EP3788674B1 - Breitbanddrahtantenne - Google Patents

Breitbanddrahtantenne

Info

Publication number
EP3788674B1
EP3788674B1 EP19720680.8A EP19720680A EP3788674B1 EP 3788674 B1 EP3788674 B1 EP 3788674B1 EP 19720680 A EP19720680 A EP 19720680A EP 3788674 B1 EP3788674 B1 EP 3788674B1
Authority
EP
European Patent Office
Prior art keywords
resistive
patterns
grille
antenna
empty
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19720680.8A
Other languages
English (en)
French (fr)
Other versions
EP3788674C0 (de
EP3788674A1 (de
Inventor
Stéphane Mallegol
Pierre BELEC
Yoann HENAFF
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP3788674A1 publication Critical patent/EP3788674A1/de
Application granted granted Critical
Publication of EP3788674C0 publication Critical patent/EP3788674C0/de
Publication of EP3788674B1 publication Critical patent/EP3788674B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • H01Q9/27Spiral antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/10Logperiodic antennas
    • H01Q11/105Logperiodic antennas using a dielectric support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/006Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems

Definitions

  • the present invention relates to a wire antenna capable of operating in at least one predetermined frequency band, comprising a plurality of superimposed layers.
  • the invention finds applications particularly in the field of electromagnetic listening systems.
  • the antennas which are used either individually or in a goniometric network, must operate in a very wide frequency band and in circular, linear or double linear polarization, corresponding respectively to the ranges of interest of the electromagnetic signals in frequency and polarization.
  • These antennas must be as compact as possible and, in particular, thin, especially to facilitate integration onto carriers. They must also exhibit reproducible radiation performance (gain, radiation pattern quality, etc.) from one antenna to another, particularly for network applications or to allow for replacement during maintenance.
  • the radiating element consists of a metal wire which is shaped to describe, in a so-called radiating surface, a spiral or log-periodic pattern.
  • the metal wire is wound around itself to form a spiral when viewed from above.
  • This spiral can be, for example, an Archimedean spiral, a logarithmic spiral, or another type.
  • the metal wire is shaped to have several strands when viewed from above.
  • Each strand is inscribed within an angular sector, extends radially, and has indentations. The length of each indentation and the spacing between two successive indentations of a strand follow a logarithmic progression.
  • the metallic wire which is the radiating element is made by etching a thin metallic layer, for example a copper layer with a thickness between 2 and 20 ⁇ m (micrometers), deposited on a thin insulating (dielectric) support layer.
  • a thin metallic layer for example a copper layer with a thickness between 2 and 20 ⁇ m (micrometers)
  • dielectric thin insulating
  • the radiating element is capable of emitting a wave that propagates forward of the radiating surface (away from the absorbing cavity) and a wave that propagates backward of the radiating surface (toward the absorbing cavity). The latter is absorbed by the absorbing cavity.
  • Such an antenna is quite bulky due to the size of the absorbing cavity. It also has low efficiency, since half the power emitted by the radiating element is absorbed within the cavity. Finally, achieving consistent radio performance for such an antenna is difficult due to a lack of control over the electromagnetic characteristics of the absorbing material filling the cavity.
  • the radiating elements are placed on a loaded bandgap electromagnetic structure, called LEBG (Loaded Electromagnetic Band Gap), on a lower ground plane.
  • LEBG Long Electromagnetic Band Gap
  • a surface composed of periodic metallic patterns connected by resistors is placed within the antenna cavity.
  • the wave emitted backward by the radiating element is absorbed in a thin layer consisting of a metallic reflector plate topped with metal and the resistively loaded LEBG material.
  • the radiating element is etched onto a high-impedance surface (HIS), resting on spaced periodic metallic patterns placed within the antenna cavity and connected to the ground plane by metallized links, also called vias.
  • HIS high-impedance surface
  • the effective bandwidth of such an antenna, in which the interference between the incident and reflected waves is constructive, corresponds approximately to one octave. Consequently, this type of antenna is limited to narrow operating bands and cannot simultaneously cover a multi-octave frequency band.
  • a fourth prior art wire antenna described in the patent application FR3017493 It has been proposed to insert, between the broadband radiating element of frequencies and the spacer substrate layer, one or more layers with sets of periodic resistive patterns, either with a single set of resistive patterns or with several sets of nested resistive patterns.
  • Such a layer comprises resistive patterns with resistance values that vary gradually from a central point of the antenna to an outer edge. These resistive patterns are positioned in the near field of the antenna's radiating element. The resulting antennas are compact and provide high gain over a wide frequency band, without significant waviness in the radiation patterns.
  • these antennas exhibit surface waves (or creeping waves) that propagate along the lower ground plane of the antenna cavity and beyond onto the metal support on which the antenna is mounted. These surface waves, combined with structural edge effects, interact with the main electric field radiated by the antenna, resulting in a degradation of the radiation pattern quality. Specifically, wave effects, which become more pronounced at higher frequencies, appear in the main lobe of the radiation pattern. Consequently, the antenna gain is degraded, as is the half-power angle of the main radiation lobe.
  • the invention aims to correct the aforementioned problems by proposing a compact wire antenna capable of operating in a wide frequency band, for which the effects of surface waves are controlled in order to eliminate the defects mentioned above.
  • the invention proposes a wire antenna adapted to operate in at least one frequency band according to claim 1.
  • the wire antenna according to the invention thanks to the presence of a resistive grid with empty patterns which allows to trap and/or attenuate surface waves, has an increased gain.
  • the wire antenna according to the invention may have one or more of the characteristics detailed in claims 2 to 9.
  • THE figures 1 to 3 schematically represent a wire antenna 2 according to a first embodiment of the invention, in cross-section, in perspective view and in exploded perspective view.
  • the wire antenna 2 is a broadband frequency antenna, for example, capable of operating in a frequency range from 1 GHz (GigaHertz) to 20 GHz.
  • the wire antenna 2 has the shape of a circular disk, center O, and is composed of several concentric layers stacked in thickness along an axis A.
  • the axis A is a central axis orthogonal to the radiation plane of the antenna.
  • antenna 2 has an outside diameter of 45mm.
  • the antenna has another regular geometric shape, for example elliptical or rectangular, also exhibiting a central axis of similar symmetry.
  • the support layer 6 is for example formed by a first dielectric substrate, for example of a glass fiber reinforced ceramic type, having a first thickness h1, for example between 0.128 mm and 1.524 mm, for example equal to 0.254 mm.
  • the spacer substrate 8 is arranged above a reflector plane or ground plane 10.
  • the reflecting plane 10 is preferably metallic, and is located at a distance h0 below the radiation surface S. Its function is to reflect any incident wave regardless of its frequency within a given frequency range.
  • the spacer substrate 8 has the general external shape of a disk with axis A and a second thickness h2 that is substantially constant.
  • This spacer substrate is a second dielectric substrate with a given relative permittivity.
  • it is made of a dielectric material with low relative permittivity (e.g., unfilled foam), a Duroid-type dielectric material (registered trademark), or a possibly multilayer composite material.
  • the second thickness h2 of the spacer substrate 8 is greater than the first thickness h1 of the support layer 6.
  • the thickness of the spacer substrate 8 is between 4 mm and 8 mm, for example equal to 6 mm.
  • the spacer substrate 8 is made of magneto-dielectric or pure magnetic material.
  • the spacer substrate 8 is formed in a progressive or perforated dielectric material, hollowed out in its center, so as to achieve an increasing relative permittivity from the center to the outer edge.
  • a resistive grid 12 comprising a resistive surface 14 of predetermined resistivity value and at least one set of repeating, non-contiguous recesses (or holes) 18 so as to form said grid.
  • the recesses 18 are areas devoid of resistivity, hereinafter referred to as empty patterns.
  • the recesses 18 are made by absence of resistive material deposition.
  • the resistive grid 12 is, according to a first variant of the embodiment, arranged on a face 16 of the spacer substrate 8, or lower face, oriented towards the reflector plane 10.
  • the resistive grid 12 is arranged on a face 20 of the reflecting plane 10, called the upper face and oriented towards the radiating element 4.
  • the resistive grid is placed on a third dielectric, magnetic or magneto-dielectric substrate interposed between face 6 of the spacer 8 and face 20 of the reflector plane 10.
  • the resistive grid 12 is arranged in a so-called cavity bottom area, between the spacer substrate 8 and the reflector plane 10.
  • the resistive grid 12 is made from a resistive film, and the empty patterns 18 are, for example, created by hollowing out the resistive film.
  • the resistive grid is made by depositing resistive ink according to a pattern, so as to form the desired empty patterns by the absence of resistive ink deposits.
  • the resistive grid 12 is produced by conventional screen printing or any other equivalent process, for example 3D printing or aerosol printing.
  • the resistive grid 12 has a third thickness h3, which can vary between a few micrometers and a few tens of micrometers depending on the desired resistance value and the intrinsic characteristics of the resistive ink used.
  • the radiating element 4 comprises first and second metallic wires 22 and 24, which are respectively formed according to a spiral pattern or a sinuous log-periodic pattern, for example. More particularly, the pattern forms an Archimedean spiral in the first embodiment, as illustrated in the figures 1 to 3 .
  • Each wire, 22, 24, is wound around the origin point O, which corresponds to the intersection of the axis A and the radiation surface S.
  • the radiating element 4 is for example produced by an engraving operation, directly on the upper face 19 of the support layer 6.
  • the radiating element is a single-polarized or double-polarized element of the sinuous DuHamel type.
  • the radiating element is hybrid.
  • a power supply device (not shown) for the radiating element 4 is positioned below the reflector plane 10, which is electrically connected to ground.
  • the reflector plane 10 and the layers 12, 8, 6 positioned above it are pierced by a recessed passage 28, along axis A, for the passage of conductor(s) to electrically supply the radiating element 4.
  • an active area of the radiating element 4 emits a first direct wave propagating forwards, i.e. opposite the spacer substrate 8, and a second wave propagating backwards, i.e. in the direction of the spacer substrate 8.
  • the second wave passes through the spacer substrate 8 and the resistive grid 12, is reflected by the reflector plane 10, then passes again through the resistive grid 12 and the spacer substrate 8.
  • the resistive grid 12 includes regular empty patterns 18 arranged in this embodiment on concentric rings of center O', and a central non-resistive zone 30, comprising the hollow passage 28.
  • the resistive layer 12 includes a peripheral zone 32, annular in this first embodiment, which does not have empty patterns, in other words it is a solid resistive zone, for better absorption efficiency of surface waves in this zone.
  • the peripheral zone is located near the outer edge of the antenna, for example between the outer edge of the antenna and the resistive grid.
  • the 18 empty motifs are distributed over concentric rings, forming, within each ring, sets of empty motifs of the same size and geometric shape, regularly distributed across the ring. Furthermore, across all the rings, the empty motifs are radially aligned and correspond to the same angular width.
  • the resistive grid 12 comprises empty square motifs 34, 36 as illustrated in the figure 4 .
  • the resistive grid 12 comprises a resistive surface 15, and two sets of empty patterns, a first set 33 of first square-shaped patterns 34 and a second set 35 of second square-shaped patterns 36.
  • the motifs are arranged according to an orthogonal grid, with regular spacing between two successive motifs.
  • the resistive surface has a resistivity of 1000 ⁇ per square.
  • the first set of 33 empty patterns forms a first external zone, close to the outer edge of grid 12, and the second set of 35 empty patterns forms a second internal zone of square shape.
  • the circular zone 30 which in one embodiment corresponds to the recessed passage 28.
  • the circular zone 30 has a diameter greater than the diameter of the central recessed passage 28.
  • the circular zone 30 corresponds to a recessed (non-resistive) surface.
  • the first square patterns 34 have a larger surface area than the second square patterns 36.
  • the first patterns 34 are squares of 6.4 mm on each side, and are positioned in an active area for the antenna going, approximately, from 2 GHz to 4 GHz
  • the second patterns 36 are squares of 3.2 mm on each side and are positioned in an active area for the antenna going, approximately, from 4 GHz to 18 GHz.
  • the empty patterns are periodized and of dimensions (sides of the squares) smaller than the wavelength associated with the center frequency of the considered sub-band radiated by the antenna.
  • the radio performance of the antenna is improved over a frequency range from 2 GHz to 18 GHz.
  • the main lobe of the antenna pattern is formed over the entire frequency band considered. Pattern ripples are not present in vertical polarization and are negligible in horizontal polarization.
  • the resistive grid 12 has annular empty motifs 42 interspersed between resistive rings 44. This is a concentric ring topology, the annular empty motifs 42 being in regular alternation with the resistive rings 44.
  • This embodiment is particularly suitable for a spiral radiating element.
  • the heights h1 and h2 of the constituent materials of the antenna are chosen to have constructive interference between the spiral-type radiating element and the reflecting plane (lower ground plane of the antenna) in the frequency band of interest.
  • the shape, size, and spatial repetition pattern or topology of the empty motifs are variable and defined, for each embodiment, using software. 3D electromagnetic simulation or electromagnetic simulator. Indeed, an analytical preliminary dimensioning of resistive patterns is particularly complex.
  • a resistivity value for the resistive grid, a geometric shape for each empty pattern and a pattern repetition topology are chosen, and the pattern size and pattern spacing are calculated using 3D electromagnetic simulation software.
  • Such simulation software is known, for example software that solves Maxwell's equations in integral form, using the finite integral method.
  • the size and topology of the empty patterns are selected to improve the stability of the radiation pattern and promote the absence of undulation, which translates into effective trapping of surface waves.
  • these choices are made by implementing several simulations and comparing the results to select the size, shape, and spacing of the empty patterns best suited for a given application.
  • the antenna 2' further comprises a second resistive layer 48, between the support 6 and the spacer substrate 8, comprising an array 50 of resistive motifs 52, each resistive motif 52 having a given resistive surface area.
  • Each resistive motif is produced, for example, by depositing a resistive ink, and the spaces between resistive motifs are empty.
  • the first resistive grid 12 comprises two partial resistive sub-grids 54, 56, each formed of a resistive surface having recesses which form empty patterns 62, 64 and 66.
  • the assembly 50 of the second resistive layer 48 is placed above a separation zone 60 between the first resistive subgrid 54 and the second resistive subgrid 56, this separation zone 60 being an empty zone, devoid of resistive layer, above the reflector plane 10.
  • each resistive subgrid 54, 56 comprises at least one set of empty motifs placed opposite a area devoid of resistive patterns 52 of the resistive layer 48, therefore an "empty" area, without resistance.
  • the set 50 of resistive patterns of the resistive layer 48 forms a spatially nested zone between the first subgrid 54 and the second subgrid 56. There is no spatial overlap, in top view, between the zone formed by the set 50 and the first subgrid 54 and the second subgrid 56.
  • the first subgrid 54 contains empty square motifs 62 aligned in a square ring.
  • the first subgrid 54 includes a zone 30 centered on axis A, without resistance, as in the first embodiment.
  • the resistive motifs 52 of the resistive layer 48 are square in shape and of the same dimensions as the empty motifs 62 of the first sub-grid 54.
  • the second subgrid 56 has a peripheral resistive area 32 without recess, and two sets of empty square patterns 64 and 66 of different sizes.
  • each resistive subgrid has a resistivity of 1000 ⁇ per square.
  • the two resistive subgrids 54 and 56 cover the frequency bands from 2 GHz to 4 GHz and from 10 GHz to 18 GHz, respectively.
  • the set 50 of resistive patterns 52 placed between the spacer substrate 8 and the support 6 covers the frequency band from 4 GHz to 10 GHz.
  • the antenna defined according to this second embodiment called a hybrid cavity antenna, promotes an absence of waviness in radiation patterns over the entire frequency band considered.
  • Variations of this embodiment are conceivable, for example by adding a resistance gradient or a multilayer structuring of the resistive grid 12.
  • resistive grid with a progressive and decreasing resistance variation between a high resistance value at the periphery and a lower value at its center.
  • FIG. 9 schematically illustrates, in cross-section, a multi-layered structure of a resistive grid according to a third embodiment of a wire antenna according to the invention.
  • the 2" antenna of the figure 9 includes a radiating element 4 placed on a planar support 6, itself arranged on a first spacer substrate 8.
  • first spacer substrate 8 and the reflector plane 10 are stacked a first resistive grid 12A, a second spacer substrate 8' and a second resistive grid 12B.
  • the first resistive grid 12A comprises a set of 68 empty motifs, for example a central ring, placed opposite a resistance-free area 70 (empty zone) of the second resistive grid 12B.
  • the second resistive grid 12B comprises a set of 72 empty motifs, arranged for example in a peripheral ring, opposite a resistance-free area (empty zone) of the first grid 12A.
  • the antenna includes a resistive grid between the reflector plane 10 and the spacer substrate 8 or 8', but the resistive grid does not have a solid peripheral resistive area.
  • the resistive grid(s) are produced by conventional screen printing process or any other equivalent process, for example 3D printing or aerosol printing.
  • the resistive grid or grids are deposited either directly on the reflector plane 10, or on the lower face 16 of the spacer substrate 8, or on a dielectric, magnetic or magneto-dielectric substrate placed on the reflector plane 10.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Aerials With Secondary Devices (AREA)
  • Details Of Aerials (AREA)

Claims (9)

  1. Drahtantenne (2, 2', 2"), die angepasst ist, um in mindestens einem Frequenzband betrieben zu werden, umfassend eine Vielzahl von übereinanderliegenden Schichten, umfassend mindestens ein Strahlungselement (4), das auf einer Trägerschicht (6) angeordnet ist, wobei die Trägerschicht auf einem Abstandhaltersubstrat (8, 8') platziert ist, das auf einer reflektierenden Ebene (10) platziert ist, die Drahtantenne umfassend
    mindestens ein Widerstandsgitter (12, 12A, 12B) mit einer Widerstandsfläche (14) mit vorbestimmtem Widerstand, mindestens umfassend eine Anordnung von sich wiederholenden, nicht zusammenhängenden Leermustern (18, 34, 36, 42, 62, 64, 66), wobei das Widerstandsgitter (12, 12A, 12B) zwischen dem Abstandhaltersubstrat (8, 8') und der reflektierenden Ebene (10) platziert ist, wobei das Widerstandsgitter (12) eine erste Widerstandsschicht bildet, die Antenne ferner umfassend eine zweite Widerstandsschicht (48), die zwischen der Trägerschicht (6) des Strahlungselements (4) und dem Abstandhaltersubstrat (8) angeordnet ist, die zweite Widerstandsschicht (48) mindestens umfassend eine Anordnung (50) von Widerstandsmustern (52) mit demselben Widerstandswert aufweist, die einen Teilbereich der zweiten Widerstandsschicht (48) einnimmt, wobei die oder jede Anordnung (54, 56) von Leermustern (62, 64, 66) der ersten Widerstandsschicht (12) gegenüber einer Zone ohne Widerstandsmuster der zweiten Widerstandsschicht (48) angeordnet ist.
  2. Antenne nach Anspruch 1, die erste Widerstandsschicht (12) umfassend einen resistiven Umfangsbereich (32), der die Anordnung(en) von Leermustern umgibt.
  3. Antenne nach einem der vorherigen Ansprüche, wobei alle Leermuster (34, 36) von mindestens einer Anordnung (33, 35) des Gitters die gleiche geometrische Form aufweisen und gleichmäßig beabstandet sind.
  4. Antenne nach Anspruch 3, wobei die Antenne eine Mittelachse (A) orthogonal zu den überlagerten Schichten aufweist, das Widerstandsgitter umfassend mindestens zwei konzentrische Anordnungen (33, 35) von Leermustern (34, 36), jede Anordnung umfassend Leermuster mit quadratischer Form und gleicher Größe, wobei die Größe der Leermuster zwischen zwei verschiedenen konzentrischen Anordnungen verschieden ist, wobei die Größe der Leermuster einer Anordnung abhängig von der Entfernung dieser Anordnung von der Mittelachse (A) der Antenne zunimmt.
  5. Antenne nach Anspruch 4, wobei jede Anordnung quadratischer Leermuster gleicher Größe einem Betriebsfrequenz-Unterband der Antenne mit einer assoziierten Mittenfrequenz und einer assoziierten Wellenlänge entspricht, und wobei die Muster quadratisch sind mit einer Seitenlänge, die kleiner als oder gleich wie die Wellenlänge ist.
  6. Antenne nach einem der vorherigen Ansprüche, wobei das mindestens eine Widerstandsgitter (12, 12A, 12B) Folgendes umfasst
    ein erstes Widerstandsgitter (12A) und ein zweites Widerstandsgitter (12B), wobei das erste Widerstandsgitter (12A) eine erste Anordnung (68) von Leermustern umfasst, wobei das erste Widerstandsgitter zwischen ein erstes Abstandhaltersubstrat (8) und ein zweites Abstandhaltersubstrat (8') eingefügt ist, und wobei das zweite Widerstandsgitter (12B) mindestens eine zweite Anordnung (72) von Leermustern umfasst, wobei das zweite Widerstandsgitter zwischen das zweite Abstandhaltersubstrat (8') und die reflektierende Ebene (10) eingefügt ist, wobei die erste Anordnung (68) von Leermustern gegenüber einer Zone (70) ohne Widerstandsmuster des zweiten Widerstandsgitters (12B) platziert ist, wobei die zweite Anordnung (72) von Leermustern gegenüber einer Zone ohne Widerstandsmuster des ersten Widerstandsgitters (12A) platziert ist.
  7. Antenne nach einem der vorherigen Ansprüche, wobei das oder jedes Widerstandsgitter (12, 12A, 12B) eine durch Aufbringen einer Widerstandstinte hergestellte Widerstandsoberfläche aufweist, in der die Leermuster durch Aussparen gebildet sind.
  8. Antenne nach Anspruch 7, wobei das oder jedes Widerstandsgitter durch Siebdruck oder 3D-Druck gefertigt ist.
  9. Antenne nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Strahlungselement (4) drahtförmig ist und spiralförmig, logarithmisch-periodisch oder mäanderförmig gewickelt ist.
EP19720680.8A 2018-05-04 2019-05-03 Breitbanddrahtantenne Active EP3788674B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1800429A FR3080959B1 (fr) 2018-05-04 2018-05-04 Antenne filaire large bande
PCT/EP2019/061399 WO2019211446A1 (fr) 2018-05-04 2019-05-03 Antenne filaire large bande

Publications (3)

Publication Number Publication Date
EP3788674A1 EP3788674A1 (de) 2021-03-10
EP3788674C0 EP3788674C0 (de) 2025-11-19
EP3788674B1 true EP3788674B1 (de) 2025-11-19

Family

ID=63722434

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19720680.8A Active EP3788674B1 (de) 2018-05-04 2019-05-03 Breitbanddrahtantenne

Country Status (5)

Country Link
US (1) US11495887B2 (de)
EP (1) EP3788674B1 (de)
FR (1) FR3080959B1 (de)
IL (1) IL278362B2 (de)
WO (1) WO2019211446A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102886453B1 (ko) * 2020-03-18 2025-11-18 삼성디스플레이 주식회사 무선 주파수 소자 및 이를 포함하는 표시 장치
FR3131108B1 (fr) * 2021-12-21 2023-12-22 Thales Sa Antenne filaire amelioree a large bande de frequences.
FR3143219B1 (fr) * 2022-12-07 2025-05-02 Thales Sa Système antennaire amélioré et dispositif de découplage associé
FR3145065B1 (fr) * 2023-01-13 2025-09-05 Thales Sa Système antennaire comportant une antenne et un dispositif passif de déviation angulaire d'un lobe principal de rayonnement de l'antenne

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10034547A1 (de) * 2000-07-14 2002-01-24 Univ Karlsruhe Breitbandantenne
US7612676B2 (en) * 2006-12-05 2009-11-03 The Hong Kong University Of Science And Technology RFID tag and antenna
FR2922687B1 (fr) * 2007-10-23 2011-06-17 Thales Sa Antenne compacte a large bande.
FR2965669B1 (fr) * 2010-10-01 2012-10-05 Thales Sa Reflecteur d'antenne large bande pour une antenne filaire plane a polarisation circulaire et procede de realisation du deflecteur d'antenne
US9444147B2 (en) * 2011-07-18 2016-09-13 The United States Of America As Represented By The Secretary Of The Army Ultra-wide-band (UWB) antenna assembly with at least one director and electromagnetic reflective subassembly and method
FR3017493B1 (fr) * 2014-02-07 2017-06-23 Thales Sa Antenne filaire compacte a motifs resistifs
FR3052600B1 (fr) * 2016-06-10 2018-07-06 Thales Antenne filaire large bande a motifs resistifs
ES2933998T3 (es) * 2016-08-29 2023-02-15 Arralis Holdings Ltd Una antena multibanda circularmente polarizada

Also Published As

Publication number Publication date
IL278362B1 (en) 2024-04-01
US11495887B2 (en) 2022-11-08
WO2019211446A1 (fr) 2019-11-07
IL278362B2 (en) 2024-08-01
EP3788674C0 (de) 2025-11-19
US20210126374A1 (en) 2021-04-29
IL278362A (de) 2020-12-31
FR3080959A1 (fr) 2019-11-08
FR3080959B1 (fr) 2021-06-25
EP3788674A1 (de) 2021-03-10

Similar Documents

Publication Publication Date Title
EP3788674B1 (de) Breitbanddrahtantenne
EP2573872B1 (de) Linsenantenne, die eine dielektrische, beugende Komponente umfasst, die in der Lage ist, eine Hyperfrequenzwellenfront zu formen
EP0886889B1 (de) Breitbandige gedruckte gruppenantenne
EP3469657B1 (de) Breitbanddrahtantenne mit widerstandsmustern mit variablem widerstand
EP2622685B1 (de) Breitbandantennereflektor für eine zirkular polarisierte flachdrahtantenne und verfahren zur herstellung dieses antennenreflektors
EP1145379B1 (de) Antenne mit einer filtermaterialanordnung
CA2640481C (fr) Antenne a polarisation circulaire ou lineaire
FR2985096A1 (fr) Antenne elementaire et antenne reseau bidimensionnelle correspondante
FR3117685A1 (fr) Source d'antenne pour une antenne réseau à rayonnement direct, panneau rayonnant comprenant plusieurs sources d'antenne.
EP0252779A1 (de) Antennenelement mit einem Streifen, der zwischen zwei selbsttragenden und mit untereinanderliegenden strahlenden Schlitzen vorgesehenen Grundplatten hängt und Verfahren zur Herstellung desselben
EP2365584B1 (de) Antennenvorrichtung mit einer Planarantenne und einem Breitbandreflektor sowie ein Herstellungsverfahren des Reflektors
EP2147479B1 (de) Antenne mit geneigten strahlerelementen
FR3017493A1 (fr) Antenne filaire compacte a motifs resistifs
EP2817850B1 (de) Elektromagnetische bandlückenvorrichtung, verwendung davon in einer antennenvorrichtung und parameterfestlegungsverfahren für die antennenvorrichtung
EP2637254B1 (de) Flachantenne für Endgerät, das über eine doppelte Kreispolarisierung funktioniert, auf dem Luftweg transportiertes Endgerät und Satellitentelekommunikationssystem, das mindestens eine solche Antenne umfasst
FR2552273A1 (fr) Antenne hyperfrequence omnidirectionnelle
EP4203185B1 (de) Verbesserte breitbandige drahtantenne
FR3003701A1 (fr) Antenne filaire amelioree a large bande de frequences.
FR3003702A1 (fr) Antenne filaire amelioree a large bande de frequences.
FR2866479A1 (fr) Procede de fabrication d'une antenne et/ou d'un reseau d'antennes, antenne et/ou reseau d'antennes fabriques selon un tel procede
WO2020157146A1 (fr) Procédé de fabrication d'une pièce diélectrique à mailles formant un réseau solide tridimensionnel par ajout de matière
FR3154872A1 (fr) Dispositif d'émission / réception à domaine de dépointage étendu
FR2916581A1 (fr) Antenne de type helice.
EP4270642A1 (de) Verbesserte hornantenne
EP1825565B1 (de) Optimierung verbotener photonenbandantennen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201029

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20221018

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230516

REG Reference to a national code

Ref country code: DE

Free format text: PREVIOUS MAIN CLASS: H01Q0001360000

Ref country code: DE

Ref legal event code: R079

Ref document number: 602019078234

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01Q0001360000

Ipc: H01Q0001380000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 1/38 20060101AFI20250826BHEP

Ipc: H01Q 15/14 20060101ALI20250826BHEP

Ipc: H01Q 17/00 20060101ALI20250826BHEP

Ipc: H01Q 11/10 20060101ALI20250826BHEP

Ipc: H01Q 15/00 20060101ALI20250826BHEP

Ipc: H01Q 9/27 20060101ALI20250826BHEP

INTG Intention to grant announced

Effective date: 20250904

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: F10

Free format text: ST27 STATUS EVENT CODE: U-0-0-F10-F00 (AS PROVIDED BY THE NATIONAL OFFICE)

Effective date: 20251119

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH