EP3308452A1 - Machine electrique a commutation de flux a simple excitation - Google Patents

Machine electrique a commutation de flux a simple excitation

Info

Publication number
EP3308452A1
EP3308452A1 EP16729235.8A EP16729235A EP3308452A1 EP 3308452 A1 EP3308452 A1 EP 3308452A1 EP 16729235 A EP16729235 A EP 16729235A EP 3308452 A1 EP3308452 A1 EP 3308452A1
Authority
EP
European Patent Office
Prior art keywords
teeth
stator
machine
lateral
armature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16729235.8A
Other languages
German (de)
English (en)
Inventor
Benjamin GAUSSENS
Michel Roger René LECRIVAIN
Mohamed Gabsi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
CNAM Conservatoire National des Arts et Metiers
Ecole Normale Superieure de Cachan
Original Assignee
Centre National de la Recherche Scientifique CNRS
CNAM Conservatoire National des Arts et Metiers
Ecole Normale Superieure de Cachan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, CNAM Conservatoire National des Arts et Metiers, Ecole Normale Superieure de Cachan filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3308452A1 publication Critical patent/EP3308452A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • H02K19/103Motors having windings on the stator and a variable reluctance soft-iron rotor without windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/04Windings on magnets for additional excitation ; Windings and magnets for additional excitation
    • H02K21/046Windings on magnets for additional excitation ; Windings and magnets for additional excitation with rotating permanent magnets and stationary field winding
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/38Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary
    • H02K21/40Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary with flux distributors rotating around the magnets and within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/38Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary
    • H02K21/44Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary with armature windings wound upon the magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • H02K41/033Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type with armature and magnets on one member, the other member being a flux distributor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/15Sectional machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/12Machines characterised by the modularity of some components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems

Definitions

  • the invention relates generally to electrical machines. It relates in particular to a flow-switched electrical machine.
  • the invention particularly relates to a so-called single excitation machine, that is to say comprising only one magnetic excitation source, namely excitation windings, the machine being devoid of magnets.
  • Electrical machines are used in a variety of applications, in particular as alternators, for example for motor vehicles or for aircraft.
  • the rotating switching machines comprise a rotor and a stator, the stator carrying all the electrically or magnetically active means of the machine, that is to say all the magnets and / or excitation coils. or armature coils.
  • Similar linear machines exist, in which the rotor is replaced by a member movable in translation relative to the stator.
  • the rotor - or moving element - is itself devoid of magnet or winding, and is made of a ferromagnetic material for the circulation of a magnetic field.
  • flux-commutated machines are freed from the need to use rubbing contacts (brushes), they have a greater mechanical strength and are more reliable in use.
  • the rotor of a flow-switching machine is simpler and therefore less expensive to produce.
  • a flux switching machine is known from EP 2,002,529.
  • This machine comprises a rotor, devoid of active electrical or magnetic means, and a stator.
  • the stator is subdivided into a set of elementary cells such that each cell comprises a permanent magnet as well as notches housing an armature winding and at least a portion of an excitation winding.
  • This machine has already rendered great services in that it allows in particular to control the value of the induced voltage.
  • this machine has the particularity of being a double excitation machine, that is to say that it comprises both excitation coils and permanent magnets.
  • One of the aims of the invention is to propose an electric machine whose size and production cost are reduced compared to the prior art.
  • an object of the invention is to provide an electric machine that can operate without a permanent magnet, and without crossing windings.
  • the subject of the invention is a flow switching device comprising:
  • a movable member comprising a plurality of flux switching teeth
  • stator comprising a plurality of teeth, excitation coils and armature coils
  • each half-notch housing at least partly an armature coil, so that two successive elementary cells share a common lateral notch.
  • the machine according to the invention may further comprise at least one of the following features: in which the central tooth of an elementary cell of the stator may comprise a vertex having an angular aperture 9 C of between 0.6 * 9 and 0.75 * 9, where 9 is the angular aperture of the mean difference between two consecutive teeth of the stator, defined by
  • N is the number of stator teeth.
  • each lateral tooth of an elementary cell of the stator may comprise a vertex having an angular opening 9
  • N is the number of stator teeth.
  • the lateral teeth of an elementary cell of the stator can be separated from the central tooth by a difference of between 9 and 1.15 * 9, where 9 is the opening angle of the mean difference between two consecutive teeth of the stator, defined by
  • N is the number of stator teeth.
  • the teeth of an elementary cell of the stator may have a width at their base greater than the width at their apex.
  • the armature windings can be distributed in a number Q of armature phases greater than or equal to 1, and the stator comprises a number N of teeth such that
  • n is the number, greater than or equal to 1, of windings per armature phase.
  • the machine being of rotating machine type and the moving element being a rotor
  • N is even and the number of teeth of the rotor is even.
  • each armature winding can be received in the two lateral notches of an elementary cell and wound around the three teeth of the cell.
  • the armature windings can be arranged in such a way that there is no crossing between them.
  • each elementary cell may comprise an armature winding wound around its three teeth and the armature windings may be divided into three phases A, B, and C arranged so that:
  • the coils of the same phase are wound around the teeth of adjacent cells, or
  • the lateral notches of at least one elementary cell can accommodate different armature winding parts.
  • each elementary cell of the stator may further comprise at least one permanent magnet.
  • each elementary cell may comprise a permanent magnet housed in the central tooth or two permanent magnets received respectively in the central notches.
  • the machine comprises an axial stack of stators and moving elements, and only a fraction of the stator length comprises permanent magnets.
  • the proposed electrical machine comprises a succession of elementary cells comprising three teeth delimiting two central notches in which an excitation coil is housed, and lateral notches that can accommodate at least a portion of at least one armature coil.
  • This machine is a flux switching machine in which the rotor or the movable element is devoid of electrically or magnetically active elements such as permanent magnets or coils.
  • the stator may also be devoid of permanent magnets, so that the machine can operate with only exciting excitation coils. The production cost of this machine is reduced compared to a machine comprising permanent magnets.
  • the configuration of the cells notably allows a configuration in which the lateral notches of a cell house an armature winding surrounding the excitation winding.
  • This type of configuration has a reduced size and cost due to the absence of crossover between the excitation winding and the winding or coils of armatures.
  • the machine is also simpler to produce and more efficient because the required winding lengths are reduced compared to cross windings.
  • this machine is of the rotary machine type, it advantageously allows configurations in which the number of rotor teeth and the number of armature coils per phase is even, which allows a balancing of the magnetic forces involved. on the circumference of the machine and avoids a magnetic unbalance that would degrade the performance and / or the life of the machine.
  • FIG. 1 schematically represents a machine according to one embodiment of the invention
  • FIGS. 2a and 2b illustrate an elementary cell of a machine according to one embodiment of the invention and the passage of the flow in this cell according to two relative positions of the rotor teeth with respect to the cell
  • FIGS. 3a and 3b represent the distribution of the field lines in a machine according to two relative positions of the rotor and the stator
  • FIGS. 4a to 4e show possible configurations of the armature windings in a machine according to one embodiment of the invention
  • FIG. 5a represents notation conventions concerning the geometry of the stator teeth
  • FIGS. 5b to 5d show embodiments of teeth of the stator
  • FIG. 6 represents the performances obtained by different machines, including those of FIGS. 4a to 4e.
  • FIG. 7a to 7e show alternative embodiments of a machine comprising permanent magnets.
  • Figures 8a and 8b respectively show rotor and stator laminations of a prototype machine. DETAILED DESCRIPTION OF AT LEAST ONE EMBODIMENT OF THE INVENTION
  • FIG. 1 there is shown schematically an electrical machine 1 flux switching according to one embodiment of the invention.
  • the machine shown in Figure 1 is a rotating machine having a stator 10 and a rotor 20.
  • the stator and the rotor extend coaxially around each other.
  • the stator 10 is fixed and the rotor 20 is rotatable about the common axis of the stator and the rotor.
  • the stator 10 extends around the rotor 20.
  • the opposite can also be implemented, in which the rotor extends around the stator.
  • the machine 1 could also be a linear machine in which the stator 10 extends rectilinearly and the rotor 20 is replaced by a movable element in translation relative to the stator. This case is shown in Figures 2a and 2b.
  • the movable element 20 is devoid of any active electrical or magnetic means, and in particular it is devoid of any winding and any magnet.
  • the rotor is made of a ferromagnetic material adapted to allow the circulation of a magnetic field.
  • the movable element 20 may be made of iron-silicon or iron-cobalt alloy or steel.
  • the movable member 20 comprises a base, for example in the form of a ring 21 in the case where it is the rotor of a rotating machine and a set of teeth 22 extending from the base 21 to the stator.
  • the teeth 22 extend substantially radially from the ring 21. If, as in FIG. 1, the rotor is inside the stator, the teeth 22 extend radially outwards through report to the crown.
  • the stator 10 is also made of a ferromagnetic material, for example iron or steel. It comprises a base, for example in the form of a ring 11 in the case of a rotating machine and a plurality of teeth 12 extending from the base 1 1 to the mobile element 20, the teeth 12 being separated by notches 14 .
  • the stator 10 is organized in a succession of elementary cells 13, each cell cooperating with one or more teeth of the movable element 20 to form therewith a magnetic field loop of variable direction depending on the displacement of the movable element .
  • this result is achieved when the difference between two successive teeth of the movable element corresponds to the difference between two stator teeth spaced apart by a third tooth.
  • each elementary cell 13 has three teeth 12 successive, including a central tooth 120 and two lateral teeth 121 located on either side of the central tooth 120.
  • Each elementary cell 13 also comprises two central notches 140, which are the spaces formed between the central tooth 120 and each of the two lateral teeth 121; and two lateral half-notches 141 extending on either side of the lateral teeth 121.
  • the stator 10 also comprises a magnetic excitation source, in the form of excitation coils 15.
  • the stator 10 comprises a plurality of excitation coils 15, in number equal to the number of elementary cells, each elementary cell 13 comprising an excitation coil 15 wound in the central notches 140 so as to surround the central tooth 120, as visible in Figures 2a and 2b.
  • the excitation windings 15 of the stator are the only source of magnetic excitation of the machine 1.
  • the stator does not include in this case any permanent magnet.
  • the rotor - or moving element - does not include a magnetic excitation source: neither excitation winding nor permanent magnet.
  • the machine 1 is a so-called flux switching machine said simple excitation.
  • the machine 1 is double excitation and include permanent magnets, to ensure the machine an electromotive force even without excitation current.
  • the stator 10 may comprise permanent magnets 17.
  • each magnet 17 is housed in a central tooth 120 of an elementary cell 13, either in a cavity provided for this purpose, as in FIG. 7a, or at the top of the central tooth 120 as in Figure 7b.
  • the central tooth 120 is truncated so that the cumulative height of the central tooth 120 and the magnet 17 relative to the base is strictly less than the distance between the base and a opposite tooth of the movable element.
  • the machine is linear, and in Figure 7b, it is rotatable.
  • this is non-limiting and the linear or rotary type of the machine can be combined with any permanent magnet implementation.
  • each elementary cell 13 can receive two permanent magnets 17 housed in the central notches 140 of the cell.
  • each central notch 140 receives a portion of an excitation coil 15 and a magnet 17.
  • the portion of the excitation coil 15 received in a notch 140 is arranged against the bottom of the notch , so as to be interposed between the base 10 of the stator and the magnet 17.
  • the permanent magnet 17 could be positioned between the bottom of the notch 140 and the excitation coil 15.
  • electrical machines whether they are rotating or linear, can be formed by stacks of stators 10 and moving elements 20.
  • the stack is made in the axis of rotation of the rotor 20.
  • the stack is made along an axis orthogonal to an axis of displacement of the mobile element.
  • the machine 1 is made according to this type of stack and includes magnets 17, it is advantageous that the magnets 17 are only on the stators 10 at the ends of the stack.
  • the stators provided with magnets are advantageously those comprised between 0 and 20% of L on the one hand and between 80 and 100% of L on the other hand. part, preferably between 0 and 10% of L on the one hand, and between 90 and 100% of L on the other hand.
  • the permanent magnets 17 since the permanent magnets 17 generate a magnetic field which disturbs the field generated by the excitation windings 15, the fact of confining these magnets at the ends of the machine makes it possible to limit the disturbances while limiting the number of magnets and so the cost of the machine.
  • the stator 10 comprises a plurality of armature coils 16. As described in more detail below, the armature windings 16 may be divided into one or more phases, depending on whether the machine 1 is single phase or polyphase.
  • the armature windings are distributed in a number of phases Q greater than or equal to 1, and the stator 10 comprises a number N of teeth 12 such that
  • n is the number, greater than or equal to 1, of windings per armature phase.
  • N is even and the number of teeth 22 of the rotor is even.
  • the rotor comprises 10 teeth
  • the stator comprises 6 elementary cells comprising three teeth each, ie 18 teeth.
  • the rotor comprises an excitation coil 15 per cell, ie 6 coils.
  • the number of phases is advantageously greater than or equal to 3, or even greater than or equal to 5, if this is permitted by the number of teeth of the stator.
  • the number of phases is equal to 3, in FIGS. 4a and 4b a single winding per phase (so-called single-layer winding), ie three armature windings in total, and in FIGS. at 4th, 2 armature windings per phase (so-called double-layer winding), ie 6 armature windings in total.
  • the set of armature and excitation windings 15, 16 is made of an electrically conductive material, preferably copper or a copper-based alloy.
  • Each lateral half-notch 141 of an elementary cell 13 houses a portion of at least one armature winding 16.
  • each armature winding 16 is wound in the lateral half-notches 141 of an elementary cell 13, around the lateral teeth 121, so as to also surround the excitation winding 15 in the central notches without surrounding a neighboring cell.
  • This mode makes it possible to avoid any crossover between the windings, including between the armature windings, and thus to further simplify the manufacture of the machine 1, to limit the overall size of the machine, and to further reduce the cost by decreasing the length of the windings necessary.
  • FIGS. 2a and 2b As well as to FIGS. 3a and 3b, illustrating the field lines in the machine 1 as a function of the different relative positions of the rotor or mobile element 20 and of the stator 10. This operation is identical, whether the machine is linear or rotating.
  • a tooth 22 of the mobile element 20 is opposite the central tooth 120 of an elementary cell 13 of the stator.
  • a loop of magnetic field is formed then, passing successively:
  • each armature winding is subjected to an alternating magnetic field, inducing an alternating voltage in said armature winding.
  • the same configurations can be transposed to the case of a linear machine.
  • the armature winding may be called "single-layer", that is to say that each common notch formed by two adjacent half-notches 141 receives only one armature winding 16.
  • the stator comprises alternately:
  • FIG. 4a This case is represented in the nonlimiting example of FIG. 4a which has three elementary cells 13 * and three elementary cells 13 each comprising a coil respectively corresponding to each of the phases A, B and C.
  • the armature windings can also be arranged to allow a winding crossover.
  • the machine 1 may comprise one or more armature coils wound around each of the three teeth of a single elementary cell, and one or more armature coils wound around two or more elementary cells. adjacent.
  • An elementary cell comprises a phase A armature winding wound around its three teeth 12, and the phase B and C armature coils are crossed by being each wound around the teeth forming two successive elementary cells 13. There remain two cells 13 * in which the excitation coil is not surrounded by armature winding.
  • the armature winding can be called "double layer".
  • a lateral notch formed of two adjacent half-notches may receive a portion of two different armature coils.
  • the two armature coils can be arranged in different ways in the notch.
  • the notch can be "divided" by a median axis extending equidistant from the teeth bordering the notch, so that each lateral half-slot 141 of an elementary cell 13 receives part of a respective winding. This is the case shown in Figures 4c to 4e.
  • the notch could also be "divided" by an axis orthogonal to the median axis indicated above, extending between the teeth bordering the notch.
  • This axis defines a first portion of the notch, common to the two half-notches, located for example in the bottom of the notch, and which receives a part of a first winding, and a second portion of the notch, located between the first winding and the edge of the notch, and which receives the other winding.
  • the armature windings are arranged so that there is no winding crossover.
  • the distribution of the windings then varies according to the number of phases and their arrangement.
  • the machine 1 comprises two windings per armature phase, and each armature winding is wound around the teeth of an elementary cell, the two windings of each phase being wound around two adjacent cells. It can be seen that in this configuration in which the windings of each phase are wound around respective adjacent elementary cells, the machine does not include any winding crossover.
  • n successive cells of the stator comprise windings of n different armature phases.
  • each elementary cell comprises an armature winding wound around its three teeth, and the armature coils of three consecutive cells belong to the three phases A, B and C.
  • FIG. 4c represents another example of a configuration in which the coils of one phase are grouped together to surround the adjacent cell teeth (phase A) and the coils of the other phases are separated to alternately surround the teeth of adjacent cells (phases B and B). VS).
  • the armature windings can also be distributed so as to cross each other. Arrangement of the stator teeth
  • all the central teeth of the stator have the same shape and the same dimensions
  • all the lateral teeth also have the same shape and the same dimensions.
  • the central teeth may be different from the lateral teeth.
  • - the angular aperture of the mean gap between the stator teeth, N being the number of stator teeth.
  • the teeth 120 forming the central teeth of the elementary cells may have a width different from those forming the lateral teeth 121.
  • the teeth 120 may have a constant width (measured in the tangential direction relative to the stator axis).
  • the teeth of the stator may have a trapezoidal shape, preferably having a width at their base 122 greater than the width at their apex 123.
  • the apex 123 denotes the side of the tooth facing the rotor teeth, and the base 122 the opposite side, through which the tooth extends from the crown 11 of the stator.
  • This form may be advantageous for decreasing the concentration of magnetic flux at the base of the tooth in order to prevent the ferromagnetic material from saturating.
  • the angular aperture 9 C of the central teeth is defined at the top 123 of the tooth.
  • the angular aperture is replaced by the width of the tooth at its apex.
  • is a parameter characterizing the opening of the tooth, chosen preferably between 0.5 and 0.8, advantageously between 0.6 and 0.75.
  • the teeth 22 of the rotor have a width equal to the width of the central teeth 120.
  • the angular aperture of the lateral teeth 121 of elementary cells of the stator is also defined. As before, this opening is defined for the top 123 of a tooth. As previously, in the case of a linear machine, the angular aperture is replaced by the width of the tooth at its apex.
  • is a parameter characterizing the opening of the lateral tooth, chosen preferably less than ⁇ , for example, ⁇ may be between 0.4 and 0.7.
  • is preferably chosen to be smaller than ⁇ 0 so that the lateral teeth are narrower than the central tooth for the same cell.
  • the central tooth and the lateral teeth alternately form the passage of the magnetic flux. Increasing the relative width of the central tooth relative to the lateral teeth balances the sections for the passage of the magnetic flux.
  • the parameter a translating a spacing of the relative positions of the lateral teeth 121 and of the central tooth of a cell relative to the average distance between two teeth of the stator 10 is also defined.
  • the average deviation has an angular aperture ⁇ already defined above.
  • the distance between a lateral tooth 121 and the central tooth 120 of the same cell is advantageously equal to ⁇ (1 + a), where a is preferably between 0 and 0.15.
  • Spreading the lateral teeth relative to the central tooth also reduces the torque ripples and thus smooths the torque generated by the machine.
  • the proposed machine is more economical than the machines of the prior art since it has no permanent magnet and it allows to distribute the windings without any crossover. It is also less bulky and easier to manufacture.
  • the "ABC-SC winding" curve corresponds to the single-layer winding without crossing of FIG. 4a,
  • the "overlapping ABC winding SC" curve corresponds to the single-layer winding with crossing of FIG. 4b,
  • winding AABCBC corresponds to the double-layer winding of Figure 4c
  • the "winding AABBCC” curve corresponds to the winding of FIG. 4d
  • the "winding ABCABC” curve corresponds to the winding of FIG. 4e.
  • This prototype made it possible to obtain an average torque of 8.1 Nm against a theoretical value of 8.5 Nm for an excitation current density of 15 A / mm 2 .

Abstract

L'invention proposée est une machine électrique à commutation de flux comprenant : - un élément mobile (20), comprenant une pluralité de dents de commutation de flux, et - un stator (10), comprenant une pluralité de dents, des bobinages d'excitation (15) et des bobinages d'induit, caractérisée en ce que le stator est formé d'une succession de cellules élémentaires comprenant chacune : - trois dents, comprenant une dent centrale (120) et deux dents latérales (121), délimitant entre elles deux encoches centrales (140), un bobinage d'excitation étant logé dans les encoches centrales et enroulé autour de la dent centrale, et - deux demi-encoches latérales (141) de part et d'autre des dents latérales, chaque demi-encoche logeant au moins en partie un bobinage d'induit, de sorte que deux cellules élémentaires successives partagent une encoche latérale commune.

Description

MACHINE ELECTRIQUE A COMMUTATION DE FLUX A SIMPLE EXCITATION
DOMAINE DE L'INVENTION
L'invention se rapporte de manière générale aux machines électriques. Elle concerne en particulier une machine électrique à commutation de flux. L'invention concerne notamment une machine dite à simple excitation, c'est-à-dire ne comprenant qu'une seule source d'excitation magnétique, à savoir des bobinages d'excitation, la machine étant dépourvue d'aimants. ETAT DE LA TECHNIQUE
Les machines électriques sont utilisées dans des applications variées, en particulier en tant qu'alternateurs, par exemple pour des véhicules automobiles ou pour des aéronefs.
Parmi ces machines électriques, les machines tournantes à commutation de flux comprennent un rotor et un stator, le stator portant tous les moyens électriquement ou magnétiquement actifs de la machine, c'est-à-dire tous les aimants et/ou bobines d'excitation ou bobines d'induit. Des machines linéaires analogues existent, dans lequel le rotor est remplacé par un élément mobile en translation par rapport au stator. Le rotor - ou élément mobile - est quant à lui dépourvu d'aimant ou de bobinage, et est réalisé en un matériau ferromagnétique permettant la circulation d'un champ magnétique. De ce fait les machines à commutation de flux s'affranchissent de la nécessité d'utiliser des contacts frottant (balais), elles présentent une plus grande tenue mécanique et sont plus fiables à l'utilisation. En outre le rotor d'une machine à commutation de flux s'en trouve plus simple et donc moins coûteux à produire.
On connaît par exemple une machine à commutation de flux selon le document EP 2 002 529.
Cette machine comporte un rotor, dépourvu de moyens électriques ou magnétiques actifs, et un stator. Le stator est subdivisé en un ensemble de cellules élémentaires telles que chaque cellule comprend un aimant permanent ainsi que des encoches logeant un bobinage d'induit et au moins une partie d'un bobinage d'excitation.
Cette machine a déjà rendu de grands services en ce qu'elle permet notamment de contrôler la valeur de la tension induite. Cependant, cette machine présente la particularité d'être une machine à double excitation, c'est-à-dire qu'elle comporte à la fois des bobinages d'excitation et des aimants permanents.
Or les aimants permanents sont de nos jours très coûteux et alourdissent considérablement le coût de production d'une telle machine.
Il est donc préférable d'utiliser et de produire des machines à simple excitation dans lesquelles l'excitation est réalisée par des bobinages d'excitation, lesdites machines étant dépourvues d'aimants permanents.
Une telle machine a été proposée dans le document WO 2013/068947. Cette machine présente un stator portant uniquement des bobinages d'excitation et des bobinages d'induit. En outre, chaque bobinage d'excitation est logé dans une paire d'encoches séparées par au moins trois dents.
Ces trois dents forment entre elles deux encoches permettant de loger des bobinages d'induits. Or, pour que cette machine fonctionne il est nécessaire que les bobinages d'induits logés dans ces encoches correspondent à des phases différentes, c'est-à-dire que les bobinages d'excitation soient croisés avec chacun des bobinages d'induit.
Ce croisement des bobinages rend complexe la fabrication de la machine et rend moins compacte la disposition de chaque bobinage. De ce fait, l'encombrement total de la machine est accru. De plus, bien que ce document indique limiter le coût de production par une limitation de la quantité de cuivre nécessaire pour former les bobinages d'excitation, la rallonge de fil de cuivre nécessaire pour croiser les bobinages d'excitation avec les bobinages d'induits diminue cette économie voire engendre un surcoût pour la production de la machine.
L'excès de fil de cuivre nécessaire au croisement des bobinages est aussi à l'origine de pertes d'énergie puisque l'énergie dissipée dans les fils de cuivre est proportionnelle à la résistance des fils, qui dépend elle-même de leur longueur. PRESENTATION DE L'INVENTION
Un des buts de l'invention est de proposer une machine électrique dont l'encombrement et le coût de production sont réduits par rapport à l'art antérieur.
En particulier, un but de l'invention est de proposer une machine électrique pouvant fonctionner sans aimant permanent, et sans croisement de bobinages. A cet égard, l'invention a pour objet une à commutation de flux comprenant :
un élément mobile, comprenant une pluralité de dents de commutation de flux, et
un stator, comprenant une pluralité de dents, des bobinages d'excitation et des bobinages d'induit,
caractérisée en ce que le stator est formé d'une succession de cellules élémentaires comprenant chacune :
trois dents, comprenant une dent centrale et deux dents latérales, délimitant entre elles deux encoches centrales, un bobinage d'excitation étant logé dans les encoches centrales et enroulé autour de la dent centrale, et deux demi-encoches latérales de part et d'autre des dents latérales, chaque demi-encoche logeant au moins en partie un bobinage d'induit, de sorte que deux cellules élémentaires successives partagent une encoche latérale commune.
Avantageusement, mais facultativement, la machine selon l'invention peut en outre comprendre au moins l'une des caractéristiques suivantes : dans laquelle la dent centrale d'une cellule élémentaire du stator peut comprendre un sommet présentant une ouverture angulaire 9C comprise entre 0.6*9 et 0.75*9, où 9 est l'ouverture angulaire de l'écart moyen entre deux dents consécutive du stator, défini par
" = ¥·
où N est le nombre de dents du stator.
chaque dent latérale d'une cellule élémentaire du stator peut comprendre un sommet présentant une ouverture angulaire 9| comprise entre 0.4*9 et 0.7*9, où 9 est l'ouverture angulaire de l'écart moyen entre deux dents consécutive du stator, défini par
" = ¥·
où N est le nombre de dents du stator.
les dents latérales d'une cellule élémentaire du stator peuvent être distantes de la dent centrale d'un écart compris entre 9 et 1.15*9, où 9 est l'ouverture angulaire de l'écart moyen entre deux dents consécutives du stator, défini par
β = Ύ·
où N est le nombre de dents du stator.
les dents d'une cellule élémentaire du stator peuvent présenter une largeur à leur base supérieure à la largeur à leur sommet.
les bobinages d'induit peuvent être répartis en un nombre Q de phases d'induit supérieur ou égal à 1 , et le stator comprend un nombre N de dents tel que
N = 3nQ
Où n est le nombre, supérieur ou égal à 1 , de bobinages par phase d'induit.
- Selon un mode de réalisation, la machine étant de type machine tournante et l'élément mobile étant un rotor, N est pair et le nombre de dents du rotor est pair.
chaque bobinage d'induit peut être reçu dans les deux encoches latérales d'une cellule élémentaire et enroulé autour des trois dents de la cellule. - les bobinages d'induit peuvent être disposés de manière à ce qu'il n'y ait aucun croisement entre eux.
chaque cellule élémentaire peut comprendre un bobinage d'induit enroulé autour de ses trois dents et les bobinages d'induit peuvent être répartis en trois phases A, B, et C disposées de sorte que :
o les bobinages d'une même phase soient enroulés autour des dents de cellules adjacentes, ou
o les bobinages de trois cellules consécutives correspondent tous à une phase différentes,
les encoches latérales d'au moins une cellule élémentaire peuvent loger des parties de bobinages d'induit différents.
chaque cellule élémentaire du stator peut comprendre en outre au moins un aimant permanent.
chaque cellule élémentaire peut comprendre un aimant permanent logé dans la dent centrale ou deux aimants permanents reçus respectivement dans les encoches centrales. Dans un mode de réalisation, la machine comprend un empilement axial de stators et d'éléments mobiles, et seule une fraction de la longueur statorique comporte des aimants permanents. La machine électrique proposée comporte une succession de cellules élémentaires comprenant trois dents délimitant deux encoches centrales dans lesquelles un bobinage d'excitation est logé, et des encoches latérales pouvant loger au moins une partie d'au moins un bobinage d'induit.
Cette machine est une machine à commutation de flux dans laquelle le rotor ou l'élément mobile est dépourvu d'éléments électriquement ou magnétiquement actifs tels que des aimants permanents ou des bobinages. De plus, le stator peut également être dépourvu d'aimants permanents, de sorte que la machine peut fonctionner avec pour seule excitation des bobinages d'excitation. Le coût de production de cette machine est donc réduit par rapport à une machine comprenant des aimants permanents.
De plus, la configuration des cellules permet notamment une configuration dans laquelle les encoches latérales d'une cellule logent un bobinage d'induit entourant le bobinage d'excitation.
Ce type de configuration présente un encombrement et un coût réduits du fait de l'absence de croisement entre le bobinage d'excitation et le ou les bobinages d'induits. La machine est également plus simple à produire et plus efficace car les longueurs de bobinage nécessaires sont réduites par rapport à des bobinages croisés.
Il a également été découvert, en réduisant la largeur des dents latérales par rapport à celle de la dent centrale d'une cellule élémentaire, les performances de la machine sont améliorées car le couple produit par la machine est lissé dans le temps (réduction des ondulations de couple).
Enfin, dans le cas où cette machine est du type machine tournante, elle permet avantageusement des configurations dans lesquelles le nombre de dents du rotor et le nombre de bobinages d'induit par phase est pair, ce qui permet un équilibrage des forces magnétiques en jeu sur la circonférence de la machine et évite un balourd magnétique qui dégraderait les performances et/ou la durée de vie de la machine. DESCRIPTION DES FIGURES
D'autres caractéristiques, buts et avantages de l'invention ressortiront de la description qui suit, qui est purement illustrative et non limitative, et qui doit être lue en regard des dessins annexés, sur lesquels :
- La figure 1 représente schématiquement une machine selon un mode de réalisation de l'invention,
Les figures 2a et 2b illustrent une cellule élémentaire d'une machine selon un mode de réalisation de l'invention et le passage du flux dans cette cellule selon deux positions relatives des dents du rotor par rapport à la cellule, - Les figures 3a et 3b représentent la distribution des lignes de champ dans une machine selon deux positions relatives du rotor et du stator,
Les figures 4a à 4e représentent des configurations possibles des bobinages d'induits dans une machine selon un mode de réalisation de l'invention, La figure 5a représente des conventions de notation concernant la géométrie des dents du stator
Les figures 5b à 5d représentent des variantes de réalisation de dents du stator,
La figure 6 représente les performances obtenues par différentes machines dont celles des figures 4a à 4e.
- Les figures 7a à 7e représentent des variantes de réalisation d'une machine comprenant des aimants permanents.
Les figures 8a et 8b représentent respectivement des tôles de rotor et de stator d'un prototype de machine. DESCRIPTION DETAILLEE D'AU MOINS UN MODE DE REALISATION DE L'INVENTION
Structure de la machine
En référence à la figure 1 , on a représenté schématiquement une machine 1 électrique à commutation de flux selon un mode de réalisation de l'invention.
La machine représentée sur la figure 1 est une machine tournante comportant un stator 10 et un rotor 20. Le stator et le rotor s'étendent coaxialement l'un autour de l'autre. Le stator 10 est fixe et le rotor 20 est mobile en rotation autour de l'axe commun du stator et du rotor. Sur la figure 1 , le stator 10 s'étend autour du rotor 20. Cependant l'inverse peut également être mis en œuvre, dans lequel le rotor s'étend autour du stator.
De plus, la machine 1 pourrait être également une machine linéaire dans lequel le stator 10 s'étend de manière rectiligne et le rotor 20 est remplacé par un élément mobile en translation par rapport au stator. Ce cas est représenté sur les figures 2a et 2b.
Dans la suite, on utilise la terminologie générale d'élément mobile pour désigner la partie mobile d'une machine, qu'elle soit linéaire ou tournante. L'élément mobile peut donc également désigner un rotor.
L'élément mobile 20 est dépourvu de tout moyen électrique ou magnétique actif, et en particulier il est dépourvu de tout bobinage et de tout aimant. Le rotor est réalisé dans un matériau ferromagnétique adapté pour autoriser la circulation d'un champ magnétique. A titre d'exemple non limitatif, l'élément mobile 20 peut être réalisé en alliage fer-Silicium ou Fer-Cobalt ou en acier.
L'élément mobile 20 comprend une base, par exemple en forme de couronne 21 dans le cas où il s'agit du rotor d'une machine tournante et un ensemble de dents 22 s'étendant depuis la base 21 vers le stator.
Dans le cas d'une machine tournante, les dents 22 s'étendent sensiblement radialement depuis la couronne 21. Si comme dans la figure 1 le rotor est à l'intérieur du stator, les dents 22 s'étendent radialement vers l'extérieur par rapport à la couronne.
Le stator 10 est également réalisé dans un matériau ferromagnétique, par exemple en fer ou en acier. Il comprend une base, par exemple en forme de couronne 11 dans le cas d'une machine tournante et une pluralité de dents 12 s'étendant depuis la base 1 1 vers l'élément mobile 20, les dents 12 étant séparées par des encoches 14.
Le stator 10 est organisé en une succession de cellules élémentaires 13, chaque cellule coopérant avec une ou plusieurs dents de l'élément mobile 20 pour former avec celui-ci une boucle de champ magnétique de sens variable en fonction du déplacement de l'élément mobile. De préférence, ce résultat est atteint lorsque l'écart entre deux dents successives du de l'élément mobile correspond à l'écart entre deux dents du stator espacées par une troisième dent.
En référence aux figures 2a et 2b, sur lesquelles une machine électrique de type linéaire est représentée, chaque cellule élémentaire 13 comporte trois dents 12 successives, dont une dent centrale 120 et deux dents latérales 121 situées de part et d'autre de la dent centrale 120.
Chaque cellule élémentaire 13 comporte également deux encoches centrales 140, qui sont les espaces formés entre la dent centrale 120 et chacune des deux dents latérales 121 ; et deux demi-encoches latérales 141 s'étendant de part et d'autre des dents latérales 121.
On comprend que les demi-encoches latérales 141 de deux cellules élémentaires 13 adjacentes se rejoignent pour former une encoche 14 commune entre deux dents successives du stator 10, et donc que deux cellules successives partagent une encoche commune.
Le stator 10 comprend également une source d'excitation magnétique, sous la forme de bobinages d'excitation 15.
Le stator 10 comprend une pluralité de bobinages d'excitation 15, en nombre égal au nombre de cellules élémentaires, chaque cellule élémentaire 13 comprenant un bobinage d'excitation 15 enroulé dans les encoches centrales 140 de manière à entourer la dent centrale 120, comme visible sur les figures 2a et 2b.
Selon un mode de réalisation préféré, les bobinages d'excitation 15 du stator sont la seule source d'excitation magnétique de la machine 1. En particulier, le stator ne comprend dans ce cas aucun aimant permanent. Comme on l'a vu précédemment, le rotor - ou élément mobile - ne comprend pas de source d'excitation magnétique : ni bobinage d'excitation, ni aimant permanent. La machine 1 est donc une machine à commutation de flux dite à simple excitation.
En variante, on peut néanmoins désirer que la machine 1 soit à double excitation et comprennent des aimants permanents, pour assurer à la machine une force électromotrice même sans courant d'excitation.
Dans ce cas, en référence aux figures 7a à 7e, le stator 10 peut comprendre des aimants permanents 17.
Selon un premier mode de réalisation représenté sur les figures 7a et 7b, chaque aimant 17 est logé dans une dent centrale 120 d'une cellule élémentaire 13, soit dans une cavité prévue à cet effet comme sur la figure 7a, soit au sommet de la dent centrale 120 comme sur la figure 7b. Dans ce dernier cas la dent centrale 120 est tronquée pour que la hauteur cumulée de la dent centrale 120 et de l'aimant 17 par rapport à la base soit strictement inférieure à la distance entre la base et une dent opposée de l'élément mobile. Ainsi il subsiste un entrefer entre une dent de l'élément mobile 22 et la dent 120 surmontée de l'aimant 17 du stator.
Sur la figure 7a, la machine est linéaire, et sur la figure 7b, elle est rotative. Bien entendu, cela est non limitatif et le type linéaire ou rotatif de la machine peut être combiné avec n'importe quelle implémentation d'aimant permanent.
Selon un mode de réalisation alternatif représenté sur les figures 7c et 7d, chaque cellule élémentaire 13 peut recevoir deux aimants permanents 17 logés dans les encoches centrales 140 de la cellule.
Ainsi chaque encoche centrale 140 reçoit une portion d'un bobinage d'excitation 15 et un aimant 17. Sur les figures 7c et 7d, la portion du bobinage d'excitation 15 reçue dans une encoche 140 est disposé contre le fond de l'encoche, de sorte à être interposée entre la base 10 du stator et l'aimant 17.
En variante, l'aimant permanent 17 pourrait être positionné entre le fond de l'encoche 140 et le bobinage d'excitation 15.
En référence à la figure 7e, les machines électriques, qu'elles soient tournantes ou linéaires, peuvent être formées par des empilements de stators 10 et d'éléments mobiles 20.
Dans le cas d'une machine tournante, l'empilement est réalisé dans l'axe de rotation du rotor 20. Dans le cas d'une machine linéaire, l'empilement est réalisé selon un axe orthogonal à un axe de déplacement de l'élément mobile.
Dans le cas où la machine 1 est réalisée selon ce type d'empilement et comprend des aimants 17, il est avantageux que les aimants 17 ne se trouvent que sur les stators 10 situés aux extrémités de l'empilement.
Par exemple, si la machine présente une longueur L dans la direction de l'empilement, les stators pourvus d'aimants sont avantageusement ceux compris entre 0 et 20% de L d'une part et entre 80 et 100% de L d'autre part, de préférence compris entre 0 et 10% de L d'une part, et entre 90 et 100% de L d'autre part.
Ainsi, comme les aimants permanents 17 génèrent un champ magnétique qui perturbe le champ généré par les bobinages d'excitation 15, le fait de cantonner ces aimants aux extrémités de la machine permet de limiter les perturbations, tout en limitant le nombre d'aimants et donc le coût de la machine.
De retour aux figures 2a et 2b, le stator 10 comprend une pluralité de bobinages d'induit 16. Comme décrit plus en détails ci-après, les bobinages d'induit 16 peuvent être répartis en une ou plusieurs phases, selon que la machine 1 soit monophasée ou polyphasée.
De préférence, mais non limitativement, dans le cas où la machine est une machine tournante, les bobinages d'induit sont répartis en un nombre de phases Q supérieur ou égal à 1 , et le stator 10 comprend un nombre N de dents 12 tel que
N = 3nQ
Où n est le nombre, supérieur ou égal à 1 , de bobinages par phase d'induit.
Avantageusement, N est pair et le nombre de dents 22 du rotor est pair également.
Ceci permet, comme on le voit en particulier sur les figures 3a et 3b, d'obtenir un champ magnétique symétrique dans la machine quelle que soit la position relative du rotor par rapport au stator.
On évite donc une concentration asymétrique de champ magnétique qui induirait un phénomène de balourd magnétique analogue à un phénomène de balourd mécanique sur un objet tournant dont la masse n'est pas répartie de manière homogène.
Sur l'exemple des figures 1 , 3a à 4e et 5b à 5d, le rotor comprend 10 dents, et le stator comporte 6 cellules élémentaires comprenant trois dents chacune, soit 18 dents. Le rotor comprend un bobinage d'excitation 15 par cellule, soit 6 bobinages.
Le nombre de phases est avantageusement supérieur ou égal à 3, voire supérieur ou égal à 5, si cela est permis par le nombre de dents du stator. Sur les figures 4a à 4e, le nombre de phases est égal à 3, avec dans les figures 4a et 4b un seul bobinage par phase (bobinage dit à simple couche), soit trois bobinages d'induit au total, et dans les figures 4c à 4e, 2 bobinages d'induit par phase (bobinage dit à double couche), soit 6 bobinages d'induit au total.
L'ensemble des bobinages d'induit et d'excitation 15, 16 est réalisé en un matériau électriquement conducteur, de préférence en cuivre ou un alliage à base de cuivre.
Chaque demi-encoche latérale 141 d'une cellule élémentaire 13 loge une partie d'au moins un bobinage d'induit 16.
Comme, pour une cellule élémentaire donnée, un bobinage d'excitation est enroulé autour de la dent centrale et les bobinages d'induit sont reçus dans les demi-encoches latérales, il n'y a pas de croisement entre le bobinage d'excitation et les bobinages d'induit, ce qui facilite la fabrication de la machine, et diminue son encombrement et la quantité de matériel nécessaire pour la réalisation des bobinages.
Selon un mode de réalisation particulièrement avantageux conforme à l'exemple représenté en figures 2a et 2b, chaque bobinage d'induit 16 est enroulé dans les demi-encoches latérales 141 d'une cellule élémentaire 13, autour des dents latérales 121 , de manière à entourer également le bobinage d'excitation 15 se trouvant dans les encoches centrales sans entourer de dent d'une cellule voisine.
Ce mode permet d'éviter tout croisement entre les bobinages, y compris entre les bobinages d'induit, et donc de simplifier encore la fabrication de la machine 1 , de limiter l'encombrement de la machine, et de réduire encore le coût en diminuant la longueur des bobinages nécessaires.
D'autres exemples de configuration sont détaillés ci-après en référence aux figures 4a à 4e.
Fonctionnement de la machine
Le fonctionnement de la machine 1 décrite ci-avant est expliqué en référence aux figures 2a et 2b ainsi qu'aux figures 3a et 3b, illustrant les lignes de champ dans la machine 1 en fonction des différentes positions relatives du rotor ou élément mobile 20 et du stator 10. Ce fonctionnement est identique, que la machine soit linéaire ou tournante.
Le déplacement relatif (rotatif ou translatif), de l'élément mobile ou rotor 20 par rapport au stator 10 implique que chaque cellule élémentaire 13 « voit » successivement l'alternance des deux configurations suivantes :
Dans une première configuration visible sur les figures 2a et 3a (la forme du champ magnétique étant indiquée pour la cellule élémentaire concernée), une dent 22 de l'élément mobile 20 se trouve en regard de la dent centrale 120 d'une cellule élémentaire 13 du stator. Une boucle de champ magnétique se forme alors, passant successivement :
o dans la dent centrale 120 d'une cellule élémentaire 13 du stator, o dans la dent 22 de l'élément mobile en regard de celle-ci, o puis dans la couronne ou base 11 du stator, o puis de retour dans l'élément mobile 20 par les deux dents 22 de celui-ci adjacentes à la première, et par deux dents latérales 121 de cellules élémentaires du stator se trouvant de part et d'autre de la première,
o et enfin de retour dans la dent centrale 120 de la première cellule élémentaire 13 via la couronne ou base 11 du stator.
Dans une seconde configuration représentée sur les figures 2b et 3b, deux dents 22 de l'élément mobile 20 se trouvent en regard des deux dents latérales 121 de la cellule élémentaire du stator. Deux boucles de champ magnétiques se forment alors, passant successivement :
o Depuis une dent du stator 22, dans une dent latérale 121 de la cellule se trouvant en regard,
o Dans la couronne ou base 11 du stator,
o Dans la dent centrale 120 des cellules élémentaires 13 se trouvant de part et d'autre de la première,
o Dans les dents de l'élément mobile se trouvant en regard, o Puis de retour dans la dent du stator se trouvant en regard de la première cellule élémentaire via la base 21 de l'élément mobile 20.
De cette manière, lorsqu'un courant électrique constant passe dans les bobinages d'excitation et que l'élément mobile est entraîné en mouvement par rapport au stator, chaque bobinage d'induit est soumis à un champ magnétique alternatif, induisant une tension alternative dans ledit bobinage d'induit. Dispositions des bobinages de phases
Comme indiqué ci-avant, plusieurs configurations de bobinages d'induits dans les encoches latérales 141 peuvent être envisagées pour un même nombre de phases.
Sur les illustrations des différentes configurations dans les figures 4a à 4e, l'exemple non limitatif de machine tournante 1 représentée comporte 6 cellules élémentaires et trois phases A, B, et C d'induit (Q=3 d'après la notation qui précède). Les mêmes configurations peuvent être transposées au cas d'une machine linéaire. En premier lieu, le bobinage d'induit peut être dit « à simple couche », c'est- à-dire que chaque encoche commune formée de deux demi-encoches 141 latérales adjacentes ne reçoit qu'un seul bobinage d'induit 16.
Dans le cas du bobinage à simple couche, les bobinages d'induit sont de préférence agencés de manière à ce qu'il n'y ait aucun croisement de bobinage. Dans ce cas, le stator comprend en alternance :
Une cellule élémentaire 13 dans laquelle un bobinage d'induit est enroulé autour de ses trois dents et autour d'un bobinage d'excitation, et
Une cellule élémentaire 13* dans laquelle seul un bobinage d'excitation est enroulé autour de la dent centrale.
Ce cas est représenté dans l'exemple non limitatif de la figure 4a qui compte trois cellules élémentaires 13* et trois cellules élémentaires 13 comprenant chacune un bobinage correspondant respectivement à chacune des phases A, B et C.
Alternativement, les bobinages d'induit peuvent aussi être agencés de manière à autoriser un croisement de bobinage. Dans ce cas, la machine 1 peut comprendre un ou plusieurs bobinages d'induit 15 enroulé(s) chacun autour des trois dents d'une seule cellule élémentaire, et un ou plusieurs bobinages d'induit 15 enroulé autour de deux ou plusieurs cellules élémentaires adjacentes.
Ce cas est représenté dans l'exemple non limitatif de la figure 4b, dans lequel la machine comprend toujours 6 cellules élémentaires. Une cellule élémentaire comprend un bobinage d'induit de phase A enroulé autour de ses trois dents 12, et les bobinages d'induits des phases B et C sont croisés en étant chacun enroulés autour des dents formant deux cellules élémentaires 13 successives. Il subsiste deux cellules 13* dans lesquelles le bobinage d'excitation n'est pas entouré de bobinage d'induit.
En second lieu, le bobinage d'induit peut être dit « à double couche ». Dans ce cas, une encoche latérale formée de deux demi-encoches adjacentes peut recevoir une partie de deux bobinages d'induit différents.
Les deux bobinages d'induit peuvent être agencés de différentes manières dans l'encoche.
Selon un premier mode de réalisation, l'encoche peut être « divisée » par un axe médian s'étendant à égale distance des dents bordant l'encoche, de sorte que chaque demi-encoche latérale 141 d'une cellule élémentaire 13 reçoit une partie d'un bobinage respectif. C'est le cas représenté sur les figures 4c à 4e.
Alternativement, l'encoche pourrait également être « divisée » par un axe orthogonal à l'axe médian indiqué ci-avant, s'étendant entre les dents bordant l'encoche. Cet axe définit une première portion de l'encoche, commune aux deux demi-encoches, située par exemple dans le fond de l'encoche, et qui reçoit une partie d'un premier bobinage, et une deuxième portion de l'encoche, située entre le premier bobinage et le bord de l'encoche, et qui reçoit l'autre bobinage.
Dans ce cas, on prévoit également, de préférence, que les bobinages d'induit soient agencés de sorte qu'il n'y ait aucun croisement de bobinage.
La répartition des bobinages varie alors en fonction du nombre de phases et de leur disposition.
Par exemple, on peut choisir de répartir les bobinages d'induit de sorte que les bobinages d'une même phase soient tous enroulés autour de cellules élémentaires adjacentes. Par exemple, sur la figure 4d, la machine 1 comporte deux bobinages par phase d'induit, et chaque bobinage d'induit est enroulé autour des dents d'une cellule élémentaire, les deux bobinages de chaque phase étant enroulés autour de deux cellules adjacentes. On constate que dans cette configuration dans laquelle les bobinages de chaque phase sont enroulés autour de cellules élémentaires respectives adjacentes, la machine ne comprend aucun croisement de bobinage.
Alternativement on peut choisir d'alterner les bobinages d'induit des différentes phases de sorte que n cellules successives du stator comprennent des bobinages de n phases d'induit différentes.
Par exemple sur la figure 4e, chaque cellule élémentaire comprend un bobinage d'induit enroulé autour de ses trois dents, et les bobinages d'induit de trois cellules consécutives appartiennent aux trois phases A, B et C.
La figure 4c représente un autre exemple de configuration dans laquelle les bobinages d'une phase sont regroupés pour entourer les dents de cellules adjacentes (phase A) et les bobinages des autres phases sont séparés pour entourer alternativement les dents de cellules adjacentes (phases B et C).
En variante non illustrée, les bobinages d'induit peuvent également être répartis de manière à se croiser. Disposition des dents du stator
De préférence, toutes les dents centrales du stator présentent la même forme et les mêmes dimensions, et toutes les dents latérales présentent également la même forme et les mêmes dimensions.
Cependant, les dents centrales peuvent être différentes des dents latérales.
En référence à la figure 5a on a représenté les conventions de notation concernant la géométrie des dents du stator.
On note ϋ =— l'ouverture angulaire de l'écart moyen entre les dents du stator, N étant le nombre de dents du stator.
Les dents 120 formant les dents centrales des cellules élémentaires peuvent présenter une largeur différente de celles formant les dents latérales 121.
On définit 9C l'ouverture angulaire des dents centrales 120 de cellules élémentaires du stator.
Les dents 120 peuvent présenter une largeur (mesurée dans la direction tangentielle par rapport à l'axe du stator) constante.
En variante, les dents du stator peuvent présenter une forme trapézoïdale, en présentant de préférence une largeur à leur base 122 supérieure à la largeur à leur sommet 123. On note sommet 123 le côté de la dent en regard des dents du rotor, et base 122 le côté opposé, par lequel la dent s'étend depuis la couronne 11 du stator.
Cette forme peut être avantageuse pour diminuer la concentration de flux magnétique à la base de la dent afin d'éviter au matériau ferromagnétique de saturer.
Dans tous les cas, l'ouverture angulaire 9C des dents centrales est définie au sommet 123 de la dent.
Dans le cas où la machine est de type linéaire, l'ouverture angulaire est remplacée par la largeur de la dent au niveau de son sommet.
On note :
ûc = βϋ
Où βο est un paramètre caractérisant l'ouverture de la dent, choisi compris de préférence entre 0,5 et 0,8, avantageusement entre 0.6 et 0.75. Avantageusement, mais facultativement, les dents 22 du rotor présentent une largeur égale à la largeur des dents centrales 120.
On définit également θι l'ouverture angulaire des dents latérales 121 de cellules élémentaires du stator. Comme précédemment, cette ouverture est définie pour le sommet 123 d'une dent. Comme précédemment, dans le cas d'une machine linéaire, l'ouverture angulaire est remplacée par la largeur de la dent au niveau de son sommet.
On note :
ΰι = βιϋ
Où βι est un paramètre caractérisant l'ouverture de la dent latérale, choisi de préférence inférieur à βο, par exemple, βι peut être compris entre 0.4 et 0.7.
Pour illustrer l'impact de la valeur de ces paramètres sur la géométrie des dents, on a représenté à titre illustratif sur les figures 5b et 5c deux configurations du stator, dans lesquelles respectivement βι= β0 =0.5, et βι=0.52, et β0 =0.5.
De plus, βι est de préférence choisi inférieur à β0 pour que les dents latérales soient plus étroites que la dent centrale pour une même cellule.
Comme on l'a vu en référence aux figures 2a et 2b, la dent centrale et les dents latérales forment alternativement le passage du flux magnétique. Le fait d'augmenter la largeur relative de la dent centrale par rapport aux dents latérales permet d'équilibrer les sections pour le passage du flux magnétique.
De plus, cela permet également de réduire des ondulations du couple généré lors du fonctionnement de la machine.
De retour à la figure 5a, on définit également le paramètre a traduisant un écartement des positions relatives des dents latérales 121 et de la dent centrale d'une cellule par rapport à l'écart moyen entre deux dents du stator 10.
L'écart moyen présente une ouverture angulaire Θ déjà définie ci-avant.
L'écart entre une dent latérale 121 et la dent centrale 120 d'une même cellule est avantageusement égale à θ(1 +a), où a est de préférence compris entre 0 et 0.15.
Pour illustrer l'impact de la valeur de a sur la disposition des dents du stator, on a représenté sur la figure 5d un exemple dans lequel a=0.3 avec βι=0.2, et β0 =0.5 Le fait d'écarter les dents latérales par rapport à la dent centrale permet également de réduire les ondulations de couple et donc de lisser le couple généré par la machine. La machine proposée est plus économique que les machines de l'art antérieur puisqu'elle ne comporte pas d'aimant permanent et qu'elle permet de répartir les bobinages sans aucun croisement. Elle est également moins volumineuse et plus simple à fabriquer.
Pour autant, comme visible sur la figure 6, elle présente également de bonnes performances puisque le couple moyen théorique obtenu grâce à cette machine est supérieur à celui fourni par une machine de l'art antérieur à simple excitation, et dans certains cas à une machine à double excitation, c'est-à-dire munie d'aimants.
Les courbes représentées sur cette figure correspondent aux variantes de bobinages illustrées sur les figures 4a à 4e :
La courbe « bobinage ABC-SC » correspond au bobinage simple couche sans croisement de la figure 4a,
La courbe « bobinage ABC chevauchement SC » correspond au bobinage simple couche avec croisement de la figure 4b,
- La courbe « bobinage AABCBC » correspond au bobinage double couche de la figure 4c,
La courbe « bobinage AABBCC » correspond au bobinage de la figure 4d, et La courbe « bobinage ABCABC » correspond au bobinage de la figure 4e. Ces performances théoriques ont été validées par un prototype expérimental dont les tôles de rotor et de stator sont représentées respectivement sur les figures 8a et 8b. Le diamètre externe du stator est de 140 mm et la machine est sous forme d'un empilement comme dans la figure 7e, dont la longueur de la machine dans le sens axial est de 35 mm.
Ce prototype a permis l'obtention d'un couple moyen de 8.1 Nm, contre une valeur théorique de 8.5 Nm, pour une densité de courant d'excitation de 15A/mm2.

Claims

REVENDICATIONS
1. Machine électrique (1 ) à commutation de flux comprenant :
un élément mobile (20), comprenant une pluralité de dents (22) de commutation de flux, et
un stator (21 ), comprenant une pluralité de dents (12), des bobinages d'excitation (15) et des bobinages d'induit (16),
caractérisée en ce que le stator est formé d'une succession de cellules élémentaires (13) comprenant chacune :
- trois dents (12), comprenant une dent centrale (120) et deux dents latérales
(121 ), délimitant entre elles deux encoches centrales (140), un bobinage d'excitation (15) étant logé dans les encoches centrales (140) et enroulé autour de la dent centrale (120), et
deux demi-encoches latérales (141 ) de part et d'autre des dents latérales (121 ), chaque demi-encoche logeant au moins en partie un bobinage d'induit
(16), de sorte que deux cellules élémentaires successives partagent une encoche latérale commune.
2. Machine électrique (1 ) à commutation de flux selon la revendication 1 , dans laquelle la dent centrale (120) d'une cellule élémentaire (13) du stator (10) comprend un sommet (123) présentant une ouverture angulaire (9C) comprise entre 0.6*9 et 0.75*9, où 9 est l'ouverture angulaire de l'écart moyen entre deux dents consécutive du stator, défini par
N '
où N est le nombre de dents du stator.
3. Machine électrique (1 ) à commutation de flux selon l'une des revendications précédentes, dans laquelle chaque dent latérale (121 ) d'une cellule élémentaire du stator (10) comprend un sommet (123) présentant une ouverture angulaire (9|) comprise entre 0.4*9 et 0.7*9, où 9 est l'ouverture angulaire de l'écart moyen entre deux dents consécutive du stator, défini par
ϋ =— . où N est le nombre de dents du stator.
4. Machine électrique (1 ) à commutation de flux selon l'une des revendications précédentes, dans laquelle les dents latérales (121 ) d'une cellule élémentaire (13) du stator sont distantes de la dent centrale (120) d'un écart compris entre Θ et 1.15*9, où Θ est l'ouverture angulaire de l'écart moyen entre deux dents consécutives du stator, défini par
" = ¥·
où N est le nombre de dents du stator.
5. Machine électrique (1 ) à commutation de flux selon l'une des revendications précédentes, dans laquelle les dents (12) d'une cellule élémentaire (13) du stator (10) présentent une largeur à leur base (122) supérieure à la largeur à leur sommet (123).
6. Machine électrique (1 ) à commutation de flux selon l'une des revendications précédentes, dans laquelle les bobinages d'induit (15) sont répartis en un nombre Q de phases d'induit supérieur ou égal à 1 , et le stator comprend un nombre N de dents tel que
N = 3nQ
Où n est le nombre, supérieur ou égal à 1 , de bobinages par phase d'induit.
7. Machine électrique (1 ) selon la revendication 6, la machine étant de type machine tournante et l'élément mobile étant un rotor, caractérisée en ce que N est pair et le nombre de dents (22) du rotor (20) est pair.
8. Machine électrique (1 ) selon l'une des revendications précédentes, dans laquelle chaque bobinage d'induit (16) est reçu dans les deux encoches latérales (141 ) d'une cellule élémentaire (13) et enroulé autour des trois dents (12) de la cellule (13).
9. Machine électrique (1 ) à commutation de flux selon l'une des revendications précédentes, dans laquelle les bobinages d'induit (16) sont disposés de manière à ce qu'il n'y ait aucun croisement entre eux.
10. Machine électrique (1 ) à commutation de flux selon la revendication 6 en combinaison avec l'une des revendications 8 ou 9, dans laquelle chaque cellule élémentaire (13) comprend un bobinage d'induit (16) enroulé autour de ses trois dents (12) et les bobinages d'induit (16) sont répartis en trois phases A, B, et C disposées de sorte que :
- les bobinages d'une même phase soient enroulés autour des dents de cellules adjacentes, ou
les bobinages de trois cellules consécutives correspondent tous à une phase différentes.
11. Machine électrique (1 ) à commutation de flux selon l'une des revendications 1 à
10, dans lequel les encoches latérales (141 ) d'au moins une cellule élémentaire (13) logent des parties de bobinages d'induit (16) différents.
12. Machine électrique (1 ) à commutation de flux selon l'une des revendications précédentes, dans lequel chaque cellule élémentaire (13) du stator (10) comprend en outre au moins un aimant permanent (17).
13. Machine électrique (1 ) selon la revendication 12, dans lequel chaque cellule élémentaire comprend un aimant permanent (17) logé dans la dent centrale (120) ou deux aimants permanents (17) reçu respectivement dans les encoches centrales (140).
14. Machine électrique (1 ) selon l'une des revendications 12 ou 13, ladite machine comprenant un empilement axial de stators (10) et d'éléments mobiles (20), dans laquelle seule une fraction de la longueur statorique (L) comporte des aimants permanents.
EP16729235.8A 2015-06-09 2016-06-08 Machine electrique a commutation de flux a simple excitation Withdrawn EP3308452A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1555264A FR3037450B1 (fr) 2015-06-09 2015-06-09 Machine electrique a commutation de flux a simple excitation
PCT/EP2016/062962 WO2016198422A1 (fr) 2015-06-09 2016-06-08 Machine electrique a commutation de flux a simple excitation

Publications (1)

Publication Number Publication Date
EP3308452A1 true EP3308452A1 (fr) 2018-04-18

Family

ID=54329650

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16729235.8A Withdrawn EP3308452A1 (fr) 2015-06-09 2016-06-08 Machine electrique a commutation de flux a simple excitation

Country Status (4)

Country Link
US (1) US20200036242A1 (fr)
EP (1) EP3308452A1 (fr)
FR (1) FR3037450B1 (fr)
WO (1) WO2016198422A1 (fr)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB771223A (en) * 1955-09-28 1957-03-27 Selectra Ltd Improvements relating to heteropolar inductor machines
US3452229A (en) * 1966-09-16 1969-06-24 John Rex Pimlott Modular inductor alternator
FR2762158B1 (fr) * 1997-04-14 1999-06-25 Valeo Equip Electr Moteur Machine polyphasee sans balais, notamment alternateur de vehicule automobile
EP2012414B1 (fr) * 2007-07-05 2020-03-25 Korea Electrotechnology Research Institute Moteur à inversion de flux à forte poussée et haute précision, haute vitesse et faible bruit pour système en mouvement linéaire ou rotatif
JP5798072B2 (ja) * 2012-03-26 2015-10-21 株式会社デンソー 回転機

Also Published As

Publication number Publication date
WO2016198422A1 (fr) 2016-12-15
FR3037450A1 (fr) 2016-12-16
FR3037450B1 (fr) 2017-07-21
US20200036242A1 (en) 2020-01-30

Similar Documents

Publication Publication Date Title
CA2482125C (fr) Machine electrique a flux transverse a rotor dente
WO2004082100A2 (fr) Machine electrique tournante comportant un stator et deux rotors
FR3019948A1 (fr) Rotor de machine electrique tournante.
FR2960355A1 (fr) Machine electrique rotative a resistance magnetique amelioree
FR2854003A1 (fr) Ensemble de stator pour machine dynamoelectrique
FR2965987A1 (fr) Machine electrique rotative
WO2015155732A2 (fr) Rotor de machine electrique tournante
EP2209192A1 (fr) Machine électrique tournante, en particulier pour un démarreur de véhicule automobile
EP1251622B1 (fr) Bobine pour machine électrique tournante
FR3004867A1 (fr) Element isolant muni de crochets de maintien de fils de bobinage d'un stator de machine electrique et stator correspondant
CH715403A2 (fr) Enroulement pour machines électriques.
EP2878071B1 (fr) Bobinage pour un élément stator d'un moteur ou génératrice à aimants permanents à au moins une branche rigide et d'un seul tenant et son procédé de fabrication
WO2010133796A1 (fr) Machine vernier a aimants insérés
WO2015140266A2 (fr) Machine electrique hybride
FR3083022A1 (fr) Machine electrique tournante ayant une configuration de rotor reduisant les ondulations de couple
EP3308452A1 (fr) Machine electrique a commutation de flux a simple excitation
FR3058282A1 (fr) Stator de machine electrique tournante muni de bobines a enroulement controle
FR3058283A1 (fr) Stator de machine electrique tournante muni d'un interconnecteur a positionnement optimum
WO2016027010A1 (fr) Moteur ou génératrice synchrone électromagnétique à plusieurs entrefers et flux magnétique diagonal
FR3025059A1 (fr) Moteur ou generatrice synchrone electromagnetique a plusieurs entrefers et flux magnetique diagonal
FR2809240A1 (fr) Machine electrique homopolaire et procede de fabrication d'une telle machine
WO2023285754A1 (fr) Stator de machine électrique tournante et procédé de fabrication
FR2861226A1 (fr) Machine electrique tournante a aimants permanents
FR3084793A1 (fr) Machine electrique tournante munie d'un bobinage a configuration optimisee
FR2823617A1 (fr) Machine electrique a rotor exterieur

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171208

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180727