EP3830936A1 - Rotor a griffes comportant des elements magnetiques inter-griffe pour machine electrique tournante - Google Patents

Rotor a griffes comportant des elements magnetiques inter-griffe pour machine electrique tournante

Info

Publication number
EP3830936A1
EP3830936A1 EP19745130.5A EP19745130A EP3830936A1 EP 3830936 A1 EP3830936 A1 EP 3830936A1 EP 19745130 A EP19745130 A EP 19745130A EP 3830936 A1 EP3830936 A1 EP 3830936A1
Authority
EP
European Patent Office
Prior art keywords
claw
magnetic element
extending
rotor
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19745130.5A
Other languages
German (de)
English (en)
Inventor
Jimmy CHAILLOU
Henri DELIANNE
Pierre Segard
David MARGUERITTE
Eric JOZEFOWIEZ
Sylvain PERREAUT
Mohamed EL-GHAZAL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Equipements Electriques Moteur SAS
Original Assignee
Valeo Equipements Electriques Moteur SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Equipements Electriques Moteur SAS filed Critical Valeo Equipements Electriques Moteur SAS
Publication of EP3830936A1 publication Critical patent/EP3830936A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/04Windings on magnets for additional excitation ; Windings and magnets for additional excitation
    • H02K21/042Windings on magnets for additional excitation ; Windings and magnets for additional excitation with permanent magnets and field winding both rotating
    • H02K21/044Rotor of the claw pole type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines

Definitions

  • the invention relates in particular to a claw rotor comprising magnetic elements arranged between two adjacent claws for a rotary electric machine, in particular of a motor vehicle.
  • a reversible machine is a rotary electric machine capable of working in a reversible manner, on the one hand, as an electric generator in alternator function and, on the other hand, as an electric motor for example for starting the heat engine of the motor vehicle .
  • a rotating electrical machine includes a rotor that rotates about an axis and a fixed stator surrounding the rotor.
  • alternator mode when the rotor is rotating, it induces a magnetic field on the stator which transforms it into electric current in order to supply the electric consumers of the vehicle and to recharge the battery.
  • motor mode the stator is electrically supplied and induces a magnetic field driving the rotor in rotation.
  • a claw rotor has two pole wheels, each having a plate and claws extending axially from the plate. Each claw of a first polar wheel partly extends in a space between two adjacent claws of the other polar wheel. Magnetic elements such as permanent magnets can be placed between two consecutive claws of two separate pole wheels. Such elements make it possible to increase the performance of the machine by desaturating the rotor in order to reduce the magnetic losses between the pole wheels and therefore by improving the amount of magnetic flux transmitted to the stator.
  • Each magnetic element is held in position by means of lips extending from the claws.
  • the vibrations created by the different operating cycles of the vehicle can move the magnetic element.
  • the lips are then not sufficient to guarantee the position of the magnetic element.
  • the centrifugal force exerted on the magnetic elements is very strong and the claws of the pole wheels can open. This has the effect that the magnetic element is no longer maintained over the entire length of the lip but only on the part of the lip closest to the plate of the pole wheel. The magnetic element is then no longer held in its center and the bending of the said element can cause the latter to break.
  • a shim is arranged on an external face of the magnetic element.
  • This wedge makes it possible to stiffen the magnetic element while avoiding its bending.
  • Such a shim must have dimensions of length and width substantially identical to those of the magnet in order to best correspond to the external face of the magnet and thus ensure its stiffening without increasing the size of the rotor. This leads to manufacturing constraints of the wedge and therefore cost.
  • the rotor assembly process is also impacted by the presence of this shim which requires a step of positioning an additional part.
  • the present invention aims to avoid the drawbacks of the prior art.
  • the present invention therefore relates to a rotor for a rotary electric machine having an axis of rotation and comprising: two pole wheels, each formed by a plate extending radially and a plurality of claws extending from said plate substantially axially, each claw of a pole wheel extending in a space formed between two adjacent claws of the other pole wheel and having an internal surface arranged opposite the axis and an opposite external surface radially to said internal surface; at least one magnetic element disposed between two successive claws each belonging to one of the pole wheels; and at least one armature disposed against an external face of the magnetic element.
  • the rotor also comprises an insulating layer extending, at least, in and / or through the armature so as to form a wedge of stiffening and on an external surface of at least one claw adjacent to the magnetic element.
  • the insulating layer thus extends inside the frame to form the stiffening shim.
  • the stiffening shim is formed of a skeleton composed of the frame and part of the insulating layer, called the secured part, permeating the frame.
  • the term "insulating layer” means an electrically insulating layer.
  • the stiffening shim ensures the distribution of forces over all the surface of the magnetic element and thus improves its resistance to centrifugation.
  • Such a wedge formed of a skeleton soaked in an insulating layer makes it possible both to stiffen the wedge and to bond said wedge to the magnetic element in order to improve its retention.
  • this embodiment of the shim makes it possible to simplify the structure of the rotor as well as its precedent. The manufacture of such a rotor is thus less expensive. Indeed, the fact of using a simple reinforcement instead of making a full block allows to reduce the manufacturing constraints of the block and thus its cost. In addition, this makes it possible to avoid having portions of insulating layer which are not useful in the rotor since, in the prior art, the shim is covered with a non-functional insulating layer which does not penetrate inside the down. In contrast, in the present invention, the insulating layer penetrates the reinforcement to form the wedge.
  • the external face of the magnetic element is arranged radially opposite to an internal face of said element arranged opposite the axis.
  • the insulating layer comprises a secured part extending in and / or through the frame and a free part extending on the external surface of the claw, said insulating layer extending continuously between the part subject and the free part.
  • the insulating layer extends continuously from the inside of the frame to the external surface of the claw.
  • the insulating layer is thus formed in one piece, a portion of this layer extending in and / or through the reinforcement.
  • the frame and the insulating layer are formed of non-magnetic materials.
  • the frame is formed of a fibrous structure or of a mesh structure.
  • the fibrous structure comprises a fibrous material such as glass fiber or vegetable fiber or ceramic fiber.
  • This fibrous material can also be paper or cardboard.
  • the grid structure is formed of a support comprising openings such as a grid.
  • This structure can be formed of plastic material.
  • the insulating layer is also an adhesive layer.
  • the insulating layer is formed from a resin or a polymer material.
  • the magnetic element is a permanent magnet.
  • each claw in contact with the magnetic element comprises a claw body extending axially from the plate and at least one lip extending from said body in an ortho-radial direction so as to maintain the magnetic element.
  • the insulating layer extends continuously between the interior of the frame and an internal surface of at least one lip of a claw adjacent to the magnetic element. This makes it possible to stick the stiffening shim to the claw, which improves the centrifugation behavior of the assembly formed by the frame and the magnetic element.
  • the magnetic element is disposed radially closer to the axis than the stiffening shim which is itself disposed radially closer to the axis than the lip. This makes it possible to improve the centrifugation behavior of the magnetic element since the stresses exerted on said element are more problematic on its external radial end face than on its internal face.
  • the present invention also relates to a rotary electrical machine comprising a rotor as previously described.
  • the rotating electric machine can advantageously form an alternator, an alternator-starter, a reversible machine or an electric motor.
  • the present invention further relates to a method for producing a rotor of a rotary electrical machine.
  • Such a method comprises the following steps:
  • a step of producing two pole wheels each formed by a plate extending radially and a plurality of claws extending from said plate in a substantially axial manner and having an internal surface disposed opposite the axis and an outer surface radially opposite said inner surface;
  • Such a method makes it possible to simplify the production of the rotor by dispensing with the full-fledged production of a stiffening shim while ensuring good support and good resistance to centrifugation of the magnetic element.
  • the first positioning step is preceded by a step of applying an attachment means between the magnetic element and the armature.
  • This attachment means is for example glue placed on the magnetic element and / or on the frame.
  • the step of arranging the insulating layer is followed by a step of polymerizing the material forming the insulating layer.
  • the step of disposing the insulating layer is carried out by dipping the rotor in a bath or by emission via a jet or by localized application via a syringe.
  • FIG. 1 represents, schematically and partially, a sectional view of a rotary electrical machine according to an exemplary implementation of the invention
  • FIG. 2 represents, schematically and partially, a perspective view of the rotor of FIG. 1,
  • FIG. 3 shows, schematically and partially, a perspective view of the rotor of Figure 2 before the application of the insulating layer
  • FIG. 4 represents, schematically and partially, a perspective view of an example of reinforcement
  • FIG. 5 represents, schematically and partially, a sectional view of a portion of the rotor of FIG. 2, and
  • FIG. 6 represents a flow diagram of an example of a method for producing the rotor of FIG. 2.
  • FIG. 1 shows an example of a compact and polyphase rotary electrical machine 10, in particular for a motor vehicle.
  • This machine 10 transforms mechanical energy into electrical energy, in alternator mode, and can operate in engine mode to transform electrical energy into mechanical energy.
  • This rotary electric machine 10 is, for example, an alternator, an alternator-starter, a reversible machine or an electric motor.
  • the machine 10 comprises a casing 11. Inside this casing 11, it further comprises a shaft 13, a rotor 12 integral in rotation with the shaft 13 and a stator 15 surrounding the rotor 12. The rotational movement of the rotor 12 takes place around an axis X.
  • the axial, radial, exterior and interior designations refer to the axis X passing through the shaft 13 at its center.
  • the axial direction corresponds to the X axis while the radial orientations correspond to concurrent planes, and in particular perpendicular, to the X axis.
