EP3794700A1 - Circuit de protection d'un interrupteur - Google Patents

Circuit de protection d'un interrupteur

Info

Publication number
EP3794700A1
EP3794700A1 EP19722149.2A EP19722149A EP3794700A1 EP 3794700 A1 EP3794700 A1 EP 3794700A1 EP 19722149 A EP19722149 A EP 19722149A EP 3794700 A1 EP3794700 A1 EP 3794700A1
Authority
EP
European Patent Office
Prior art keywords
protection circuit
switch
threshold
current
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19722149.2A
Other languages
German (de)
English (en)
Inventor
Benoît BEAUDOUX
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo eAutomotive France SAS
Original Assignee
Valeo Siemens eAutomotive France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Siemens eAutomotive France SAS filed Critical Valeo Siemens eAutomotive France SAS
Publication of EP3794700A1 publication Critical patent/EP3794700A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/085Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current making use of a thermal sensor, e.g. thermistor, heated by the excess current
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0822Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/22Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for distribution gear, e.g. bus-bar systems; for switching devices
    • H02H7/222Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for distribution gear, e.g. bus-bar systems; for switching devices for switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0828Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/14Modifications for compensating variations of physical values, e.g. of temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K2017/0806Modifications for protecting switching circuit against overcurrent or overvoltage against excessive temperature

Definitions

  • the present invention relates to an electrical system comprising a switch and electronic means for protecting said switch vis-à-vis overcurrent.
  • the present invention relates to the field of motor vehicles including electric or hybrid. More specifically, in the context of an electric or hybrid vehicle comprising a high voltage power supply battery and an electric machine for propelling the vehicle, it is known that an inverter is used to convert a direct current supplied by said battery pack. supplying a plurality of alternating control currents of said electric machine.
  • the present invention relates, in this context, an electrical equipment, including inverter type, comprising at least one switch and a device for protecting said switch against overcurrent, the invention allowing said protection device to adapt the protection of the switch, in real time, depending on the temperature.
  • electric vehicles embody inverters, in other words DC converters in polyphase alternating current, in particular three-phase, for powering an electric machine belonging for example to an electric or hybrid motorization system.
  • Such inverters comprise a plurality of components, including switches, which must operate over a wide range of temperature values, for example ranging from -40 ° C to + 105 ° C.
  • the switches in particular of the IGBT type (for "Insulated Gate Bipolar Transistor” meaning insulated gate bipolar transistor), or of the MOSFET type (for "Metal Oxide Semiconductor Field Effect Transistor” meaning field effect transistor with metal-oxide structure -semiconductor) are controlled to control energy transfers between an input and an output of said converters.
  • Such switches have a maximum allowable voltage across their terminals, in other words a breakdown voltage. Beyond said maximum voltage permissible, said switches can be damaged or even destroyed, thereby rendering the inverter inoperative.
  • FIG. 1 shows an example of a control circuit CC1 of a transistor T 1 of IG LV or MOSFET type.
  • the control signal S1 of the transistor T1 is supplied, via a control unit (or “driver” in English) BF, to the gate G of the transistor T1 through a resistor called "de gate »Rg whose value influences the operation of the transistor. More precisely, when the value of the gate resistor Rg is low, the transistor switches rapidly, which makes it possible to obtain low switching losses and therefore a good efficiency, but can lead to overvoltages (related to parasitic inductors of the circuit) which can destroy component and electromagnetic interference levels that do not meet the standards.
  • the gate resistor Rg when the value of the gate resistor Rg is high, the transistor T1 switches slower, resulting in high losses (in closing and opening) because of the switching times which are more important, but this allows to obtain lower overvoltages and lower levels of electromagnetic disturbance.
  • the choice of the optimum resistance Rg is a compromise between the losses, which impact the efficiency, and the overvoltages, which can lead to the destruction of the transistor T1 and to the increase of the levels of electromagnetic disturbance.
  • the breakdown voltage of an IGBT or MOSFET transistor is generally greater than at 25 ° C., the temperature at which the breakdown voltage is indicated. in the data sheet of the component.
  • the breakdown voltage of an IGBT or MOSFET transistor is lower, of the order of 5 to 7% of the breakdown voltage at 25 ° C. Therefore, a low value of the negative temperature gate resistor Rg can generate overvoltages whose value would be greater than the breakdown voltage, thus causing the destruction of the transistor T1, rendering the inverter inoperative.
  • the breakdown voltage of a switch is dependent on the temperature.
  • the maximum permissible voltage across a switch thus increases with temperature.
  • one solution to this problem is to configure the control circuit of such switches so that no voltage greater than the breakdown voltage is applied across the switch concerned. . Said control circuit then ensures a function of protection of the switch against overcurrent.
  • a threshold of maximum intensity of the current, allowed to cross the switch is predefined, depending on the breakdown voltage Vbr and according to the best compromise determined according to the principles described above.
  • said threshold V c is constant, as shown in FIG. 2, so that the operating zone Z 1 in which the corresponding switch operates optimally is very small.
  • the breakdown voltage of a switch being lower at low temperature, it is therefore placed, according to the state of the art, in the worst case of use envisaged, typically at -40 ° C, to fix said fixed threshold.
  • the invention provides a protection circuit of a switch of an electrical system, said protection circuit comprising a variable electronic component having a physical characteristic whose value changes by at least 10% depending of the temperature, the protection circuit being configured to prohibit the passage of a current by said switch when the intensity of said current exceeds a threshold of maximum permitted intensity, said variable electronic component being connected in the protection circuit so that that the value of the maximum permitted intensity threshold is directly a function of said physical characteristic.
  • the switch is an electronic switch, in particular a semiconductor switch, such as a transistor.
  • said variable electronic component is a thermo-resistance. According to one embodiment, said variable electronic component is a thermo-resistor with negative thermal coefficient.
  • said variable electronic component is a thermo-resistor with a positive thermal coefficient.
  • the protection circuit comprises a first comparator for comparing a voltage depending on the current intended to flow in the switch at a first variable voltage threshold directly dependent on the physical characteristic of the variable electronic component.
  • the protection circuit comprises a second comparator, for comparing a voltage depending on the current intended to flow in the switch to a second variable voltage threshold directly dependent on the physical characteristic of the variable electronic component, the first threshold being positive and the second threshold being negative.
  • the protection circuit comprises at least one Zener diode configured to limit the first threshold and / or the second threshold to a maximum absolute value.
  • the present invention also relates to an electrical system comprising at least one switch having a maximum voltage permissible at its terminals depending on the temperature, comprising a cutoff device configured to prevent the passage, by a terminal of the switch, of a current having an intensity greater than a current threshold, said system comprising a protection circuit as briefly described above, configured to control the cut-off device.
  • the present invention further provides an inverter, in particular for powering an electric machine of a motorization system of an electric or hybrid motor vehicle, comprising an electrical system as briefly described above.
  • FIG. 1 the diagram of a control circuit of an IGBT transistor or
  • FIG. 2 the diagram showing a fixed threshold of intensity protection of a switch, according to the state of the art
  • FIG. 3 the diagram showing a variable intensity protection threshold of a switch, according to the invention
  • FIG. 4 an example of a protection circuit according to the invention
  • FIG. 5 another example of a protection circuit according to the invention.
  • the vehicle comprises in particular an electric machine, an electrical equipment in the form of an inverter, a high voltage power supply battery, a high voltage on-board electrical network, a battery low voltage power supply, a low voltage on-board electrical network and a plurality of auxiliary electrical equipment.
  • the electrical equipment according to the invention is described below in its implementation for an inverter, without however limiting the scope of the present invention. It should be noted that the electrical equipment could be anything other than an inverter, for example a charger or a DCDC converter embedded in the vehicle.
  • the low voltage on-board electrical network connects the low voltage supply battery and the plurality of auxiliary electrical equipment so that the low voltage supply battery supplies said auxiliary electrical equipment, such as on-board computers, drive motors. screens, a multimedia system, etc.
  • the low voltage supply battery typically delivers, for example, a voltage of the order of 12 V, 24 V or 48 V.
  • the low voltage battery is recharged from the high voltage battery via a DC voltage converter. DC voltage, commonly called DC-DC converter.
  • the on-board high voltage power grid connects the high voltage power supply battery and the inverter so that the high voltage power supply battery provides a power supply function of the electrical machine via the inverter.
  • the high-voltage power supply battery typically delivers a voltage of between 100 V and 900 V, preferably between 100 V and 500 V.
  • the electrical energy recharge of the high-voltage power supply battery is achieved by connecting it via the network. continuous high voltage electrical vehicle, to an external electrical network, for example the domestic alternative power grid.
  • the electric machine is a rotating electrical machine, preferably for driving the wheels of the vehicle from the energy supplied by the high-voltage power supply battery. More specifically, the electrical machine is an AC electric machine powered by a source of polyphase currents.
  • the electric machine may be an AC motor.
  • the electrical machine is powered by a three-phase current source without this being limited by the scope of the present invention.
  • the control of the electric machine is performed by means of the inverter.
  • Said inverter makes it possible to convert the direct current supplied by the high voltage supply battery into three alternating control currents, for example sinusoidal currents.
  • the function of the inverter is to transform the DC current delivered to the input by the high voltage supply battery into three phase currents for controlling the electric machine.
  • the electric machine can also provide three alternating currents to the inverter so that said inverter transforms them into a direct current for charging the high-voltage battery.
  • the inverter comprises a housing in which are mounted power electronic components, through which passes the energy supply to the electrical machine, in particular for converting the direct current into alternating currents or vice versa, and a control unit controlling said electronic power components.
  • These electronic power components comprise in particular electronic switches such as transistors, in particular IGBT or MOSFET semiconductor transistors, arranged in electrical circuit and controlled in opening and closing by control circuits to allow a passage. controlled electrical power between the high voltage power supply battery and the electric machine.
  • the electronic control unit of the inverter comprises components for controlling the power electronic components, including the transistors. More specifically, the electronic control unit controls the electronic power components so that they perform the conversion function of the direct current received from the high voltage battery, defining a DC voltage, into three alternating phase control currents of the machine. electric (or vice versa).
  • a protection circuit of said switches of an electronic control unit of an electrical system including an inverter.
  • the maximum voltage threshold Vm allowed at the terminals of said switches of the electrical system is adapted in real time depending on the temperature.
  • the lower the temperature, the lower the maximum voltage threshold Vm allowed across a switch is reduced, and therefore the power that can be transferred by said switch is reduced.
  • the decrease in the maximum power that the switch is able to transfer implies a decrease in the power available to the electric machine powered by said converter, but it is specified that the performance of an electric machine In any case, they are generally cold-clamped because, when cold, the magnetic field at the stator of the rotating electrical machine in question reduces the magnetic performance of the permanent-magnet rotor of the electric machine.
  • the maximum voltage threshold allowed at the terminals of the switch can be increased, allowing more power to be transferred to the electric machine.
  • the maximum voltage threshold allowed across the switch is thus adapted in real time, intrinsically, that is to say without intervention of a particular software , depending on the temperature.
  • the threshold of maximum intensity of the current allowed to cross the switch intrinsically evolves as a function of temperature.
  • a cutoff member is controlled to open the circuit to ensure that said current will not flow through said switch.
  • FIG. 4 shows an example of such a protection circuit of a switch against overcurrent, said circuit being able to intrinsically adapt, in this case, two thresholds of maximum intensity of the current allowed to cross the switch, one thresholds being positive and the other negative.
  • an additional electronic component Rv is integrated in the protection circuit 100, said additional electronic component Rv having an electrical characteristic, including a resistance, which varies depending on the temperature.
  • the additional electronic component according to the invention is variable, that is to say it has a physical characteristic whose value changes significantly by at least 10% depending on the temperature. It is understood that this evolution of 10% of said physical characteristic is obtained over a temperature range of the environment in which the electric machine is likely to be used, ie, in the case of a vehicle, a range of temperatures ranging from -50 ° C to + 50 ° C.
  • said variable electronic component is a variable heat resistance Rv.
  • said variable thermo resistor may be of the NTC type, for “Negative Thermal Coefficient” meaning negative thermal coefficient, or PTC type, for “Positive Thermal Coefficient” meaning positive thermal coefficient.
  • At least one variable thermoresistor Rv whose resistance value changes as a function of temperature, is thus connected in the protection circuit 100.
  • the variable thermal resistance Rv cooperates, forming voltage divider bridges, with the fixed resistors R1, R2 so as to adapt the voltage thresholds V1, V2 respectively delivered at the input of the comparators. 1 1 and 12.
  • the protection circuit 100 of a switch against overcurrent thus comprises three resistors R1, R2, Rv, whose variable resistance thermistor Rv, forming two voltage divider bridges connected between a electrical mass and, respectively, a terminal of a first and a second comparator 1 1, 12.
  • the implementation of two comparators January 1, 12 makes it possible to compare a measured voltage V as a function of the intensity of the current flowing through the two-threshold switch V1, V2, one being for example negative V1 and the other positive V2.
  • the protection circuit according to the invention can be implemented in a context where a single current threshold is analyzed, by means of a single comparator.
  • a single current threshold is analyzed, by means of a single comparator.
  • only two resistors, including the variable thermoresistor Rv, are connected between the electrical ground and an input of the comparator, to compare the voltage depending on the intensity of the current flowing through the switch to a single threshold, positive or negative.
  • the comparators 1 1, 12 compare a voltage V which is a function of the intensity of the current flowing through the protected switch at each of the two thresholds V1, V2 from the voltage divider bridges comprising the variable thermal resistance Rv. Said thresholds V1, V2 are therefore intrinsically variable as a function of temperature.
  • the maximum intensity threshold is set from which the protection circuit controls a cutoff member to open the circuit to prevent the current from crossing the switch so that, for example, said threshold increases linearly with the temperature.
  • the current threshold (s) at which the protection circuit controls a breaking device to open the circuit for to prevent the current from crossing the switch may vary differently depending on the temperature.
  • the current threshold can thus decrease with the temperature, or even evolve non-linearly with the temperature.
  • one or more zener diodes can be added to the cut-off circuit 100 so as to limit the threshold at which the protection circuit commands a cut-off device to open the circuit to prevent the current from passing through the circuit. switch, for example when the temperature is high.
  • two Zener diodes D1, D2 may be connected between an electrical ground of the breaking circuit 101 and, respectively, a terminal of the first 1 1 and of the second comparator 12 to which the threshold is respectively connected. negative V 1 and the positive threshold V 2 from the dividing bridges formed of the resistors R1, R2, Rv.
  • Zener diodes D1, D2 make it possible to limit the thresholds V1, V2 to which is compared the measured voltage V which is a function of the intensity of the current flowing through the protected switch.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Protection Of Static Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Inverter Devices (AREA)
  • Electronic Switches (AREA)

Abstract

La présente invention a pour objet un circuit de protection d'un interrupteur d'un système électrique, ledit circuit de protection comprenant un composant électronique variable présentant une caractéristique physique dont la valeur évolue d'au moins 10% en fonction de la température, le circuit de protection étant configuré pour interdire le passage d'un courant par ledit interrupteur lorsque l'intensité dudit courant dépasse un seuil d'intensité maximale autorisée, ledit composant électronique variable étant connecté dans le circuit de protection de telle sorte que la valeur du seuil d'intensité maximale autorisée soit directement fonction de ladite caractéristique physique.

Description

CIRCUIT DE PROTECTION D’UN INTERRUPTEUR
DOMAINE TECHNIQUE ET OBJET DE L’INVENTION
[0001] La présente invention concerne un système électrique comprenant un interrupteur et des moyens électroniques de protection dudit interrupteur vis-à-vis de surcourants.
[0002] En particulier, la présente invention se rapport au domaine des véhicules automobiles notamment électriques ou hybrides. Plus précisément, dans le contexte d’un véhicule électrique ou hybride comprenant une batterie d’alimentation haute tension et une machine électrique pour la propulsion du véhicule, il est connu qu’un onduleur soit utilisé pour convertir un courant continu fourni par ladite batterie d’alimentation en une pluralité de courants alternatifs de commande de ladite machine électrique. La présente invention concerne, dans ce contexte, un équipement électrique, notamment de type onduleur, comprenant au moins un interrupteur et un dispositif de protection dudit interrupteur contre des surcourants, l’invention permettant audit dispositif de protection d’adapter la protection de l’interrupteur, en temps réel, en fonction de la température.
ETAT DE LA TECHNIQUE
[0003] Comme cela est connu, les véhicules électriques embarquent des onduleurs, autrement dit convertisseurs de courant continu en courant alternatif polyphasé, en particulier triphasé, pour alimenter une machine électrique appartenant par exemple à un système de motorisation électrique ou hybride.
[0004] De tels onduleurs comprennent une pluralité de composants, dont des interrupteurs, qui doivent fonctionner sur une large plage de valeurs de température, par exemple variant de -40°C à +105°C. Les interrupteurs, en particulier de type IGBT (pour « Insulated Gâte Bipolar Transistor » signifiant transistor bipolaire à grille isolée), ou encore de type MOSFET (pour « Métal Oxide Semiconductor Field Effect Transistor » signifiant transistor à effet de champ à structure métal-oxyde-semiconducteur) sont contrôlés pour commander des transferts d’énergie entre une entrée et une sortie desdits convertisseurs.
[0005] De tels interrupteurs présentent une tension maximale admissible à leurs bornes, autrement dit une tension de claquage. Au-delà de ladite tension maximale admissible, lesdits interrupteurs peuvent être endommagés, voire détruits, rendant de ce fait l’onduleur inopérant.
[0006] On a représenté à la figure 1 un exemple de circuit de contrôle CC1 d’un transistor T 1 de type IG BT ou MOSFET. Dans un tel circuit, le signal de commande S1 du transistor T1 est fourni, par l’intermédiaire d’une unité de pilotage (ou « driver » en anglais) BF, à la grille G du transistor T1 à travers une résistance dite « de grille » Rg dont la valeur influence le fonctionnement du transistor. Plus précisément, lorsque la valeur de la résistance de grille Rg est faible, le transistor commute rapidement, ce qui permet d’obtenir de faibles pertes par commutation donc un bon rendement mais peut entraîner des surtensions (liées aux selfs parasites du circuit) pouvant détruire le composant et des niveaux de perturbation électromagnétique non conformes aux standards. A l’inverse, lorsque la valeur de la résistance de grille Rg est élevée, le transistor T1 commute moins vite, ce qui entraîne des pertes élevées (en fermeture et ouverture) à cause des temps de commutations qui sont plus important, mais ceci permet d’obtenir des surtensions plus faibles et des niveaux de perturbation électromagnétique plus faibles. Ainsi, le choix de la résistance Rg optimale est un compromis entre les pertes, qui impactent le rendement, et les surtensions, qui peuvent conduire à la destruction du transistor T1 et à l’augmentation des niveaux de perturbation électromagnétique. [0007] A températures élevées, par exemple de l’ordre de +105°C, la tension de claquage d’un transistor IGBT ou MOSFET est généralement plus importante qu’à 25°C, température pour laquelle la tension de claquage est renseignée dans la fiche de données du composant. En revanche, à des températures basses, par exemple de l’ordre de - 40°C, la tension de claquage d’un transistor IGBT ou MOSFET est plus faible, de l’ordre de 5 à 7% de la tension de claquage à 25°C. De ce fait, une valeur faible de la résistance de grille Rg à température négative peut générer des surtensions dont la valeur serait supérieure à la tension de claquage, entraînant alors la destruction du transistor T1 , rendant l’onduleur inopérant.
[0008] En résumé, la tension de claquage d’un interrupteur est dépendante de la température. En pratique, la tension maximale admissible aux bornes d’un interrupteur augmente ainsi avec la température.
[0009] Selon l’état de la technique, une solution à ce problème consiste à configurer le circuit de contrôle de tels interrupteurs de façon à ce qu’aucune tension supérieure à la tension de claquage ne soit appliquée aux bornes de l’interrupteur concerné. Ledit circuit de contrôle assure de fait alors une fonction de protection de l’interrupteur contre des surcourants. A cette fin, un seuil d’intensité maximale du courant, autorisé à traverser l’interrupteur, est prédéfini, en fonction de la tension de claquage Vbr et conformément au meilleur compromis déterminé selon les principes exposés précédemment. Dans l’état de l’art, ledit seuil V c est constant, comme le montre la figure 2, de sorte que la zone de fonctionnement Z1 dans laquelle l’interrupteur correspondant fonctionne de façon optimale est très réduite.
[0010] La tension de claquage d’un interrupteur étant plus faible à basse température, on se place donc, selon l’état de l’art, dans le pire cas d’utilisation envisagé, typiquement à -40 °C, pour fixer ledit seuil fixe.
[0011] Il existe donc un besoin pour un circuit de protection d’un interrupteur d’un convertisseur de tension, notamment d’un onduleur, qui permette d’optimiser le seuil de tension maximale admise aux bornes dudit interrupteur, tout en autorisant des commutations dudit interrupteur les plus rapides possibles, afin de minimiser les pertes sans dépasser la tension maximale admissible aux bornes dudit interrupteur, autrement dit sans dépasser l’intensité maximale du courant autorisé à traverser ledit interrupteur, et ceci quelle que soit la température.
PRESENTATION GENERALE DE L’INVENTION
[0012] A cette fin, l’invention vise un circuit de protection d’un interrupteur d’un système électrique, ledit circuit de protection comprenant un composant électronique variable présentant une caractéristique physique dont la valeur évolue d’au moins 10% en fonction de la température, le circuit de protection étant configuré pour interdire le passage d’un courant par ledit interrupteur lorsque l’intensité dudit courant dépasse un seuil d’intensité maximale autorisée, ledit composant électronique variable étant connecté dans le circuit de protection de telle sorte que la valeur du seuil d’intensité maximale autorisée soit directement fonction de ladite caractéristique physique.
[0013] Notamment, l’interrupteur est un interrupteur électronique, en particulier un interrupteur semi-conducteur, tel qu’un transistor.
[0014] Grâce à la présente invention, la zone de fonctionnement optimale Z2 de l’interrupteur protégé est étendue, en référence à la figure 3.
[0015] Selon un mode de réalisation, ledit composant électronique variable est une thermo-résistance. [0016] Selon un mode de réalisation, ledit composant électronique variable est une thermo-résistance à coefficient thermique négatif.
[0017] Selon un mode de réalisation, ledit composant électronique variable est une thermo-résistance à coefficient thermique positif. [0018] Selon un mode de réalisation, le circuit de protection comprend un premier comparateur pour comparer une tension fonction du courant destiné à circuler dans l’interrupteur à un premier seuil de tension variable dépendant directement de la caractéristique physique du composant électronique variable.
[0019] Selon un mode de réalisation, le circuit de protection comprend un deuxième comparateur, pour comparer une tension fonction du courant destiné à circuler dans l’interrupteur à un deuxième seuil de tension variable dépendant directement de la caractéristique physique du composant électronique variable, le premier seuil étant positif et le deuxième seuil étant négatif.
[0020] Selon un mode de réalisation, le circuit de protection comprend au moins une diode Zener configurée pour limiter premier seuil et/ou le deuxième seuil à une valeur absolue maximale.
[0021] La présente invention vise également un système électrique comprenant au moins un interrupteur présentant une tension maximale admissible à ses bornes dépendante de la température, comprenant un organe de coupure configuré pour interdire le passage, par une borne de l’interrupteur, d’un courant présentant une intensité supérieure à un seuil de courant, ledit système comprenant un circuit de protection tel que brièvement décrit ci-dessus, configuré pour commander l’organe de coupure.
[0022] La présente invention vise en outre un onduleur, notamment pour alimenter une machine électrique d’un système de motorisation d’un véhicule automobile électrique ou hybride, comprenant un système électrique tel que brièvement décrit ci-dessus.
DESCRIPTION DES FIGURES
[0023] L’invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d’exemple, et se référant aux dessins annexés qui représentent :
- la figure 1 , le schéma d’un circuit de contrôle d’un transistor IGBT ou
MOSFET selon l’état de la technique, la figure 2, le diagramme montrant un seuil fixe de protection en intensité d’un interrupteur, selon l’état de la technique,
la figure 3, le diagramme montrant un seuil variable de protection en intensité d’un interrupteur, selon l’invention,
- la figure 4, un exemple de circuit de protection selon l’invention,
la figure 5, un autre exemple de circuit de protection selon l’invention.
DESCRIPTION DETAILLEE DE L’INVENTION [0024] Il est rappelé que la présente invention est décrite ci-après à l’aide de différents modes de réalisation non limitatifs et est susceptible d’être mise en oeuvre dans des variantes à la portée de l’homme du métier, également visées par la présente invention.
[0025] Dans ce qui suit, on vise en particulier une mise en oeuvre du circuit de protection selon l’invention dans le contexte d’un onduleur de véhicule.
[0026] Dans l’exemple décrit ci-après, le véhicule comprend notamment une machine électrique, un équipement électrique se présentant sous la forme d’un onduleur, une batterie d’alimentation haute tension, un réseau électrique embarqué haute tension, une batterie d’alimentation basse tension, un réseau électrique embarqué basse tension et une pluralité d’équipements électriques auxiliaires.
[0027] L’équipement électrique selon l’invention est décrit ci-après dans sa mise en œuvre pour un onduleur, sans toutefois que cela ne limite la portée de la présente invention. On notera ainsi que l’équipement électrique pourrait être autre chose qu’un onduleur, par exemple un chargeur ou un convertisseur DCDC embarqués dans le véhicule.
[0028] Le réseau électrique embarqué basse tension relie la batterie d’alimentation basse tension et la pluralité d’équipements électriques auxiliaires afin que la batterie d’alimentation basse tension alimente lesdits équipements électriques auxiliaires, tels que des calculateurs embarqués, des moteurs de lève-vitres, un système multimédia, etc. La batterie d’alimentation basse tension délivre typiquement par exemple une tension de l’ordre de 12 V, 24 V ou 48 V. La recharge de la batterie basse tension est réalisée à partir de la batterie haute tension via un convertisseur de tension continue en tension continue, appelé communément convertisseur continu-continu. [0029] Le réseau électrique embarqué haute tension relie la batterie d’alimentation haute tension et l’onduleur afin que la batterie d’alimentation haute tension assure une fonction d’alimentation en énergie de la machine électrique via l’onduleur. La batterie d’alimentation haute tension délivre typiquement une tension comprise entre 100 V et 900 V, de préférence entre 100 V et 500 V. La recharge en énergie électrique de la batterie d’alimentation haute tension est réalisée en la connectant, via le réseau électrique haute tension continue du véhicule, à un réseau électrique externe, par exemple le réseau électrique alternatif domestique.
[0030] La machine électrique est une machine électrique tournante, de préférence destinée à entraîner les roues du véhicule à partir de l’énergie fournie par la batterie d’alimentation haute-tension. Plus précisément, la machine électrique est une machine électrique à courant alternatif alimentée par une source de courants polyphasés. Par exemple, la machine électrique peut être un moteur à courant alternatif. Dans l’exemple préféré décrit ci-après, la machine électrique est alimentée par une source de courants triphasés sans que cela ne soit limitatif de la portée de la présente invention.
[0031 ] Dans cet exemple, la commande de la machine électrique est réalisée au moyen de l’onduleur. Ledit onduleur permet de convertir le courant continu fourni par la batterie d’alimentation haute tension en trois courants de commande alternatifs, par exemple sinusoïdaux. Autrement dit, l’onduleur a pour fonction de transformer le courant continu délivré en entrée par la batterie d’alimentation haute tension en trois courants de phase permettant de commander la machine électrique. A l’inverse, dans un autre mode de fonctionnement, la machine électrique peut également fournir trois courants alternatifs à l’onduleur afin que ledit onduleur les transforme en un courant continu permettant de charger la batterie d’alimentation haute-tension.
[0032] L’onduleur comprend un boîtier dans lequel sont montés des composants électroniques de puissance, par lesquels passe l’énergie alimentant la machine électrique, notamment destinés à transformer le courant continu en courants alternatifs ou vice-versa, et une unité de commande commandant lesdits composants électroniques de puissance.
[0033] Ces composants électroniques de puissance comprennent notamment des interrupteurs électroniques tels que des transistors, notamment des transistors semi- conducteurs de type IGBT ou MOSFET, agencés en circuit électrique et commandés en ouverture et en fermeture par des circuits de contrôle pour permettre un passage commandé d’énergie électrique entre la batterie d’alimentation haute tension et la machine électrique. [0034] L’unité électronique de contrôle de l’onduleur comprend des composants pour contrôler les composants électroniques de puissance, notamment les transistors. Plus précisément, l’unité électronique de contrôle commande les composants électroniques de puissance afin qu’ils réalisent la fonction de conversion du courant continu reçu de la batterie haute tension, définissant une tension continue, en trois courants de phase alternatifs de commande de la machine électrique (ou vice-versa).
[0035] Selon l’invention, il est proposé un circuit de protection desdits interrupteurs d’une unité de contrôle électronique d’un système électrique, notamment d’un onduleur.
[0036] Conformément à l’invention, comme le montre la figure 3, le seuil de tension maximale Vm autorisée aux bornes desdits interrupteurs du système électrique est adapté en temps réel en fonction de la température.
[0037] Par exemple, plus la température est basse, plus le seuil de tension maximale Vm autorisée aux bornes d’un interrupteur est réduite, et donc plus la puissance pouvant être transférée par ledit interrupteur est réduite.
[0038] Il est à noter que la diminution de la puissance maximale que l’interrupteur est apte à transférer implique une baisse de la puissance disponible pour la machine électrique alimentée par ledit convertisseur, mais il est précisé que les performances d’une machine électrique sont de toute façon généralement bridées à froid, car, à froid, le champ magnétique au stator de la machine électrique tournante considérée réduit les performances magnétiques du rotor à aimant permanant de ladite machine électrique.
[0039] Selon le même exemple, à chaud, à l’inverse, le seuil de tension maximale autorisée aux bornes de l’interrupteur peut être augmenté, permettant de transférer davantage de puissance à la machine électrique.
[0040] Grâce au circuit de protection selon l’invention, le seuil de tension maximale autorisée aux bornes de l’interrupteur est ainsi adapté en temps réel, de façon intrinsèque, c’est-à-dire sans intervention d’un logiciel notamment, en fonction de la température.
[0041] Autrement dit, le seuil d’intensité maximale du courant autorisé à traverser l’interrupteur évolue intrinsèquement en fonction de la température.
[0042] De manière classique, lorsque le seuil d’intensité maximale du courant autorisé à traverser l’interrupteur, correspondant à une intensité pour laquelle la tension de claquage ne peut pas être dépassée, est atteinte, un organe de coupure est commandé pour ouvrir le circuit afin de garantir que ledit courant ne traversera pas ledit interrupteur.
[0043] Cette limitation de la tension maximale autorisée aux bornes de l’interrupteur est réalisée, selon l’invention, par l’intermédiaire de moyens électroniques, autrement dit de moyens matériels (« hardware » selon le terme en anglais bien connu de l’homme de l’art, qui s’oppose à « software » signifiant « logiciel »). La figure 4 montre un exemple de tel circuit de protection d’un interrupteur contre des surcourants, ledit circuit étant apte à adapter intrinsèquement, en l’espèce, deux seuils d’intensité maximale du courant autorisé à traverser l’interrupteur, l’un des seuils étant positif et l’autre négatif. [0044] A cette fin, en référence à la figure 4, un composant électronique supplémentaire Rv est intégré au circuit de protection 100, ledit composant électronique supplémentaire Rv présentant une caractéristique électrique, notamment une résistance, qui varie en fonction de la température.
[0045] Le composant électronique supplémentaire, selon l’invention, est variable, c’est-à-dire qu’il présente une caractéristique physique dont la valeur évolue de façon significative d’au moins 10% en fonction de la température. Il est entendu que cette évolution de 10% de ladite caractéristique physique est obtenue sur une plage de températures de l’environnement dans lequel la machine électrique est susceptible d’être utilisée, soit, s’agissant d’un véhicule, une plage de températures allant de -50°C à +50°C environ.
[0046] Selon le mode de réalisation représenté sur la figure 4, ledit composant électronique variable est une thermo-résistance variable Rv. Par exemple, ladite thermo résistance variable peut être de type NTC, pour « Négative Thermal Coefficient » signifiant coefficient thermique négatif, ou de type PTC, pour « Positive Thermal Coefficient » signifiant coefficient thermique positif.
[0047] Toujours en référence au mode de réalisation représenté sur la figure 4, au moins une thermo-résistance variable Rv, dont la valeur de la résistance évolue en fonction de la température, est ainsi connectée dans le circuit de protection 100.
[0048] Selon la forme de réalisation choisie, la thermo-résistance variable Rv coopère, en formant des ponts diviseurs de tension, avec les résistances fixes R1 , R2 de façon à adapter les seuils de tension V1 , V2 délivrés respectivement en entrée des comparateurs 1 1 et 12. [0049] Dans l’exemple de la figure 4, le circuit de protection 100 d’un interrupteur contre des surcourants comprend ainsi trois résistances R1 , R2, Rv, dont la thermo résistance variable Rv, formant deux ponts diviseurs de tension connectés entre une masse électrique et, respectivement, une borne d’un premier et d’un deuxième comparateur 1 1 , 12. La mise en œuvre de deux comparateurs 1 1 , 12 permet de comparer une tension mesurée V fonction de l’intensité du courant traversant l’interrupteur à deux seuils V1 , V2, l’un étant par exemple négatif V1 et l’autre positif V2.
[0050] Alternativement, il est à noter que le circuit de protection selon l’invention peut être mis en œuvre dans un contexte où un seul seuil de courant est analysé, au moyen d’un seul comparateur. Dans ce cas, seules deux résistances, dont la thermo-résistance variable Rv, sont connectées entre la masse électrique et une entrée du comparateur, pour comparer la tension fonction de l’intensité du courant traversant l’interrupteur à un seuil unique, positif ou négatif.
[0051] Les comparateurs 1 1 , 12 comparent une tension V qui est fonction de l’intensité du courant traversant l’interrupteur protégé à chacun des deux seuils V1 , V2 issus des ponts diviseurs de tension comprenant la thermo-résistance variable Rv. Lesdits seuils V1 , V2 sont par conséquent intrinsèquement variables en fonction de la température.
[0052] En résumé, selon l’invention, on règle le seuil d’intensité maximale à compter duquel le circuit de protection commande à un organe de coupure d’ouvrir le circuit pour empêcher le courant de traverser l’interrupteur de sorte que, par exemple, ledit seuil augmente linéairement avec la température.
[0053] Cependant, il est bien entendu possible de réaliser un arrangement selon lequel le(s) seuil(s) de courant au(x)quel(s) le circuit de protection commande à un organe de coupure d’ouvrir le circuit pour empêcher le courant de traverser l’interrupteur, peu(ven)t évoluer différemment en fonction de la température.
[0054] Le seuil de courant peut ainsi diminuer avec la température, voire évoluer de façon non linéaire avec la température. Dans ce cas, par exemple, une ou plusieurs diodes Zener peut être ajoutée au circuit de coupure 100 de façon à limiter le seuil auquel le circuit de protection commande à un organe de coupure d’ouvrir le circuit pour empêcher le courant de traverser l’interrupteur, par exemple lorsque la température est élevée. [0055] En référence à la figure 5, deux diodes Zener D1 , D2 peuvent être connectées entre une masse électrique du circuit de coupure 101 et, respectivement, une borne du premier 1 1 et du deuxième 12 comparateurs à laquelle est connecté respectivement le seuil négatif V 1 et le seuil positif V2 issus des ponts diviseurs formés des résistances R1 , R2, Rv.
[0056] Les diodes Zener D1 , D2 permettent de limiter les seuils V1 , V2 auxquels est comparée la tension V mesurée qui est fonction de l’intensité du courant traversant l’interrupteur protégé.

Claims

REVENDICATIONS
1 . Circuit de protection (100) d’un interrupteur d’un système électrique, ledit circuit de protection (100) comprenant un composant électronique variable (Rv) présentant une caractéristique physique dont la valeur évolue d’au moins 10% en fonction de la température, le circuit de protection (100) étant configuré pour interdire le passage d’un courant par ledit interrupteur lorsque l’intensité dudit courant dépasse un seuil d’intensité maximale autorisée, ledit composant électronique variable (Rv) étant connecté dans le circuit de protection (100) de telle sorte que la valeur du seuil d’intensité maximale autorisée soit directement fonction de ladite caractéristique physique.
2. Circuit de protection (100) selon la revendication 1 , dans lequel ledit composant électronique variable (Rv) est une thermo-résistance.
3. Circuit de protection (100) selon la revendication 2, dans lequel ledit composant électronique variable (Rv) est une thermo-résistance à coefficient thermique négatif.
4. Circuit de protection (100) selon la revendication 2, dans lequel ledit composant électronique variable est une thermo-résistance (Rv) à coefficient thermique positif.
5. Circuit de protection (100) selon l’une des revendications précédentes, comprenant un premier comparateur (1 1 ) pour comparer une tension fonction du courant destiné à circuler dans l’interrupteur à un premier seuil de tension variable dépendant directement de la caractéristique physique du composant électronique variable (Rv).
6. Circuit de protection (100) selon la revendication précédente comprenant un deuxième comparateur (12), pour comparer une tension fonction du courant destiné à circuler dans l’interrupteur à un deuxième seuil de tension variable dépendant directement de la caractéristique physique du composant électronique variable (Rv), le premier seuil étant positif et le deuxième seuil étant négatif.
7. Circuit de protection (100) selon la revendication 5 ou 6, comprenant au moins une diode Zener configurée pour limiter le premier seuil et/ou le deuxième seuil à une valeur absolue maximale.
8. Système électrique comprenant au moins un interrupteur présentant une tension maximale admissible à ses bornes dépendante de la température, comprenant un organe de coupure configuré pour interdire le passage, par une borne de l’interrupteur, d’un courant présentant une intensité supérieure à un seuil de courant, ledit système comprenant un circuit de protection (100) selon l’une des revendications 1 à 7, configuré pour commander l’organe de coupure.
9. Onduleur, notamment pour alimenter une machine électrique d’un système de motorisation d’un véhicule automobile électrique ou hybride, comprenant un système électrique selon la revendication précédente.
EP19722149.2A 2018-05-17 2019-05-10 Circuit de protection d'un interrupteur Pending EP3794700A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1854142A FR3081265B1 (fr) 2018-05-17 2018-05-17 Circuit de protection d’un interrupteur
PCT/EP2019/062049 WO2019219530A1 (fr) 2018-05-17 2019-05-10 Circuit de protection d'un interrupteur

Publications (1)

Publication Number Publication Date
EP3794700A1 true EP3794700A1 (fr) 2021-03-24

Family

ID=62684973

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19722149.2A Pending EP3794700A1 (fr) 2018-05-17 2019-05-10 Circuit de protection d'un interrupteur

Country Status (5)

Country Link
US (1) US11539358B2 (fr)
EP (1) EP3794700A1 (fr)
CN (1) CN112106267B (fr)
FR (1) FR3081265B1 (fr)
WO (1) WO2019219530A1 (fr)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3048718A (en) * 1959-01-13 1962-08-07 Gen Motors Corp Transient responsive protection circuit
FR2561461A1 (fr) * 1984-03-14 1985-09-20 Etri Sa Dispositif pour proteger des surintensites un composant electrique, et moteur a courant continu ainsi equipe
JPH0530800A (ja) * 1991-07-18 1993-02-05 Mitsubishi Electric Corp 車両用交流発電機の制御装置
JPH05205781A (ja) * 1992-01-28 1993-08-13 Sanyo Electric Co Ltd 電池の過放電防止装置
US6088208A (en) * 1997-03-31 2000-07-11 Matsushita Electronics Corporation Electronic device, electronic switching apparatus including the same, and production method thereof
US6060834A (en) * 1998-09-30 2000-05-09 Honda Giken Kogyo Kabushiki Kaisha Protection from overheating of a switching transistor that delivers current to a daytime running light on a vehicle
JP2003189460A (ja) * 2001-12-17 2003-07-04 Yazaki Corp 過電流保護回路
CN101416330A (zh) * 2003-10-14 2009-04-22 布莱克和戴克公司 二次电池的保护方法、保护电路和保护器件、电动工具、充电器和适合在电池组中提供保护以防故障状况的电池组
JP5061884B2 (ja) * 2007-12-21 2012-10-31 ミツミ電機株式会社 電池パック
JP5430608B2 (ja) * 2011-04-27 2014-03-05 カルソニックカンセイ株式会社 半導体スイッチング素子駆動回路
CN203011996U (zh) * 2012-12-27 2013-06-19 杭州士兰微电子股份有限公司 开关电源的极限峰值电流检测电路
JP6468368B2 (ja) * 2015-12-07 2019-02-13 富士電機株式会社 電圧生成回路および過電流検出回路
DE102016007752B4 (de) * 2016-06-24 2023-05-25 Diehl Aerospace Gmbh Schutzschaltung, Beleuchtungsanordnung und Betriebsverfahren
US10868529B2 (en) * 2016-09-30 2020-12-15 Infineon Technologies Austria Ag System and method for an overpower detector

Also Published As

Publication number Publication date
WO2019219530A1 (fr) 2019-11-21
US11539358B2 (en) 2022-12-27
CN112106267A (zh) 2020-12-18
FR3081265B1 (fr) 2020-06-12
US20210099166A1 (en) 2021-04-01
FR3081265A1 (fr) 2019-11-22
CN112106267B (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
EP3105845B1 (fr) Systeme d'alimentation a tension continue configure pour precharger un condensateur de filtrage avant l'alimentation d'une charge
EP1790071B1 (fr) Module de commande et de puissance pour une machine electrique tournante
EP3381114B1 (fr) Systeme modulaire de conversion d'une puissance electrique continue en puissance electrique triphasee
WO2016170262A1 (fr) Regulateur de tension d'un alternateur de vehicule automobile, porte-balais regulateur et alternateurs correspondants
EP1992069B1 (fr) Dispositif de commande d'un transistor mos
EP3298686B1 (fr) Système et procéd'e de dissipation de l'énergie électrique régénerée par des actionneurs
EP3369166B1 (fr) Système de conversion d'une puissance électrique continue en puissance électrique alternative avec module récuperateur d'énergie
EP3794700A1 (fr) Circuit de protection d'un interrupteur
WO2013091826A1 (fr) Commande d'une charge inductive avec mecanisme de reduction de courant sensible a la temperature
WO2021110980A1 (fr) Dispositif et procédé de décharge active
EP0738037B1 (fr) Circuit d'excitation d'alternateur notamment de véhicule automobile, et régulateur et alternateur l'incorporant
WO2017220448A1 (fr) Systeme et procede de conversion d'une puissance electrique continue en puissance electrique alternative triphasee avec radiateur a air
WO2017220447A1 (fr) Systeme et procede de conversion d'une puissance electrique continue en puissance electrique alternative triphasee avec moyens de filtrage
EP3523867B1 (fr) Circuit de decharge d'un système electrique haute tension
EP4070455B1 (fr) Dispositif et procédé de décharge active
FR3076122A1 (fr) Circuit de controle pour transistor
FR3059286B1 (fr) Dispositif electrique hybride equipe d'une interface diagnostic securisee
WO2023089248A1 (fr) Procédé de protection contre une surtension dans un système comportant une batterie, un onduleur et une machine électrique
WO2020136333A1 (fr) Protection contre les surtensions d'un système de génération d'énergie électrique à vitesse variable et fréquence constante
EP3425800A1 (fr) Dispositif de commutation pour transistor sic ou gan mosfet avec circuit de protection contre les surtensions et procédé associé
FR2982096A1 (fr) Systeme de frein electrique
EP3804137A1 (fr) Système d'interrupteur avec un circuit de limitation de tension, bras de commutation et convertisseur électrique
FR3079088A1 (fr) Dispositif electronique de commande electrique d'une charge inductive.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200924

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220816

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VALEO EAUTOMOTIVE FRANCE SAS

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230629