EP3794059A1 - Copolymères séquencés de polydiméthylsiloxane et de polyoxyalkylène de structure linéaire de type aba - Google Patents

Copolymères séquencés de polydiméthylsiloxane et de polyoxyalkylène de structure linéaire de type aba

Info

Publication number
EP3794059A1
EP3794059A1 EP19721303.6A EP19721303A EP3794059A1 EP 3794059 A1 EP3794059 A1 EP 3794059A1 EP 19721303 A EP19721303 A EP 19721303A EP 3794059 A1 EP3794059 A1 EP 3794059A1
Authority
EP
European Patent Office
Prior art keywords
reaction
polyether
acid
sioc
equilibrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19721303.6A
Other languages
German (de)
English (en)
Inventor
Wilfried Knott
Horst Dudzik
Frauke Henning
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Operations GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP18189075.7A external-priority patent/EP3611217B1/fr
Application filed by Evonik Operations GmbH filed Critical Evonik Operations GmbH
Publication of EP3794059A1 publication Critical patent/EP3794059A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/10Equilibration processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/46Block-or graft-polymers containing polysiloxane sequences containing polyether sequences

Definitions

  • the invention relates to equilibrated trifluoromethanesulfonic acid a, w-diacetoxypolydimethylsiloxanes, to processes for their preparation and to SiOC-linked, linear polydimethylsiloxane-polyoxyalkylene block copolymers of the structure type ABA and to processes for their preparation.
  • SiOC-linked polyether siloxanes also referred to as silicone polyethers or siloxane-polyether copolymers
  • use is made according to the current state of the art of several process variants.
  • SiOC linkages are formed by the reaction of a siloxane with a leaving group attached to the silicon atom (e.g., halogen) and an alcohol or polyetherol.
  • a siloxane with a leaving group attached to the silicon atom (e.g., halogen) and an alcohol or polyetherol.
  • the latter is usually obtained beforehand by alkoxylation of monohydroxy-functional starter compounds such as butanol with alkylene oxides.
  • monohydroxy-functional starter compounds such as butanol with alkylene oxides.
  • chlorosiloxanes are used as starting compounds for this type of reaction.
  • chlorosiloxanes are difficult to handle because they are extremely reactive.
  • Their use is further associated with the disadvantage that the hydrogen chloride formed in the course of the reaction limits handling to corrosion-resistant equipment and leads to ecological problems.
  • chlorosiloxanes and alcohols or Polyetheroien organic chlorine compounds arise which are not desirable for toxicological reasons.
  • EP-A-0475440 describes a method in which Hydrogen siloxanes are reacted with an alcohol with the addition of an organic acid in the presence of a Pt salt.
  • a Pt salt for the reaction, it is indispensable that both large amounts of organic acid (0.1 to 1 mol based on alcohol), toluene as a solvent and a platinum salt are used. Since both toluene and acid in the final product are undesirable, they must be separated again after the end of the reaction.
  • Platinum salts are not only expensive, but from a physiological point of view also not safe. Especially in the field of the cosmetic industry, there is a desire for products free of platinum.
  • the technical problem to be solved is to enable the provision of linear SiOC-linked polydimethylsiloxane-polyoxyalkylene block copolymers of the structure type ABA, overcoming the difficulties discussed.
  • the relevant linear, SiOC-linked polyether siloxanes of the structure type ABA correspond to a further object of the invention and are advantageously characterized by a particularly high purity.
  • the a, w-acetoxysiloxanes obtained as precursors according to this teaching are in no way equilibrates, as is evident from Example 2 of the document, since the gas chromatographic analysis for the entire reaction mixture accounts for 14.20% D4 or after deduction of those with a content of 19.04% contained in the mixture of acetic acid accounts for a share of 17.53% D 4 based on the pure siloxane matrix.
  • US3346610 also discloses access to acetoxy group-bearing, short-chain siloxanes which is based on the metal halide-induced acetoxy modification of strained cyclic siloxanes by reacting them with acetoxy group-containing silicone compounds.
  • a variety of Friedel-Crafts active metal halides act as a catalyst, with zinc chloride being preferred.
  • a specific objective of US3346610 is the acetoxy modification of strained diorganosiloxane cycles, with deliberate avoidance of equilibration events.
  • the prior art thus relates to work which provide the opening of cyclic siloxanes - here sometimes strained cyclosiloxanes - with reactants containing acyloxy groups and whose objective is to obtain defined linear short-chain and siloxane species which are still to be separated by fractional distillation.
  • the molecular mass-defined, chain-pure acetoxy-modified siloxane compounds synthesized in this way are not suitable for the preparation of organomodified siloxanes, in particular polyethersiloxanes, which are used in demanding technical applications, for example in PU foam stabilization or in the defoaming of fuels, etc. to take.
  • Active ingredients which effectively address such a field of application are always characterized by a broad polymer distribution comprising high, medium and low molecular weights, since the oligomers contained therein, depending on their molecular weight and thus their Diffusion behavior very often differentiated surfactant tasks in different time windows of the respective process are attributable.
  • Older routes for example for the preparation of branched SiOC-linked silicone polyethers, include, among others, the acid-catalyzed reaction of chlorosilanes with acetic acid in the presence of siloxane cycles (US Pat. No. 4,380,451).
  • this process has its own characteristics that the replacement of silicon-bonded chlorine with acetoxy functions is an imperfect one, as can be seen from the proposed siloxane intermediate formula (in ibid., Column 4, 1st line).
  • EP0000328B1 describes a process for the preparation of linear and branched equilibrated organopolysiloxanes by reacting a chlorosilane or partial hydrolyzates thereof with organosiloxanes and monobasic carboxylic acids in the presence of an acidic equilibration catalyst.
  • a chlorosilane or partial hydrolyzates thereof with organosiloxanes and monobasic carboxylic acids in the presence of an acidic equilibration catalyst.
  • acyloxy-organopolysiloxanes and in particular organosiloxanes having terminal acyloxy groups as starting materials for subsequent reactions.
  • the acyloxy groups can be hydrolyzed in a diorganosiloxane, whereupon the hydrolyzate can be dehydrated and the dehydrated hydrolyzate polymerized to form a flowable diorganopolysiloxane.
  • These flowable polysiloxanes are useful as starting materials for the preparation of viscous oils and rubbers which can be cured to silicone elastomers.
  • Organosiloxanes provided with terminal acyloxy groups can be obtained, for example, by reacting an alkylsiloxane and an organic acid and / or anhydride thereof in the presence of sulfuric acid as a catalyst. Such a process is described in US Pat. No. 2,910,496 (Bailey et al.). Although in principle organosiloxanes having terminal acyloxy groups are also obtained by this process, the disadvantage of the process is that the reaction product consists of a mixture of acyloxy-containing siloxanes and acyl-containing silanes of different composition.
  • alkylsiloxane copolymers composed of M, D and T units are cleaved by the process into trimethylacyloxysilane, di-acyloxydimethylsiloxane and methyltriacacylsilane.
  • Bailey obtained even after the 40 hour reaction of octamethylcyclotetrasiloxane with acetic anhydride and acetic acid at 136 to 147 ° C and after neutralization of the sulfuric acid used as a catalyst, separating the salts and removing water, residual acetic acid and acetic anhydride a complex mixture and in no way an equilibrate, which he then subjected to fractional distillation (see example, ibid.).
  • No. 3,595,885 teaches a process for preparing equilibrated acyloxy-functionalized siloxanes starting from equilibrated chlorosiloxanyl sulfates by reaction with carboxylic acids and / or carboxylic acid salts and / or carboxylic acid anhydrides.
  • the teaching teaches (column 5 / lines 72-74) that one must expect products containing sulfuric acid groups (-SO4- and / or - OSO3H bound to Si), if one uses pure carboxylic acids and / or carboxylic anhydrides.
  • acyloxy-functionalized siloxanes are not applicable. If, for example, bridging sulfato groups incorporated in the silicone scaffolds are dissolved out by treatment with carboxylic acid salts, then shorter scission products closed with acyloxy groups are always formed, so that the resulting mixture, and in particular in comparison with the starting material, is by no means a true equilibrate.
  • equilibrated a, w-diacetoxy-polydimethylsiloxanes can be prepared by the reaction of siloxane cycles (in particular comprising D4 and / or Ds) with acetic anhydride in the presence of trifluoromethanesulfonic acid and preferably acetic acid.
  • Another object of the invention is thus a process for preparing trifluoromethanesulfonsaurer equilibrated a, w-Diacetoxypolydimethylsiloxane, wherein cyclic siloxanes, in particular comprising D4 and / or Ds, using trifluoromethanesulfonic acid as the catalyst and preferably acetic acid with acetic anhydride.
  • An exemplary, but also preferred embodiment in the context of the abovementioned process according to the invention provides, with good mixing of the reactants, to apply it with preferably 0.1 to 0.3% by weight of trifluoromethanesulfonic acid based on the entire reaction mass and then preferably to temperatures of 140 to 160 ° C for a period of 4 to 8 hours to heat.
  • These reaction products can advantageously be used after prolonged storage with good success for the production of SiOC-linked, linear polydimethylsiloxane-polyoxyalkylene block copolymers of the structure type ABA in the context of this invention.
  • Acetanhydrids based on the amount of acetic anhydride used.
  • the amount of substance in Val corresponds to the amount of substance in moles multiplied by the respective stoichiometric valence.
  • Acetanhydride has a stoichiometric valence of 2 because it is formally the source of two acetoxy groups.
  • acetic acid in the process according to the invention for the preparation of trifluoromethanesulfonic acid-equilibrated a, w-diacetoxypolydimethylsiloxanes makes it possible to further improve the equilibration quality.
  • the additional use of acetic acid therefore corresponds to a very particularly preferred embodiment of the invention.
  • it has a positive effect on the achievement of acetoxy functionalization and makes it possible in this regard Yield improvement based on the acetic anhydride used, but above all, it enables the guarantee of outstanding equilibration results already after a very short reaction time (for example after 4 hours / Example 1 1).
  • the total carbonyl content determined by gas chromatography can be defined as the sum of the D4, D5, D6 contents based on the siloxane matrix and determined after the derivatization of the ⁇ , ⁇ -diacetoxypolydimethylsiloxanes to the corresponding ⁇ , ⁇ -diisopropoxypolydimethylsiloxanes become.
  • acetic acid according to the invention here allows the problem-free falling below otherwise usual equilibrium proportions of about 13 weight percent. Accordingly, it corresponds to a preferred embodiment when equilibrium proportions of the total cycle content of less than 13, preferably less than 12 weight percent are realized in the linear a, w-Diacetoxypolydimethylsiloxanen
  • w-diacetoxypolydimethylsiloxanes acetic acid in amounts of 0.4 to 3.5 weight percent, preferably 0.5 to 3 weight percent, preferably 0.8 to 1, 8 weight percent, particularly preferably in amounts of 1, 0 to 1, 5 weight percent based on the reaction matrix consisting of acetic anhydride and cyclic siloxanes is added.
  • Another object of the invention are trifluoromethanesulfonic acid, equilibrated a, w-Diacetoxypolydimethylsiloxane, the general formula
  • purity used in the context of this invention in relation to the ABA-structured, SiOC-linked silicone polyethers relates in particular to their degree of halide and, in particular, their freedom from chloride.
  • Chloride-free is always desirable and particularly required when the ABA-structured, SiOC-linked silicone polyethers as surface-active component, for example, to take in cleaning formulations for the cleaning of magnetic heads.
  • the payment by credit cards brings with the skin fats, cosmetics, dust but also in particular with moisture (for example, sweat) tainted credit cards in contact with a magnetic head or with chip read contacts.
  • the permanent use of the credit card machine with a large number of credit cards and the concomitant buildup of soiling increase the likelihood of malfunctioning up to the non-acceptance of the credit card used. If the contact surfaces covered with metal oxide residues are cleaned with a cleaning fluid, the application of corrosion-promoting chloride ions must be avoided at all costs.
  • linear ABA-structured, SiOC-linked polydimethylsiloxane-polyoxyalkylene block copolymers obtainable by the process according to the invention in which trifluoromethanesulfonic acid, equilibrated a, w-diacetoxypolydimethylsiloxane is reacted with polyether monools in the presence of bases and optionally in the presence of an inert solvent are a further subject matter the invention.
  • chloride contents are of high purity and preferably have chloride contents of ⁇ 10 ppm and are particularly suitable, inter alia, for applications of the type described above.
  • the determination of the chloride content can be carried out using established methods via potentiometric argentometry or else ion chromatography (in this case in particular following the procedure ASTM D 7319-07 standard). Since corrosion phenomena are known to be caused both by the presence of inorganic chloride and by the presence of organochlorine compounds, chloride content in the context of the inventive teaching always means the analytically detectable total chlorine content.
  • the process for producing SiOC-linked, linear polydimethylsiloxane-polyoxyalkylene block copolymers of the structure type ABA is characterized in that the released in the reaction and in the system if necessary, acetic acid precipitated in the form of acetate salts and filtered off and the SiOC-linked, linear polydimethylsiloxane-polyoxyalkylene block copolymer is isolated after optional distillative removal of the solvent and optionally final stabilization.
  • the process for the preparation of SiOC-linked, linear polydimethylsiloxane-polyoxyalkylene block copolymers of the structure type ABA is characterized in that
  • the polyethermonool is initially charged with bases in the presence of an inert solvent and then trifluoromethanesulfonic acid, equilibrated a, w-diacetoxypolydimethylsiloxane and a condensation catalyst,
  • the eventuality of the occurrence of discoloration is also related to the temperatures to which the reaction mixture is exposed, thus resulting in several preferred embodiments of the process according to the invention.
  • a particularly preferred embodiment provides that the Trifluormethansulfonsaure, equilibrated a, w-diacetoxy-polydimethylsiloxan with polyether mono-ol (s) at temperatures of ⁇ 25 ° C with stirring presents, and by a subsequent entries of a solid, liquid or gaseous Base (as for example by ammonia introduction, see Example 2 and Example 9 by Natriumcarbonatzusatz) before heating the reaction mixture of an undesirable discoloration of the reaction product effectively counteracted.
  • This embodiment variant is without the use of condensation catalysts as here preferably trichloroacetic acid, since the liberated in the reaction acetic acid is bound, for example, as ammonium acetate.
  • the amount of solid, liquid or gaseous base introduced into the reaction system according to the invention is preferably such that it is effective both for the neutralization of the trifluoromethanesulfonic acid present in the system and the salt precipitation of the acetate groups bound to the siloxane and the precipitation of the acetic anhydride still present in the reaction system and optionally free acetic acid.
  • the reaction is carried out according to the invention at temperatures between preferably 20 and 70 ° C over the period of preferably 1 to 3 hours.
  • Another preferred embodiment according to the invention provides, in the polyetherol or polyetherol mixture intended for linking, to initially introduce base (n) with stirring, before the trifluoromethanesulfonic acid, equilibrated a, w-diacetoxypolydimethylsiloxane is added (cf., in particular, Examples 3 and 4).
  • condensation catalysts such as, for example, preferably trichloroacetic acid or methanesulfonic acid (see Example 8)