  • the exterior or interior denominations are assessed relative to the same X axis, the internal designation corresponding to an element oriented towards the axis, or closer to the axis with respect to a second element, the external designation designating a distance from the axis.
  • the housing 1 1 includes a front flange 16 and a rear flange 17 which are assembled together. These flanges 16, 17 are hollow and each carry, centrally, a bearing coupled to a ball bearing 18, 19 respectively for the rotational mounting of the shaft 13.
  • the housing 1 1 includes fixing means 14 allowing the mounting of the rotary electrical machine 10 in the vehicle.
  • the stator 15 comprises a body 27 in the form of a packet of sheets provided with notches for mounting an electric coil 28.
  • This coil 28 passes through the notches of the body 27 and form a front bun 29 and a rear bun 30 on either side of the stator body.
  • the winding 28 is formed of several phases electrically connected to an electronic assembly 36 forming a voltage rectifier bridge.
  • a pulley 20 is fixed on a front end of the shaft 13, at the level of the front flange 16. This pulley 20 makes it possible to transmit the rotational movement to the shaft 13 or to the shaft 13 to transmit its rotational movement to the belt.
  • the front / rear designations refer to the pulley 20.
  • a front face is a face oriented in the direction of the pulley while a rear face is a face oriented in the opposite direction of the pulley.
  • the end rear of the shaft 13 carries, here, slip rings 21 belonging to a collector 22. Brushes 23 belonging to a brush holder 24 are arranged so as to rub on the slip rings 21.
  • the brush holder 24 is connected to a voltage regulator (not shown).
  • the front flange 16 and the rear flange 17 may further comprise lateral openings for the passage of air in order to allow the cooling of the machine by air circulation generated by the rotation of fans 25, 26 on the rotor body.
  • the rotor 12 is a claw rotor. It has two pole wheels 31. Each pole wheel 31 is formed of a plate 32 and a plurality of claws 33 forming magnetic poles.
  • the plate 32 is of transverse orientation and has, for example, a substantially annular shape.
  • This rotor 12 further comprises a cylindrical core 34 which is axially interposed between the pole wheels 31.
  • this core 34 is formed by two half cores each belonging to one of the pole wheels.
  • the rotor 12 comprises, between the core 34 and the claws 33, a coil 35 comprising, here, a winding hub and an electric winding on this hub.
  • the slip rings 21 belonging to the collector 22 are connected by wire connections to said coil 35.
  • each claw 33 of the rotor 12 extends axially from the plate 32 and extends in a space, called inter-claw space, formed between two adjacent claws of the other pole wheel. Thus two adjacent claws each belong to a different polar wheel.
  • Each claw 33 has an internal surface 43 arranged opposite the axis X and an external surface 44 radially opposite the internal surface 43.
  • the inter-claw space accommodates a magnetic element 37.
  • These magnetic elements are generally permanent magnets.
  • Such permanent magnets are for example formed of rare earth or ferrite or of any other material having similar magnetic properties.
  • the inter-claw space also houses a stiffening shim 38 disposed on the magnetic element 37.
  • This shim 38 is formed of a armature 39 and a secured part 40 of an insulating layer 41.
  • This blocking of stiffening of the magnetic element prevents the latter from being deformed during the rotation of the rotor 12 under the pressure of centrifugal force and thus prevents any breakage of said magnetic element.
  • the frame 39 makes it possible to create a support for the subject part 40 of the insulating layer 41 and the subject part 40 makes it possible both to solidify the shim 38 and to glue said shim to the magnetic element 37 to avoid a shift between the two elements during centrifugation.
  • the armature 39 is disposed against an external face 44 of the magnetic element 37.
  • the external face 44 is arranged radially opposite to an internal face 45 of the magnetic element 37 arranged opposite the X axis.
  • the internal and external faces are connected together by lateral faces 46 as well as an upper face and a lower face.
  • the stiffening shim 38 extends in a substantially ortho-radial direction plane and can have a shape corresponding to a shape of the external face 44 of the magnetic element 37.
  • the armature 39 extends so that its face in contact with the magnetic element 37 follows the shape of said element when the latter is not constrained, that is to say when the rotor is not rotating.
  • the frame 39 extends so as to cover at least 30% of the external face 44 of the associated magnetic element 37.
  • a length of the frame 39 may be less than a length of the magnetic element 37, the lengths being considered in a substantially axial direction extending between a front face and a rear face of the elements.
  • the magnetic element 37 can protrude axially at one of the axial ends of the armature 39 in order to identify the insertion orientation of the assembly formed by the magnetic element 37 and the armature 39 which depends the direction of polarization of the magnetic element.
  • the frame 39 is made of a non-magnetic material and preferably electrically insulating.
  • the frame 39 is formed of a fibrous structure comprising a fibrous material such as fiberglass or vegetable fiber or ceramic fiber of cardboard or paper.
  • the frame 39 is formed of a mesh structure such as a support comprising openings in particular formed of a plastic material.
  • the frame is a support comprising microscopic openings in which is housed the secured part 40 of the insulating layer 41; in the second case, the frame is a support comprising macroscopic openings in which is housed said subject portion 40.
  • the insulating layer 41 is formed of a fixed part 40 extending in and / or through the frame 39 and of a free part 47.
  • the insulating layer 41 is composed of a non-magnetic and electrically insulating material.
  • the insulating layer 41 is also an adhesive layer to make it possible to reinforce the mechanical retention of the parts covered with said layer.
  • the insulating layer 41 is formed from a resin or a polymer material.
  • the free part 47 of the insulating layer 41 extends at least over an external surface 43 of at least one claw adjacent to the magnetic element 37 and in particular adjacent to the frame 39.
  • the insulating layer 41 is formed in one piece.
  • the subject part 40 and the free part 47 are made of material between them. There is therefore no discontinuity between said parts 40, 47.
  • each claw 33 in contact with a magnetic element comprises a claw body 48 extending axially from the plate 32 and at least one lip 49 extending from said body 48 in an ortho-radial direction so as to be opposite the magnetic element 37 disposed in the corresponding inter-claw space.
  • the assembly formed by a magnetic element 37 and its stiffening shim 38 is held between two adjacent lips 49, belonging to two claws 33 respective and adjacent to each other, and extending in the same inter-claw space in opposite directions relative to each other. This retention of the magnetic element 37 with lips 49 is particularly advantageous when said element 37 is a permanent magnet.
  • the magnetic element 37 is arranged radially closer to the axis X than the stiffening shim
  • an inner radial end surface of the lip 49 is in contact with an outer radial end face of the stiffening shim 38 and an inner radial end face of said shim 38 is in contact with the face d external radial end 44 of the magnetic element 37.
  • a thin thickness of insulating layer 41 and in particular of free part 47 of said layer may extend between the internal radial end surface of the lip 49 and the external radial end face of the stiffening shim 38.
  • the insulating layer 41 extends continuously between the reinforcement
  • the insulating layer 41 and in particular the free part 47 of said layer covers all the external surfaces 42 of the claws 33 and extends in and / or through all the frames 39.
  • the free part 47 s' extends between the lateral surfaces 49 of the magnetic elements 37 and the claw bodies 48 as well as on the upper, lower and internal faces 45 of said magnetic elements.
  • the rotor 12 can comprise several assemblies formed by a magnetic element 37 associated with a stiffening shim 38.
  • each inter-claw space can comprise at least one assembly formed by a magnetic element 37 associated with a stiffening shim 38 Alternatively, some inter-claw spaces may not include such a set.
  • FIG. 6 illustrates a simplified method of producing the rotor 12 comprising the main steps of mounting the magnetic element 37 in the inter-claw space.
  • This production method 50 comprises a step 51 of forming the two pole wheels 31 followed by a first step of positioning 52 of the armatures 39 on the associated magnetic elements 37.
  • This first positioning step 52 can be accompanied by a step of applying an attachment means such as glue between the magnetic element and the armature to be assembled together.
  • the method 50 then comprises a second step of fitting 53 of the assemblies formed by the armature 39 and the magnetic element 37 on a claw 33 in contact with a lip 49, then a third step of fitting 54 of the second claw 33 to obtain an intermediate rotor as illustrated in FIG. 3.
  • the method 50 comprises a step 55 of disposing the insulating layer 41.
  • the secured part 40 and the free part 47 of the layer 41 are deposited during the same disposal step 55 to form a layer of continuous material.
  • This step is for example carried out by soaking the intermediate rotor in a bath or by emission via a jet or also by localized application via a syringe.
  • a step of polymerization of the material forming the insulating layer 41 can be done.
  • This disposal step 55 is for example carried out in one go.
  • the present invention finds applications in particular in the field of rotors for alternator or reversible machine, but it could also be applied to any type of rotary machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

La présente invention propose un rotor pour une machine électrique tournante présentant un axe de rotation et comportant deux roues polaires (31), chacune formée d'un plateau (32) s'étendant radialement et d'une pluralité de griffes (33) s'étendant axialement, chaque griffe d'une roue polaire s'étendant dans un espace formé entre deux griffes adjacentes de l'autre roue polaire et présentant une surface interne (42) disposée en regard de l'axe et une surface externe (43) opposée radialement à ladite surface interne; au moins un élément magnétique (37) disposé entre deux griffes successives appartenant chacune à une des roues polaires (31); et au moins une armature (39) disposée contre une face externe (44) de l'élément magnétique. Le rotor comporte une couche isolante (41) s'étendant, au moins, dans et/ou à travers l'armature de manière à former une cale de rigidification (38) et sur une surface externe d'au moins une griffe.

Description

ROTOR A GRIFFES COMPORTANT DES ELEMENTS MAGNETIQUES INTER-GRIFFE POUR MACHINE ELECTRIQUE
TOURNANTE
L’invention concerne notamment un rotor à griffes comportant des éléments magnétiques disposés entre deux griffes adjacentes pour une machine électrique tournante, notamment de véhicule automobile.
L’invention trouve une application particulièrement avantageuse dans le domaine des machines électriques tournantes telles que les alternateurs, les alterno-démarreurs ou encore les machines réversibles. On rappelle qu’une machine réversible est une machine électrique tournante apte à travailler de manière réversible, d’une part, comme générateur électrique en fonction alternateur et, d’autre part, comme moteur électrique par exemple pour démarrer le moteur thermique du véhicule automobile.
Une machine électrique tournante comprend un rotor mobile en rotation autour d’un axe et un stator fixe entourant le rotor. En mode alternateur, lorsque le rotor est en rotation, il induit un champ magnétique au stator qui le transforme en courant électrique afin d’alimenter les consommateurs électriques du véhicule et de recharger la batterie. En mode moteur, le stator est alimenté électriquement et induit un champ magnétique entraînant le rotor en rotation.
Un rotor à griffe comporte deux roues polaires comportant chacune un plateau et des griffes s’étendant axialement à partir du plateau. Chaque griffe d’une première roue polaire s’étend en partie dans un espace compris entre deux griffes adjacentes de l’autre roue polaire. Des éléments magnétiques tels que des aimants permanents peuvent être disposés entre deux griffes consécutives de deux roues polaires distinctes. De tels éléments permettent d’augmenter les performances de la machine en dé-saturant le rotor pour diminuer les pertes magnétiques entre les roues polaires et donc en améliorant la quantité de flux magnétique transmis au stator.
Chaque élément magnétique est maintenu en position au moyen de lèvres s’étendant à partir des griffes. Lorsque le rotor est en rotation, les vibrations créées par les différents cycles de fonctionnement du véhicule peuvent faire bouger l’élément magnétique. Les lèvres ne sont alors pas suffisantes pour garantir la position de l’élément magnétique.
De plus, la force centrifuge exercée sur les éléments magnétiques est très forte et les griffes des roues polaires peuvent s’ouvrir. Ceci a pour effet que l’élément magnétique n’est plus maintenu sur toute la longueur de la lèvre mais uniquement sur la partie de la lèvre la plus proche du plateau de la roue polaire. L’élément magnétique n’est alors plus maintenu en son centre et la flexion dudit élément peut entraîner une cassure de ce dernier.
Pour éviter ce phénomène, une cale est disposée sur une face externe de l’élément magnétique. Cette cale permet de rigidifier l’élément magnétique en évitant sa flexion. Une telle cale doit présenter des dimensions de longueur et de largeur sensiblement identiques à celles de l’aimant afin de correspondre au mieux à la face externe de l’aimant et assurer ainsi sa rigidification sans augmenter l’encombrement du rotor. Cela entraîne des contraintes de fabrication de la cale et donc de coût. De plus, le procédé d’assemblage du rotor est également impacté par la présence de cette cale qui nécessite une étape de positionnement d’une pièce supplémentaire.
La présente invention vise à permettre d’éviter les inconvénients de l’art antérieur. A cet effet, la présente invention a donc pour objet un rotor pour une machine électrique tournante présentant un axe de rotation et comportant : deux roues polaires, chacune formée d’un plateau s’étendant radialement et d’une pluralité de griffes s’étendant à partir dudit plateau de manière sensiblement axiale, chaque griffe d’une roue polaire s’étendant dans un espace formé entre deux griffes adjacentes de l’autre roue polaire et présentant une surface interne disposée en regard de l’axe et une surface externe opposée radialement à ladite surface interne ; au moins un élément magnétique disposé entre deux griffes successives appartenant chacune à une des roues polaires ; et au moins une armature disposée contre une face externe de l’élément magnétique. Selon l’invention, le rotor comporte également une couche isolante s’étendant, au moins, dans et/ou à travers l’armature de manière à former une cale de rigidification et sur une surface externe d’au moins une griffe adjacente à l’élément magnétique.
La couche isolante s’étend ainsi à l’intérieur de l’armature pour former la cale de rigidification. Autrement dit, la cale de rigidification est formée d’un squelette composé de l’armature et d’une partie de la couche isolante, dite partie assujettie, imprégnant l’armature. On entend par « couche isolante » une couche isolante électriquement.
La cale de rigidification permet d’assurer la répartition des efforts sur toutes la surface de l’élément magnétique et permet ainsi d’améliorer sa tenue en centrifugation.
Une telle cale formée d’un squelette imbibé d’une couche isolante permet à la fois de rigidifier la cale et de coller ladite cale à l’élément magnétique afin d’améliorer son maintien. En outre, cette réalisation de cale permet de simplifier la structure du rotor ainsi que son précédé de réalisation. La fabrication d’un tel rotor est ainsi moins coûteuse. En effet, le fait d’utiliser une simple armature au lieu de réaliser une cale à part entière permet de diminuer les contraintes de fabrication de la cale et ainsi son coût. En outre, cela permet d’éviter d’avoir dans le rotor des portions de couche isolante non utiles puisque, dans l’art antérieur, la cale est recouverte d’une couche isolante non fonctionnelle qui ne pénètre pas à l’intérieur de la cale. Au contraire dans la présente invention, la couche isolante pénètre dans l’armature pour former la cale.
Selon une réalisation, la face externe de l’élément magnétique est disposée de manière opposée radialement à une face interne dudit élément disposée en regard de l’axe.
Selon une réalisation, la couche isolante comprend une partie assujettie s’étendant dans et/ou à travers l’armature et une partie libre s’étendant sur la surface externe de la griffe, ladite couche isolante s’étendant de manière continue entre la partie assujettie et la partie libre. Autrement dit, la couche isolante s’étend de manière continue depuis l’intérieur de l’armature jusqu’à la surface externe de la griffe. La couche isolante est ainsi formée d’un seul tenant, une portion de cette couche s’étendant dans et/ou à travers l’armature. Selon une réalisation, l’armature et la couche isolante sont formées de matériaux amagnétiques.
Selon une réalisation, l’armature est formée d’une structure fibreuse ou d’une structure grillagée.
Par exemple, la structure fibreuse comprend un matériau fibreux tel que de la fibre de verre ou de la fibre végétale ou de la fibre céramique. Ce matériau fibreux peut également être du papier ou du carton.
Par exemple, la structure grillagée est formée d’un support comprenant des ouvertures tel qu’une grille. Cette structure peut être formée de matériau plastique.
Selon une réalisation, la couche isolante est également une couche adhésive.
Selon une réalisation, la couche isolante est formée d’une résine ou d’un matériau polymère.
Selon une réalisation, l’élément magnétique est un aimant permanent.
Selon une réalisation, chaque griffe en contact avec l’élément magnétique comporte un corps de griffe s’étendant axialement à partir du plateau et au moins une lèvre s’étendant à partir dudit corps dans une direction ortho-radiale de manière à maintenir l’élément magnétique.
Selon une réalisation, la couche isolante s’étend de manière continue entre l’intérieur de l’armature et une surface interne d’au moins une lèvre d’une griffe adjacente à l’élément magnétique. Cela permet de coller la cale de rigidification à la griffe ce qui améliore la tenue en centrifugation de l’ensemble formé par l’armature et l’élément magnétique.
Selon une réalisation, l’élément magnétique est disposé radialement plus proche de l’axe que la cale de rigidification qui est elle-même disposée radialement plus proche de l’axe que la lèvre. Cela permet d’améliorer la tenue en centrifugation de l’élément magnétique étant donné que les contraintes exercées sur ledit élément sont plus problématiques sur sa face d’extrémité radiale externe que sur sa face interne. La présente invention a également pour objet une machine électrique tournante comprenant un rotor tel que précédemment décrit. La machine électrique tournante peut, avantageusement, former un alternateur, un alterno-démarreur, une machine réversible ou un moteur électrique.
La présente invention concerne, en outre, un procédé de réalisation d’un rotor de machine électrique tournante. Un tel procédé comporte les étapes suivantes :
- une étape de réalisation de deux roues polaires chacune formée d’un plateau s’étendant radialement et d’une pluralité de griffes s’étendant à partir dudit plateau de manière sensiblement axiale et présentant une surface interne disposée en regard de l’axe et une surface externe opposée radialement à ladite surface interne ;
- une première étape de mise en place d’une armature sur un élément magnétique ;
- une deuxième étape de mise en place d’au moins un ensemble formé par l’armature et l’élément magnétique sur une griffe ;
- une troisième étape de mise en place de la deuxième griffe de manière à ce que chaque griffe d’une roue polaire s’étende dans un espace formé entre deux griffes adjacentes de l’autre roue polaire ; et
- une étape de disposition de la couche isolante de manière à ce qu’elle s’étende, au moins, dans et/ou à travers l’armature pour former une cale de rigidification et sur une surface externe d’au moins une griffe adjacente à l’élément magnétique.
Un tel procédé permet de simplifier la réalisation du rotor en s’affranchissant de la réalisation à part entière d’une cale de rigidification tout en assurant un bon maintien et une bonne tenue en centrifugation de l’élément magnétique.
Selon une réalisation, la première étape de mise en place est précédée d’une étape d’application d’un moyen d’attache entre l’élément magnétique et l’armature. Ce moyen d’attache est par exemple de la colle disposée sur l’élément magnétique et/ou sur l’armature. Selon une réalisation, l’étape de disposition de la couche isolante est suivie d’une étape de polymérisation de la matière formant la couche isolante.
Selon une réalisation, l’étape de disposition de la couche isolante est réalisée par trempage du rotor dans un bain ou par émission via un jet ou encore par application localisée via une seringue.
La présente invention pourra être mieux comprise à la lecture de la description détaillée qui va suivre, d’exemples de mise en oeuvre non limitatifs de l’invention et de l’examen des dessins annexés, sur lesquels :
- la figure 1 représente, schématiquement et partiellement, une vue en coupe d’une machine électrique tournante selon un exemple de mise en oeuvre de l’invention,
- la figure 2 représente, schématiquement et partiellement, une vue en perspective du rotor de la figure 1 ,
- la figure 3 représente, schématiquement et partiellement, une vue en perspective du rotor de la figure 2 avant l’application de la couche isolante,
- la figure 4 représente, schématiquement et partiellement, une vue en perspective d’un exemple d’armature,
- la figure 5 représente, schématiquement et partiellement, une vue en coupe d’une portion du rotor de la figure 2, et
- la figure 6 représente un logigramme d’un exemple d’un procédé de réalisation du rotor de la figure 2.
Les éléments identiques, similaires ou analogues conservent les mêmes références d’une figure à l’autre. On notera également que les différentes figures ne sont pas nécessairement à la même échelle.
La figure 1 représente un exemple de machine électrique tournante 10 compacte et polyphasée, notamment pour véhicule automobile. Cette machine 10 transforme de l’énergie mécanique en énergie électrique, en mode alternateur, et peut fonctionner en mode moteur pour transformer de l’énergie électrique en énergie mécanique. Cette machine électrique tournante 10 est, par exemple, un alternateur, un alterno-démarreur, une machine réversible ou un moteur électrique. Dans cet exemple, la machine 10 comporte un carter 11. A l'intérieur de ce carter 1 1 , elle comporte, en outre, un arbre 13, un rotor 12 solidaire en rotation de l’arbre 13 et un stator 15 entourant le rotor 12. Le mouvement de rotation du rotor 12 se fait autour d’un axe X. Dans la suite de la description, les dénominations axiales, radiales, extérieures et intérieures se réfèrent à l’axe X traversant en son centre l’arbre 13. La direction axiale correspond à l'axe X alors que les orientations radiales correspondent à des plans concourants, et notamment perpendiculaires, à l'axe X. Pour les directions radiales, les dénominations extérieure ou intérieure s'apprécient par rapport au même axe X, la dénomination intérieure correspondant à un élément orienté vers l’axe, ou plus proche de l’axe par rapport à un second élément, la dénomination extérieure désignant un éloignement de l’axe.
Dans cet exemple, le carter 1 1 comporte un flasque avant 16 et un flasque arrière 17 qui sont assemblés ensemble. Ces flasques 16, 17 sont de forme creuse et portent, chacun, centralement un palier accouplé à un roulement à billes 18, 19 respectif pour le montage à rotation de l'arbre 13. En outre, le carter 1 1 comporte des moyens de fixation 14 permettant le montage de la machine électrique tournante 10 dans le véhicule.
Dans cet exemple de réalisation, le stator 15 comporte un corps 27 en forme d'un paquet de tôles doté d'encoches pour le montage d’un bobinage électrique 28. Ce bobinage 28 traverse les encoches du corps 27 et forment un chignon avant 29 et un chignon arrière 30 de part et d'autre du corps du stator. Le bobinage 28 est formé de plusieurs phases reliées électriquement à un ensemble électronique 36 formant un pont redresseur de tension.
Une poulie 20 est fixée sur une extrémité avant de l’arbre 13, au niveau du flasque avant 16. Cette poulie 20 permet de transmettre le mouvement de rotation à l’arbre 13 ou à l’arbre 13 de transmettre son mouvement de rotation à la courroie. Dans la suite de la description, les dénominations avant/arrière se réfèrent à la poulie 20. Ainsi une face avant est une face orientée en direction de la poulie alors qu’une face arrière est une face orientée en direction opposée de la poulie. L’extrémité arrière de l’arbre 13 porte, ici, des bagues collectrices 21 appartenant à un collecteur 22. Des balais 23 appartenant à un porte-balais 24 sont disposés de façon à frotter sur les bagues collectrices 21. Le porte-balais 24 est relié à un régulateur de tension (non représenté).
Le flasque avant 16 et le flasque arrière 17 peuvent comporter, en outre, des ouvertures latérales pour le passage de l’air en vue de permettre le refroidissement de la machine par circulation d'air engendrée par la rotation de ventilateurs 25, 26 sur le corps du rotor.
Dans cet exemple, le rotor 12 est un rotor à griffe. Il comporte deux roues polaires 31. Chaque roue polaire 31 est formée d’un plateau 32 et d’une pluralité de griffes 33 formants des pôles magnétiques. Le plateau 32 est d’orientation transversale et présente, par exemple, une forme sensiblement annulaire. Ce rotor 12 comporte, en outre, un noyau 34 cylindrique qui est intercalé axialement entre les roues polaires 31. Ici, ce noyau 34 est formé de deux demi noyaux appartenant chacun à l’une des roues polaires. Le rotor 12 comporte, entre le noyau 34 et les griffes 33, une bobine 35 comportant, ici, un moyeu de bobinage et un bobinage électrique sur ce moyeu. Par exemple, les bagues collectrices 21 appartenant au collecteur 22 sont reliées par des liaisons filaires à ladite bobine 35.
Comme illustré sur la figure 2, chaque griffe 33 du rotor 12 s’étend axialement à partir du plateau 32 et s’étend dans un espace, appelé espace inter-griffe, formé entre deux griffes adjacentes de l’autre roue polaire. Ainsi deux griffes adjacentes appartiennent chacune à une roue polaire différente. Chaque griffe 33 présente une surface interne 43 disposée en regard de l’axe X et une surface externe 44 opposée radialement à la surface interne 43.
L’espace inter-griffes loge un élément magnétique 37. Ces éléments magnétiques sont généralement des aimants permanents. De tels aimants permanents sont par exemple formés de terre rare ou de ferrite ou encore de tout autre matériau possédant des propriétés magnétiques similaires.
L’espace inter-griffes loge également une cale de rigidification 38 disposée sur l’élément magnétique 37. Cette cale 38 est formée d’une armature 39 et d’une partie assujettie 40 d’une couche isolante 41. Cette cale de rigidification de l’élément magnétique empêche ce dernier de se déformer lors de la rotation du rotor 12 sous la pression de la force centrifuge et évite ainsi toute cassure dudit élément magnétique. Ainsi, l’armature 39 permet de créer un support à la partie assujettie 40 de la couche isolante 41 et la partie assujettie 40 permet à la fois de solidifier la cale 38 et de coller ladite cale à l’élément magnétique 37 pour éviter un décalage entre les deux éléments lors de la centrifugation.
Comme décrit dans la figure 3, l’armature 39 est disposée contre une face externe 44 de l’élément magnétique 37. La face externe 44 est disposée de manière opposée radialement à une face interne 45 de l’élément magnétique 37 agencée en regard de l’axe X. Les faces internes et externes sont reliées entre elles par des faces latérales 46 ainsi qu’une face supérieure et une face inférieure.
La cale de rigidification 38 s’étend dans un plan de direction sensiblement ortho-radiale et peut présenter une forme correspondant à une forme de la face externe 44 de l’élément magnétique 37. En particulier, l’armature 39 s’étend de manière à ce que sa face en contact avec l’élément magnétique 37 épouse la forme dudit élément lorsque ce dernier n’est pas contraint, c’est-à-dire quand le rotor n’est pas en rotation.
Par exemple, l’armature 39 s’étend de manière à recouvrir au moins 30% de la face externe 44 de l’élément magnétique 37 associé. En particulier, une longueur de l’armature 39 peut être inférieure à une longueur de l’élément magnétique 37, les longueurs étant considérées dans une direction sensiblement axiale s’étendant entre une face avant et une face arrière des éléments. Par exemple, l’élément magnétique 37 peut dépasser axialement à une des extrémités axiales de l’armature 39 pour permettre d’identifier l’orientation d’insertion de l’ensemble formé par l’élément magnétique 37 et l’armature 39 qui dépend du sens de polarisation de l’élément magnétique.
Dans l’exemple illustré sur la figure 4, l’armature 39 est composée d’un matériau amagnétique et de préférence isolant électriquement. Par exemple, l’armature 39 est formée d’une structure fibreuse comprenant un matériau fibreux tel que de la fibre de verre ou de la fibre végétale ou de la fibre céramique du carton ou du papier. Alternativement, l’armature 39 est formée d’une structure grillagée telle qu’un support comprenant des ouvertures notamment formé d’un matériau plastique.
Ainsi dans le premier cas, l’armature est un support comprenant des ouvertures microscopiques dans lesquelles vient se loger la partie assujettie 40 de la couche isolante 41 ; dans le second cas, l’armature est un support comprenant des ouvertures macroscopiques dans lesquelles vient se loger ladite partie assujettie 40.
Comme illustrée sur la figure 5, la couche isolante 41 est formée d’une partie assujettie 40 s’étendant dans et/ou à travers l’armature 39 et d’une partie libre 47.
Par exemple, la couche isolante 41 est composée d’un matériau amagnétique et isolant électriquement. De préférence, la couche isolante 41 est également une couche adhésive pour permettre de renforcer le maintien mécanique des pièces recouvertes de ladite couche.
Toujours par exemple, la couche isolante 41 est formée d’une résine ou d’un matériau polymère.
La partie libre 47 de la couche isolante 41 s’étend au moins sur une surface externe 43 d’au moins une griffe adjacente à l’élément magnétique 37 et en particulier adjacente à l’armature 39.
La couche isolante 41 est formée d’un seul tenant. Autrement dit, la partie assujettie 40 et la partie libre 47 sont issue de matière entre elles. Il n’y a donc pas de discontinuité entre lesdites parties 40, 47.
Pour faciliter le maintien de l’élément magnétique 37, chaque griffe 33 en contact avec un élément magnétique comporte un corps de griffe 48 s’étendant axialement à partir du plateau 32 et au moins une lèvre 49 s’étendant à partir dudit corps 48 dans une direction ortho-radiale de manière à être en regard de l’élément magnétique 37 disposé dans l’espace inter-griffe correspondant. De préférence, l’ensemble formé par un élément magnétique 37 et sa cale de rigidification 38 est maintenu entre deux lèvres 49 adjacentes, appartenant à deux griffes 33 respectives et adjacentes l’une de l’autre, et s’étendant dans le même espace inter-griffe dans des directions opposées l’une par rapport à l’autre. Ce maintien de l’élément magnétique 37 avec des lèvres 49 est particulièrement avantageuse lorsque ledit élément 37 est un aimant permanent.
Comme visible sur l’exemple de la figure 6, l’élément magnétique 37 est disposé radialement plus proche de l’axe X que la cale de rigidification
38 associée qui est elle-même disposée radialement plus proche de l’axe X que les lèvres 49 associées. Par exemple, une surface d’extrémité radiale interne de la lèvre 49 est en contact avec une face d’extrémité radiale externe de la cale de rigidification 38 et une face d’extrémité radiale interne de ladite cale 38 est en contact avec la face d’extrémité radiale externe 44 de l’élément magnétique 37. Selon les configurations, une fine épaisseur de couche isolante 41 et notamment de partie libre 47 de ladite couche peut s’étendre entre la surface d’extrémité radiale interne de la lèvre 49 et la face d’extrémité radiale externe de la cale de rigidification 38.
La couche isolante 41 s’étend de manière continue entre l’armature
39 et les surfaces internes des lèvres 49 associées pour coller la cale de rigidification 38 à la griffe 33 ce qui améliore la tenue en centrifugation de l’élément magnétique 37.
De plus, la couche isolante 41 et en particulier la partie libre 47 de ladite couche recouvre toutes les surfaces externes 42 des griffes 33 et s’étend dans et/ou à travers toutes les armatures 39. En outre, la partie libre 47 s’étend entre les surfaces latérales 49 des éléments magnétiques 37 et les corps de griffes 48 ainsi que sur les faces supérieures, inférieures et internes 45 desdits éléments magnétiques.
Le rotor 12 peut comprendre plusieurs ensembles formés d’un élément magnétique 37 associé à une cale de rigidification 38. Par exemple, chaque espace inter-griffe peut comprendre au moins un ensemble formé d’un élément magnétique 37 associé à une cale de rigidification 38. Alternativement, certain espaces inter-griffe peuvent ne pas comprendre de tel ensemble. La figure 6 illustre un procédé de réalisation simplifié du rotor 12 comprenant les étapes principales de montage de l’élément magnétique 37 dans l’espace inter-griffe. Ce procédé de réalisation 50 comprend une étape de formation 51 des deux roues polaires 31 suivie d’une première étape de mise en place 52 des armatures 39 sur les éléments magnétiques 37 associés. Cette première étape de mise en place 52 peut s’accompagner d’une étape d’application d’un moyen d’attache tel que de la colle entre l’élément magnétique et l’armature à assembler ensemble.
Le procédé 50 comprend ensuite une deuxième étape de mise en place 53 des ensembles formés par l’armature 39 et l’élément magnétique 37 sur une griffe 33 en contact d’une lèvre 49 puis une troisième étape de mise en place 54 de la deuxième griffe 33 pour obtenir un rotor intermédiaire tel qu’illustré sur la figure 3.
Enfin, le procédé 50 comprend une étape de disposition 55 de la couche isolante 41. La partie assujettie 40 et la partie libre 47 de la couche 41 sont déposées lors d’une même étape de disposition 55 pour former une couche de matière continue. Cette étape est par exemple réalisée par trempage du rotor intermédiaire dans un bain ou par émission via un jet ou encore par application localisée via une seringue. Pour finir, une étape de polymérisation de la matière formant la couche isolante 41 peut être faite. Cette étape de disposition 55 est par exemple réalisée en une seule fois.
La présente invention trouve des applications en particulier dans le domaine des rotors pour alternateur ou machine réversible mais elle pourrait également s’appliquer à tout type de machine tournante.
Bien entendu, la description qui précède a été donnée à titre d'exemple uniquement et ne limite pas le domaine de la présente invention dont on ne sortirait pas en remplaçant les différents éléments par tous autres équivalents.

Claims

REVENDICATIONS
1. Rotor pour une machine électrique tournante présentant un axe (X) de rotation et comportant :
- deux roues polaires (31 ), chacune formée d’un plateau (32) s’étendant radialement et d’une pluralité de griffes (33) s’étendant à partir dudit plateau de manière sensiblement axiale, chaque griffe (33) d’une roue polaire s’étendant dans un espace formé entre deux griffes adjacentes de l’autre roue polaire et présentant une surface interne (42) disposée en regard de l’axe (X) et une surface externe (43) opposée radialement à ladite surface interne ;
- au moins un élément magnétique (37) disposé entre deux griffes (33) successives appartenant chacune à une des roues polaires (31 ) ; et
- au moins une armature (39) disposée contre une face externe (44) de l’élément magnétique (37),
le rotor (12) étant caractérisé en ce qu’il comporte une couche isolante (41 ) s’étendant, au moins, dans et/ou à travers l’armature (39) de manière à former une cale de rigidification (38) et sur une surface externe (43) d’au moins une griffe (33) adjacente à l’élément magnétique (37).
2. Rotor selon la revendication précédente, caractérisé en ce que la couche isolante (41 ) comprend une partie assujettie (40) s’étendant dans et/ou à travers l’armature (39) et une partie libre (47) s’étendant sur la surface externe (43) de la griffe (33), ladite couche isolante s’étendant de manière continue entre la partie assujettie (40) et la partie libre (47).
3. Rotor selon l’une quelconque des revendications précédentes, caractérisé en ce que l’armature (39) est formée d’une structure fibreuse ou d’une structure grillagée.
4. Rotor selon l’une quelconque des revendications précédentes, caractérisé en ce que la couche isolante (41 ) est formée d’une résine ou d’un matériau polymère.
5. Rotor selon l’une quelconque des revendications précédentes, caractérisé en ce que chaque griffe (33) en contact avec l’élément magnétique (37) comporte un corps de griffe (48) s’étendant axialement à partir du plateau (32) et au moins une lèvre (49) s’étendant à partir dudit corps (48) dans une direction ortho-radiale de manière à maintenir l’élément magnétique (37).
6. Rotor selon la revendication précédente, caractérisé en ce que la couche isolante (41 ) s’étend de manière continue entre l’intérieur de l’armature (39) et une surface interne d’au moins une lèvre (49) d’une griffe (33) adjacente à l’élément magnétique (37).
7. Rotor selon la revendication 5 ou 6, caractérisé en ce que l’élément magnétique (37) est disposé radialement plus proche de l’axe (X) que la cale de rigidification (38) qui est elle-même disposée radialement plus proche de l’axe (X) que la lèvre (49).
8. Machine électrique tournante comprenant un rotor (12) selon l’une quelconque des revendications précédentes.
9. Procédé de réalisation d’un rotor (12) de machine électrique tournante (10) selon l’une quelconque des revendications 1 à 7 comportant les étapes suivantes :
- une étape de réalisation (51 ) de deux roues polaires (31 ) chacune formée d’un plateau (32) s’étendant radialement et d’une pluralité de griffes (33) s’étendant à partir dudit plateau de manière sensiblement axiale et présentant une surface interne (42) disposée en regard de l’axe (X) et une surface externe (43) opposée radialement à ladite surface interne ;
- une première étape de mise en place (52) d’une armature (39) sur un élément magnétique (37) ;
- une deuxième étape de mise en place (53) d’au moins un ensemble formé par l’armature (39) et l’élément magnétique (37) sur une griffe (33) ; - une troisième étape de mise en place (54) de la deuxième griffe (33) de manière à ce que chaque griffe d’une roue polaire s’étende dans un espace formé entre deux griffes adjacentes de l’autre roue polaire ; et
- une étape de disposition (55) de la couche isolante (41 ) de manière à ce qu’elle s’étende, au moins, dans et/ou à travers l’armature (39) pour former une cale de rigidification (38) et sur une surface externe (43) d’au moins une griffe (33) adjacente à l’élément magnétique (37).
10. Procédé de réalisation d’un rotor selon la revendication précédente, caractérisé en ce que l’étape de disposition (55) de la couche isolante est suivie d’une étape de polymérisation de la matière formant la couche isolante (41 ).
EP19745130.5A 2018-07-27 2019-07-25 Rotor a griffes comportant des elements magnetiques inter-griffe pour machine electrique tournante Pending EP3830936A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1857023A FR3084537B1 (fr) 2018-07-27 2018-07-27 Rotor a griffes comportant des elements magnetiques inter-griffe pour machine electrique tournante
PCT/EP2019/070002 WO2020020993A1 (fr) 2018-07-27 2019-07-25 Rotor a griffes comportant des elements magnetiques inter-griffe pour machine electrique tournante

Publications (1)

Publication Number Publication Date
EP3830936A1 true EP3830936A1 (fr) 2021-06-09

Family

ID=63834224

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19745130.5A Pending EP3830936A1 (fr) 2018-07-27 2019-07-25 Rotor a griffes comportant des elements magnetiques inter-griffe pour machine electrique tournante

Country Status (3)

Country Link
EP (1) EP3830936A1 (fr)
FR (1) FR3084537B1 (fr)
WO (1) WO2020020993A1 (fr)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08317618A (ja) * 1995-05-17 1996-11-29 Hitachi Ltd 車両用交流発電機
JP3675074B2 (ja) * 1996-12-04 2005-07-27 株式会社デンソー ランデルコア型回転電機
FR2784248B1 (fr) * 1998-10-02 2000-12-22 Valeo Equip Electr Moteur Alternateur pour vehicule avec rattrapage de jeu sur les aimants interpolaires
JP2001103721A (ja) * 1999-09-30 2001-04-13 Hitachi Ltd 車両用交流発電機
JP3974315B2 (ja) * 2000-07-25 2007-09-12 三菱電機株式会社 交流発電機
JP3917967B2 (ja) * 2003-10-27 2007-05-23 三菱電機株式会社 回転電機の回転子
FR2916104B1 (fr) * 2007-05-11 2009-07-31 Valeo Equip Electr Moteur Procede de fabrication d'un rotor de machine electrique tournante, notamment un alternateur
DE102007032141A1 (de) * 2007-06-30 2009-01-02 Robert Bosch Gmbh Elektrische Maschine
FR2952767B1 (fr) * 2009-11-13 2012-06-01 Valeo Equip Electr Moteur Rotor a griffes equipe d'un isolant d'un bobinage d'excitation et d'aimants et machine electrique tournante equipee d'un tel rotor

Also Published As

Publication number Publication date
WO2020020993A1 (fr) 2020-01-30
FR3084537A1 (fr) 2020-01-31
FR3084537B1 (fr) 2020-07-17

Similar Documents

Publication Publication Date Title
EP3602741A1 (fr) Rotor pour moteur ou générateur électromagnétique à flux radial comportant un maillage logeant des aimants unitaires
WO2017121941A1 (fr) Stator pour une machine a flux axial avec une couronne de stator formee des modules
EP1714376A1 (fr) Coupleur electromagnetique
FR2884068A1 (fr) Rotor de machine electrique tournante comportant un manchon intermediaire interpose entre l'arbre et les roues polaires et procede de realisation du rotor.
EP3104501B1 (fr) Rotor pour machine electrique tournante
FR3054746A1 (fr) Machine electrique tournante munie d'un interconnecteur dote de bequilles d'appui
FR2910736A1 (fr) Stator d'une machine electrique tournante polyphasee, machine electrique tournante polyphasee comportant un tel stator et procede de realisation d'un tel stator
FR2984626A1 (fr) Rotor a poles saillants comportant un dispositif d'isolation de bobinages et dispositif d'isolation de bobinages associe
WO2020020993A1 (fr) Rotor a griffes comportant des elements magnetiques inter-griffe pour machine electrique tournante
EP3549237B1 (fr) Rotor pour machine électrique tournante
FR3067881A1 (fr) Rotor pour une machine electrique tournante
EP3782270B1 (fr) Machine électrique synchrone
WO2020002828A1 (fr) Roue polaire de rotor pour machine electrique tournante
FR2820896A1 (fr) Alternateur pour vehicule automobile
WO2013093292A1 (fr) Rotor a poles saillants comportant une piece de guidage de fils de bobinage, piece de guidage de fils de bobinage et procede de bobinage associes
FR2779584A1 (fr) Machine electrique tournante a grande vitesse comportant un rotor a aimants permanents
FR2841701A1 (fr) Alternateur pour vehicule automobile
FR3104335A1 (fr) Roue polaire pour rotor de machine électrique tournante
WO2021013743A1 (fr) Stator bobiné pour une machine électrique tournante
WO2021099533A1 (fr) Machine électrique tournante avec blocage axial du stator
WO2020049178A1 (fr) Machine electrique tournante munie d'un interconnecteur a pattes inclinees
FR3105645A1 (fr) Rotor de machine électrique tournante
FR3097702A1 (fr) Roue polaire formée de deux matériaux pour une machine électrique tournante
FR3088503A1 (fr) Ventilateur de rotor pour machine electrique tournante
EP4264781A1 (fr) Élément à pôles magnétiques, comprenant un ensemble de plusieurs aimants unitaires, pour rotor de machine électrique à flux axial

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201028

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN