EP3802904A1 - Procédé de cémentation basse pression d'une pièce comprenant de l'acier - Google Patents

Procédé de cémentation basse pression d'une pièce comprenant de l'acier

Info

Publication number
EP3802904A1
EP3802904A1 EP19735366.7A EP19735366A EP3802904A1 EP 3802904 A1 EP3802904 A1 EP 3802904A1 EP 19735366 A EP19735366 A EP 19735366A EP 3802904 A1 EP3802904 A1 EP 3802904A1
Authority
EP
European Patent Office
Prior art keywords
carbon
gas
carburizing
steel
bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19735366.7A
Other languages
German (de)
English (en)
Inventor
Bruno PETROIX
André MARCARIE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Helicopter Engines SAS
Original Assignee
Safran Helicopter Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Helicopter Engines SAS filed Critical Safran Helicopter Engines SAS
Publication of EP3802904A1 publication Critical patent/EP3802904A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment

Definitions

  • the present invention relates to a low-pressure carburizing process of a workpiece comprising steel.
  • carburizing means a conventional process in the field of metallurgy. It is a thermochemical treatment consisting in the superficial penetration of carbon (C) into a steel piece in order to transform it, on the surface, into a highly carburized steel.
  • a steel alloy is a metal alloy consisting mainly of iron (Fe) and carbon (ranging, for carbon (C), from a mass ratio close to 0%, corresponding to minute traces, up to a rate of 2% ).
  • the carbon content has a considerable influence on the properties of the steel. Below 0.008% carbon (C), for example, steel is rather malleable and is called "iron".
  • the carbon content (C) in particular profoundly modifies the melting point and the mechanical properties of the steel.
  • Increasing the carbon content of a steel improves the hardness (a surface resistance to penetration of a tip) of the steel and decreases its elongation at break. Increasing the surface carbon content thus makes it possible to increase the surface mechanical properties of the part, and to increase its resistance to wear and its endurance.
  • CBP low pressure gas carburizing
  • low pressure carburizing is meant a carburization process carried out in a vacuum furnace with cold walls, which uses gaseous hydrocarbons at low pressure: 2 to 20 mbar absolute, for example 10 mbar, and at elevated temperature.
  • Infracarb® process of ECM Technologies is the patented process used in our Modular Facility for Cementation and Treatments.
  • Infracarb® consists of an alternating injection of C2H2 hydrocarbon, to create a surface enrichment by cracking molecules at high temperature and a neutral gas N2 for diffusion.
  • the difficulty of CBP carburizing lies in the limitation of the carbon diffusion depth, especially during the cementation of materials very sensitive to the presence of carbon, such as Ferrium ® C61 TM and Ferrium ® C64 TM alloys. marketed by the company Questek, and for which it is not necessary to exceed a rate of 0.5% carbon (C) on the surface.
  • Ferrium® C61 TM and C64 TM alloys differ from conventional compositions (for example compositions comprising 0.16% carbon (C), 3% nickel (Ni), less than 1% chromium ( Cr) and traces of molybdenum (Mo) by higher levels of carbon (C) and gammagens: for example, rates of the order of 0.2% carbon (C), 9% nickel (Ni) ), 3.5% chromium (Cr) and 1% molybdenum (Mo).
  • conventional compositions for example compositions comprising 0.16% carbon (C), 3% nickel (Ni), less than 1% chromium ( Cr) and traces of molybdenum (Mo) by higher levels of carbon (C) and gammagens: for example, rates of the order of 0.2% carbon (C), 9% nickel (Ni) ), 3.5% chromium (Cr) and 1% molybdenum (Mo).
  • the gamma-containing elements including cobalt (Co), nickel (Ni), nitrogen (N) and copper (Cu), are addition elements that increase the stability range of a particular iron allotrope: austenite.
  • Austenite allows a high solubility of carbon.
  • the vast majority of so-called stainless steels are austenitic and they combine good corrosion resistance with high mechanical properties.
  • Ferrium® C61 TM and Ferrium® C64 TM alloys also have a higher level of alphagenic elements, such as molybdenum (Mo) and chromium (Cr).
  • the alphagenes elements tend, for their part, to destabilize austenite, in favor of ferrite.
  • Ferrite is an allotrope of steel that dissolves carbon poorly (C) and has ferromagnetic properties at low temperatures.
  • C carbon poorly
  • these ferric precipitates take the form of carbides forming networks that locally strengthen the hardness of the room but weaken the room as a whole.
  • the desired properties are particularly dependent on variations in the metallographic structure and the surface carbon content (C). These two characteristics depend directly on the thermochemical treatments put in place during the cementation processes. Obtaining a structure having the characteristics necessary for the proper use of the part therefore depends directly on the parameters defined during the cementation.
  • the invention aims to achieve this goal. It thus proposes a low-pressure carburizing process adapted to steel parts comprising alphagenes and gamma-gen elements. STATEMENT OF THE INVENTION
  • the invention thus relates to a low-pressure carburizing process of a part comprising, especially at the surface, steel, said steel comprising, in percentage by weight:
  • Ni nickel
  • a cementing gas injection step referred to herein as a "carburizing step", in the carburizing chamber, so as to enrich the surface of the part with carbon and to increase the surface carbon content of the the piece up to a predetermined upper surface area, the cementing gas being injected into the chamber at a flow rate of between 1000 Nl / h and 3000 Nl / h, the temperature of the chamber being between 950 ° C and 1050 ° C, and for a period of between 30 and 250s, and
  • a step of injecting a neutral gas into the carburizing chamber so as to diffuse the carbon from the surface towards the interior of the room, and to decrease the surface carbon content of the room up to at a predetermined lower surface area
  • the neutral gas injection stage comprising a first neutral gas injection phase, at a flow rate of between 1000 and 10,000 Nl / h, and for a period of between 5 and 60 seconds, followed by a second neutral gas injection phase, at a flow rate of between 500 Nl / h and 3000 Nl / h, and for a period of between 10 and 2000s.
  • This allows a carburizing under an inert atmosphere, particularly under partial pressure of neutral gas (eg nitrous (N2)) and no longer under vacuum.
  • the diffusion is thus carried out under partial pressure of neutral gas after a purge phase using a high flow rate of neutral gas). In this way, healthy structures are obtained which are free of intergranular precipitates forming networks and having an acceptable residual austenite content.
  • the injection step therefore allows carbon enrichment (C), and the diffusion step allows dilution and diffusion of this carbon enrichment (C) in the austenite so as to reach the desired depth.
  • This diffusion thus avoids supersaturation on the surface and the precipitation of carbon (C) which can eventually lead to soot deposits harmful to the enrichment of steel.
  • the method according to the invention may comprise one or more of the features or steps below, taken separately from one another or in combination with each other:
  • the predetermined upper surface carbon content is the same for all the cycles
  • the cementing gas is chosen from propane (C 3 H 8 ) and acetylene (C 2 H 2 ),
  • the cementing gas has a dilution ratio of between 0 and 75%, a very low dilution rate being preferred for the high depths of carburizing and while a very high dilution rate is preferred for the (very) weak depths of carburizing, the cementing gas is injected at a pressure of between 0.1 bar and 3 bar, taking care to respect a corresponding enclosure pressure,
  • the neutral gas is chosen from dinitrogen (N 2 ) and argon (Ar),
  • the neutral gas is injected at a pressure of between 0.1 and 7 bar and
  • the process comprises a final diffusion step followed by a cooling step during which the cooling rate is between 7 ° C./min and 200 ° C./min,
  • the cooling step following the final diffusion step is carried out outside the carburizing chamber, in a dedicated cooling cell.
  • the mass of carbon (C) surface, at the end of the cooling step, is between [0.4] and [0.6]%.
  • the pressure in the carburising enclosure of between 0.002 bar and 0.025 bar, the pressure increase aimed at improving the cementation of confined zones;
  • the piece is made of said steel.
  • FIG. 1 is a diagram of a low pressure carburizing chamber in which is deposited a part to be cemented according to the method of the present invention
  • FIG. 2 is a schematic diagram of the mass ratio of carbon (C) present on the surface of a part subjected to a low pressure carburizing process according to the invention, as a function of time,
  • FIG. 3 is a graphical representation of the mass ratio of carbon (C) present in the part as a function of the distance of the surface to the core of said piece, and at different stages of a cycle of the method according to the invention, for a sample of pure iron.
  • a part 1 comprising or consisting of a steel comprising alphagenes and gammagenes elements, said steel comprising, for example, in percent by weight:
  • Ni nickel
  • the method preferably applies to a part 1 comprising or consisting of an alloy of Ferrium® C61 TM and Ferrium® C64 TM type.
  • Ferrium® C61 TM alloy is a steel of composition:
  • the Ferrium® C64 TM alloy is a steel of composition:
  • the test alloy is pure iron.
  • the method according to the invention consists of one or more successive cycles. In the example illustrated in FIG. 2, it implements a succession of four cycles C1, C2, C3, C4.
  • Each cycle C1, C2, C3, C4 comprises a step 10 for injecting a carburizing gas, for example propane (C 3 H 8) or acetylene (C2H2), followed by a step 12 of injection a neutral gas, for example argon (Ar) or dinitrogen (N 2 ).
  • a neutral gas for example argon (Ar) or dinitrogen (N 2 ).
  • This is a step 12 of diffusion under partial pressure of a neutral gas.
  • each step of injection of the cementing gas is directly followed by the step 12 of injecting neutral gas.
  • the method firstly comprises a step of placing the workpiece 1 in a carburizing chamber 2, as shown in FIG. 1.
  • This carburizing chamber 2 comprises in particular a gas inlet 3 and an outlet of gas 4 and can be closed tightly and isothermally.
  • the first step of each cycle C1, C2, C3, C4 is a cementing gas injection step 10 (also called a carbon enrichment step) in the enclosure of This enrichment step has a duration ti of between 30 and 250 seconds, preferably between 50 and 150 seconds.
  • the duration ti of the enrichment step 10 is a function of a predetermined surface carbon (C), which is ultimately aimed at (that is to say, a temperature intended for be reached at the end of the process) on the surface of the piece 1.
  • surface here means a depth substantially zero, preferably zero. Under optimal conditions, this higher surface level may correspond to the carbon solubility limit (C) in the austenite at the given carburizing temperature.
  • This surface rate upper 14 is typically greater than the initial carbon (C) level 16 of the part 1 to be treated.
  • the cementing gas is injected into the carburizing chamber 2 at a flow rate of between 1000 Nl / h and 3000 Nl / h (preferably between 1300 and 1700 Nl / h), the carburizing temperature being between 950 ° C and 1050 ° C (and preferably equal to 1000 ° C ⁇ 10 ° C).
  • the unit Nl / h is a normo liter per hour.
  • Normo liter is derived from normo cubic meter.
  • the normo cubic meter, of symbol Nm3 or sometimes m3 (n), is a unit of measure of quantity of gas which corresponds to the contents of a volume of one cubic meter, for a gas being in the normal conditions of temperature and humidity. pressure (0 or 15 or rarely 20 ° C according to the standards and 1 atm, 101 325 Pa).
  • the dilution ratio of the cementing gas injected is between 0 and 75%, preferably between 0 and 25%, and the cementing gas is injected at a pressure of between 0.1 bar and 3 bar, preferably equal to 230 ⁇ 50 mbar.
  • concentration ratio is meant here a dilution of the cementing gas in a neutral gas, typically the neutral gas argon (Ar) or nitrous (N2).
  • the enrichment step 10 there is a partial or total saturation of the austenite on the surface of the steel piece.
  • the desired maximum carbon (C) content at the end of the enrichment step depends on the grade of steel as well as the temperature at which the carburizing is carried out.
  • FIG. 3 represents the carbon profile of a part 1 subjected to the process according to the invention, that is to say the mass ratio of carbon present in the part 1 as a function of the distance of the surface towards the core of said piece 1, that is to say the depth of the piece 1.
  • Figure 3 illustrates both a carbon (C) 18 (dashed) at the end of step 10 enrichment, before the start of the diffusion step 12, and a carbon content (C) (solid line) at the end of the diffusion step 12.
  • the degree of carbon (C) 18 as a function of the depth at the end of the enrichment stage exhibits a substantially exponential decay: at the surface of the part, the carbon (C) 18 and very high, while at a depth of 0.2 mm, this rate 18 is equal to a value close to 0 (in the case of the pure iron sample used for the measurements shown in FIG. 3).
  • the second step of each cycle C1, C2, C3, C4 is a diffusion step 12.
  • This diffusion step 12 takes place under a neutral atmosphere and thus requires, as indicated above, the injection of a neutral gas such as dinitrogen (N 2 ) or argon (Ar) in the carburizing chamber 2.
  • a neutral gas such as dinitrogen (N 2 ) or argon (Ar) in the carburizing chamber 2.
  • N 2 dinitrogen
  • Ar argon
  • the diffusion step 12 consists of two phases: a purge phase of the cementing gas with a duration t 2 of between 5 and 60s (preferably 10 ⁇ 5s), and a diffusion phase of strictly speaking, of a duration t 3 of between 10 and 2000s (preferably 30 to 2000s).
  • the duration of the diffusion step 12 is therefore, as can be seen in FIG. 2, from (t 2 + t 3 ).
  • the values t 1, 2 2 h were taken to be identical for simplification. In fact, depending on the fineness of treatment desired, they are often called to be modified (adjusted) from one cycle C1, C2, C3, C4 to another.
  • the difference between the two phases of the diffusion step 12 lies in the injection rate of the neutral gas.
  • the neutral gas is injected into the carburizing chamber 2 at a flow rate of between 1000 and 10,000 Nl / h, preferably equal to 6000 ⁇ 500 Nl / h, at a gas pressure.
  • neutral in the chamber 2 between 0.1 and 7 bar, preferably equal to 230 ⁇ 50 mbar.
  • the neutral gas is injected at a flow rate of between 500 Nl / h and 3000 Nl / h, preferably equal to 1800 ⁇ 500 Nl / h, the pressure in the carburizing chamber 2 being between 2 and 25 mbar, preferably between 7 and 13 mbar.
  • the carbon content (C) as a function of the depth of the piece 1 substantially has a plateau, for a depth from 0 to 0.1 mm, before decreasing to a level equal to a value close to 0 (for the pure iron sample whose values are shown in FIG. 3) for a depth of 0.2 mm.
  • the predetermined lower surface carbon concentration (C) 22 at the end of the diffusion step 12 (comprising a purge phase and a diffusion phase) is lower than the higher carbon (C) surface 14 which had been obtained at the end of the enrichment step 10.
  • This predetermined lower surface area may, however, be greater than the initial surface area.
  • the lower surface area corresponds neither to physical value, nor to a characteristic of the material, nor to a fixed or controlled value.
  • the value of this lower surface rate 22 is obtained downstream from the setting modalities.
  • a change in the number of cycles impacts the maximum carbon level (C) 14 desired and the predetermined lower surface area 22, as well as the total diffused depth and the final carbon profile.
  • a final diffusion step 24 and then a cooling step are carried out.
  • the cooling can be performed outside the carburizing chamber 2, in a dedicated cooling cell (not shown). Cooling gradually reduces the temperature of the workpiece 1 from its carburizing temperature to a temperature specific to the handling of the workpiece 1.
  • the cooling rate of the carburizing enclosure 2 or the dedicated enclosure is included between 7 ° C / min and 200 ° C / min, preferably 120 ⁇ 50 ° C / min.
  • the final surface carbon (C) content 26 is lower than the lower carbon (C) level 22 obtained at the end of diffusion step 12, but it may be greater than the rate 16 as shown in Figure 2.
  • the final surface carbon (C) content 26 aims to be as close as possible to the theoretical optimum surface area (0.5% by weight for Ferrium steels).
  • the target surface 22 and higher target surface rates 14 and 14 result from the physical parameters of the component 1 to be cemented and those of the carburizing enclosure 2 used.
  • thermochemical treatments of the treated part 1 make it possible to obtain different thermochemical treatments of the treated part 1. These differences relate in particular to the cemented depth and the type of cemented structure obtained.
  • the shape of the cemented part 1 (for example parts having teeth) must also be taken into account when adjusting the parameters of the carburizing process.

Abstract

Procédé de cémentation d'une pièce d'acier réalisant 1 à 30 cycles (C1, C2, C3, C4) consécutifs, chaque cycle (C1, C2, C3, C4) comprenant une étape (10) d'injection de gaz cémentant de manière à faire croître le taux surfacique de carbone jusqu'à un taux supérieur (14) prédéterminé, le gaz cémentant étant injecté à un débit compris entre 1000 Nl/h et 3000 Nl/h, à une température comprise entre 950°C et 1050°C, pendant une durée (t1), et une étape (12) d'injection d'un gaz neutre, de manière à faire décroître le taux surfacique de carbone de la pièce jusqu'à un taux inférieur (22) prédéterminé, l'étape d'injection de gaz neutre comprenant une première phase d'injection de gaz neutre, à un débit compris entre 1000 à 10000 Nl/h, pendant une durée (t2), suivie d'une deuxième phase d'injection de gaz neutre, à un débit compris entre 500 Nl/h et 3000 Nl/h, pendant une durée (t3).

Description

PROCÉDÉ DE CÉMENTATION BASSE PRESSION D’UNE PIÈCE COMPRENANT DE L’ACIER
DOMAINE TECHNIQUE
[0001] La présente invention a pour objet un procédé de cémentation basse pression d’une pièce comprenant de l’acier.
ÉTAT DE L’ART
[0002] Le terme de cémentation désigne un procédé classique du domaine de la métallurgie. Il s’agit d’un traitement thermochimique consistant à faire pénétrer superficiellement du carbone (C) dans une pièce en acier afin de la transformer, en surface, en un acier fortement carburé. On appelle acier un alliage métallique constitué principalement de fer (Fe) et de carbone (allant, pour le carbone (C), d’un taux massique proche de 0%, correspondant à des traces infimes, jusqu’à un taux de 2%). La teneur en carbone a une influence considérable sur les propriétés de l’acier. En dessous de 0,008% en carbone (C), par exemple, l’acier est plutôt malléable et on parle de « fer ». La teneur en carbone (C) modifie notamment profondément la température de fusion et les propriétés mécaniques de l'acier. L’augmentation de la teneur en carbone d’un acier améliore la dureté (résistance opposée par une surface à la pénétration d'une pointe) de celui-ci et diminue son allongement à la rupture. L’augmentation du taux de carbone en surface permet ainsi d’accroître les propriétés mécaniques superficielles de la pièce, et d'augmenter sa résistance à l'usure et son endurance.
[0003] Grâce à la cémentation, on crée un gradient de carbone décroissant en direction du cœur de la pièce. La concentration en carbone est ainsi enrichie à la surface de la pièce. Le procédé de cémentation est connu depuis plus de cent ans, sa mise en œuvre a beaucoup évolué depuis ses débuts, et elle se pratique sous forme gazeuse depuis plus de 20 ans. En particulier, aujourd’hui, la méthode la plus fréquemment utilisée est la cémentation gazeuse basse pression (CBP) qui est un processus de cémentation réalisé dans une enceinte de cémentation sous vide, et qui utilise des hydrocarbures gazeux à très basse pression et à température élevée afin d'obtenir une couche de surface enrichie en carbone et durcie, comme par exemple exposé dans les documents - FR 2 678 287 A1 et WO 2016/160751 A1.
[0004] On entend par cémentation basse pression un processus de cémentation réalisé dans un four sous vide à parois froides, qui utilise des hydrocarbures gazeux à basse pression : 2 à 20 mbar absolus, par exemple 10 mbar, et à température élevée.
[0005] Le procédé Infracarb® d’ECM Technologies est le procédé breveté utilisé dans notre Installation Modulaire de Cémentation et Traitements. Plus précisément, Infracarb® consiste en une injection en alternance d’hydrocarbure C2H2, pour créer un enrichissement en surface par craquage des molécules à haute température et d’un gaz neutre N2 pour la diffusion.
[0006] La difficulté de la cémentation CBP réside dans la limitation de la profondeur de diffusion du carbone, en particulier lors de la cémentation de matériaux très sensibles à la présence de carbone, tels que les alliages Ferrium® C61™ et Ferrium® C64™ commercialisés par la société Questek, et pour lesquels il ne faut pas dépasser un taux de 0,5% de carbone (C) en surface.
[0007] En effet, les alliages Ferrium® C61™ et C64™ diffèrent des compositions classiques (par exemple des compositions comprenant 0,16% de carbone (C), 3% de nickel (Ni), moins de 1 % de chrome (Cr) et des traces de molybdène (Mo) par des taux plus élevés en carbone (C) et en éléments gammagènes : par exemple des taux de l’ordre de 0,2% de carbone (C), 9% de nickel (Ni), 3,5% de chrome (Cr) et 1 % de molybdène (Mo).
[0008] Les éléments gammagènes, parmi lesquels figurent notamment le cobalt (Co), le nickel (Ni), l’azote (N), le cuivre (Cu), sont des éléments d’addition qui augmentent la plage de stabilité d’un allotrope particulier du fer : l'austénite. L’austénite permet une grande solubilité du carbone. La grande majorité des aciers dits inoxydables sont austénitiques et ils combinent une bonne résistance à la corrosion avec des propriétés mécaniques élevées.
[0009] Cependant, ces alliages Ferrium® C61™ et Ferrium® C64™ comportent également un taux plus élevé d’éléments alphagènes, tels que le molybdène (Mo) et le chrome (Cr). Les éléments alphagènes tendent, quant à eux, à déstabiliser l'austénite, au profit de la ferrite. La ferrite est un allotrope de l’acier dissolvant mal le carbone (C) et présentant des propriétés ferromagnétiques à faibles températures. Ainsi, dès que la concentration en carbone (C) devient trop élevée, on observe la précipitation de complexes ferriques formant des corps indésirables avec un effet catastrophique sur la microstructure de la pièce en acier. En effet, ces précipités ferriques prennent la forme de carbures formant des réseaux qui renforcent localement la dureté de la pièce mais qui fragilisent la pièce dans son ensemble.
[0010] Ainsi, il faut pouvoir cémenter la pièce dans les bonnes proportions de carbone (C) afin de renforcer les propriétés mécaniques surfaciques de la pièce, sans altérer la microstructure de celle-ci.
[0011] Pour les alliages Ferrium® C61™ et Ferrium® C64™, les propriétés souhaitées sont particulièrement dépendantes des variations de la structure métallographique et du taux surfacique de carbone (C). Ces deux caractéristiques dépendent directement des traitements thermochimiques mis en place lors des procédés de cémentation. L’obtention d’une structure présentant les caractéristiques nécessaires au bon usage de la pièce dépend donc directement des paramètres définis lors de la cémentation.
[0012] L’invention vise à atteindre cet objectif. Elle propose ainsi un procédé de cémentation basse pression adapté aux pièces en acier comportant des éléments alphagènes et gammagènes. EXPOSÉ DE L’INVENTION
[0013] L’invention a ainsi pour objet un procédé de cémentation basse pression d’une pièce comprenant, notamment en surface, de l’acier, ledit acier comprenant, en pourcentage en poids :
- de 0,10% à 0,20% en carbone (C),
- de 0,1 % à 20% en cobalt (Co),
- de 2% à 15% en nickel (Ni),
- de 1 % à 10% de chrome (Cr),
caractérisé en ce que ledit procédé comprend :
a) une étape de mise en place de ladite pièce dans une enceinte de cémentation, et
b) la réalisation de 1 à 30 cycles consécutifs de cémentation, chaque cycle comprenant :
i) une étape d’injection de gaz cémentant, dit dans le cas présent « étape de carburation », dans l’enceinte de cémentation, de manière à enrichir en carbone la surface de la pièce et à faire croître le taux surfacique de carbone de la pièce jusqu’à un taux surfacique supérieur prédéterminé, le gaz cémentant étant injecté dans l’enceinte à un débit compris entre 1000 Nl/h et 3000 Nl/h, la température de l’enceinte étant comprise entre 950°C et 1050°C, et pendant une durée comprise entre 30 et 250s, et
ii) une étape d’injection d’un gaz neutre dans l’enceinte de cémentation, de manière à faire diffuser le carbone de la surface vers l’intérieur de la pièce, et à faire décroître le taux surfacique de carbone de la pièce jusqu’à un taux surfacique inférieur prédéterminé, l’étape d’injection de gaz neutre comprenant une première phase d’injection de gaz neutre, à un débit compris entre 1000 à 10000 Nl/h, et pendant une durée comprise entre 5 et 60s, suivie d’une deuxième phase d’injection de gaz neutre, à un débit compris entre 500 Nl/h et 3000 Nl/h, et pendant une durée comprise entre 10 et 2000s. [0014] Ceci permet de réaliser une cémentation sous atmosphère inerte, en particulier sous pression partielle de gaz neutre (par exemple du diazote (N2)) et non plus sous vide. La diffusion est ainsi réalisée sous pression partielle de gaz neutre après une phase de purge à l’aide d’un débit élevé de gaz neutre). On obtient ainsi des structures saines, exemptes de précipités intergranulaires formant des réseaux et présentant un taux d’austénite résiduelle acceptable.
[0015] La multiplication des étapes d’injection permet de ne pas sursaturer la surface de l’austénite, et d’apporter la juste quantité de carbone (C) dans des limites maximales d’absorption par diffusion en subsurface de l’acier (cette absorption étant fonction de la profondeur cémentée recherchée). Par conséquent, cette multiplication des étapes d’injection permet d’éviter la formation de composés indésirables, en particulier dans la zone sub-surfacique (par exemple, des précipités de cémentite aux joints de grains).
[0016] Ainsi donc, l’étape d’injection permet donc l’enrichissement en carbone (C), et l’étape de diffusion permet la dilution et la diffusion de cet enrichissement de carbone (C) dans l’austénite de manière à atteindre la profondeur recherchée. Cette diffusion évite ainsi la sursaturation en surface et la précipitation du carbone (C) qui peut éventuellement conduire à des dépôts de suie néfastes à l’enrichissement de l’acier.
[0017] Le procédé selon l’invention peut comprendre une ou plusieurs des caractéristiques ou étapes ci-dessous, prises isolément les unes des autres ou en combinaison les unes avec les autres :
- le taux de carbone surfacique supérieur prédéterminé est le même pour tous les cycles,
- le gaz cémentant est choisi parmi le propane (C3H8) et l’acétylène (C2H2),
- le gaz cémentant présente un taux de dilution compris entre 0 et 75%, un très faible taux de dilution étant à privilégier pour les fortes profondeurs de cémentation et alors qu’un taux de dilution très élevé est à privilégier pour les (très)faibles profondeurs de cémentation, - le gaz cémentant est injecté à une pression comprise entre 0,1 bar et 3 bar en veillant à respecter une pression d’enceinte correspondante,
- le gaz neutre est choisi parmi le diazote (N2) et l’argon (Ar),
- le gaz neutre est injecté à une pression comprise entre 0,1 et 7 bar et,
- après la réalisation du dernier cycle de cémentation, le procédé comporte une étape de diffusion finale suivie d’une étape de refroidissement durant laquelle la vitesse de refroidissement est comprise entre 7°C/min et 200°C/min,
- l’étape de refroidissement suivant l’étape de diffusion finale est réalisée hors de l’enceinte de cémentation, dans une cellule de refroidissement dédiée.
- le taux massique de carbone (C) surfacique, à l’issue de l’étape de refroidissement, est compris entre [0,4] et [0,6]%.
- la pression dans l’enceinte de cémentation comprise entre 0,002 bar et 0,025 bar, l’augmentation de pression visant à améliorer la cémentation de zones confinées,
- la pièce est constituée dudit acier.
DESCRIPTION DES FIGURES
[0018] L’invention sera mieux comprise et d’autres détails, caractéristiques et avantages de l’invention apparaîtront à la lecture de la description suivante faite à titre d’exemple non limitatif et en référence aux dessins annexés dans lesquels :
- la figure 1 est un schéma d’une enceinte de cémentation basse pression dans laquelle est déposée une pièce destinée à être cémentée selon le procédé de la présente invention ;
- la figure 2 est un graphique schématisé du taux massique de carbone (C) présent en surface d’une pièce soumise à un procédé de cémentation basse pression selon l’invention, en fonction du temps,
- la figure 3 est une représentation graphique du taux massique de carbone (C) présent dans la pièce en fonction de l’éloignement de la surface vers le cœur de ladite pièce, et à différentes étapes d’un cycle du procédé selon l’invention, pour un échantillon de fer pur.
DESCRIPTION DETAILLEE
[0019] Le procédé décrit ici s’applique avantageusement à une pièce 1 comprenant ou étant constituée d’un acier comportant des éléments alphagènes et gammagènes, ledit acier comprenant, par exemple, en pourcentage en poids :
- de 0,10% à 0,20% en carbone (C),
- de 0,1 % à 20% en cobalt (Co),
- de 2% à 15% en nickel (Ni),
- de 1 % à 10% en chrome (Cr).
[0020] Le procédé s’applique de préférence à une pièce 1 comprenant ou étant constituée d’un alliage de type Ferrium® C61™ et Ferrium® C64™. L’alliage Ferrium® C61™ est un acier de composition :
- 0,15% en carbone (C),
- 3,5% en chrome (Cr)
- 9,5% en nickel (Ni)
- 18% en cobalt (Co),
- 1 ,1 % en molybdène (Mo),
- 0,08% en vanadium (V).
[0021] L’alliage Ferrium® C64™ est un acier de composition :
- 0,11 % en carbone (C),
- 3,5% en chrome (Cr)
- 7,5% en nickel (Ni)
- 16,3% en cobalt (Co),
- 1 ,75% en molybdène (Mo),
- 0,2% en tungstène (W),
- 0,02% en vanadium (V).
[0022] Dans le présent exemple, l’alliage testé est le fer pur. [0023] Comme visible sur la figure 1 , le procédé selon l’invention se compose d’un ou plusieurs cycles qui se succèdent. Dans l’exemple illustré en figure 2, il met en œuvre une succession de quatre cycles C1 , C2, C3, C4. Chaque cycle C1 , C2, C3, C4 comporte une étape 10 d’injection d’un gaz cémentant, par exemple du propane (C3H8) ou de l’acétylène (C2H2), suivie d’une étape 12 d’injection d’un gaz neutre, par exemple de l’argon (Ar) ou du diazote (N2). Il s’agit d’une étape 12 de diffusion sous pression partielle d’un gaz neutre. De préférence, chaque étape 10 d’injection du gaz cémentant est directement suivie de l’étape 12 d’injection de gaz neutre.
[0024] Le procédé comprend tout d’abord une étape de mise en place de la pièce 1 dans une enceinte de cémentation 2, comme visible sur la figure 1. Cette enceinte de cémentation 2 comporte notamment une entrée de gaz 3 et une sortie de gaz 4 et peut être fermée de manière étanche et isotherme.
[0025] Une fois que la pièce 1 est mise en place dans l’enceinte 2 de cémentation, celle-ci est refermée et portée en température. Une fois que la pièce 1 a atteint une température stabilisée visée, la succession de cycles C1 , C2, C3, C4 commence.
[0026] Tel qu’illustré en figure 2, la première étape de chaque cycle C1 , C2, C3, C4 est une étape 10 d’injection de gaz cémentant, (également appelée étape d’enrichissement en carbone) dans l’enceinte de cémentation 2. Cette étape 10 d’enrichissement a une durée ti comprise entre 30 et 250s, de préférence entre 50 et 150s. La durée ti de l’étape d’enrichissement 10 est fonction d’un taux surfacique supérieur 14 de carbone (C) prédéterminé et visé in fine (c’est-à-dire qu’il s’agit d’une température destinée à être atteinte en fin de procédé) en surface de la pièce 1. Par « surface » on entend ici une profondeur sensiblement nulle, de préférence nulle. Dans des conditions optimales, ce taux surfacique supérieur 14 peut correspondre à la limite de solubilité du carbone (C) dans l’austénite, à la température de cémentation donnée. Ce taux surfacique supérieur 14 est typiquement supérieur au taux 16 de carbone (C) surfacique initial de la pièce 1 à traiter.
[0027] Pendant cette étape d’enrichissement 10, le gaz cémentant est injecté dans l’enceinte de cémentation 2 à un débit compris entre 1000 Nl/h et 3000 Nl/h (de préférence entre 1300 et 1700 Nl/h), la température de cémentation étant comprise entre 950°C et 1050°C (et de préférence égale à 1000°C ± 10°C).
[0028] L’unité Nl/h est un normo litre par heure. Le normo litre est dérivé du normo mètre cube. Le normo mètre cube, de symbole Nm3 ou parfois m3(n), est une unité de mesure de quantité de gaz qui correspond au contenu d'un volume d'un mètre cube, pour un gaz se trouvant dans lesconditions normales de température et de pression (0 ou 15 ou plus rarement 20 °C selon les référentiels et 1 atm, soit 101 325 Pa).
[0029] Il s'agit d'une unité usuelle, toutefois non reconnue par le Bureau international des poids et mesures. Pour un gaz pur, un normo mètre cube correspond à environ 44,6 moles de gaz.
[0030] En particulier, le taux de dilution du gaz cémentant injecté est compris entre 0 et 75%, de préférence entre 0 et 25%, et le gaz cémentant est injecté à une pression comprise entre 0,1 bar et 3 bar, de préférence égale à 230±50 mbar. Par « taux de dilution » on parle ici d’une dilution du gaz cémentant dans un gaz neutre, typiquement, le gaz neutre argon (Ar) ou diazote (N2).
[0031] Pendant l’étape 10 d’enrichissement, on assiste à une saturation partielle ou totale de l’austénite en surface de la pièce d’acier. Le taux de carbone maximum (C) 14 souhaité à la fin de l’étape 10 d’enrichissement dépend de la nuance d’acier ainsi que de la température à laquelle s’effectue la cémentation.
[0032] A l’issue de l’étape 10 d’injection du gaz cémentant, on fait diffuser les molécules de carbone (C) venues enrichir le taux de carbone (C) de la pièce 1 , vers le cœur de ladite pièce 1 , afin d’en homogénéiser la composition, comme visible sur la figure 3. [0033] La figure 3 représente le profil carbone d’une pièce 1 soumise au procédé selon l’invention, c’est-à-dire le taux massique de carbone présent dans la pièce 1 en fonction de l’éloignement de la surface vers le cœur de ladite pièce 1 , c’est-à-dire de la profondeur de la pièce 1. La figure 3 illustre à la fois un taux de carbone (C) 18 (en pointillés) à l’issue de l’étape 10 d’enrichissement, avant le début de l’étape 12 de diffusion, et un taux de carbone (C) 20 (en trait plein) à l’issue de l’étape 12 de diffusion. On voit ainsi que le taux de carbone (C) 18 en fonction de la profondeur à l’issue de l’étape 10 d’enrichissement présente une décroissance sensiblement exponentielle : en surface de la pièce, le taux de carbone (C) 18 et très élevé, alors qu’à une profondeur de 0,2 mm, ce taux 18 est égal à une valeur proche de 0 (dans le cas de l’échantillon en fer pur utilisé pour les mesures illustrées par la figure 3).
[0034] La deuxième étape de chaque cycle C1 , C2, C3, C4 est une étape 12 de diffusion. Cette étape 12 de diffusion se déroule sous atmosphère neutre et nécessite ainsi, comme indiqué plus haut, l’injection d’un gaz neutre tel que le diazote (N2) ou l’argon (Ar) dans l’enceinte de cémentation 2. Ainsi, dès que l’étape d’enrichissement 10 est terminée, du gaz neutre est injecté dans l’enceinte de cémentation 2.
[0035] Le balayage de gaz généré lors de l’entrée de gaz neutre rend plus efficiente l’élimination des molécules de gaz cémentant en surface de la pièce 1. En effet cette élimination des molécules de gaz stoppe de facto l’enrichissement en cours. Dans une atmosphère sous vide, l’élimination de ces molécules est beaucoup plus lente.
[0036] Plus particulièrement, l’étape 12 de diffusion se compose de deux phases : une phase de purge du gaz cémentant d’une durée t2 comprise entre 5 et 60s (de préférence 10±5s), et une phase de diffusion à proprement parler, d’une durée t3 comprise entre 10 et 2000s (de préférence 30 à 2000s). La durée de l’étape 12 de diffusion est donc, comme visible sur la figure 2, de (t2+t3). [0037] Dans l’exemple choisi, les valeurs t-i, Î2 h ont été prises identiques pour simplification. Dans les faits, suivant la finesse de traitement souhaitée, elles sont souvent appelées à être modifiées (ajustées) d’un cycle C1 , C2, C3, C4 à l’autre.
[0038] La différence entre les deux phases de l’étape 12 de diffusion réside dans le débit d’injection du gaz neutre. Pendant la durée t2 de la phase de purge, le gaz neutre est injecté dans l’enceinte de cémentation 2 à un débit compris entre 1000 et 10000 Nl/h, de préférence égal à 6000±500 Nl/h, à une pression de gaz neutre dans l’enceinte 2 comprise entre 0,1 et 7 bar, de préférence égale à 230±50 mbar. Pendant la durée de t3 chaque phase de diffusion, après la phase de purge, le gaz neutre est injecté à un débit compris entre 500 Nl/h et 3000 Nl/h, de préférence égal à 1800±500 Nl/h, la pression dans l’enceinte de cémentation 2 étant comprise entre 2 et 25 mbar, de préférence comprise entre 7 et 13 mbar.
[0039] Comme visible sur la figure 3, à l’issue de l’étape de diffusion 12, on constate que le taux de carbone (C) 20 en fonction de la profondeur de la pièce 1 présente sensiblement un plateau, pour une profondeur allant de de 0 à 0,1 mm, avant de décroître pour atteindre un taux égal à une valeur proche de 0 (pour l’échantillon de fer pur dont les valeurs sont illustrées en figure 3) pour une profondeur de 0,2 mm.
[0040] Sur la figure 2, on voit que le taux de carbone surfacique (C) inférieur 22 prédéterminé à la fin de l’étape 12 de diffusion (comprenant une phase de purge et une phase de diffusion), est inférieur au taux de carbone (C) surfacique supérieur 14 qui avait été obtenu à l’issue de l’étape 10 d’enrichissement. Ce taux surfacique inférieur 22 prédéterminé peut être toutefois supérieur au taux surfacique 16 initial.
[0041] Il est toutefois important de garder à l’esprit que le taux surfacique inférieur ne correspond ni à valeur physique, ni à une caractéristique du matériau, ni à une valeur figée ou pilotée. La valeur de ce taux surfacique inférieur 22 est obtenue en aval des modalités de mise en œuvre de la cémentation visée par la présente invention à savoir, très globalement :
- le matériau traité et la profondeur cémentée visée,
- les caractéristiques de l’installation de cémentation utilisée.
La valeur précise de ce taux surfacique inférieur 22 n’est in fine ni mesurée, ni réellement connue.
[0042] Le procédé étant cyclique, après l’étape 12 de diffusion d’un cycle donné C1 , C2, C3, on passe à un nouveau cycle C2, C3, C4 et donc à une nouvelle étape 10 d’enrichissement. Les étapes d’enrichissement 10 et de diffusion 12 se succèdent de manière cyclique et le nombre de cycles C1 , C2, C3, C4 est compris entre 1 et 30, de préférence entre 1 et 15. Comme visible sur la figure 1 , les taux de carbone (C) supérieur 14 et inférieur 22 en surface obtenus à l’issue des différentes étapes 10, 12 restent inchangés tout au long du procédé. A titre d’exemple, un nombre de quatre cycles C1 , C2, C3, C4 a été illustré en figure 2.
[0043] Une modification du nombre de cycle impacte taux de carbone maximum (C) 14 souhaité et le taux surfacique inférieur 22 prédéterminé, ainsi que la profondeur diffusée totale et le profil carbone final.
[0044] Lorsque le nombre de cycles C1 , C2, C3, C4 désiré a été atteint, après la dernière phase de diffusion de la dernière étape 12 de diffusion du dernier cycle C4, une étape 24 de diffusion finale puis une étape de refroidissement sont mises en œuvre, et l’on observe une chute de du taux de carbone (C) superficiel. Le refroidissement peut être réalisé hors de l’enceinte de cémentation 2, dans une cellule de refroidissement dédiée (non représentée). Le refroidissement permet de réduire progressivement la température de la pièce 1 depuis sa température de cémentation jusqu’à une température propre à la manipulation de la pièce 1. La vitesse de refroidissement de l’enceinte de cémentation 2 ou de l’enceinte dédiée est comprise entre 7°C/min et 200°C/min, de préférence 120±50 °C/min. [0045] Suite à cette étape 24 de diffusion finale, le taux de carbone (C) surfacique final 26 est inférieur au taux de carbone (C) inférieur 22 obtenu en fin d’étape 12 de diffusion, mais il peut être supérieur au taux 16 initial, comme visible sur la figure 2.
[0046] Le taux de carbone (C) surfacique final 26 vise à être le plus proche possible du taux surfacique optimal théorique (0,5% en masse pour les aciers Ferrium).
[0047] Selon la composition chimique de l’acier et la nature des zones à cémenter, les taux surfaciques inférieurs 22 et supérieurs 14 visés et obtenus résultent des paramètres physiques de la pièce 1 à cémenter et de ceux de l’enceinte de cémentation 2 utilisée.
[0048] Différentes combinaisons des différents intervalles de valeurs de paramètres données ci-dessus permettent d’obtenir des traitements thermochimiques de la pièce 1 traitée différents. Ces différences portent notamment sur la profondeur cémentée et sur le type de structure cémentée obtenue. La forme de la pièce 1 cémentée (par exemple des pièces présentant des dentures) doit aussi être prise en compte lors du réglage des paramètres du procédé de cémentation.

Claims

REVENDICATIONS
1. Procédé de cémentation basse pression d’une pièce (1) comprenant de l’acier, ledit acier comprenant, en pourcentage en poids :
- de 0,10% à 0,20% en carbone (C),
- de 0,1 % à 20% en cobalt (Co),
- de 2% à 15% en nickel (Ni),
- de 1 % à 10% de chrome (Cr),
caractérisé en ce que ledit procédé comprend :
a) une étape de mise en place de ladite pièce (1 ) dans une enceinte de cémentation (2), et
b) la réalisation de 1 à 30 cycles (C1 , C2, C3, C4) consécutifs de cémentation, chaque cycle (C1 , C2, C3, C4) comprenant :
i) une étape (10) d’injection de gaz cémentant dans l’enceinte de cémentation (2), de manière à enrichir en carbone la surface de la pièce (1) et à faire croître le taux surfacique de carbone de la pièce (1 ) jusqu’à un taux surfacique supérieur (14) prédéterminé, le gaz cémentant étant injecté dans l’enceinte (2) à un débit compris entre 1000 Nl/h et 3000 Nl/h, la température de l’enceinte (2) étant comprise entre 950°C et 1050°C, et pendant une durée (t-i) comprise entre 30 et 250s, et
ii) une étape (12) d’injection d’un gaz neutre dans l’enceinte de cémentation (2), de manière à faire diffuser le carbone de la surface vers l’intérieur de la pièce (1 ), et à faire décroître le taux surfacique de carbone de la pièce (1 ) jusqu’à un taux surfacique inférieur (22) prédéterminé, l’étape (12) d’injection de gaz neutre comprenant une première phase d’injection de gaz neutre, à un débit compris entre 1000 à 10000 Nl/h, et pendant une durée (t2)comprise entre 5 et 60s, suivie d’une deuxième phase d’injection de gaz neutre, à un débit compris entre 500 Nl/h et 3000 Nl/h, et pendant une durée (t3) comprise entre 10 et 2000s.
2. Procédé selon la revendication précédente, caractérisé en ce que le taux de carbone (C) surfacique supérieur (14) prédéterminé est le même pour tous les cycles (C1 , C2, C3, C4),
3. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que le gaz cémentant est choisi parmi le propane (ObHb) et l’acétylène (C2H2).
4. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que le gaz cémentant présente un taux de dilution compris entre 0 et 75%.
5. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que le gaz cémentant est injecté à une pression comprise entre 0,1 bar et 3 bar.
6. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que gaz neutre est choisi parmi le diazote (N2) et l’argon (Ar).
7. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que le gaz neutre est injecté à une pression comprise 0,1 bar et 7 bar.
8. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce qu’il comporte, en outre, après la réalisation des cycles (C1 , C2, C3, C4) de cémentation, une étape de diffusion finale (24) suivie d’une étape de refroidissement durant laquelle la vitesse de refroidissement est comprise entre 7°C/min et 200°C/min.
9. Procédé selon la revendication précédente, caractérisé en ce que l’étape de refroidissement suivant l’étape de diffusion finale (24) est réalisée hors de l’enceinte de cémentation (2), dans une cellule de refroidissement dédiée.
10. Procédé selon la revendication 8 ou 9, caractérisé en ce que le taux massique de carbone (C) surfacique, à l’issue de l’étape (24) de diffusion finale, est compris entre 0,4 et 0,6 %.
11. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que la pression dans l’enceinte de cémentation (2) est comprise entre 0,002 bar et 0,025 bar.
12. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que la pièce (1 ) est constituée dudit acier.
EP19735366.7A 2018-06-05 2019-06-05 Procédé de cémentation basse pression d'une pièce comprenant de l'acier Pending EP3802904A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1854876A FR3081884B1 (fr) 2018-06-05 2018-06-05 Procede de cementation basse pression d'une piece comprenant de l'acier
PCT/FR2019/051338 WO2019234352A1 (fr) 2018-06-05 2019-06-05 Procédé de cémentation basse pression d'une pièce comprenant de l'acier

Publications (1)

Publication Number Publication Date
EP3802904A1 true EP3802904A1 (fr) 2021-04-14

Family

ID=63896272

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19735366.7A Pending EP3802904A1 (fr) 2018-06-05 2019-06-05 Procédé de cémentation basse pression d'une pièce comprenant de l'acier

Country Status (5)

Country Link
US (1) US11293087B2 (fr)
EP (1) EP3802904A1 (fr)
CN (1) CN112218970A (fr)
FR (1) FR3081884B1 (fr)
WO (1) WO2019234352A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113502449A (zh) * 2021-06-04 2021-10-15 中航力源液压股份有限公司 一种15Cr14Co12Mo5Ni2VW高强度不锈钢低压渗碳热处理方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4306919A (en) * 1980-09-04 1981-12-22 Union Carbide Corporation Process for carburizing steel
FR2678287B1 (fr) * 1991-06-26 1993-10-29 Etudes Constructions Mecaniques Procede et four de cementation a basse pression.
FR2801059B1 (fr) 1999-11-17 2002-01-25 Etudes Const Mecaniques Procede de trempe apres cementation a basse pression
US6547888B1 (en) * 2000-01-28 2003-04-15 Swagelok Company Modified low temperature case hardening processes
FR2821362B1 (fr) * 2001-02-23 2003-06-13 Etudes Const Mecaniques Procede de cementation basse pression
DE10254846B4 (de) * 2002-11-25 2011-06-16 Robert Bosch Gmbh Verfahren zum Einsatzhärten von Bauteilen aus Warmarbeitsstählen mittels Unterdruckaufkohlung
US7208052B2 (en) * 2003-12-23 2007-04-24 Rolls-Royce Corporation Method for carburizing steel components
FR2884523B1 (fr) * 2005-04-19 2008-01-11 Const Mecaniques Sa Et Procede et four de carbonitruration a basse pression
US8696830B2 (en) * 2010-07-21 2014-04-15 Kenneth H. Moyer Stainless steel carburization process
FR3029938B1 (fr) * 2014-12-11 2019-04-26 Ecm Technologies Procede et four de carbonitruration a basse pression
EP3277857B1 (fr) * 2015-04-02 2021-05-05 Sikorsky Aircraft Corporation Cémentation de composants d'acier

Also Published As

Publication number Publication date
CN112218970A (zh) 2021-01-12
WO2019234352A1 (fr) 2019-12-12
FR3081884A1 (fr) 2019-12-06
US11293087B2 (en) 2022-04-05
US20210230732A1 (en) 2021-07-29
FR3081884B1 (fr) 2021-05-21

Similar Documents

Publication Publication Date Title
EP3486009B1 (fr) Procédé de frittage d'un acier inoxydable austenitique
EP3056583B1 (fr) Procédé de fabrication d'une pièce en acier faiblement allié nitruré
EP2721190B1 (fr) Traitement de surface d'une piece metallique
FR2681332A1 (fr) Procede et dispositif de cementation d'un acier dans une atmosphere a basse pression.
EP3802904A1 (fr) Procédé de cémentation basse pression d'une pièce comprenant de l'acier
CH714349A2 (fr) Procédé de frittage d'un acier inoxydable austénitique.
Somers et al. Gaseous processes for low temperature surface hardening of stainless steel
JP2008231563A (ja) 浸炭部品の製造方法
Christiansen et al. Low temperature gaseous surface hardening of stainless steel
EP2761040A1 (fr) Procédé de réalisation à partir d'une ébauche en acier inoxydable austénitique à faible teneur en carbone d'une gaine résistant à l'usure et à la corrosion pour réacteur nucléaire, gaine et grappe de commande correspondantes.
WO2018086930A1 (fr) Procédé de traitement thermique d'une pièce à usiner constituée d'un acier fortement allié
EP3963120B1 (fr) Pièce en acier cémentée pour l'aéronautique
EP3935200A1 (fr) Composition de poudre d'acier inoxydable austenitique sans nickel et piece realisee par frittage au moyen de cette poudre
WO2021130460A1 (fr) Procédé de traitement d'une pièce en métal ferreux et pièce en métal ferreux
EP2761048A1 (fr) Procédé de réalisation d'une pièce en acier inoxydable résistant à l'usure et à la corrosion pour réacteur nucléaire, pièce et grappe de commande correspondantes
FR2827875A1 (fr) Acier pour pieces mecaniques, et pieces mecaniques cementees ou carbonitrurees realisees a partir de cet acier
EP0707661A1 (fr) Procede pour la nitruration a basse pression d'une piece metallique et four pour la mise en uvre dudit procede
CH704233A1 (fr) Pièces d'habillage en titane pour l'horlogerie.
Khusainov et al. Ion nitriding of martensitic and austenitic steels after SPD at different temperatures
BE1011178A3 (fr) Procede de fabrication en continu d'une bande en acier pour emboutissage presentant des proprietes de surface ameliorees.
WO2020115531A1 (fr) Acier inoxydable, produits réalisés en cet acier et leurs procédés de fabrication
CA2843360A1 (fr) Acier pour la fabrication de pieces cementees, piece cementee realisee avec cet acier et son procede de fabrication
FR3023850A1 (fr) Procede de nitruration d'une piece en acier inoxydable
WO2019243197A1 (fr) Procédé de durcissement par nitruration
FR2994195A1 (fr) Procede d'enrichissement thermochimique comprenant un affinage structural de l'acier

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201230

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS