EP3819494A1 - Magnetschalter für eine starteinrichtung und startvorrichtung - Google Patents

Magnetschalter für eine starteinrichtung und startvorrichtung Download PDF

Info

Publication number
EP3819494A1
EP3819494A1 EP19207708.9A EP19207708A EP3819494A1 EP 3819494 A1 EP3819494 A1 EP 3819494A1 EP 19207708 A EP19207708 A EP 19207708A EP 3819494 A1 EP3819494 A1 EP 3819494A1
Authority
EP
European Patent Office
Prior art keywords
magnetic switch
resistance element
connecting bolt
ntc resistance
ntc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19207708.9A
Other languages
English (en)
French (fr)
Inventor
Raphael Schymura
Robert Jost
Nan Wang
Jochen Gattnar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEG Automotive Germany GmbH
Original Assignee
SEG Automotive Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEG Automotive Germany GmbH filed Critical SEG Automotive Germany GmbH
Priority to EP19207708.9A priority Critical patent/EP3819494A1/de
Publication of EP3819494A1 publication Critical patent/EP3819494A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/02Bases; Casings; Covers
    • H01H50/021Bases; Casings; Covers structurally combining a relay and an electronic component, e.g. varistor, RC circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/087Details of the switching means in starting circuits, e.g. relays or electronic switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/02Non-polarised relays
    • H01H51/04Non-polarised relays with single armature; with single set of ganged armatures
    • H01H51/06Armature is movable between two limit positions of rest and is moved in one direction due to energisation of an electromagnet and after the electromagnet is de-energised is returned by energy stored during the movement in the first direction, e.g. by using a spring, by using a permanent magnet, by gravity
    • H01H51/065Relays having a pair of normally open contacts rigidly fixed to a magnetic core movable along the axis of a solenoid, e.g. relays for starting automobiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/02Gearing between starting-engines and started engines; Engagement or disengagement thereof
    • F02N15/04Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears
    • F02N15/06Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears the toothed gears being moved by axial displacement
    • F02N15/067Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears the toothed gears being moved by axial displacement the starter comprising an electro-magnetically actuated lever
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/087Details of the switching means in starting circuits, e.g. relays or electronic switches
    • F02N2011/0877Details of the switching means in starting circuits, e.g. relays or electronic switches said switch being used as a series-parallel switch, e.g. to switch circuit elements from series to parallel connection

Definitions

  • the present invention relates to a magnetic switch, in particular a starter relay, for a starting device of an internal combustion engine and a starting device with such a magnetic switch.
  • the invention is based on a magnetic switch, in particular a starter relay, for a starting device or a starter of an internal combustion engine, which has a connecting bolt for a main current path of the starting device.
  • a magnetic switch in particular a starter relay
  • the magnetic switch has a further connection bolt for the main current path, a winding that can be energized, a magnet armature and a contact bridge, the magnet switch being set up to move the magnet armature by energizing the winding and to contact the two connection bolts via the contact bridge in order to do so to close the main current path electrically.
  • the magnet armature - when used with a starting device or a starter - is coupled to a starter pinion via a fork lever or in some other way in order to mesh it with a ring gear of an internal combustion engine.
  • a further winding can also be provided, the two windings then being able to include, in particular, a pull-in winding and a holding winding, both of which can optionally be energized separately.
  • the pull-in winding possibly also together with the holding winding, serves to move and engage the starter pinion.
  • the starter pinion By means of the holding winding alone, the starter pinion can then possibly be held in the engaged state, for which less force is required than for engaging.
  • a main current path is to be understood as such a current path within the starting device which is used to energize the electrical machine (starter motor) of the starting device and sometimes has a very high current flow.
  • An NTC resistance element is incorporated in this main current path, i.e. an NTC resistance element forms part of the main current path or the current for or through the electrical machine must flow via the connection bolt (or via both connection bolts) and via the NTC resistance element.
  • NTC resistor or NTC resistor element also known as an NTC thermistor, is a resistor or resistor element, which - in contrast to conventional conductors like most metals - has a lower electrical resistance with increasing temperature.
  • the abbreviation NTC stands for "Negative Temperature Coefficient”.
  • NTC resistors are mostly semiconductor materials, some compound semiconductors and various metallic alloys.
  • An NTC resistor can be produced, for example, by film casting or powder sintering. Examples include neodymium, gadolinium, lanthanum, strontium and iron oxide, individually or as a combination of several of these materials, as materials for NTC resistors.
  • NTC resistors are in the form of ceramics and can, for example, have a cuboid shape.
  • Such an NTC resistance element in the main current path can thus counteract temperature-dependent effects.
  • PTC Pulsitive Temperature Coefficient
  • a high current is present in the electrical machine when it is energized, which can lead to an undesirable voltage drop. This is compensated for by the NTC resistor element.
  • a high resistance in the winding is also compensated for at high temperatures, since the ohmic resistance of the NTC resistance element is then low.
  • NTC resistance element A common integration of such an NTC resistance element takes place via a separate housing for the NTC resistance element, which then has to be attached to the magnetic switch or its housing, for example by means of screws, possibly also using insulation elements and busbars or the like.
  • the NTC resistance element is arranged in a housing of the magnetic switch and is also connected electrically between two parts of the connecting bolt. It has been found that sufficient functional reliability and a sufficient service life of the NTC resistor element can be achieved in this way, at least at the same level as with conventional attachment. In contrast, however, there are significant advantages with regard to the components required and thus also the cost. For example, no additional housing and no fastening means such as screws and no insulation elements or busbars are necessary.
  • a connecting bolt that is usually used can be divided into two, in particular viewed in the longitudinal direction. Both parts of the connecting bolt can then be introduced, for example screwed, separately into the housing cover, for example. The NTC resistance element can then be connected electrically in a suitable manner between the two parts of the connecting bolt.
  • the NTC resistance element is preferably arranged in a housing cover of the housing (i.e. the housing cover forms part of the housing of the magnetic switch).
  • the housing cover forms part of the housing of the magnetic switch.
  • the connection bolts are provided in the housing cover, which are used to connect the main circuit of the starter or its electrical machine and, in this respect, can in particular also be connected by means of the switching bridge in order to close the main circuit.
  • a preferred possibility of electrically connecting the NTC resistance element between the two parts of the connecting bolt is to arrange the NTC resistance element geometrically between the two parts of the connecting bolt.
  • the NTC resistance element can in particular be mechanically braced and / or clamped between the two parts of the connecting bolt.
  • part of the connecting bolt is first completely introduced, for example screwed, into the housing or the housing cover.
  • the NTC resistor element can then be introduced into the housing or the housing cover and brought into contact with the part of the connecting bolt that has already been introduced.
  • the NTC resistance element (with a suitable design) is screwed to the housing or the housing cover.
  • the other part of the connecting bolt can then be introduced into the housing or the housing cover or screwed to it, the NTC resistor element being braced between the two parts.
  • the NTC resistor element being braced between the two parts.
  • a further, particularly preferred possibility of electrically connecting the NTC resistance element between the two parts of the connecting bolt is for the NTC element to be at least indirectly against a spring element, in particular a spring, which can be acted upon with a force by means of the magnet armature. It is useful here if an insulation element is provided which is arranged between the NTC element or a supply line for this and the spring element.
  • a spring element or such a spring can in particular be a so-called contact return spring for the contact bridge already mentioned above for establishing a contact in the main circuit.
  • the NTC resistance element is not or not necessarily arranged between the two parts of the connecting bolt; rather, suitable busbars or lines can be provided between each part of the connecting bolt and the NTC resistance element.
  • a particular advantage of this arrangement is that when the winding of the magnetic switch is energized, the contact bridge presses against the contact return spring and this then presses against the NTC resistance element. It can thus be achieved that when the NTC resistor element is in use, or at least to a large extent, it is pressed against the housing or the housing cover. This has a positive effect on the contact resistance of the NTC resistor element and also prevents breakage.
  • the invention also relates to a starting device, in particular a starter, for an internal combustion engine of a motor vehicle, with an electrical machine which is set up to start the internal combustion engine, with an inventive one Magnetic switch, and with a starter pinion that can be rotated by means of the electric machine, the starter pinion being adjustable between two different positions by means of the magnetic switch, and the connecting bolt of the magnetic switch being or being provided in the main current path of the starting device.
  • a starting device in particular a starter, for an internal combustion engine of a motor vehicle, with an electrical machine which is set up to start the internal combustion engine, with an inventive one Magnetic switch, and with a starter pinion that can be rotated by means of the electric machine, the starter pinion being adjustable between two different positions by means of the magnetic switch, and the connecting bolt of the magnetic switch being or being provided in the main current path of the starting device.
  • a starting device or a starter 1 for an internal combustion engine 100 with a magnetic switch 6 is shown schematically.
  • the starting device 1 is used to start the internal combustion engine 100 and has a starter pinion 2 which is to be brought into engagement with a ring gear 3 of the internal combustion engine.
  • the starter pinion 2 is axially displaceable on a shaft 4 between a disengaged position and the engaged position with the ring gear 3 - or generally two different positions - but is coupled to the shaft 4 in a rotationally fixed manner.
  • the shaft 4 is driven by an electric machine or an electric drive motor 5 as a starter motor.
  • An axial advance movement of the starter pinion 2 takes place by means of the magnetic switch or starter relay 6, which is designed as an electromagnetic actuator and has an axially displaceable magnet armature 7 in a housing or relay housing 20, with the magnet armature 7 kinematically via a fork or engagement lever 8 the starter pinion 2 is coupled.
  • the armature 6 has only indicated windings 18, 19, which can be energized via a power line 9, whereupon the armature 7 is adjusted against the force of a spring element 12 acting on it and the engagement lever 8 transmits the actuating movement to the starter pinion 2.
  • the magnet switch 6 When the magnet switch 6 is switched off, the magnet armature 7 is moved into the starting position by the force of the spring element 12, and accordingly the engagement lever 8 also moves into a set-back position, which allows the starter pinion 2 to move back from the engaged position to the disengaged position.
  • the actuating movement of the armature 7 of the magnetic switch 6 is also used to switch the electric drive motor 5 on or off.
  • the electric drive motor 5 is energized via a power line 10 in which a switch 11 is located, which is integrated in the housing of the magnetic switch 6.
  • the switch 11 has a contact bridge or switching bridge 13 and a switching axis 14, which is arranged coaxially to the magnet armature 7 and is axially displaceable in the housing.
  • the switch 11 is supported on the housing 20 via a spring element 15.
  • the spring element 15 is located on the switch 11 on the side facing away from the armature 7.
  • the switching bridge 13 consists of an electrically conductive material in order to enable a current to flow in the contact position.
  • the switching bridge 13 When the switch is closed, the switching bridge 13 is in contact with two contact elements 16 in the circuit of the drive motor 5, the contact elements, as will be seen later, generally being designed as connecting bolts.
  • the magnet switch 6 When the magnet switch 6 is actuated, the magnet armature 7 is adjusted, the adjusting movement of the magnet armature being transmitted via the switching axis 14 to the switching bridge 13 against the force of the spring element 15, whereby the switching bridge 13 is moved from the out of contact position into the contact position in which a Contact with the two contact elements 16 is made.
  • the circuit is then closed and the drive motor 5 is started. As soon as the starter relay 6 is switched off, the armature 7 moves into the starting position, whereby the switch 11 is opened again by the force of the spring element 15.
  • the current path with the power line 10, the contact elements 16, the contact bridge 13 and the electric drive motor 5 is also referred to as the main current path.
  • FIG 2 an inventive magnetic switch 6 is shown in a preferred embodiment in a sectional view.
  • the magnetic switch 6 can be the in Figure 1 act only roughly schematically shown magnetic switch.
  • the magnetic switch 6 in the housing 20 has windings 18 and 19 which can be energized and which generate a magnetic field which moves the magnet armature 7 axially.
  • the winding 18 can be a pull-in winding and the winding 19 can be a holding winding.
  • the switching axis 14 is mounted axially displaceably in the housing 20 and is acted upon by force by the spring element 15 into the non-contact position of the movable part of the switch 11.
  • the contact elements 16 - designed as connecting bolts - which are located in the main current path are also integrated or arranged in the housing 20, in particular a housing cover 21 as part of the housing 20.
  • One of the two connecting bolts 16 is divided into two parts 16.1 and 16.2, which are spatially separated from one another. Geometrically between these two parts 16.1 and 16.2, an NTC resistance element 30 is now arranged, which is electrically interconnected in this way, clamped between these two parts 16.1 and 16.2.
  • the two parts 16.1 and 16.2 can, for example, be threaded in the housing 20 or the housing cover 21 be screwed.
  • the housing cover 21 consists in particular of an electrically insulating material.
  • the NTC resistance element 30 which can in particular be a flat or plate-shaped element, lies flat against the corresponding ends or contact areas of the parts 16.1 and 16.2. In this way, the NTC resistance element 30 is provided in the main current path and can limit voltage drops. In addition, simple and safe assembly is also achieved.
  • FIG. 3 a magnetic switch 6 'according to the invention is shown in a further preferred embodiment in a sectional view.
  • the magnetic switch 6 ' basically corresponds to the magnetic switch 6 according to FIG Figure 2 so that reference can also be made to the explanations there.
  • the resistance element 30 is now designed, for example, in the form of a pin and arranged in an elongated direction, so that a bracing of the NTC resistance element is achieved through corresponding formations or blind holes in the ends of the parts 16.1 and 16.2. This also allows simple and safe assembly.
  • FIG. 4 a magnetic switch 6 "according to the invention is shown in a further preferred embodiment in a sectional view.
  • the magnetic switch 6" basically corresponds to the magnetic switch 6 according to FIG Figure 2 so that reference can also be made to the explanations there.
  • the resistance element 30 is not arranged geometrically between the two parts 16.1 and 16.2 here. Rather, it is arranged, so to speak, as an extension of the switching axis 14 and thereby (indirectly) clamped between the spring element 15 and the housing cover 21.
  • Two conductors or busbars 31 and 32 are provided, between which the NTC resistor element is geometrically arranged and which are each (electrically) connected to one of the two parts 16.1 and 16.2.
  • an insulation element 35 can be arranged between the line 32, which here serves as a feed line for the NTC resistance element 30, and the spring element. This can prevent the spring element 15 or other components in contact with it from being subjected to tension.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

Die Erfindung betrifft einen Magnetschalter (6), insbesondere Starterrelais, für eine Startvorrichtung (1) einer Brennkraftmaschine (100), der einen Anschlussbolzen (16) für einen Hauptstrompfad der Startvorrichtung (1) aufweist, und wobei in dem Hauptstrompfad ein NTC-Widerstandselement (30) eingebracht ist, wobei das NTC-Widerstandselement (30) in einem Gehäuse (20) des Magnetschalters angeordnet und elektrisch zwischen zwei Teile (16.1, 16.2) des Anschlussbolzens (16) geschaltet ist, sowie eine solche Startvorrichtung.

Description

  • Die vorliegende Erfindung betrifft einen Magnetschalter, insbesondere Starterrelais, für eine Startvorrichtung einer Brennkraftmaschine und eine Startvorrichtung mit einem solchen Magnetschalter.
  • Stand der Technik
  • Brennkraftmaschinen in Kraftfahrzeugen können mittels einer elektrischen Maschine, beispielsweise in Form eines Starters gestartet werden. Da eine elektrische Maschine gerade bei ihrem Anlauf einen hohen Stromfluss ("Kurzschlussstrom") verursacht, kann es dabei zu Spannungseinbrüchen im Bordnetz des Kraftfahrzeugs kommen.
  • Aus der DE 103 17 466 A1 und der DE 10 2012 215 338 A1 sind Starteinrichtungen für Brennkraftmaschinen bekannt, bei denen ein NTC-Widerstand im Stromkreis des Starters bzw. dessen elektrischer Maschine vorgesehen ist, um solche Spannungseinbrüche in Abhängigkeit von einer Temperatur in gewissem Maße zu reduzieren.
  • Aus der DE 41 06 247 C1 , der DE 41 22 252 A1 und der DE 10 2007 036 789 A1 sind Startvorrichtungen für Brennkraftmaschinen bekannt, bei denen ein NTC-Widerstand im Stromkreis des Relais, das zum Einrücken des Starters dient, vorgesehen ist, um den Anzugsstrom im Relais zu begrenzen.
  • Offenbarung der Erfindung
  • Erfindungsgemäß werden ein Magnetschalter für eine Startvorrichtung und eine Startvorrichtung mit den Merkmalen der unabhängigen Patentansprüche vorgeschlagen. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche sowie der nachfolgenden Beschreibung.
  • Die Erfindung geht aus von einem Magnetschalter, insbesondere einem Starterrelais, für eine Startvorrichtung bzw. einen Starter einer Brennkraftmaschine, der einen Anschlussbolzen für einen Hauptstrompfad der Startvorrichtung aufweist. Dabei kann es sich insbesondere um die Verbindung zur Fahrzeugbatterie (Klemme 30) oder die Verbindung zum Startermotor (Klemme 45) handeln. Typischerweise weist der Magnetschalter einen weiteren Anschlussbolzen für den Hauptstrompfad, eine bestrombare Wicklung, einen Magnetanker und eine Kontaktbrücke auf, wobei der Magnetschalter dazu eingerichtet ist, durch Bestromung der Wicklung den Magnetanker zu bewegen und darüber mittels der Kontaktbrücke die zwei Anschlussbolzen zu kontaktieren, um so den Hauptstrompfad elektrisch zu schließen. Typischerweise ist der Magnetanker dabei - bei Verwendung mit einer Startvorrichtung bzw. einem Starter - über einen Gabelhebel oder anderweitig mit einem Starterritzel gekoppelt, um dieses in einen Zahnkranz einer Brennkraftmaschine einzuspuren.
  • Es kann auch noch eine weitere Wicklung vorgesehen sein, wobei die zwei Wicklungen dann insbesondere eine Einzugswicklung und eine Haltewicklung umfassen können, die beide ggf. separat bestromt werden können. Dabei dient die Einzugswicklung, ggf. auch zusammen mit der Haltewicklung, dazu, das Starterritzel zu bewegen und einzuspuren. Mittels der Haltewicklung alleine kann das Starterritzel dann ggf. in dem eingespurten Zustand gehalten werden, wozu weniger Kraft nötig ist als zum Einspuren.
  • Unter einem Hauptstrompfad ist dabei ein solcher Strompfad innerhalb der Startvorrichtung zu verstehen, der zur Bestromung der elektrischen Maschine (Startermotor) der Startvorrichtung dient und dabei einen mitunter sehr hohen Stromfluss aufweist. In diesem Hauptstrompfad ist ein NTC-Widerstandselement eingebracht, d.h. ein NTC-Widerstandselement bildet einen Teil des Hauptstrompfads bzw. der Strom für bzw. durch die elektrische Maschine muss über den Anschlussbolzen (bzw. über beide Anschlussbolzen) und über das NTC-Widerstandselement fließen.
  • Bei einem NTC-Widerstand bzw. NTC-Widerstandselement, auch als Heißleiter bezeichnet, handelt es sich um einen Widerstand bzw. ein Widerstands-Element, welches - im Gegensatz zu herkömmlichen Leitern wie den meisten Metallen - mit zunehmender Temperatur einen geringeren elektrischen Widerstand aufweist. Die Abkürzung NTC steht dabei für "Negative Temperature Coefficient". Bei NTC-Widerständen handelt es sich meist um Halbleitermaterialien, einige Verbindungshalbleiter und verschiedene metallische Legierungen. Ein NTC-Widerstand kann beispielsweise durch Foliengießen oder Pulversintern hergestellt werden. Beispielhaft seien Neodym, Gadolinium, Lanthan, Strontium und Eisenoxid, einzelnen oder als eine Kombination mehrerer dieser Materialien, als Materialien für NTC-Widerstände genannt. Insbesondere liegen NTC-Widerstände dabei als Keramik vor und können dabei beispielsweise quaderförmig ausgebildet sein.
  • Durch ein solches NTC-Widerstandselement im Hauptstrompfad kann somit temperaturabhängigen Effekten entgegengewirkt werden. Bei niedrigen Temperaturen ist aufgrund des PTC-Effekts der Wicklung (PTC steht dabei für "Positive Temperature Coefficient") in der elektrischen Maschine bei deren Bestromung nämlich ein hoher Strom vorhanden, was zu einem unerwünschten Spannungseinbruch führen kann. Dies wird durch das NTC-Widerstandselement ausgeglichen. Ebenso wird bei hohen Temperaturen ein hoher Widerstand in der Wicklung ausgeglichen, da dann der ohmsche Widerstand des NTC-Widerstandselements gering ist.
  • Eine übliche Einbindung eines solchen NTC-Widerstandselements erfolgt über ein separates Gehäuse für das NTC-Widerstandselement, das dann an den Magnetschalter bzw. dessen Gehäuse angebracht werden muss, beispielsweise mittels Schrauben, ggf. auch unter Verwendung von Isolationselementen und Stromschienen oder dergleichen.
  • Erfindungsgemäß ist nun vorgesehen, dass das NTC-Widerstandselement in einem Gehäuse des Magnetschalters angeordnet und zudem elektrisch zwischen zwei Teilen des Anschlussbolzens geschaltet ist. Es hat sich herausgestellt, dass damit eine ausreichende Funktionssicherheit sowie eine ausreichende Lebensdauer des NTC-Widerstandselements erreicht werden kann, und zwar zumindest auf demselben Niveau wie bei herkömmlicher Anbringung. Demgegenüber gibt es aber bedeutende Vorteile hinsichtlich der benötigten Bauteile und damit auch der Kosten. So sind nämlich beispielsweise kein zusätzliches Gehäuse und keine Befestigungsmittel wie Schrauben und auch keine Isolationselemente oder Stromschienen nötig.
  • Zum Vorsehen des NTC-Widerstandselements zwischen zwei Teilen des Anschlussbolzens kann ein üblicherweise verwendeter Anschlussbolzen zweitgeteilt werden, insbesondere in Längsrichtung gesehen. Beide Teile des Anschlussbolzens können dann separat in beispielsweise den Gehäusedeckel eingebracht, beispielsweise eingeschraubt werden. Das NTC-Widerstandselement kann dann auf geeignete Weise elektrisch zwischen den beiden Teilen des Anschlussbolzens eingebunden werden.
  • Vorzugsweise ist das NTC-Widerstandselement dabei in einem Gehäusedeckel des Gehäuses (d.h. der Gehäusedeckel bildet einen Teil des Gehäuses des Magnetschalters) angeordnet. Dies erlaubt einen besonders einfachen Einbau des NTC-Widerstandselements, da der Gehäusedeckel zunächst separat vorhanden ist und erst bei einem Ende des Zusammenbaus des Magnetschalters mit dem Rest des Gehäuses verbunden wird. In dem Gehäusedeckel sind dabei die Anschlussbolzen vorgesehen, die zum Anschluss für den Hauptstromkreis des Starters bzw. dessen elektrischer Maschine dienen und insofern insbesondere auch mittels der Schaltbrücke verbunden werden können, um den Hauptstromkreis zu schließen.
  • Eine bevorzugte Möglichkeit, das NTC-Widerstandselement elektrisch zwischen die beiden Teile des Anschlussbolzens zu schalten, ist, das NTC-Widerstandselement geometrisch zwischen den zwei Teilen des Anschlussbolzens anzuordnen. Hierzu kann das NTC-Widerstandselement insbesondere zwischen den zwei Teilen des Anschlussbolzens mechanisch verspannt und/oder verklemmt sein. Denkbar ist in diesem Fall beispielsweise, dass zunächst ein Teil des Anschlussbolzens vollständig in das Gehäuse bzw. den Gehäusedeckel eingebracht, beispielsweise eingeschraubt, wird. Dann kann das NTC-Widerstandselement in das Gehäuse bzw. den Gehäusedeckel eingebracht und mit dem bereits eingebrachten Teil des Anschlussbolzens in Kontakt gebracht werden.
  • Denkbar ist hierbei auch, dass das NTC-Widerstandselement (bei geeigneter Ausbildung) mit dem Gehäuse bzw. dem Gehäusedeckel verschraubt wird. Anschließend kann der andere Teil des Anschlussbolzens in das Gehäuse bzw. den Gehäusedeckel eingebracht bzw. damit verschraubt werden, wobei dabei das NTC-Widerstandselement zwischen den beiden Teilen verspannt wird. Es versteht sich, dass - insbesondere je nach Form des NTC-Widerstandselement - auch andere Möglichkeiten denkbar sind, das NTC-Widerstandselement (geometrisch) zwischen den beiden Teilen des Anschlussbolzens anzuordnen.
  • Eine weitere, besonders bevorzugte Möglichkeit, das NTC-Widerstandselement elektrisch zwischen die beiden Teile des Anschlussbolzens zu schalten, ist, dass das NTC-Element zumindest mittelbar an einem mittels des Magnetankers mit einer Kraft beaufschlagbaren Federelements, insbesondere einer Feder, anliegt. Zweckmäßig ist es hierbei, wenn ein Isolationselement vorgesehen ist, das zwischen dem NTC-Element oder einer Zuleitung hierzu und dem Federelement angeordnet ist. Bei einem solchen Federelement bzw. einer solchen Feder kann es sich insbesondere um eine sog. Kontaktrückstellfeder für die vorstehend schon erwähnte Kontaktbrücke zum Herstellen eines Kontakts im Hauptstromkreis handeln.
  • Damit ist das NTC-Widerstandselement nicht bzw. nicht notwendigerweise zwischen den zwei Teilen des Anschlussbolzens angeordnet, vielmehr können geeignete Stromschienen oder Leitungen zwischen jeweils einem Teil des Anschlussbolzens und dem NTC-Widerstandselement vorgesehen sein. Ein besonderer Vorteil dieser Anordnung liegt darin, dass bei bestromter Wicklung des Magnetschalters die Kontaktbrücke gegen die Kontaktrückstellfeder und diese dann gegen das NTC-Widerstandselement drückt. Damit kann erreicht werden, dass dann oder zumindest in weiten Teilen dann, wenn das NTC-Widerstandselement in Gebrauch ist, dieses gegen das Gehäuse bzw. den Gehäusedeckel gedrückt wird. Dies wirkt sich positiv auf den Übergangswiderstand des NTC-Widerstandselements aus und beugt zudem Brüchen vor.
  • Gegenstand der Erfindung ist weiterhin eine Startvorrichtung, insbesondere ein Starter, für eine Brennkraftmaschine eines Kraftfahrzeugs, mit einer elektrischen Maschine, die zum Starten der Brennkraftmaschine eingerichtet ist, mit einem erfindungsgemäßen Magnetschalter, und mit einem Starterritzel, das mittels der elektrischen Maschine drehbar ist, wobei das Starterritzel mittels des Magnetschalters zwischen zwei verschiedenen Positionen verstellbar ist, und wobei der Anschlussbolzen des Magnetschalters im Hauptstrompfad der Startvorrichtung liegt bzw. vorgesehen ist.
  • Hinsichtlich der Vorteile und weiterer bevorzugter Ausgestaltungen sei zur Vermeidung von Wiederholungen auf die Ausführungen zum Magnetschalter verwiesen, die hier entsprechend gelten.
  • Weitere Vorteile und Ausgestaltungen der Erfindung ergeben sich aus der Beschreibung und der beiliegenden Zeichnung.
  • Die Erfindung ist anhand von Ausführungsbeispielen in der Zeichnung schematisch dargestellt und wird im Folgenden unter Bezugnahme auf die Zeichnung beschrieben.
  • Kurze Beschreibung der Zeichnungen
  • Figur 1
    zeigt schematisch eine Startvorrichtung für eine Brennkraftmaschine mit einem Magnetschalter.
    Figuren 2 bis 4
    zeigen schematisch erfindungsgemäße Magnetschalter in verschiedenen bevorzugten Ausführungsformen in einer Schnittansicht.
    Ausführungsform(en) der Erfindung
  • In Figur 1 ist schematisch eine Startvorrichtung bzw. ein Starter 1 für eine Brennkraftmaschine 100 mit einem Magnetschalter 6 dargestellt. Die Startvorrichtung 1 dient zum Starten der Brennkraftmaschine 100 und weist ein Starterritzel 2 auf, das in Eingriff mit einem Zahnkranz 3 der Brennkraftmaschine zu bringen ist. Das Starterritzel 2 ist auf einer Welle 4 axial verschiebbar zwischen einer Außereingriffsposition und der Eingriffsposition mit dem Zahnkranz 3 - oder generell zwei verschiedenen Positionen -gelagert, jedoch drehfest mit der Welle 4 gekoppelt. Die Welle 4 wird von einer elektrischen Maschine bzw. einem elektrischen Antriebsmotor 5 als Startermotor angetrieben.
  • Eine axiale Vorschubbewegung des Starterritzels 2 erfolgt mittels des Magnetschalters bzw. Starterrelais 6, der als elektromagnetischer Aktuator ausgebildet ist und einen axial verschiebbaren Magnetanker 7 in einem Gehäuse bzw. Relaisgehäuse 20 aufweist, wobei der Magnetanker 7 über einen Gabel- bzw. Einrückhebel 8 kinematisch mit dem Starterritzel 2 gekoppelt ist. Der Magnetanker 6 weist hier nur angedeutete Wicklungen 18, 19 auf, die über eine Stromleitung 9 bestromt werden können, woraufhin der Magnetanker 7 gegen die Kraft eines auf ihn wirkenden Federelementes 12 verstellt wird und der Einrückhebel 8 die Stellbewegung auf das Starterritzel 2 überträgt.
  • Mit dem Abschalten des Magnetschalters 6 wird der Magnetanker 7 durch die Kraft des Federelementes 12 in die Ausgangsstellung verstellt, dementsprechend gelangt auch der Einrückhebel 8 in eine zurückversetzte Position, die es dem Starterritzel 2 erlaubt, aus der Eingriffsposition in die Außereingriffsposition zurück zu gelangen.
  • Die Stellbewegung des Magnetankers 7 des Magnetschalters 6 dient auch zum Einschalten bzw. Ausschalten des elektrischen Antriebsmotors 5. Der elektrische Antriebsmotor 5 wird über eine Stromleitung 10 bestromt, in der sich ein Schalter 11 befindet, welcher in das Gehäuse des Magnetschalters 6 integriert ist.
  • Der Schalter 11 weist eine Kontaktbrücke bzw. Schaltbrücke 13 sowie eine Schaltachse 14 auf, die koaxial zum Magnetanker 7 angeordnet und im Gehäuse axial verschieblich gelagert ist. Zudem ist der Schalter 11 über ein Federelement 15 am Gehäuse 20 abgestützt. Das Federelement 15 befindet sich auf der dem Magnetanker 7 abgewandten Seite am Schalter 11. Die Schaltbrücke 13 besteht aus einem elektrisch leitfähigen Material, um in der Kontaktstellung einen Stromfluss zu ermöglichen.
  • Die Schaltbrücke 13 steht bei geschlossenem Schalter in Kontakt mit zwei Kontaktelementen 16 im Stromkreis des Antriebsmotors 5, wobei die Kontaktelemente, wie später noch zu sehen, in der Regel als Anschlussbolzen ausgebildet sind. Bei einem Betätigen des Magnetschalters 6 wird der Magnetanker 7 verstellt, wobei die Stellbewegung des Magnetankers über die Schaltachse 14 auf die Schaltbrücke 13 gegen die Kraft des Federelementes 15 übertragen wird, wodurch die Schaltbrücke 13 aus der Außerkontaktstellung in die Kontaktstellung verstellt wird, in der ein Kontakt mit den beiden Kontaktelementen 16 hergestellt ist. Daraufhin ist der Stromkreis geschlossen und der Antriebsmotor 5 wird gestartet. Sobald das Starterrelais 6 abgeschaltet wird, gelangt der Anker 7 in die Ausgangsposition, wodurch der Schalter 11 durch die Kraft des Federelementes 15 wieder geöffnet wird. Der Strompfad mit der Stromleitung 10, den Kontaktelementen 16, der Kontaktbrücke 13 sowie dem elektrischen Antriebsmotor 5 wird dabei auch als Hauptstrompfad bezeichnet.
  • In Figur 2 ist ein erfindungsgemäßer Magnetschalter 6 in einer bevorzugten Ausführungsform in einer Schnittansicht dargestellt. Bei dem Magnetschalter 6 kann es sich um den in Figur 1 nur grob schematisch dargestellten Magnetschalter handeln.
  • Wie zu sehen ist, weist der Magnetschalter 6 im Gehäuse 20 bestrombare Wicklungen 18 und 19 auf, die ein Magnetfeld erzeugen, welches den Magnetanker 7 axial verstellt. Beispielsweise kann es sich bei der Wicklung 18 um eine Einzugswicklung, bei der Wicklung 19 um eine Haltewicklung handeln. Die Schaltachse 14 ist axial verschieblich im Gehäuse 20 gelagert und wird von dem Federelement 15 in die Außerkontaktstellung des beweglichen Teils des Schalters 11 kraftbeaufschlagt. Auch die - als Anschlussbolzen ausgebildeten - Kontaktelemente 16, die im Hauptstrompfad liegen, sind in das Gehäuse 20, insbesondere einen Gehäusedeckel 21 als Teil des Gehäuses 20 integriert bzw. darin angeordnet.
  • Einer der beiden Anschlussbolzen 16 ist dabei in zwei Teile 16.1 und 16.2 geteilt, die räumlich voneinander getrennt sind. Geometrisch zwischen diesen beiden Teilen 16.1 und 16.2 ist nun ein NTC-Widerstandselement 30 angeordnet, das auf diese Weise zwischen diesen beiden Teilen 16.1 und 16.2 eingeklemmt elektrisch verschaltet ist. Hierzu können die beiden Teile 16.1 und 16.2 beispielsweise mittels Gewinde in dem Gehäuse 20 bzw. dem Gehäusedeckel 21 verschraubt sein. Der Gehäusedeckel 21 besteht insbesondere aus einem elektrisch isolierenden Material.
  • Das NTC-Widerstandselement 30, bei dem es sich insbesondere um ein flaches bzw. plattenförmiges Element handeln kann, liegt dabei flächig an entsprechenden Enden bzw. Kontaktbereichen der Teile 16.1 bzw. 16.2 an. Auf diese Weise ist das NTC-Widerstandselement 30 im Hauptstrompfad vorgesehen und kann Spannungseinbrüche begrenzen. Zudem wird aber auch eine einfache und sichere Montage erreicht.
  • In Figur 3 ist ein erfindungsgemäßer Magnetschalter 6' in einer weiteren bevorzugten Ausführungsform in einer Schnittansicht dargestellt. Der Magnetschalter 6' entspricht im Grunde dem Magnetschalter 6 gemäß Figur 2, sodass auch auf die dortigen Ausführungen verweisen werden kann.
  • Im Gegensatz zur Ausführungsform gemäß Figur 2 ist das Widerstandselement 30 hier nun jedoch beispielsweise in Form eines Stiftes ausgebildet und in länglicher Richtung angeordnet, sodass durch entsprechende Ausformungen bzw. Sacklöcher in den Enden der Teile 16.1 bzw. 16.2 eine Verspannung des NTC-Widerstandselements erreicht wird. Auch dies erlaubt eine einfache und sichere Montage.
  • In Figur 4 ist ein erfindungsgemäßer Magnetschalter 6" in einer weiteren bevorzugten Ausführungsform in einer Schnittansicht dargestellt. Der Magnetschalter 6" entspricht im Grunde dem Magnetschalter 6 gemäß Figur 2, sodass auch auf die dortigen Ausführungen verweisen werden kann.
  • Im Gegensatz zur Ausführungsform gemäß Figur 2 ist das Widerstandselement 30 hier nun jedoch nicht geometrisch zwischen den zwei Teilen 16.1 und 16.2 angeordnet. Vielmehr ist es sozusagen in Verlängerung der Schaltachse 14 angeordnet und dabei (mittelbar) zwischen dem Federelement 15 und dem Gehäusedeckel 21 eingeklemmt. Dabei sind zwei Leiter bzw. Stromschienen 31 und 32 vorgesehen, zwischen denen das NTC-Widerstandselement geometrisch angeordnet ist und die jeweils mit einem der zwei Teilte 16.1 und 16.2 (elektrisch) verbunden sind.
  • Auf diese Weise wird nicht nur eine einfache und sichere Montage erreicht, sondern bei Betätigung des Magnetschalters 6" wird der elektrische Kontakt zwischen den Leitern 31 und 32 und dem NTC-Widerstandselement 30 aufgrund der dann wirkenden Federkraft verbessert.
  • Ergänzend kann ein Isolationselement 35 zwischen der Leitung 32, die hier als Zuleitung für das NTC-Widerstandselement 30 dient, und dem Federelement angeordnet sein. Damit kann verhindert werden, dass das Federelement 15 oder andere damit in Kontakt stehende Komponenten mit Spannung beaufschlagt werden.

Claims (8)

  1. Magnetschalter (6, 6', 6"), insbesondere Starterrelais, für eine Startvorrichtung (1) einer Brennkraftmaschine (100), der einen Anschlussbolzen (16) für einen Hauptstrompfad der Startvorrichtung (1) aufweist, und wobei in dem Hauptstrompfad ein NTC-Widerstandselement (30) eingebracht ist,
    wobei das NTC-Widerstandselement (30) in einem Gehäuse (20) des Magnetschalters angeordnet und elektrisch zwischen zwei Teile (16.1, 16.2) des Anschlussbolzens (16) geschaltet ist.
  2. Magnetschalter (6, 6', 6") nach Anspruch 1, wobei das NTC-Widerstandselement (30) in einem Gehäusedeckel (21) des Gehäuses angeordnet ist.
  3. Magnetschalter (6, 6') nach Anspruch 1 oder 2, wobei das NTC-Widerstandselement (30) geometrisch zwischen den zwei Teilen (16.1, 16.2) des Anschlussbolzens angeordnet ist.
  4. Magnetschalter (6, 6', 6') nach Anspruch 3, wobei das NTC-Widerstandselement (30) zwischen den zwei Teilen des Anschlussbolzens (16.1, 16.2) mechanisch verspannt und/oder verklemmt ist.
  5. Magnetschalter (6") nach Anspruch 1 oder 2, wobei das NTC-Widerstandselement (30) zumindest mittelbar an einem mittels eines Magnetankers (7) mit einer Kraft beaufschlagbaren Federelement (15) anliegt.
  6. Magnetschalter (6") nach Anspruch 5, mit einem Isolationselement (35), das zwischen dem NTC-Widerstandselement oder einer Zuleitung (32) und dem Federelement (15) angeordnet ist.
  7. Magnetschalter (6, 6', 6") nach einem der vorstehenden Ansprüche, mit einem weiteren Anschlussbolzen (16) für den Hauptstrompfad, eine bestrombare Wicklung (18, 19), einem Magnetanker (7) und einer Kontaktbrücke (13), wobei der Magnetschalter dazu eingerichtet ist, durch Bestromung der Wicklung (18, 19) den Magnetanker (7) zu bewegen und darüber mittels der Kontaktbrücke (13) die zwei Anschlussbolzen (16) zu kontaktieren, um so den Hauptstrompfad elektrisch zu schließen.
  8. Startvorrichtung (1), insbesondere Starter, für eine Brennkraftmaschine (100) eines Kraftfahrzeugs, mit einer elektrischen Maschine (5), die zum Starten der Brennkraftmaschine eingerichtet ist, mit einem Magnetschalter (6, 6', 6") nach einem der vorstehenden Ansprüche, und mit einem Starterritzel (2), das mittels der elektrischen Maschine (5) drehbar ist, wobei das Starterritzel (2) mittels des Magnetschalters (6, 6', 6") zwischen zwei verschiedenen Positionen verstellbar ist, und wobei der Anschlussbolzen (16) des Magnetschalters im Hauptstrompfad der Startvorrichtung (1) liegt.
EP19207708.9A 2019-11-07 2019-11-07 Magnetschalter für eine starteinrichtung und startvorrichtung Withdrawn EP3819494A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19207708.9A EP3819494A1 (de) 2019-11-07 2019-11-07 Magnetschalter für eine starteinrichtung und startvorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19207708.9A EP3819494A1 (de) 2019-11-07 2019-11-07 Magnetschalter für eine starteinrichtung und startvorrichtung

Publications (1)

Publication Number Publication Date
EP3819494A1 true EP3819494A1 (de) 2021-05-12

Family

ID=68502916

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19207708.9A Withdrawn EP3819494A1 (de) 2019-11-07 2019-11-07 Magnetschalter für eine starteinrichtung und startvorrichtung

Country Status (1)

Country Link
EP (1) EP3819494A1 (de)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4122252A1 (de) 1990-07-18 1992-01-23 Volkswagen Ag Starteinrichtung fuer eine brennkraftmaschine
DE4106247C1 (en) 1991-02-28 1992-04-30 Robert Bosch Gmbh, 7000 Stuttgart, De Starter circuit for IC engine - incorporates NTC resistor in parallel with relay to inhibit starting at very low temp.
DE10317466A1 (de) 2003-04-16 2004-12-09 Robert Bosch Gmbh Elektromotor
DE102007036789A1 (de) 2007-08-03 2009-02-05 Robert Bosch Gmbh Startvorrichtung mit Temperaturkompensation
DE102012215338A1 (de) 2012-08-29 2014-03-06 Robert Bosch Gmbh Startvorrichtung für eine Brennkraftmaschine
DE102016221673A1 (de) * 2016-11-04 2018-05-09 Seg Automotive Germany Gmbh Starteinrichtung für eine Brennkraftmaschine eines Kraftfahrzeugs
DE102017215242A1 (de) * 2017-08-31 2019-02-28 Seg Automotive Germany Gmbh NTC-Bauteil zum Einbau in den Stromkreis einer elektrischen Baueinheit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4122252A1 (de) 1990-07-18 1992-01-23 Volkswagen Ag Starteinrichtung fuer eine brennkraftmaschine
DE4106247C1 (en) 1991-02-28 1992-04-30 Robert Bosch Gmbh, 7000 Stuttgart, De Starter circuit for IC engine - incorporates NTC resistor in parallel with relay to inhibit starting at very low temp.
DE10317466A1 (de) 2003-04-16 2004-12-09 Robert Bosch Gmbh Elektromotor
DE102007036789A1 (de) 2007-08-03 2009-02-05 Robert Bosch Gmbh Startvorrichtung mit Temperaturkompensation
DE102012215338A1 (de) 2012-08-29 2014-03-06 Robert Bosch Gmbh Startvorrichtung für eine Brennkraftmaschine
DE102016221673A1 (de) * 2016-11-04 2018-05-09 Seg Automotive Germany Gmbh Starteinrichtung für eine Brennkraftmaschine eines Kraftfahrzeugs
DE102017215242A1 (de) * 2017-08-31 2019-02-28 Seg Automotive Germany Gmbh NTC-Bauteil zum Einbau in den Stromkreis einer elektrischen Baueinheit

Similar Documents

Publication Publication Date Title
DE102011054475B4 (de) Elektromagnetischer Solenoid
DE102005035655A1 (de) Elektromagnetischer Anlassschalter
EP2297450A1 (de) Starter für eine brennkraftmaschine
DE102011001175A1 (de) Maschinen-Start-System mit Hoch- und Niedrigdrehzahlmodi des Motorbetriebs
EP1677327B1 (de) Energieversorgungssystem für Startvorrichtung
EP2702263B1 (de) Startvorrichtung für eine brennkraftmaschine
EP2677161B1 (de) Starterrelais für eine Startvorrichtung
DE102015105209A1 (de) Maschinenstartvorrichtung
WO2008043589A1 (de) Starter für verbrennungsmotoren mit entlastungsschalter
DE102015120320A1 (de) Elektromagnetischer Schalter für einen Verbrennungsmotorstarter
EP2425116B1 (de) Starter mit umschaltbarer polpaarzahl
DE102013107111A1 (de) Aktor zum Antrieb einer Ventileinheit einer Verbrennungskraftmaschine
DE2310003A1 (de) Magnetschalter fuer elektrische anlasser von verbrennungsmotoren
EP3819494A1 (de) Magnetschalter für eine starteinrichtung und startvorrichtung
DE102010041727A1 (de) Starter für eine Brennkraftmaschine
DE102012209804B4 (de) Startvorrichtung für eine Brennkraftmaschine
EP2545270A2 (de) Vorrichtung zum starten einer verbrennungskraftmaschine
EP2375055A2 (de) Abdeckring für Startvorrichtung
DE3239672A1 (de) Elektromagnet fuer einen anlassermotor eines verbrennungsmotors mit zwei wicklungen
DE102011076914A1 (de) Elektronische Einheit
EP2887508B1 (de) Elektromotor, insbesondere Startermotor für eine Startvorrichtung
WO2011069800A1 (de) Startvorrichtung
DE10156389A1 (de) Starteinrichtung für Brennkraftmaschinen
DE102017223106A1 (de) Startvorrichtung für Brennkraftmaschinen sowie Verfahren zum Betrieb einer solchen
DE102018109263A1 (de) Starterrelais für eine Startvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20211113