  • a rapid reaction of the reactants is then ensured. This reaction is preferably at Temperatures between 50 to 90 ° C and preferably carried out over the period of 2 to 6 hours.
  • the amount of preferably liquid bases used according to the invention is preferably such that it corresponds to at least the stoichiometric equivalent, preferably at least 2 to 3 times the stoichiometric equivalent of the trifluoromethanesulfonic acid contained in the ⁇ , ⁇ -diacetoxypolydimethylsiloxane (cf., Examples 3 and 4). This corresponds to a particularly preferred embodiment of the invention.
  • Preferred simple bases to be used according to the invention are, for example, alkali metal or alkaline earth metal carbonates and / or hydrogen carbonates and / or gaseous ammonia and / or amines.
  • bases which, owing to their chemical composition, do not introduce any water into the reaction system.
  • anhydrous carbonates prior to bicarbonates and hydrate water-free bases containing water of hydration have preference respectively.
  • the polyethersiloxanes prepared according to the invention have excellent storage stability.
  • the viscosity is monitored as a function of time at a constant selected storage temperature by sampling, as here possible degradation and / or construction processes manifest sensitive.
  • the embodiment variant according to the invention which does not rely on the precipitation of the acetate equivalents present in the reaction system, but uses the elimination, in particular the thermal Ausnikens liberated acetic acid and preferably in the form of azeotropic mixtures, preferably condensation catalysts are used.
  • all Brönstedt acids in this case preferably the simple mineral acids and methanesulfonic acid (see Example 8), phosphoric acid, phosphonic acids and / or acidic salt-like compounds such as triflate salts, in particular bismuth triflate and / or all Lewis acidic compounds such as tin and organotin compounds, Titanate esters, tetraalkoxytitanates, zinc acetylacetonate, zinc acetate and tris-pentafluorophenylborane, are capable of catalyzing the reaction of the acetoxysiloxane with polyether monools.
  • trichloroacetic acid as the condensation catalyst.
  • the corresponding use of condensation catalysts, in particular trichloroacetic acid corresponds to a particularly preferred embodiment of the invention.
  • the amount of bases used is based on the trifluoromethanesulfonic acid equivalent derived from the ⁇ , ⁇ -diacetoxypolydimethylsiloxane
  • the amount of trichloroacetic acid which is particularly preferably used according to the invention depends on the total amount of reactants ( ⁇ , ⁇ -diacetoxypolydimethylsiloxane plus polyethermono) provided for the SiOC linking reaction -oil).
  • the amount of trichloroacetic acid to be used in a preferred embodiment is in the range of preferably 0.1 to 0.7% by mass, preferably between 0.2 and 0.5% by mass, based on the total amount of the reactants provided for the SiOC linking reaction (a, w). Diacetoxypolydimethylsiloxane plus polyethermonool).
  • Another object and another preferred embodiment of this invention is the salt-free exchange of acetoxy groups bound to linear siloxanes by polyetheroxy radicals by reacting the trifluoromethanesulfonic acid bearing acetoxy groups, linear siloxane in the presence of bases and optionally in an inert solvent together with the polyetherol brought to reaction with stirring and then removed in the course of a distillation, the resulting acetic acid and residues used Acetanhydrids optionally together with portions of the solvent used.
  • toluene is most preferred.
  • the use of toluene therefore corresponds to a preferred embodiment of the invention.
  • the boiling points of toluene and acetic acid are with 110.6 and 118.5 ° C and the Boiling point of the binary azeotrope 105.4 ° C indicated.
  • the azeotrope has a composition of 72w% toluene and 28w% acetic acid (Source: Handbook of Chemistry and Physics, 58th Edition, page D2, CRC-Press (1977-1978), West Palm Beach).
  • the thermal circling of the acetic acid accompanying the azeotrope formation ensures complete exchange of the acetoxy functions bound to the siloxane skeleton with polyetheroxy radicals and therefore corresponds to a particularly preferred embodiment of the invention.
  • trifluoromethanesulfonic acid is preferably used in concentrations of 0.1 to 0.3 percent by weight (w%) based on the total mass of the reaction mixture. This corresponds to a particularly preferred embodiment of the invention.
  • the SiOC-linked polyethersiloxane remaining in the distillation bottoms is preferably added by adding an auxiliary base such as, for example Sodium carbonate and subsequent filtration completely free from traces of residual acid (see Examples 3, 4 and 6).
  • an auxiliary base such as, for example Sodium carbonate and subsequent filtration completely free from traces of residual acid (see Examples 3, 4 and 6).
  • linear polyethersiloxanes prepared by the process according to the invention can also be mixed with small amounts of organic amines, such as, for example, N-methylmorpholine (cf., Examples 2, 4 and 6). This corresponds to a preferred embodiment of the invention.
  • polyether monools which can be used according to the invention are preferably those of the formula
  • A is a saturated or unsaturated organic radical having at least one carbon atom, preferably an organic radical of an organic starting compound having at least one carbon atom for preparing the compound, particularly preferably a linear or branched saturated or unsaturated hydrocarbon radical having 1-18 C atoms, preferably a methyl , Ethyl, propyl, butyl, vinyl or allyl group,
  • R 'independently of one another is a saturated alkyl group having 2-18 C atoms or an aromatic radical, or preferably an ethyl group or a phenyl radical,
  • m is 0 to 50, preferably 0 to 30, more preferably 0 to 20
  • n is 0 up to 250, preferably 3 up to 220, more preferably 5 up to 200
  • o is 0 up to 250, preferably 3 up to 220, more preferably 5 up to 200
  • a is equal to 1
  • index numbers reproduced here and the value ranges of the specified indices can be understood as mean values (weight average) of the possible statistical distribution of the actual structures present and / or their mixtures. This also applies to as such per se exactly reproduced structural formulas, such as for formula (I).
  • the units denoted by m, n and o can optionally be mixed randomly or else in blocks in the chain.
  • Statistical distributions can be constructed block by block with an arbitrary number of blocks and an arbitrary sequence or a randomized distribution, they can also be of alternating construction or also form a gradient over the chain, in particular they can also form all mixed forms in which optionally groups of different Distributions can follow one another. Special designs may cause statistical distributions to be constrained by execution. For all areas that are not affected by the restriction, the statistical distribution does not change.
  • the radical A is preferably understood as meaning radicals of substances which form the beginning of the compound of the formula (I) to be prepared, which is obtained by the addition of alkylene oxides.
  • the starting compound is preferably selected from the group of alcohols, polyethers or phenols. Preference is given as a starting compound the group A contains a monohydric polyether alcohol and / or a monohydric alcohol or any mixtures thereof.
  • the monomers used in the alkoxylation reaction are preferably ethylene oxide, propylene oxide, butylene oxide and / or styrene oxide and any desired mixtures of these epoxides.
  • the different monomers can be used in pure form or mixed.
  • the metered addition of another epoxide to an epoxide already present in the reaction mixture can be continuous over time so that an increasing concentration gradient of the continuously added epoxide is produced.
  • the resulting polyoxyalkylenes are thus subject to a statistical distribution in the final product, with restrictions by the dosage can be determined.
  • a structure gradient can then be expected over the chain length.
  • the relationships between dosage and product structure are known in the art.
  • the compounds of the formula (I) used are preferably those which have a weight average molecular weight of from 76 to 10,000 g / mol, preferably from 100 to 8,000 g / mol and more preferably from 200 to 6,000 g / mol.
  • the radical A is derived from compounds selected from the group of monovalent monomeric, oligomeric or polymeric alcohols, phenols, carbohydrates or carbohydrate derivatives, particularly preferably those compounds are used in which the radical A of one or more alcohols deriving from the group of butanol, 1-hexenol, octanol, dodecanol, stearyl alcohol, vinyloxybutanol, 2-ethylhexanol, cyclohexanol, benzyl alcohol, allyl alcohol, vinyl alcohol, or naturally-based compounds bearing monovalent hydroxyl groups.
  • Particularly preferred compounds are those which are liquid at a pressure of 101325 Pa and a temperature of 23 ° C.
  • a low molecular weight that is, having a molecular weight of less than 200 g / mol, of hydroxy-functional starters such as butanol, allyl alcohol, propylene glycol in the presence of the alkaline catalyst with an alkylene oxide such as ethylene oxide, propylene oxide, butylene oxide or a mixture of different alkylene oxides a polyoxyalkylene polyether reacted.
  • hydroxy-functional starters such as butanol, allyl alcohol, propylene glycol
  • an alkylene oxide such as ethylene oxide, propylene oxide, butylene oxide or a mixture of different alkylene oxides a polyoxyalkylene polyether reacted.
  • the strongly alkaline reaction conditions in this so-called living polymerization promote various side reactions.
  • the compounds of the formula (II) can also be prepared by double metal cyanide catalysis.
  • Polyethers prepared by double metal cyanide catalysis generally have a particularly low level of unsaturated end groups of less than or equal to 0.02 meq / gram of polyether compound (meq / g), preferably less than or equal to 0.015 meq / g, more preferably less than or equal to 0.01 meq / g (method of determination ASTM D2849-69), contain significantly fewer monols and usually have a low polydispersity of less than 1.5.
  • the preparation of such polyethers z. For example, in US-A5158922 and EP-A0654302 described.
  • the polyether monools to be used according to the invention may have a primary or secondary OH function.
  • the use of such polyether monools which have a secondary alcohol function is preferred within the scope of the inventive teaching.
  • the molar ratio of the reactants is preferably such that at least 1 mol of OH functionality bound to the polyether per mole of acetoxy group of the ⁇ , ⁇ -diacetoxy-polydimethylsiloxane, preferably 1 to 2 moles of OH functionality bonded to the polyether, more preferably 1, 1 to 1, 6 moles of OH functionality bonded to the polyether, preferably 1, 1 to 1, 4 moles of OH functionality bonded to the polyether per mole of acetoxy group of the ⁇ , ⁇ -diacetoxy-polydimethylsiloxane.
  • the SiOC-linked, branched polyether siloxanes used in a large number of surface-active applications are frequently characterized as containing polyether radicals of different composition and / or molecular weight.
  • it corresponds to a preferred embodiment of the method according to the invention to react the acetoxy-containing, equilibrated linear siloxane with a mixture of various types Polyetheroie.
  • the expert is familiar with the sometimes different reaction behavior of the polyetheroie used, so that one dedicated to the goal of causing a special interface activity, makes some orienting hand tests with polyetherol mixtures and then evaluates the products thus obtained in terms of performance in order to achieve an optimum result.
  • the replacement of the acetoxy groups by reaction with polyether alcohols is carried out according to the invention preferably in the course of 30 minutes to 8 hours. This corresponds to a preferred embodiment of the invention.
  • Another object of the invention is the use of this preparation, prepared by the novel process as described above, as a surfactant additive in non-corrosive cleaning solutions, as defoamers, as foam stabilizers, wetting agents, coating and leveling additives and as a demulsifier.
  • the GPC 's (gel permeation chromatography) are carried out using THF as the mobile phase on a column combination SDV 1000 / 10000A, length 65 cm, ID 0.80 at a temperature of 30 ° C on a SECcurity 2 GPC System 1260 ( PSS Polymer Standards Service GmbH).
  • the gas chromatograms are carried out on a GC apparatus of type GC 7890B from Agilent Technologies
  • the total cyanogen content determined by gas chromatography is defined as the sum of the D4, D5, D6 contents based on the siloxane matrix and determined after the derivatization of the ⁇ , ⁇ -diacetoxypolydimethylsiloxanes to the corresponding ⁇ , ⁇ -diisopropoxypolydimethylsiloxanes ,
  • the derivatization to the ⁇ , ⁇ -diisopropoxypolydimethylsiloxanes is hereby deliberately chosen in order to prevent a thermally induced cleavage reaction of the ⁇ , ⁇ -diacetoxy-polydimethylsiloxanes, which optionally takes place under the conditions of the gas chromatographic analysis (for the cleavage reaction see, inter alia, J.
  • the polyether monools used have water contents of about 0.2 percent by mass and are used without further predrying.
  • Toluene used has a water content of 0.03 percent by mass and is also used without predrying.
  • the acetoxysiloxanes prepared according to the invention are not stored explicitly in glass bottles at 23 ° C. storage temperature for a period of 3 weeks unless they are explicitly described differently in the respective synthesis examples before they are combined with the polyether alcohols to form the corresponding SiOC-linked linear polydimethylsiloxane-polyoxyalkylene block copolymers or to the corresponding a, w-Diisopropoxypolydimethylsiloxanen be implemented.
  • a colorless, clear ABA-structured polydimethylsiloxane-polyoxyalkylene block copolymer is isolated, whose 29 Si NMR spectrum ensures the desired structure.
  • the polyethersiloxane is treated with 0.2% N-methylmorpholine.
  • the reflux condenser is replaced by a distillation bridge and the volatiles are distilled off at 70 ° C. and an applied auxiliary vacuum of ⁇ 1 mbar.
  • the distillation bottom is mixed with 0.13 g of sodium carbonate Na 2 C 3 O in the heat and the batch is allowed to continue stirring at 70 ° C. for 2 hours. After cooling to 23 ° C, the solid with the aid of a filter press (filter disk Seitz K 300) separated.
  • the reflux condenser is replaced by a distillation bridge and the volatiles are distilled off at 70 ° C. and an applied auxiliary vacuum of ⁇ 1 mbar.
  • the distillation bottom is treated with 0.21 g of sodium carbonate Na 2 C 3 O in the heat and the batch is allowed to continue stirring at 70 ° C. for 2 hours. After cooling to 23 ° C, the solid with the aid of a filter press (filter disk Seitz K 300) separated.
  • the colorless, clear polyethersiloxane is mixed with 0.2% N-methylmorpholine.
  • the corresponding 29 Si NMR spectrum confirms the desired structure.
  • the reflux condenser is replaced by a distillation bridge and the volatiles are distilled off at 70 ° C. and an applied auxiliary vacuum of ⁇ 1 mbar. After breaking the vacuum, the distillation bottom is treated with 3.68 g of sodium carbonate Na 2 C 3 O in the heat and the batch is allowed to continue stirring at 70 ° C. for 2 hours. After cooling to 23 ° C, the solid with the aid of a filter press (filter disk Seitz K 300) separated.
  • the reflux condenser is replaced by a distillation bridge and the volatiles are distilled off at 70 ° C. and an applied auxiliary vacuum of ⁇ 1 mbar.
  • the distillation bottom is mixed with 0.13 g of sodium carbonate Na 2 C 3 O in the heat and the batch is allowed to continue stirring at 70 ° C. for 2 hours. After cooling to 23 ° C, the solid with the aid of a filter press (filter disk Seitz K 300) separated.
  • the colorless, clear polyethersiloxane is mixed with 0.2% N-methylmorpholine.
  • the associated 29 Si NMR spectrum ensures the desired structure.
  • Potentiometric argentometry indicates a total chloride content of 2 ppm.
  • the salts are separated by means of a pleated filter of the liquid.
  • the thus obtained, clear filtrate is removed at 70 ° C bath temperature and an applied auxiliary vacuum of ⁇ 1 mbar on a rotary evaporator of volatiles.
  • a colorless, clear ABA-structured polydimethylsiloxane-polyoxyalkylene block copolymer is isolated, whose 29 Si NMR spectrum ensures the desired structure.
  • the polyethersiloxane is treated with 0.2% N-methylmorpholine.
  • the viscosity determined with the aid of a Haake Viscotester 550 at 25 ° C. is 240 mPas.
  • a colorless, clear liquid is isolated whose accompanying 29 Si NMR spectrum demonstrates the quantitative conversion of the ⁇ , ⁇ -diacetoxypolydimethylsiloxane to an ⁇ , ⁇ -diisopropoxypolydimethylsiloxane.
  • An aliquot of this a, w-Diisopropoxypolydimethylsiloxans is removed and analyzed by gas chromatography.
  • the gas chromatogram has the following contents (in percentage by mass):

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Silicon Polymers (AREA)

Abstract

L'invention concerne des α,ω-diacétoxypolydiméthylsiloxanes à l'acide triflique à équilibrés, leur procédé de production et des copolymères séquencés de polydiméthylsiloxane et de polyoxyalkylène à liaison SiOC, de structure linéaire de type ABA, ainsi que leur procédé de production, la production de copolymères séquencés de polydiméthylesiloxane et de polyoxyalkylène à liaison SiOC de structure linéaire de type ABA étant réalisée en faisant réagir de l'acétoxysiloxane à l'acide triflique avec des huiles de polyéther en présence éventuellement de bases et éventuellement d'un solvant inerte.
EP19721303.6A 2018-05-17 2019-05-07 Copolymères séquencés de polydiméthylsiloxane et de polyoxyalkylène de structure linéaire de type aba Pending EP3794059A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP18172882 2018-05-17
EP18189075.7A EP3611217B1 (fr) 2018-08-15 2018-08-15 Copolymères bloc de polydiméthylsiloxane-polyoxyalkylène linéaires de type de structure aba
PCT/EP2019/061639 WO2019219446A1 (fr) 2018-05-17 2019-05-07 Copolymères séquencés de polydiméthylsiloxane et de polyoxyalkylène de structure linéaire de type aba

Publications (1)

Publication Number Publication Date
EP3794059A1 true EP3794059A1 (fr) 2021-03-24

Family

ID=66379934

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19721303.6A Pending EP3794059A1 (fr) 2018-05-17 2019-05-07 Copolymères séquencés de polydiméthylsiloxane et de polyoxyalkylène de structure linéaire de type aba

Country Status (5)

Country Link
US (1) US11345783B2 (fr)
EP (1) EP3794059A1 (fr)
CN (1) CN112135861A (fr)
CA (1) CA3099860A1 (fr)
WO (1) WO2019219446A1 (fr)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108350173B (zh) * 2015-11-05 2021-03-05 巴斯夫欧洲公司 制备聚亚烷基醚改性的聚硅氧烷的方法及其用途
EP3470475B1 (fr) 2017-10-13 2021-01-27 Evonik Operations GmbH Composition durcissable pour revêtements à propriété antiadhésive
EP3492513B1 (fr) 2017-11-29 2021-11-03 Evonik Operations GmbH Procédé de fabrication de polyéthersiloxanes liés au sioc ramifiés dans la partie siloxane
WO2019219452A1 (fr) 2018-05-17 2019-11-21 Evonik Degussa Gmbh Copolymère séquencé de polydiméthylsiloxane et de polyoxyalkylène à structure linéaire de type aba
EP3611215A1 (fr) 2018-08-15 2020-02-19 Evonik Operations GmbH Procédé de production de siloxanes portant des groupes acétoxy
EP3611214A1 (fr) 2018-08-15 2020-02-19 Evonik Operations GmbH Copolymères bloc polydiméthylsiloxane-polyoxyalkylène linéaires à liaisons sioc
EP3663346B1 (fr) 2018-12-04 2023-11-15 Evonik Operations GmbH Siloxane réactif
EP3744760A1 (fr) 2019-05-28 2020-12-02 Evonik Operations GmbH Procédé de fabrication de polyéthersiloxanes liés au sioc ramifiés dans la partie siloxane
EP3744759B1 (fr) 2019-05-28 2024-07-17 Evonik Operations GmbH Procédé de fabrication de polyéthersiloxanes liés au sioc ramifiés dans la partie siloxane
EP3744774B1 (fr) 2019-05-28 2021-09-01 Evonik Operations GmbH Procédé de recyclage des silicones
EP3744753B1 (fr) 2019-05-28 2022-04-06 Evonik Operations GmbH Procédé de purification d'acétoxysiloxanes
EP3744754B1 (fr) 2019-05-28 2024-10-02 Evonik Operations GmbH Procédé de production de siloxanes portant des groupes acétoxy
EP3744755B1 (fr) 2019-05-28 2024-10-09 Evonik Operations GmbH Procédé de production de siloxanes portant des groupes acétoxy
EP3744762A1 (fr) * 2019-05-28 2020-12-02 Evonik Operations GmbH Procédé de fabrication de polymères séquencés de polyoxyalkylène polysiloxane
EP3744763B1 (fr) 2019-05-28 2024-08-14 Evonik Operations GmbH Polyethérsiloxanes à base de sioc conçus sur mesure
EP3744745A1 (fr) 2019-05-28 2020-12-02 Evonik Operations GmbH Fabrication de mousses de polyuréthane
EP3744756B1 (fr) 2019-05-28 2024-07-03 Evonik Operations GmbH Systèmes acétoxy
EP3865531A1 (fr) 2020-02-14 2021-08-18 Evonik Operations GmbH Copolymères blocs polydiméthylsiloxane-polyoxyalkylènes linéaires à liaisons sioc
ES2977903T3 (es) 2020-03-27 2024-09-02 Evonik Operations Gmbh Reciclaje de materiales de estructuras planas siliconizadas
EP3919550A1 (fr) * 2020-06-02 2021-12-08 Evonik Operations GmbH Siloxanes linéaires transportant des groupes acetoxy et produits dérivés
US11732092B2 (en) 2020-10-19 2023-08-22 Evonik Operations Gmbh Upcycling process for processing silicone wastes
US12060460B2 (en) 2021-04-29 2024-08-13 Evonik Operations Gmbh Process for producing endcapped, liquid siloxanes from silicone wastes
CN113804785B (zh) * 2021-09-16 2023-03-21 杭州普洛赛斯检测科技有限公司 一种气相色谱-质谱联用检测尿素的方法
CN114736378A (zh) * 2022-05-13 2022-07-12 湛江嘉力手套制品有限公司 一种橡胶手套生产用隔离剂组份及其合成方法和应用

Family Cites Families (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE558554A (fr) 1956-06-26
NL128599C (fr) 1963-08-07 1970-04-15
US3356758A (en) 1963-08-07 1967-12-05 Union Carbide Corp Siloxane-oxyalkylene block copolymers and process therefor
US3595885A (en) 1964-02-12 1971-07-27 Goldschmidt Ag Th Organopolysiloxanes and the process for their preparation
US3775452A (en) 1971-04-28 1973-11-27 Gen Electric Platinum complexes of unsaturated siloxanes and platinum containing organopolysiloxanes
JPS4819941U (fr) 1971-07-15 1973-03-07
GB1460485A (en) * 1974-03-20 1977-01-06 Union Carbide Corp Process for producing siloxane-polyoxyalkylene block copolymers
US4066680A (en) * 1976-10-18 1978-01-03 Sws Silicones Corporation Process for making alpha,omega-siloxanediols
DE2731842C3 (de) 1977-07-14 1983-12-22 Heidelberger Druckmaschinen Ag, 6900 Heidelberg Verfahren zum Ermitteln von durch Schieben und/oder Dublieren hervorgerufenen Veränderungen im Rastertonwert einer Farbe bedruckter Bogen oder Bahnen
DE2802668A1 (de) * 1978-01-21 1979-07-26 Bayer Ag Verfahren zur herstellung von siliciumfunktionellen polyorganosiloxanen
DE2929588A1 (de) 1979-07-21 1981-02-05 Bayer Ag Verfahren zur herstellung von polysiloxan-polyoxyalkylen-mischpolymerisaten und deren verwendung bei der herstellung von polyurethan-schaumstoffen
DE3038984A1 (de) 1980-10-15 1982-05-27 Bayer Ag, 5090 Leverkusen Verfahren zum kontinuierlichen faerben und gleichzeitigen ausruesten von textilen materialien
DE3133869C1 (de) 1981-08-27 1983-05-05 Th. Goldschmidt Ag, 4300 Essen Verfahren zur Addition von organischen Siliciumverbindungen mit SiH-Gruppen an Verbindungen mit olefinischen Doppelbindungen
JP2580379B2 (ja) 1990-09-14 1997-02-12 信越化学工業株式会社 アルコキシ変性シリコ―ンの製造方法
US5158922A (en) 1992-02-04 1992-10-27 Arco Chemical Technology, L.P. Process for preparing metal cyanide complex catalyst
HUT70694A (en) 1993-07-10 1995-10-30 Nuenchritz Chemie Gmbh Catalyst for the production of organosiloxanen and polyorganosiloxanen and processes for producing and using them
US5470813A (en) 1993-11-23 1995-11-28 Arco Chemical Technology, L.P. Double metal cyanide complex catalysts
CA2298240C (fr) 1999-02-24 2007-08-21 Goldschmidt Ag Systeme catalytique synergique et procede permettant d'effectuer des reactions d'hydrosilylation
FR2802540B1 (fr) 1999-12-17 2002-05-24 Rhodia Chimie Sa Procede de preparation de polyorganosiloxanes par polymerisation catalysee par un systeme catalytique a base d'acide triflique ou de derives de l'acide triflique
DE10301355A1 (de) 2003-01-16 2004-07-29 Goldschmidt Ag Äquilibrierung von Siloxanen
DE10312636A1 (de) 2003-03-21 2004-09-30 Goldschmidt Ag Verfahren zur Umsetzung von Polyorganosiloxanen
DE10359764A1 (de) 2003-12-19 2005-07-14 Goldschmidt Ag Polysiloxane mit über SiOC-Gruppen gebundenen (Meth)acrylsäureestergruppen, Verfahren zu deren Herstellung sowie deren Verwendung als strahlenhärtbare abhäsive Beschichtung
JP2006160706A (ja) * 2004-12-10 2006-06-22 Dow Corning Toray Co Ltd オルガノポリシロキサンの製造方法
DE102005001039B4 (de) 2005-01-07 2017-11-09 Evonik Degussa Gmbh Verfahren zur Herstellung von Äquilibrierungsprodukten von Organosiloxanen und die so erhältlichen Organopolysiloxane
DE102005039398A1 (de) 2005-08-20 2007-02-22 Goldschmidt Gmbh Verfahren zur Herstellung von Anlagerungsprodukten aus SiH-Gruppen enthaltenden Verbindungen an Olefingruppen aufweisende Reaktionspartner in wässrigen Medien
DE102005039931A1 (de) 2005-08-24 2007-03-01 Goldschmidt Gmbh Verfahren zur Herstellung von SiOC-verknüpften, linearen Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymeren
DE102006061351A1 (de) 2006-12-22 2008-06-26 Evonik Goldschmidt Gmbh Verfahren zur Herstellung von SiOC-verknüpften, linearen Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymeren und ihre Verwendung
DE102006061350A1 (de) 2006-12-22 2008-06-26 Evonik Goldschmidt Gmbh Verfahren zur Herstellung von SiOC-verknüpften, linearen Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymeren und ihre Verwendung
DE102006061353A1 (de) 2006-12-22 2008-06-26 Evonik Goldschmidt Gmbh Verfahren zur Umsetzung von Polyorganosiloxanen und deren Verwendung
DE102007055485A1 (de) 2007-11-21 2009-06-04 Evonik Goldschmidt Gmbh Verfahren zur Herstellung verzweigter SiH-funktioneller Polysiloxane und deren Verwendung zur Herstellung SiC- und SiOC-verknüpfter, verzweigter organomodifizierter Polysiloxane
DE102008041601A1 (de) 2008-08-27 2010-03-04 Evonik Goldschmidt Gmbh Verfahren zur Herstellung verzweigter SiH-funtioneller Polysiloxane und deren Verwendung zur Herstellung flüssiger, SiC- oder SiOC-verknüpfter, verzweigter organomodifizierter Polysiloxane
DE102008043245A1 (de) 2008-10-29 2010-05-06 Evonik Goldschmidt Gmbh Siliconpolyether-Copolymersysteme sowie Verfahren zu deren Herstellung durch Alkoxylierungsreaktion
DE102008043343A1 (de) 2008-10-31 2010-05-06 Evonik Goldschmidt Gmbh Silikonpolyetherblock-Copolymere mit definierter Polydispersität im Polyoxyalkylenteil und deren Verwendung als Stabilisatoren zur Herstellung von Polyurethanschäumen
EP2352779B1 (fr) 2008-12-05 2017-10-18 Evonik Degussa GmbH Polyéthersiloxanes à groupes alcoxysilyle et leur procédé de préparation
DE102009003274A1 (de) 2009-05-20 2010-11-25 Evonik Goldschmidt Gmbh Zusammensetzungen enthaltend Polyether-Polysiloxan-Copolymere
DE102009034607A1 (de) 2009-07-24 2011-01-27 Evonik Goldschmidt Gmbh Neuartige Siliconpolyethercopolymere und Verfahren zu deren Herstellung
TW201132136A (en) 2010-03-08 2011-09-16 Taiwan Electrets Electronics Co Ltd Structure of flexible speaker
DE102010029723A1 (de) 2010-06-07 2011-12-08 Evonik Goldschmidt Gmbh Verfahren zur Herstellung von organischen Siliciumverbindungen
DE102011076019A1 (de) 2011-05-18 2012-11-22 Evonik Goldschmidt Gmbh Alkoxylierungsprodukte und Verfahren zu ihrer Herstellung mittels DMC-Katalysatoren
DE102012210553A1 (de) 2012-06-22 2013-12-24 Evonik Industries Ag Siliconpolyether und Verfahren zu deren Herstellung aus Methylidengruppen tragenden Polyethern
JP6059010B2 (ja) 2012-12-28 2017-01-11 東レ・ダウコーニング株式会社 硬化性シリコーン組成物、その硬化物、および光半導体装置
JP6212122B2 (ja) 2012-12-28 2017-10-11 東レ・ダウコーニング株式会社 硬化性シリコーン組成物、その硬化物、および光半導体装置
DE102013208328A1 (de) 2013-05-07 2014-11-13 Evonik Industries Ag Polyoxyalkylene mit seitenständigen langkettigen Acyloxyresten und Verfahren zu ihrer Herstellung mittels DMC-Katalysatoren
CN104419006A (zh) * 2013-08-26 2015-03-18 上海凯众材料科技股份有限公司 聚酯/聚醚-聚硅氧烷嵌段共聚物二元醇的制备方法
EP3036279B1 (fr) * 2013-10-08 2019-05-08 Momentive Performance Materials GmbH Compositions de siloxane fonctionnel réactif
KR101615544B1 (ko) 2014-04-01 2016-04-26 한국과학기술원 가수분해-축합반응을 이용한 투명 실록산 경화물의 제조방법
EP3321304B1 (fr) 2016-11-15 2019-06-19 Evonik Degussa GmbH Mélanges de siloxanes ramifiés-cycliques de type d/t et leurs produits secondaires
PL3401353T3 (pl) 2017-05-08 2021-12-13 Evonik Operations Gmbh Mieszaniny cyklicznych, rozgałęzionych siloksanów typu D/T i ich dalszych produktów
EP3415548B1 (fr) 2017-06-13 2020-03-25 Evonik Operations GmbH Procédé de fabrication de polyéthersiloxanes liés par sic
EP3415547B1 (fr) 2017-06-13 2020-03-25 Evonik Operations GmbH Procédé de fabrication de polyéthersiloxanes liés par sic
EP3438158B1 (fr) 2017-08-01 2020-11-25 Evonik Operations GmbH Production de polyéthersiloxanes par une liaison sioc
EP3467006B1 (fr) 2017-10-09 2022-11-30 Evonik Operations GmbH Mélanges de siloxanes ramifiés-cycliques de type d/t et leurs produits secondaires
EP3492513B1 (fr) 2017-11-29 2021-11-03 Evonik Operations GmbH Procédé de fabrication de polyéthersiloxanes liés au sioc ramifiés dans la partie siloxane
WO2019219452A1 (fr) 2018-05-17 2019-11-21 Evonik Degussa Gmbh Copolymère séquencé de polydiméthylsiloxane et de polyoxyalkylène à structure linéaire de type aba
EP3611214A1 (fr) 2018-08-15 2020-02-19 Evonik Operations GmbH Copolymères bloc polydiméthylsiloxane-polyoxyalkylène linéaires à liaisons sioc
EP3611215A1 (fr) 2018-08-15 2020-02-19 Evonik Operations GmbH Procédé de production de siloxanes portant des groupes acétoxy
EP3744761B1 (fr) 2019-05-28 2021-06-30 Evonik Operations GmbH Polyethérsiloxanes à base de sioc
EP3744754B1 (fr) 2019-05-28 2024-10-02 Evonik Operations GmbH Procédé de production de siloxanes portant des groupes acétoxy
EP3744760A1 (fr) 2019-05-28 2020-12-02 Evonik Operations GmbH Procédé de fabrication de polyéthersiloxanes liés au sioc ramifiés dans la partie siloxane
EP3744745A1 (fr) 2019-05-28 2020-12-02 Evonik Operations GmbH Fabrication de mousses de polyuréthane
EP3744759B1 (fr) 2019-05-28 2024-07-17 Evonik Operations GmbH Procédé de fabrication de polyéthersiloxanes liés au sioc ramifiés dans la partie siloxane
EP3744774B1 (fr) 2019-05-28 2021-09-01 Evonik Operations GmbH Procédé de recyclage des silicones
EP3744764A1 (fr) 2019-05-28 2020-12-02 Evonik Operations GmbH Fabrication de polyéthersiloxanes par une liaison sioc
EP3744753B1 (fr) 2019-05-28 2022-04-06 Evonik Operations GmbH Procédé de purification d'acétoxysiloxanes
EP3744762A1 (fr) 2019-05-28 2020-12-02 Evonik Operations GmbH Procédé de fabrication de polymères séquencés de polyoxyalkylène polysiloxane
EP3744755B1 (fr) 2019-05-28 2024-10-09 Evonik Operations GmbH Procédé de production de siloxanes portant des groupes acétoxy
EP3744756B1 (fr) 2019-05-28 2024-07-03 Evonik Operations GmbH Systèmes acétoxy
EP3744763B1 (fr) 2019-05-28 2024-08-14 Evonik Operations GmbH Polyethérsiloxanes à base de sioc conçus sur mesure
US20230018204A1 (en) 2019-11-28 2023-01-19 Evonik Operations Gmbh Polyether-modified polybutadienes and processes for preparation thereof
EP3865531A1 (fr) 2020-02-14 2021-08-18 Evonik Operations GmbH Copolymères blocs polydiméthylsiloxane-polyoxyalkylènes linéaires à liaisons sioc
EP3865527A1 (fr) 2020-02-14 2021-08-18 Evonik Operations GmbH Fabrication de mousses de polyuréthane
ES2977903T3 (es) 2020-03-27 2024-09-02 Evonik Operations Gmbh Reciclaje de materiales de estructuras planas siliconizadas

Also Published As

Publication number Publication date
US11345783B2 (en) 2022-05-31
US20210163687A1 (en) 2021-06-03
CA3099860A1 (fr) 2019-11-21
CN112135861A (zh) 2020-12-25
WO2019219446A1 (fr) 2019-11-21

Similar Documents

Publication Publication Date Title
WO2019219446A1 (fr) Copolymères séquencés de polydiméthylsiloxane et de polyoxyalkylène de structure linéaire de type aba
WO2019219452A1 (fr) Copolymère séquencé de polydiméthylsiloxane et de polyoxyalkylène à structure linéaire de type aba
EP3744759B1 (fr) Procédé de fabrication de polyéthersiloxanes liés au sioc ramifiés dans la partie siloxane
EP3492513B1 (fr) Procédé de fabrication de polyéthersiloxanes liés au sioc ramifiés dans la partie siloxane
EP3744760A1 (fr) Procédé de fabrication de polyéthersiloxanes liés au sioc ramifiés dans la partie siloxane
EP3744761B1 (fr) Polyethérsiloxanes à base de sioc
EP3611217B1 (fr) Copolymères bloc de polydiméthylsiloxane-polyoxyalkylène linéaires de type de structure aba
EP3611214A1 (fr) Copolymères bloc polydiméthylsiloxane-polyoxyalkylène linéaires à liaisons sioc
EP3744763B1 (fr) Polyethérsiloxanes à base de sioc conçus sur mesure
EP2028213B1 (fr) Procédé de fabrication de polyorganosiloxanes ramifiés
EP2392608B1 (fr) Procédé destiné à la modification de polysiloxanes organiques
EP3467006B1 (fr) Mélanges de siloxanes ramifiés-cycliques de type d/t et leurs produits secondaires
EP3020749B1 (fr) Procede de fabrication de compositions contenant du platine
EP3611216A1 (fr) Copolymères bloc de polydiméthylsiloxane-polyoxyalkylène linéaires de type de structure aba
EP2289976B1 (fr) Copolymères de silicone polyéther et leur procédé de fabrication
EP2352779B1 (fr) Polyéthersiloxanes à groupes alcoxysilyle et leur procédé de préparation
EP2042542B1 (fr) Utilisation de siloxanes linéaires et leur procédé de fabrication
EP3744762A1 (fr) Procédé de fabrication de polymères séquencés de polyoxyalkylène polysiloxane
EP3919550A1 (fr) Siloxanes linéaires transportant des groupes acetoxy et produits dérivés
EP1679335A2 (fr) Bloc-copolymères de siloxane
DE102005051939A1 (de) Verfahren zur Herstellung von organisch modifizierten Polyorganosiloxanen
DE102008002713A1 (de) Neue Polyethersiloxane enthaltende Alkoxylierungsprodukte durch direkte Alkoxylierung organomodifizierter alpha, omega-Dihydroxysiloxane an Doppelmetallcyanid (DMC)-Katalysatoren, sowie Verfahren zu deren Herstellung
EP3744752B1 (fr) Procédé de fabrication de polysiloxanes à fonction alkoxy non cycliques
EP3735435B1 (fr) Procédé de préparation de siloxanes à fonction oxamide

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS