réalisée dans un deuxième matériau caractérisé par un deuxième module de Young E2 et par une deuxième limite élastique Sigma 2 et par une deuxième ténacité G2.
  2. Mécanisme résonateur (100) selon la revendication 1, caractérisé en ce que la valeur de ladite deuxième ténacité G2 est supérieure à dix fois la valeur de ladite première ténacité G1.
  3. Mécanisme résonateur (100) selon la revendication 1 ou 2, caractérisé en ce que le rapport Sigma 2/E2 est au moins double du rapport Sigma 1/E1.
  4. Mécanisme résonateur (100) selon l'une des revendications 1 à 3, caractérisé en ce que la valeur dudit premier module de Young E1 est supérieure ou égale à 1,5 fois la valeur dudit deuxième module de Young E2.
  5. Mécanisme résonateur (100) selon l'une des revendications 1 à 4, caractérisé en ce que la valeur de ladite deuxième limite élastique Sigma 2 est supérieure ou égale à 1,5 fois la valeur de ladite première limite élastique Sigma 1.
  6. Mécanisme résonateur (100) selon l'une des revendications 1 à 5, caractérisé en ce que ledit au moins un élément inertiel (2) est solidaire dudit pivot flexible (200).
  7. Mécanisme résonateur (100) selon l'une des revendications 1 à 6, caractérisé en ce que ladite suspension flexible (300) est solidaire de ladite structure (1).
  8. Mécanisme résonateur (100) selon l'une des revendications 1 à 7, caractérisé en ce que ledit pivot flexible (200) est amovible par rapport à ladite suspension flexible (300).
  9. Mécanisme résonateur (100) selon l'une des revendications 1 à 8, caractérisé en ce que ladite suspension flexible (300) comporte des éléments faisant pince (939) pour immobiliser ledit pivot flexible (200).
  10. Mécanisme résonateur (100) selon l'une des revendications 1 à 9, caractérisé en ce que ladite suspension flexible (300) comporte au moins une poche (933) apte à recevoir de la colle pour immobiliser ledit pivot flexible (200).
  11. Mécanisme résonateur (100) selon l'une des revendications 1 à 10, caractérisé en ce que la jonction entre ladite suspension flexible (300) et ledit pivot flexible (200) est réalisée sur ledit bloc d'ancrage (30).
  12. Mécanisme résonateur (100) selon l'une des revendications 1 à 11, caractérisé en ce que le rapport Sigma 2/E2 est au moins triple du rapport Sigma 1/E1.
  13. Mécanisme résonateur (100) selon l'une des revendications 1 à 12, caractérisé en ce que ledit premier matériau est du silicium et/ou un oxyde de silicium.
  14. Mécanisme résonateur (100) selon l'une des revendications 1 à 13, caractérisé en ce que ledit deuxième matériau est du nickel-phosphore NiP.
  15. Mécanisme résonateur (100) selon l'une des revendications 1 à 14, caractérisé en ce que ladite suspension flexible (300) comporte, entre ledit bloc d'ancrage (30) et une première masse intermédiaire (303), laquelle est fixée à ladite structure (1) directement ou par l'intermédiaire d'une plaque flexible selon ladite première direction Z, une table de translation transversale (32) à guidage flexible et comportant des lames transversales ou des tiges flexibles transversales, rectilignes (320, 1320) et s'étendant selon ladite deuxième direction X et en symétrie autour d'un axe transversal (D2) croisant ledit axe de pivotement (D).
  16. Mécanisme résonateur (100) selon la revendication 15, caractérisé en ce que ladite suspension flexible (300) comporte, entre ledit bloc d'ancrage (30) et une deuxième masse intermédiaire (305), une table de translation longitudinale (31) à guidage flexible et comportant des lames longitudinales ou des tiges flexibles longitudinales, rectilignes (310, 1310) et s'étendant selon ladite troisième direction Y et en symétrie autour d'un axe longitudinal (D1) croisant ledit axe de pivotement (D), et comporte ladite table de translation transversale (32) entre ladite deuxième masse intermédiaire (305) et ladite première masse intermédiaire (303).
  17. Mécanisme résonateur (100) selon la revendication 16, caractérisé en ce que ledit axe longitudinal (D1) croise ledit axe transversal (D2).
  18. Mécanisme résonateur (100) selon la revendication 15 ou 16, caractérisé en ce que ladite table de translation longitudinale (31) et ladite table de translation transversale (32) comportent chacune au moins deux dites lames ou tiges flexibles, chaque dite lame ou tige étant caractérisée par son épaisseur selon ladite deuxième direction X quand ladite lame ou tige s'étend selon ladite troisième direction Y ou inversement, par sa hauteur selon ladite première direction Z, et par sa longueur selon la direction selon laquelle s'étend ladite lame ou tige, ladite longueur étant au moins cinq fois plus grande que ladite hauteur, ladite hauteur étant au moins aussi grande que ladite épaisseur.
  19. Mouvement d'horlogerie (1000) comportant au moins un mécanisme résonateur (100) selon l'une des revendications 1 à 18, et/ou au moins un mécanisme oscillateur (500) d'horlogerie comportant un mécanisme résonateur (100) d'horlogerie selon l'une des revendications 1 à 18 et un mécanisme d'échappement (400), qui sont agencés pour coopérer l'un avec l'autre.
  20. Montre (2000) comportant au moins un mouvement (1000) selon la revendication 19 et/ou au moins un mécanisme résonateur (100) selon l'une des revendications 1 à 18.
EP21212441.6A 2021-12-06 2021-12-06 Protection antichoc d'un mécanisme résonateur à guidage flexible rotatif Active EP4191346B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21212441.6A EP4191346B1 (fr) 2021-12-06 2021-12-06 Protection antichoc d'un mécanisme résonateur à guidage flexible rotatif
US17/812,456 US20230176522A1 (en) 2021-12-06 2022-07-14 Shock protection of a resonator mechanism with rotary flexure bearing
JP2022134701A JP7407250B2 (ja) 2021-12-06 2022-08-26 回転たわみ軸受を有する共振器機構の衝撃保護
CN202211089846.8A CN116224741A (zh) 2021-12-06 2022-09-07 具有旋转柔性轴承的谐振器机构的抗震保护

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP21212441.6A EP4191346B1 (fr) 2021-12-06 2021-12-06 Protection antichoc d'un mécanisme résonateur à guidage flexible rotatif

Publications (2)

Publication Number Publication Date
EP4191346A1 true EP4191346A1 (fr) 2023-06-07
EP4191346B1 EP4191346B1 (fr) 2024-06-26

Family

ID=78822006

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21212441.6A Active EP4191346B1 (fr) 2021-12-06 2021-12-06 Protection antichoc d'un mécanisme résonateur à guidage flexible rotatif

Country Status (4)

Country Link
US (1) US20230176522A1 (fr)
EP (1) EP4191346B1 (fr)
JP (1) JP7407250B2 (fr)
CN (1) CN116224741A (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH15446A (de) 1897-10-08 1898-06-15 Paul Suess Actiengesellschaft Buchförmiger Behälter mit Einrichtung zum Sammeln und Ordnen von Postkarten oder dergleichen
EP3035127A1 (fr) 2014-12-18 2016-06-22 The Swatch Group Research and Development Ltd. Oscillateur d'horlogerie à diapason
EP3054357A1 (fr) 2015-02-03 2016-08-10 ETA SA Manufacture Horlogère Suisse Mécanisme oscillateur d'horlogerie
EP3438762A2 (fr) * 2017-07-28 2019-02-06 The Swatch Group Research and Development Ltd Oscillateur d'horlogerie a guidages flexibles a grande course angulaire
EP3561607A1 (fr) 2018-04-23 2019-10-30 ETA SA Manufacture Horlogère Suisse Protection antichoc d'un mécanisme résonateur à guidage flexible rotatif
CH715526A2 (fr) 2018-11-08 2020-05-15 Eta Sa Mft Horlogere Suisse Protection antichoc d'un mécanisme résonateur à guidage flexible rotatif.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3557333B1 (fr) * 2018-04-16 2020-11-04 Patek Philippe SA Genève Procédé de fabrication d'un ressort moteur d'horlogerie
EP3561609B1 (fr) * 2018-04-23 2022-03-23 ETA SA Manufacture Horlogère Suisse Protection antichoc d'un mecanisme résonateur a guidage flexible rotatif

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH15446A (de) 1897-10-08 1898-06-15 Paul Suess Actiengesellschaft Buchförmiger Behälter mit Einrichtung zum Sammeln und Ordnen von Postkarten oder dergleichen
EP3035127A1 (fr) 2014-12-18 2016-06-22 The Swatch Group Research and Development Ltd. Oscillateur d'horlogerie à diapason
EP3054357A1 (fr) 2015-02-03 2016-08-10 ETA SA Manufacture Horlogère Suisse Mécanisme oscillateur d'horlogerie
EP3438762A2 (fr) * 2017-07-28 2019-02-06 The Swatch Group Research and Development Ltd Oscillateur d'horlogerie a guidages flexibles a grande course angulaire
EP3561607A1 (fr) 2018-04-23 2019-10-30 ETA SA Manufacture Horlogère Suisse Protection antichoc d'un mécanisme résonateur à guidage flexible rotatif
CH715526A2 (fr) 2018-11-08 2020-05-15 Eta Sa Mft Horlogere Suisse Protection antichoc d'un mécanisme résonateur à guidage flexible rotatif.

Also Published As

Publication number Publication date
EP4191346B1 (fr) 2024-06-26
JP2023084084A (ja) 2023-06-16
JP7407250B2 (ja) 2023-12-28
CN116224741A (zh) 2023-06-06
US20230176522A1 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
EP3561607B1 (fr) Protection antichoc d'un mécanisme résonateur à guidage flexible rotatif
EP3254158B1 (fr) Resonateur isochrone d'horlogerie
EP3054358B1 (fr) Mecanisme oscillateur d'horlogerie
EP3561609B1 (fr) Protection antichoc d'un mecanisme résonateur a guidage flexible rotatif
EP2596406B1 (fr) Mecanisme oscillant a pivot elastique et mobile de transmission d'energie
CH715526A2 (fr) Protection antichoc d'un mécanisme résonateur à guidage flexible rotatif.
EP3206091B1 (fr) Résonateur isochrone d'horlogerie
CH713165A2 (fr) Protection des lames d'un résonateur de montre mécanique en cas de choc.
EP3667432B1 (fr) Résonateur d'horlogerie comportant au moins un guidage flexible
EP3324246B1 (fr) Protection d'un mecanisme resonateur a lames contre les chocs axiaux
EP3555708B1 (fr) Composant horloger à pivot flexible
EP3561606B1 (fr) Protection antichoc d'un résonateur à lames a pivot rcc
EP4191346B1 (fr) Protection antichoc d'un mécanisme résonateur à guidage flexible rotatif
EP3037893B1 (fr) Composant micromécanique ou horloger à guidage flexible
CH719206A2 (fr) Mécanisme résonateur d'horlogerie à guidage flexible rotatif.
EP4047424A1 (fr) Composant à pivot flexible, notamment pour l' horlogerie
CH714936A2 (fr) Protection antichoc d'un résonateur à lames à pivot RCC.
EP3637196A1 (fr) Oscillateur mécanique
EP3839651A1 (fr) Oscillateur horloger mecanique a guidage flexible
EP3971656A1 (fr) Protection antichoc munie d'un élément visqueux pour un mécanisme résonateur à guidage flexible rotatif
EP3707564B1 (fr) Ensemble horloger comprenant un composant horloger et un dispositif pour le guidage en translation d'un element mobile
CH717880A2 (fr) Mécanisme résonateur à guidage flexible rotatif avec protection antichoc à butée.
EP4432019A1 (fr) Procede de mise au point d'un mecanisme resonateur a guidage flexible rotatif pour diminuer les oscillations hors plan

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230615

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231207

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240409

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WINKLER, PASCAL

Inventor name: LECHOT, DOMINIQUE

Inventor name: KAHROBAIYAN, MOHAMMAD HUSSEIN

Inventor name: DI DOMENICO, GIANNI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602021014791

Country of ref document: DE