EP3838839B1 - Dispositif et procédé de remplissage d'un récipient d'un produit de remplissage - Google Patents

Dispositif et procédé de remplissage d'un récipient d'un produit de remplissage Download PDF

Info

Publication number
EP3838839B1
EP3838839B1 EP20215413.4A EP20215413A EP3838839B1 EP 3838839 B1 EP3838839 B1 EP 3838839B1 EP 20215413 A EP20215413 A EP 20215413A EP 3838839 B1 EP3838839 B1 EP 3838839B1
Authority
EP
European Patent Office
Prior art keywords
filling
container
dosage
dosing
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20215413.4A
Other languages
German (de)
English (en)
Other versions
EP3838839A1 (fr
Inventor
DR. Valentin BECHER
Florian HABERSETZER
Norman Narayanan
Heinrich Bielmeier
Josef Knott
Ute Winter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krones AG
Original Assignee
Krones AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krones AG filed Critical Krones AG
Priority to SI202030175T priority Critical patent/SI3838839T1/sl
Publication of EP3838839A1 publication Critical patent/EP3838839A1/fr
Application granted granted Critical
Publication of EP3838839B1 publication Critical patent/EP3838839B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/02Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus
    • B67C3/023Filling multiple liquids in a container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/02Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus
    • B67C3/22Details
    • B67C3/26Filling-heads; Means for engaging filling-heads with bottle necks
    • B67C3/2634Filling-heads; Means for engaging filling-heads with bottle necks specially adapted for vacuum or suction filling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/02Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus
    • B67C3/06Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus using counterpressure, i.e. filling while the container is under pressure
    • B67C3/10Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus using counterpressure, i.e. filling while the container is under pressure preliminary filling with inert gases, e.g. carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/02Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus
    • B67C3/16Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus using suction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/02Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus
    • B67C3/22Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/02Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus
    • B67C3/22Details
    • B67C3/26Filling-heads; Means for engaging filling-heads with bottle necks
    • B67C3/2614Filling-heads; Means for engaging filling-heads with bottle necks specially adapted for counter-pressure filling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/02Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus
    • B67C3/22Details
    • B67C3/26Filling-heads; Means for engaging filling-heads with bottle necks
    • B67C2003/2688Means for filling containers in defined atmospheric conditions
    • B67C2003/2697Means for filling containers in defined atmospheric conditions by enclosing the container partly in a chamber

Definitions

  • the present invention relates to a filling device and a method for filling a container with a filling product, preferably in a beverage bottling plant for bottling multi-component beverages such as soft drinks, mixed beverages, juices or carbonated filling products.
  • the desired components can be individually dosed and filled via separate dosing stations, as is shown, for example, in the U.S. 2008/0271809 A1 is known.
  • the use of separate dosing stations for a large number of components leads to a complex system design and process flow, since the filling of each container is divided into several separate dosing/filling stations at which the container has to be positioned for the respective dosing times.
  • the components can be brought together in a common filling valve, see for example EP 0 775 668 A1 and WO 2009/114121 A1 .
  • a component to be added to a base fluid is metered in front of the filling valve outlet, with the desired quantity being determined, for example, by volume measurement using a flow meter ( EP 0 775 668 A1 ) or by another volumetric dosing technology ( WO 2009/114121 A1 ), for example by means of a dosing piston and/or a diaphragm pump.
  • High dosing accuracy can be achieved by measuring with the help of a flow meter. This measures the volume to be dosed or the mass to be dosed and closes a shut-off valve in the dosing line when a threshold value is reached.
  • Other volumetric dosing methods such as using pumps or time/pressure filling, often have greater uncertainties and tend to be more sensitive to changes in the dosing medium, such as changes in pressure, temperature or composition. The result is frequent calibration, especially when changing the dosing medium.
  • a gravimetric measurement of the dosages is hardly feasible due to the large differences between the dosage weight for very small quantities ( ⁇ l) and the container weight.
  • the late mixing entails a not inconsiderable structural complexity.
  • the dosing head In the case of small container mouths, it is difficult to fill a moving container with a stationary dosing head. Therefore, either the dosing head must move with the container (e.g. as a rotary machine) or the container must remain stationary under the dosing head for the dosing and filling process, such as with a linear transfer machine. If a large number of different dosing components are to be available at the same time, both solutions are complex in terms of mechanical engineering due to the large number of filling points and/or dosing components on the filling valve, are costly and maintenance-intensive and require a lot of installation space.
  • the technical problems described above have led to a further development of the dosing / filling process, for example from the EP 2 272 790 A1 and DE 10 2009 049 583 A1 emerges.
  • the components of the filling product are dosed directly during filling by means of a flow meter and introduced together into the container to be filled, with a main component being displaced backwards by the component dosed during dosing.
  • the displaced volume of the main component is determined by means of the flow meter, and thus the volume of the metered component is also known and can be controlled.
  • the main component is completely flushed out of the filling valve into the container together with the metered component, whereby the total filling quantity can be determined with the same flow meter at the same time.
  • the filling quantities and also the dosed component quantities can be redetermined. This enables highly flexible bottling of individualized beverages without changeover times.
  • the filling valve When changing types, residues of a previous filling product, in particular any dosage components, may remain in the filling valve. Flavorings, pieces of fruit and the like can be carried over and contaminate subsequent fillings. So that as little residue as possible remains in the filling valve that could contaminate the filling product during the subsequent filling process, the quantity and filling of the main component must be set up in such a way that the filling valve is completely free of residues from the previous filling.
  • the degree of cleaning is determined, among other things, by how quickly and with what pressure the filling valve is flushed when the filling product is dispensed into the container. However, the flushing of the filling valve cannot be arbitrarily accelerated for a number of reasons. When filling with beverages containing carbon dioxide, foaming can easily occur. The displacement of the atmosphere in the container during filling also prevents the filling process from being accelerated.
  • a further difficulty with flexible filling by dosing components into the filling valve is that the carbon dioxide content of the filling product cannot be easily made flexible, i.e. it cannot be adjusted according to container and/or type.
  • the main component of the filling product e.g. water
  • the dosage component for example fruit syrup, has a defined Brix content.
  • Carbon dioxide content and Brix content clearly define the mixing ratio.
  • the carbon dioxide content of the main component can be adjusted so that after mixing and filling, the desired content is contained in the container. If only one type of filling product is ever filled on the filler, the carbon dioxide content of the main component can be adapted to the next type specific to the type.
  • the carbon dioxide content of the filled filling product can no longer be adjusted for the specific type, as this is determined by the main component.
  • the EP 3 760 236 A1 and EP 3 795 532 A1 each state of the art according to Article 54(3) EPC, and the EP 3 473 587 A1 and EP 2 272 792 A1 relate to further devices for filling containers with a filling product.
  • One object of the invention is to improve the flexibly individualized filling, in particular to further reduce any aroma or filling product carryover.
  • the filling device serves to fill a container with a filling product.
  • the filling product is preferably a multi-component filling product made of at least two components, one of the components for linguistic distinction herein as "Base liquid” or “main component” is referred to. Any other components are referred to as “dosage component(s)".
  • the filling device is set up for bringing together and optionally at least partially mixing the components and in this respect takes over at least part of the manufacturing process of the filling product to be filled.
  • the base liquid is, for example, water (still or carbonated) or beer.
  • the dosage component(s) may include syrup, pulp-containing liquids, pulp, flavorings, etc.
  • the filling device is therefore particularly preferably used in a beverage bottling plant.
  • the proposed filling device has: a filling element, which has a gas line to evacuate the container to be filled to a negative pressure P low and a filling product line to introduce a filling product from a base reservoir into the evacuated container under a positive pressure; a dosage reservoir; and at least one dosing supply line, preferably a dosing valve, which is set up to introduce a dosing component from the dosing reservoir into the filling product line.
  • the overpressure of the filling product under which it is filled can correspond to atmospheric pressure, but is preferably higher.
  • the container before the filling product is introduced, the container is preferably evacuated to a negative pressure P low with an absolute pressure of 0.5 to 0.05 bar, preferably 0.3 to 0.1 bar, particularly preferably about 0.1 bar.
  • the excess pressure is preferably above atmospheric pressure, for example at an absolute pressure of 1.1 bar to 6 bar.
  • the container is evacuated in such a way that during filling with the filling product, essentially no gas is displaced by the filling product and accordingly no gas has to flow out of the interior of the container. Rather, the entire opening cross section of the container can be used to introduce the filling product. In other words, during filling there is only a flow of filling product directed into the container, but no flow of fluid in the opposite direction.
  • the section of the filling product line into which the dosage component is introduced is also referred to herein as the "dosing space".
  • the one or more dosing valves are preferred forms of dosing lines.
  • the dosage valves can be dispensed with.
  • no essential or even complete mixing of the components has to take place in the dosing chamber.
  • an actual one Mixing can also take place during filling or later in the container.
  • the dosing chamber serves primarily for dosing one or more dosing components into the main component.
  • a change in the base liquid such as an adjustment of the water quality
  • water of one quality e.g. still
  • Several systems can also be supplied with the same water quality, regardless of which types are bottled in them.
  • Mixing time can be used synergistically for container transport.
  • the concept presented here can therefore be used both for linear indexing machines with one or more filling points and for rotary machines.
  • the containers can leave the carousel again after only a small angle of rotation.
  • the filling device preferably has a treatment chamber into which the container to be filled can be at least partially introduced for evacuation and filling (in particular the container mouth), which can be sealed off from the external environment and has a gas supply which is set up to create an overpressure in the to generate treatment chamber.
  • the overpressure in the treatment chamber preferably corresponds to the overpressure with which the filling product is introduced into the container.
  • the overpressure in the treatment chamber preferably corresponds to the filling pressure or saturation pressure of the carbon dioxide, which effectively prevents the filling product from foaming or foaming over after the filling process has ended.
  • the filling product in the container can also be mixed with carbon dioxide in this way after filling.
  • the CO2 content in the filling product can be set by container and by type.
  • the filling element preferably has an opening section and is in this case set up in such a way that the opening section can be brought into sealing fluid communication with the container in the treatment chamber in order to evacuate and fill it.
  • the filling element is preferably set up so that it can be moved at least partially.
  • the evacuation and filling of the container can be carried out quickly and reliably, and at the same time foreign particles are prevented from entering the interior of the container.
  • the mouth section can have a centering bell with a seal, for example with a suitably shaped contact rubber.
  • the filling device has a closing element which is set up to receive a closure, for example by means of a magnet, and to close the container with the closure after filling.
  • Closing takes place particularly preferably in the treatment chamber under the overpressure built up therein.
  • the closing element can have a closing head, which protrudes into the treatment chamber and can be moved essentially vertically.
  • a cap can be transferred to the capping head in various ways. For example, in a first step, a closure can be introduced into the treatment chamber from a sorting mechanism and a feed chute and transferred to the closure head for each filling/closing cycle.
  • the filling process can be significantly accelerated by sealing immediately after filling and under overpressure in the treatment chamber, since essentially no settling phase of the filling product is required, even if it is carbonated.
  • the filling device has at least two dosing lines, such as dosing valves, which are set up to introduce a dosing component into the dosing chamber, wherein a dosing line is in fluid connection with a dosing reservoir of a first dosing branch, which is set up to provide a first dosing component, or can be brought, and the other dosage supply line is or can be brought into fluid connection with a dosage reservoir of a second dosage branch, which is set up to provide a second dosage component, which preferably differs from the first dosage component.
  • dosing lines such as dosing valves
  • the filling device preferably has means for introducing carbon dioxide into the dosing space and/or into the container.
  • water as a possible main component, only has to be made available in one quality (e.g. still or carbonated to a certain degree) as the base liquid.
  • Several systems can also be supplied with the same water quality, regardless of which types are bottled in them. It is not absolutely necessary to focus on the filling product with the lowest carbon dioxide content.
  • non-carbonated filling products can also be filled in parallel with carbonated filling products.
  • the carbon dioxide can be introduced directly via the treatment chamber after filling.
  • the filling device is additionally or alternatively set up to flush the container with carbon dioxide before evacuation, preferably via the gas line of the filling element, and then to evacuate the container to a variable negative pressure P low in order to adjust the carbon dioxide content in the filled filling product.
  • the evacuation of the container, and thus the sudden filling is combined synergistically with the individual carbonation of the filling product.
  • the designations “evacuation”, “evacuate” and the like do not necessarily imply the endeavor to bring the negative pressure in the container as close as possible to a perfect vacuum.
  • the filling device is preferably set up to adapt the overpressure with which the filling product is introduced into the container to the underpressure P low , preferably in such a way that the pressure difference between the overpressure and the underpressure P low remains essentially constant.
  • the pressure difference can be selected in such a way that the container-by-container, type-specific carbonization leaves the control of the filling process, in particular clock rate, cycle duration, etc., unaffected.
  • the mixing ratio can be determined in a mechanically simple, compact and reliable manner.
  • a single flow meter per line
  • exactly one flow meter per filling line is installed for the corresponding filling element.
  • the designation "line” thus means the individual filling line to a filling element. This is to be distinguished from the entire bottling line.
  • the selected listing of the steps does not necessarily specify a chronological order.
  • the base liquid and the dosage component(s) can be introduced into the dosage space before, after or during the evacuation of the container.
  • the method is preferably also designed in such a way that the container to be filled is at least partially introduced into a treatment chamber for evacuation and filling; the filling member has a mouth portion sealingly placed in fluid communication therewith in the treatment chamber for evacuating and filling the container; the treatment chamber is sealed from the outside environment and pressurized; and the container is closed with a closure, preferably in and under the positive pressure of the treatment chamber.
  • carbon dioxide is preferably introduced into the dosing space and/or into the container.
  • the method is further characterized in that the container is flushed with carbon dioxide prior to evacuation; and then the container is evacuated to a negative pressure P low , the negative pressure P low being variably adjustable in order to adjust the carbon dioxide content in the filled filling product.
  • the overpressure with which the filling product is introduced into the container is preferably adapted to the underpressure P low , preferably in such a way that the pressure difference between the overpressure and the underpressure P low remains essentially constant, for example over several fillings one after the other or side by side. It is also possible that the negative pressure P low is above atmospheric pressure. Since the pressure difference between P low and the overpressure/filling pressure remains the same, the correct filling level can also be set in this case or the desired filling time/process time can be achieved.
  • the figure 1 shows a section of a filling device 1 for filling a container (in FIG figure 1 not shown) with a filling product and closing the container with a closure 2 in a beverage bottling plant.
  • the filling device 1 has a filling element 20, which is in the in the figure 1 shown process stage in a treatment chamber 10 protrudes.
  • the filling element 20 has received in a filling element housing 21: a filling product line 22; a filling valve 23 located at the lower, ie downstream, end of the filling product line 22; a gas line 24; and a gas valve 25 disposed at the lower end of the gas line 24.
  • the container can be purged and/or pressurized with a gas, for example inert gas, nitrogen and/or carbon dioxide, via the gas line 24 and the gas valve 25 .
  • a gas for example inert gas, nitrogen and/or carbon dioxide
  • the interior of the container can be set to a desired pressure, for example evacuated.
  • the gas line 24 may be of multi-channel construction, such as by a tube-in-tube configuration, including multiple gas lines to allow for the supply of one or more gases into the container and/or the removal of gas from the container physically separated if necessary.
  • the gas valve 25 comprises, for example, a gas poppet and a gas valve seat, which are configured to regulate the gas flow.
  • the gas valve cone can be switched via an actuator (not shown).
  • the filling product line 22 is preferably designed as a ring line which extends essentially concentrically with the gas line 24 .
  • the filling valve 23 comprises, for example, a filling valve cone and a filling valve seat, which are set up to regulate the flow of the filling product.
  • the filling valve 23 is set up to completely shut off the flow of filling product make possible.
  • the filling valve 23 has two positions, one open and one fully closed. For this purpose, the filling valve 23 can be switched via an actuator (not shown).
  • the actuation of the gas valve 25 and the filling valve 23 takes place via actuators that are not detailed. It should be noted that the gas valve 25 and filling valve 23 can be operatively connected to one another, so that, for example, an actuator can be set up for common use in order to simplify the structure of the filling member 20 and increase reliability.
  • the filling element 20 has a mouth section 26 at the outlet end of the media, which is set up in such a way that the container mouth can be brought sealingly against the mouth section 26 .
  • the mouth section 26 preferably has a centering bell with a suitably shaped contact rubber.
  • the filling element 20 with the mouth section 26 is set up for so-called wall filling, in which the filling product flows down the container wall after exiting the mouth section 26 .
  • the filling product line 22 and the mouth section 26 are preferably designed in such a way or have corresponding means that the filling product is caused to twist during filling, as a result of which the filling product is driven outwards by centrifugal force and, after exiting the mouth section 26, flows downwards in a spiral movement.
  • the filling element 20 has one or more, preferably at least two, metering valves 27, 28 which open into a metering chamber 22a.
  • the metering valves 27, 28 are preferred forms or versions of metering lines.
  • the dosage valves 27, 28 can be dispensed with, so that, for example, only corresponding Metering lines or channels open into the metering chamber 22a.
  • the dosing chamber 22a can be a section or suitably shaped part of the filling product line 22 .
  • the filling element 20 is set up at least partially movable, so that in the figure 1 shown arm-like portion of the filling element 20 can be retracted into the treatment chamber 10 and either retracted therein or partially or even completely removed therefrom. This makes it possible to press the container mouth against the mouth section 26 of the filling element 20 for the filling process and then, after the filling process has ended, to pull the filling element 20 back far enough for the container in the treatment chamber 10 to be closable.
  • the treatment chamber pressure after the end of the filling process can be greater than the pressure of the external environment, which does not have to be atmospheric pressure, as a result of which the penetration of contaminants into the treatment chamber 10 can be virtually ruled out.
  • the treatment chamber 10 can be located in a clean room or form such a room.
  • the filling device 1 also has a closing element 30 for closing the container.
  • the closing element 30 has a closing head 31, which protrudes into the treatment chamber 10 and can be moved essentially vertically in the present exemplary embodiment.
  • the closing element 30 is sealed off from the wall of the treatment chamber 10 in order to avoid contamination or uncontrolled impairment of the atmosphere inside the treatment chamber 10 by external influences.
  • the closure member 30 is designed and set up to receive and hold a closure 2 on the closure head 31 .
  • the closure head 31 can have a magnet, whereby a closure 2, particularly if it is a metal crown cap, can be picked up in the center in a structurally simple manner and placed on the container mouth to close the container.
  • the closure 2 can be gripped and held by suitable gripping or clamping means and applied to the container mouth, so that the concept presented here can also be used for plastic closures, screw caps, etc.
  • the closure head 31 is designed to be movable in the up/down direction, being arranged essentially coaxially to the container mouth in order to be able to reliably apply the closure 2 to the container.
  • a closure 2 can be transferred to the closure head 31 in various ways.
  • a closure 2 in a first step, can be introduced into the treatment chamber 10 from a sorting mechanism and a feed chute for each filling/closing cycle.
  • the treatment chamber 10 can be part of the capping member 30 and can move relative to the cap feed, such as the feed chute or a transfer arm, with the capper head 31 picking and holding a cap 2 from the cap feed.
  • the container can also be closed at another point. Particularly in the case of carbon dioxide-containing filling products, however, the sealing preferably takes place immediately after filling and in the treatment chamber 10 under overpressure, as explained below.
  • the container mouth is introduced into the treatment chamber 10 and sealed off from the treatment chamber 10 .
  • the container mouth is pressed in a sealing manner against the mouth section 26 of the filling element 20, which is extended into the filling position.
  • the mouth section 26 of the filling element 20 thus marks the end position of the container stroke.
  • the capping head 31 picks up the cap 2 and moves into the treatment chamber 10 .
  • the treatment chamber 10 can be sealed off from the environment and from the container or its mouth area by inflating one or more seals.
  • the treatment chamber 10 itself preferably does not carry out a lifting movement.
  • Gas is preferably fed into the treatment chamber 10 during the filling process.
  • the treatment chamber 10 is sealed on all sides, as a result of which a suitable internal pressure is built up in the treatment chamber 10 .
  • this preferably corresponds to the filling pressure or saturation pressure of the carbon dioxide, as a result of which the filling product is effectively prevented from foaming or foaming over after the filling process has ended.
  • the gas supply can be done by means of an in the figure 1 not shown valve in the wall of the treatment chamber 10 take place.
  • the gas supply can be at least partially integrated in the filling element 20 .
  • the filling element 20 according to the present exemplary embodiment has a treatment chamber gas line 29 .
  • the treatment chamber gas line 29, in particular its outlet into the treatment chamber 10 can be set up in such a way that the exiting gas jet impinges on the underside of the closure 2 when the filling element 20 is in the filling position. In this way, the closure 2 is cleaned at the same time during the filling process.
  • Carbon dioxide is preferably used as the gas, but another medium, such as sterile air, can also be used.
  • the filling member 20 is retracted and the closing head 31 continues its downward movement until the container mouth is closed when it is reached.
  • the overpressure P high generated in step c) can correspond to atmospheric pressure, but is preferably higher.
  • the container before the filling product is introduced, the container is preferably evacuated to a negative pressure P low with an absolute pressure of 0.5 to 0.05 bar, preferably 0.3 to 0.1 bar, particularly preferably about 0.1 bar.
  • the overpressure P high is preferably above atmospheric pressure, for example at an absolute pressure of 1.1 bar to 6 bar.
  • the container is evacuated in such a way that during filling with the filling product, essentially no gas is displaced by the filling product and accordingly no gas has to flow out of the interior of the container. Rather, the entire opening cross section of the container can be used to introduce the filling product. In other words, during filling there is only a flow of filling product directed into the container, but no flow of fluid in the opposite direction.
  • the figure 2 is a schematic representation of a device 100 for filling a container 200 with a multi-component filling product.
  • the device 100 has a basic reservoir 110 for a basic liquid, which can also be regarded as the main product, and a filling device 1 with a filling element 20 as described above.
  • the filling device 1 is in the figure 2 for the sake of clarity only shown schematically, in particular without the treatment chamber 10 and without the closing element 30 .
  • the base liquid and any dosage components, which can be mixed in via a fluid system described below, are introduced into the container 200 via the filling element 20 .
  • the base liquid is, for example, water or beer.
  • the dosage components can include, for example, syrup, pulp-containing liquids, pulp, flavorings, and so on.
  • the device 100 has a base line 120 which is set up for the introduction of the base liquid into the filling member 20 and into which dosage components can be introduced.
  • Other lines not shown here, also referred to as “secondary lines”, can be provided in order to mix in different amounts and/or other dosage components.
  • the base line 120 has a base line 121 which extends from the base reservoir 110 to the filling element 20 .
  • the base line 121 is equipped with a flow meter 122 .
  • the flow meter 122 is preferably a non-contact, for example an inductive, measuring device for determining the liquid flow, volume flow, transported mass or the like passing through the flow meter 122 .
  • the section of the base line 121 which is located between the flow meter 122 and the filling valve 23 is referred to as the dosing chamber 22a or contains one.
  • the dosing space 22a is set up for metering the dosing components to be introduced by backward displacement, as described below.
  • two metering branches 124, 125 open into the metering chamber 22a.
  • the two dosing branches 124, 125 each have a dosing reservoir 124a, 125a, a dosing line 124b, 125b fluidly connected thereto and a dosing valve 27, 28 which switchably fluidly connects the associated dosing line 124b, 125b to the dosing chamber 22a.
  • a metering range for the baseline 120 is defined with the selection of the nominal widths of the metering chamber 22a, the flow meter 122 and/or the metering branches 124, 125.
  • the base line 120 is flushed with the base liquid at the beginning of each filling cycle, as a result of which the associated dosing chamber 22a is filled with the base liquid when the filling element 20 is closed.
  • the associated flow meter 122 can measure the flow of base liquid in the forward direction, ie the filling direction. In this way, the desired total filling volume of the dosing chamber 22a can be determined and adjusted.
  • the dosing components are then introduced into the dosing chamber 22a by the corresponding dosing valves 27, 28 being opened.
  • the dosage components can be introduced simultaneously or sequentially.
  • the introduction of the dosing components results in part of the base liquid being displaced backwards out of the dosing chamber 22a.
  • the backward flow is detected by the flow meter 122 .
  • the dosing valves 27, 28, which can be designed as pure shut-off valves or as controllable shut-off valves, remain open until the desired volume of the dosing component(s) has been filled into the dosing chamber 22a.
  • the flow meter 122 and the valves of the device 100 are communicatively connected to a control device (not shown in the figures), which, based on the detection results of the flow meter 122, determines the time of opening/closing or generally the switching behavior of the components involved. It should be noted that the amount of each individual dosage component can be accurately measured with just one flow meter 122 can be determined by successively introducing different dosage components of a line.
  • the dosing space 22a is emptied into the container 200, completely flushing the line.
  • the reservoirs 110, 124a, 125a for the base liquid and the dosage components can each be charged separately or together with a gas pressure in the head space in order to ensure the necessary pressure difference for the delivery of the corresponding fluids.
  • the static heights of the reservoirs 110, 124a, 125a can be selected in such a way that the pressure differences allow the dosage components to be introduced into the base liquid.
  • Precise dosing can be achieved by introducing and measuring the dosing component(s) by backward displacement in this way.
  • the sudden filling due to the pressure difference between the container 200, which is under negative pressure, and the filling product, which is under overpressure, not only accelerates the filling process, but also optimal rinsing of the filling element 20 can be achieved, which effectively prevents aromas or filling product residues from being carried over .
  • the carbonation level can be adjusted in different ways: According to a preferred embodiment, the desired level of carbonation is determined by the level of CO2 in the container 200 prior to filling. This is possible because the container 200 is brought to the negative pressure P low before filling. If the container 200 is flushed with CO2 before evacuation, the carbon dioxide content can be adjusted individually, in particular by type and container, by adjusting P low . So that a variation in the negative pressure P low does not affect the duration of the filling process, the positive pressure with which the filling product is introduced into the container 200 can be adjusted accordingly.
  • the overpressure is preferably selected in such a way that the pressure difference between this and P low remains approximately constant for different P low , which determine the CO2 content.
  • the carbon dioxide content can be adjusted by introducing CO2 directly into the dosing chamber 22a and/or into the container 200 during filling or at the end of the Filling in the headspace of the container 200 are set.
  • the gas line 24 and the gas valve 25, a metering valve 27, 28 or another device of the filling element 20 can be set up to introduce the COz from a COz source into the filling product.
  • CO2 can be added to the base liquid and/or one or more of the dosage components, so that the type-specific mixing of the components also leads to a type-specific CO2 content.
  • the filling product in the container can also be mixed with carbon dioxide in this way after filling.
  • the CO2 content in the filling product can be set by container and by type.
  • non-carbonated filling products can also be filled in parallel with carbonated filling products. Due to the high pressure difference in the system during filling, the flushing of the filling element 20 is optimized, which prevents or at least minimizes any product or aroma carryover into subsequent containers. In addition, since no return gas has to be discharged from the container 200 during filling, no aroma can get into the system, in particular the product boiler, via this path either.
  • no container 200 has to be in contact with the filling element 20 during the dosing phase, since the dosing or mixing in is not carried out during filling but in the dosing chamber 22a.
  • Dosing time can be used synergistically for container transport. The concept presented here can therefore be used both for linear indexing machines with one or more filling points and for rotary machines. In the case of rotary machines, the containers 200 can leave the carousel again after only a small angle of rotation.
  • the flow meter 122 always has only the base liquid, i.e. water in most cases, flowing through it. This means that the media properties do not change and the line system is not contaminated by different fluids in these areas.
  • the outlay in terms of mechanical engineering to implement the device 100 is justifiable, since the line system can be implemented using pipes or hose lines with few valves and only a single flow meter (per line). No complicated geometries need to be built in, making the device 100 easy to clean and maintain. The risk of clogging is low.
  • the device 100 is also suitable for dosing highly viscous fluids.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filling Of Jars Or Cans And Processes For Cleaning And Sealing Jars (AREA)
  • Basic Packing Technique (AREA)

Claims (15)

  1. Dispositif de remplissage (1) pour remplir un récipient (200) avec un produit de remplissage, de préférence dans une installation de remplissage de boissons, présentant :
    un organe de remplissage (20) qui présente une conduite de gaz (24) pour mettre sous vide le récipient (200) à remplir à une pression négative (Plow) et une conduite de produit de remplissage (22) pour introduire un produit de remplissage à partir d'un réservoir de base (110) sous une pression positive dans le récipient mis sous vide (200) ;
    un réservoir de dosage (124a, 125a) ; et
    au moins une conduite d'amenée de dosage, de préférence une soupape de dosage (27, 28), qui est conçue pour introduire un composant de dosage à partir du réservoir de dosage (124a, 125a) dans la conduite de produit de remplissage (22).
  2. Dispositif de remplissage (1) selon la revendication 1, caractérisé en ce qu'une chambre de traitement (10) est prévue, dans laquelle le récipient (200) à remplir peut être introduit au moins partiellement pour la mise sous vide et le remplissage, laquelle peut être rendue étanche par rapport à l'environnement extérieur et dispose d'une alimentation en gaz qui est conçue pour générer une pression positive dans la chambre de traitement (10).
  3. Dispositif de remplissage (1) selon la revendication 2, caractérisé en ce que l'organe de remplissage (20) présente une section d'embouchure (25) et est conçu de sorte que la section d'embouchure (25) peut être amenée en communication fluidique étanche avec le récipient dans la chambre de traitement (10) pour la mise sous vide et le remplissage de celui-ci, dans lequel l'organe de remplissage (20) peut être déplacé au moins partiellement à cet effet.
  4. Dispositif de remplissage (1) selon la revendication 2 ou 3, caractérisé en ce qu'un organe de fermeture (30) est prévu, lequel est conçu pour recevoir un bouchon (2) et pour fermer le récipient (200) dans la chambre de traitement (10) après le remplissage avec le bouchon (2).
  5. Dispositif de remplissage (1) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'au moins deux conduites d'amenée de dosage, de préférence des vannes de dosage (27, 28), sont prévues, lesquelles sont conçues pour introduire respectivement un composant de dosage dans la conduite de produit de remplissage (22), dans lequel l'une des conduites d'amenée de dosage (27) est ou peut être amenée en communication fluidique avec un réservoir de dosage (124a) d'une première branche de dosage, qui est conçue pour fournir un premier composant de dosage, et l'autre conduite d'amenée de dosage (28) est ou peut être amenée en communication fluidique avec un réservoir de dosage (125a) d'une seconde branche de dosage, qui est conçue pour fournir un second composant de dosage, qui est de préférence différent du premier composant de dosage.
  6. Dispositif de remplissage (1) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il présente des moyens d'introduction de dioxyde de carbone dans la conduite de produit de remplissage (22) et/ou dans le récipient (200).
  7. Dispositif de remplissage (1) selon la revendication 6, caractérisé en ce qu'il est conçu pour rincer le récipient (200) avec du dioxyde de carbone avant la mise sous vide, de préférence par l'intermédiaire de la conduite de gaz (24), et ensuite pour mettre sous vide le récipient (200) à une pression négative variable (Plow), de manière à ajuster la teneur en dioxyde de carbone dans le produit de remplissage conditionné.
  8. Dispositif de remplissage (1) selon la revendication 7, caractérisé en ce qu'il est conçu pour adapter la pression positive avec laquelle le produit de remplissage est introduit dans le récipient (200) à la pression négative (Plow), de préférence de sorte que la différence de pression entre la pression positive et la pression négative (Plow) reste sensiblement constante.
  9. Dispositif de remplissage (1) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il présente un débitmètre (122) qui est agencé sur la conduite de produit de remplissage (22) et qui est conçu pour déterminer la quantité de fluide passant par le débitmètre (122) dans la conduite de produit de remplissage (22) ;
  10. Dispositif (100) pour remplir un récipient (200) avec un produit de remplissage qui présente un liquide de base et au moins un composant de dosage, de préférence dans une installation de remplissage de boissons, dans lequel le dispositif (100) présente :
    un réservoir de base (110) qui est conçu pour fournir le liquide de base ;
    au moins un dispositif de remplissage (1) selon l'une quelconque des revendications précédentes ;
    une ligne de base (120) avec une conduite de base (121) qui amène le réservoir de base (110) en communication fluidique avec la conduite de produit de remplissage (22) de l'organe de remplissage (20), un débitmètre (122) qui est agencé sur la conduite de base (121) entre le réservoir de base (110) et l'organe de remplissage (20) et qui est conçu pour déterminer la quantité de fluide passant par le débitmètre (122) dans la conduite de base (121) ; et au moins une branche de dosage (124) qui est conçue pour introduire un composant de dosage dans la conduite de produit de remplissage (22) par l'intermédiaire de la conduite d'amenée de dosage.
  11. Procédé de remplissage d'un récipient (200) avec un produit de remplissage qui présente un liquide de base et au moins un composant de dosage, de préférence dans une installation de remplissage de boissons, dans lequel le procédé présente les étapes consistant à :
    introduire le liquide de base dans une conduite de produit de remplissage (22) d'un organe de remplissage (20) ;
    introduire au moins un composant de dosage à partir d'un réservoir de dosage (124a, 125a) dans la conduite de produit de remplissage (22) ;
    mettre sous vide le récipient (200) à remplir jusqu'à une pression négative (Plow); et
    introduire le produit de remplissage composé du liquide de base et du composant de dosage sous une pression positive à partir de la conduite de produit de remplissage (22) dans le récipient (200) mis sous vide.
  12. Procédé selon la revendication 11, caractérisé en ce que
    le récipient (200) à remplir est amené au moins partiellement dans une chambre de traitement (10) pour la mise sous vide et le remplissage ;
    l'organe de remplissage (20) présente une section d'embouchure (25) qui est amenée en communication fluidique étanche avec le récipient (200) pour faire le vide et le remplir dans la chambre de traitement (10) ;
    la chambre de traitement (10) est rendue étanche par rapport à l'environnement extérieur et est amenée à une pression positive ; et
    le récipient (200) est fermé par une fermeture (2), de préférence dans et sous la pression positive de la chambre de traitement (10).
  13. Procédé selon la revendication 11 ou 12, caractérisé en ce que du dioxyde de carbone est amené dans la conduite de produit de remplissage (22) et/ou dans le récipient (200).
  14. Procédé selon la revendication 13, caractérisé en ce que
    le récipient (200) est rincé avec du dioxyde de carbone avant d'être mis sous vide ; et ensuite le récipient (200) est mis sous vide à une pression négative (Plow), dans lequel la pression négative (Plow) peut être réglée de manière variable de façon à ajuster la teneur en dioxyde de carbone dans le produit de remplissage conditionné, dans lequel
    de préférence, la pression positive avec laquelle le produit de remplissage est introduit dans le récipient (200) est adaptée à la pression négative (Plow), de préférence de sorte que la différence de pression entre la pression positive et la pression négative (Plow) reste sensiblement constante.
  15. Procédé selon l'une quelconque des revendications 11 à 14, mis en oeuvre au moyen d'un dispositif selon la revendication 10, dans lequel le procédé présente les étapes consistant à :
    fournir le liquide de base via le réservoir de base (110) ;
    introduire le liquide de base provenant du réservoir de base (110) dans la conduite de produit de remplissage (22) ;
    introduire le composant de dosage à partir de la branche de dosage (124) dans la conduite de produit de remplissage (22), dans lequel, pour le dosage du composant de dosage, le débitmètre (122) détermine la quantité de fluide passant par le débitmètre (122) dans la conduite de base (121) ; et
    vider la conduite de produit de remplissage (22) dans le récipient (200).
EP20215413.4A 2019-12-19 2020-12-18 Dispositif et procédé de remplissage d'un récipient d'un produit de remplissage Active EP3838839B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI202030175T SI3838839T1 (sl) 2019-12-19 2020-12-18 Naprava in postopek za polnjenje vsebnika s polnilnim izdelkom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019135261.4A DE102019135261A1 (de) 2019-12-19 2019-12-19 Vorrichtung und Verfahren zum Befüllen eines Behälters mit einem Füllprodukt

Publications (2)

Publication Number Publication Date
EP3838839A1 EP3838839A1 (fr) 2021-06-23
EP3838839B1 true EP3838839B1 (fr) 2023-02-22

Family

ID=73855749

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20215413.4A Active EP3838839B1 (fr) 2019-12-19 2020-12-18 Dispositif et procédé de remplissage d'un récipient d'un produit de remplissage

Country Status (4)

Country Link
EP (1) EP3838839B1 (fr)
CN (1) CN113003519A (fr)
DE (1) DE102019135261A1 (fr)
SI (1) SI3838839T1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117228611B (zh) * 2023-11-16 2024-01-19 四川嘉智生态科技有限公司 一种多品种液体分装机

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19543945A1 (de) * 1995-11-25 1997-05-28 Khs Masch & Anlagenbau Ag Füllmaschine und Füllelement für eine solche Maschine
US8479784B2 (en) * 2007-03-15 2013-07-09 The Coca-Cola Company Multiple stream filling system
US8091737B2 (en) * 2008-03-13 2012-01-10 Lancer Partnership, Ltd Method and apparatus for a multiple flavor beverage mixing nozzle
DE102009032791A1 (de) * 2009-07-10 2011-01-13 Krones Ag Vorrichtung zum Abfüllen mehrkomponentiger Getränke
DE102009032795A1 (de) * 2009-07-10 2011-01-13 Krones Ag Einfülleinrichtung zum Befüllen von Behältnissen
DE102009049583A1 (de) * 2009-10-15 2011-05-12 Khs Gmbh Verfahren und Vorrichtung zum Befüllen von Behältern mit einem Füllgut bestehend aus wenigstens einer ersten und zweiten flüssigen Komponente in einem vorgegebenen Mengenverhältnis
DE102014104873A1 (de) * 2014-04-04 2015-10-08 Krones Ag Verfahren und Vorrichtung zum Befüllen eines Behälters mit einem Füllprodukt
DE102016108502A1 (de) * 2016-05-09 2017-11-09 Khs Gmbh Verfahren zum Füllen von Behältern
DE102017123253A1 (de) * 2017-10-06 2019-04-11 Krones Ag Verfahren und Vorrichtung zum Befüllen eines zu befüllenden Behälters mit einem Füllprodukt
DE102019118114A1 (de) * 2019-07-04 2021-01-07 Krones Ag Reinigungsvalidierung in einer Vorrichtung zum Abfüllen von Behältern
DE102019125329A1 (de) * 2019-09-20 2021-03-25 Krones Ag Verfahren und Vorrichtung zum Befüllen eines Behälters mit einem Füllprodukt

Also Published As

Publication number Publication date
CN113003519A (zh) 2021-06-22
EP3838839A1 (fr) 2021-06-23
SI3838839T1 (sl) 2023-04-28
DE102019135261A1 (de) 2021-06-24

Similar Documents

Publication Publication Date Title
EP0180828B1 (fr) Méthode et dispositif pour le remplissage de bouteilles ou similaires avec un liquide
EP2125600B1 (fr) Procédé pour remplir des bouteilles ou récipients similaires d'un produit liquide par contre-pression, et machine de remplissage pour la mise en oeuvre de ce procédé
EP0539791B1 (fr) Procédé et dispositif pour remplir des bouteilles ou des récipients similaires avec un produit liquide
EP1692071A1 (fr) Element de remplissage pour machine de remplissage et machine de remplissage equipee d'elements de remplissage de ce type
EP3838833A1 (fr) Dispositif de remplissage d'un récipient d'un produit de remplissage
DE102018127592B4 (de) Füllelement, Füllsystem und Verfahren zum Füllen von Behältern
DE19836500A1 (de) Füllsystem
DE4429594A1 (de) Verfahren zum Abfüllen eines flüssigen Füllgutes in Flaschen oder dgl. Behälter
EP0582190A1 (fr) Dispositif de remplissage de bouteilles ou de récipients analogues
WO2013083244A1 (fr) Élément de remplissage pourvu d'un tube trinox
EP3795532A1 (fr) Procédé et dispositif de remplissage d'un récipient doté d'un produit de remplissage
WO2019110218A1 (fr) Station de remplissage
WO2014161628A1 (fr) Procédé et système de remplissage de contenants
DE20319789U1 (de) Füllmaschine mit separatem Rückgaskanal
EP3834954A1 (fr) Appareil de remplissage de contenant avec nettoyage cip
EP3838839B1 (fr) Dispositif et procédé de remplissage d'un récipient d'un produit de remplissage
DE10359312B4 (de) Füllmaschine zum Füllen von Behältern
EP4008682A1 (fr) Dispositif et procédé de remplissage d'un récipient d'un produit de remplissage
EP2314538B1 (fr) Dispositif et procédé de remplissage sans perte de produits mélangés en continu dans des récipients
DE19939521A1 (de) Verfahren zur sauerstoffarmen Abfüllung von Getränken
EP3670429A1 (fr) Nettoyage de fermetures de récipients lors du processus de remplissage et de fermeture de récipients à remplir
EP3838838A1 (fr) Dispositif et procédé de remplissage d'un récipient d'un produit de remplissage
DE102019135256A1 (de) Verfahren und Anlage zum Befüllen eines Behälters mit einem karbonisierten Füllprodukt
DE20319619U1 (de) Füllmaschine zum Füllen von Behältern
DE3742434C2 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211201

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220831

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1549406

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230315

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020002570

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230622

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230522

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230622

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230523

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020002570

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20231123

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20231117

Year of fee payment: 4

Ref country code: FR

Payment date: 20231108

Year of fee payment: 4

Ref country code: DE

Payment date: 20231031

Year of fee payment: 4